Towards Securing XML Web Services

Ernesto Damiani
DTI - Universita di Milano
26013 Crema - Italy

damiani@dti.unimi.it

Sabrina De Capitani di
Vimercati
DEA - Universita di Brescia
25123 Brescia - Italy

Pierangela Samarati
DTI - Universita di Milano
26013 Crema - Italy

samarati@dti.unimi.it

decapita@ing.unibs.it

ABSTRACT

Security is currently one of the main concerns about XML
Web services. Several initiatives are currently ongoing aimed
at achieving a standardized way for supporting integrity,
confidentiality, and access control for XML Web services.
This paper looks into these approaches and gives some hints
for future research.

1. INTRODUCTION

An XML Web service is a Web-based application that
accepts requests from different systems across the Internet
(or an Intranet) through the application of Web technol-
ogy standards including XML [5], SOAP [4], WSDL [6], and
HTTP [12]. While XML Web services are an increasingly
successful paradigm for the development of complex Web-
based applications, the original specifications of their un-
derlying technologies did not even mention security. It is
therefore easy to understand why security is currently one
of the biggest concerns about future development XML Web
services. Specifically, two main issues need to be addressed:

e restricting access to a XML Web service to authorized
users;

e protecting the integrity and confidentiality of XML
messages exchanged in a Web service environment.

At first sight, it may seem that both these issues can be
addressed straightforwardly by relying on the security tech-
niques already used for Web sites. In other words, one might
assume that standard techniques for Web application and
HTTP security can be applied alone or in combination to
create secure XML Web services. Indeed, this approach is
being taken by a number of current projects and commer-
cial products based on XML Web services. Specifically, two
currently available and well-known techniques are used: Se-
cure Sockets Layer (SSL) [11] and firewall-based rules. The
latter technique is mainly used on private networks: assum-
ing that the computers that need to access an XML Web

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

XML’ 02, November 22, 2002, Washington, DC, USA.

Copyright 2002 ACM 1-58113-632-3 ...$5.00.

service are known in advance (as it often happens, for ex-
ample, on a corporate Intranet), firewalls can accept only
connections coming from computers whose IP addresses are
known in advance. On public networks such as the Inter-
net, where clients’ addresses are unknown to servers before
they connect, a variety of Secure Sockets Layer (SSL) im-
plementations can be used to encrypt and decrypt messages
exchanged between clients and servers. Besides protecting
messages from unauthorized read while they are in tran-
sit, SSL software verifies that incoming messages actually
come from the correct sender.! While these two techniques
have proven to be robust and very effective, their use in
Web service environments is not considered satisfying by
the research community, specially in association with XML
messages used in SOAP-based communications. Indeed,
theSimple Object Access Protocol (SOAP) is a specification
for performing method requests as XML documents and was
conceived as a message format not tied to a single proto-
col: therefore, at least in principle, one should avoid relying
on a specific underlying protocol (such as HTTP or even
TCP/IP) to perform authentication for (and access control)
to it.

Several proposals for securing Web services have been
made in the last two years, some of them generically aimed
at protecting XML integrity and privacy [3, 13], others specif-
ically at passing authentication credentials with SOAP calls,
such as [9] and [2]. In the following we shall compare and
discuss these approaches.

2. W3C XML-SIGNATURE SYNTAX AND
PROCESSING

The W3C and IETF have proposed since 1999 a standard
for encrypting XML data and tags within a document. This
allows for encrypting portions of an XML document at the
granularity of XML subtrees and even single elements. En-
crypting portions of a document with different keys permits
to distribute the same XML document to multiple recipi-
ents, each being able to decrypt only the parts relevant to
it. Also, the standard includes a mechanism for creating and
verifying digital signatures for all or part of a generic XML
message, and for holding a digital signature within XML
documents. As an example, consider the XML message in
Figure 1(a), broadcasted by the ACME company’s procure-
ment application to ACME suppliers. The message requests
a quotation about a product from a number of suppliers.

!The server, the client, or both parties can also use digital
certificates as part of the authentication process.

Obviously, it is crucial that ACME suppliers receiving this
message are able to determine the identity of the sender.
Using the W3C XML-signature syntax [3], the XML mes-
sage broadcasted by the ACME company’s procurement ap-
plication can be signed simply by adding a header. Namely,
the original QuotationRequest element will become a child
of a new root element (e.g., signedQuotationRequest), and
a sibling (a Signature element) will be added that holds
ACME digital signature information, as well as the algorithm
used to canonicalize the data, any transforms performed on
it, the digest algorithm, and the signature algorithm itself.
In our sample case, the signed document looks as illustrated
in Figure 1(b).

Simple as it may seem, the W3C proposal had to tackle
and solve a number of subtle problems. For instance, signing
a document that includes the signature itself can be tricky,
as the document’s digest is also computed as part of the
signing process and will change when the actual signature
value is inserted into the SignatureValue node. The W3C
specification solves this problem using a transformation to
remove the entire Signature element from the data to be
digested and signed.

A similar approach can be adopted for protecting XML
messages while in transit by encrypting their contents, so
that only the authorized recipient can read them. Sup-
pose, for example, that the procurement application, hav-
ing chosen the offer of one of ACME suppliers, sends an order
message including payment information (see Figure 2(a)).
Using the W3C’s XML Encryption Syntax and Processing
standard [13], the XML order message can be encrypted
as illustrated in Figure 2(b). In this example, ACME credit
card number and payment amount have been replaced with
an EncryptedData node, in turn including a CipherValue
subelement for the encrypted data. The EncryptedKey node
contains a copy of the session key encrypted with the sup-
plier’s Public Key. Upon reception of the order, the supplier
can then use her private key to decrypt the session key; with
it, she can safely decrypt the payment data.

Of course, the two techniques highlighted above could be
combined, digitally signing and encrypting the SendOrder
message.

The techniques do indeed a good job in providing the gen-
eral functionalities for application-level XML security. How-
ever, they were conceived for securing generic well-formed
XML documents, and they do not rely on, neither take ad-
vantage of the schema of the documents they encrypt. In
other words, they are not specifically aimed to XML-based
protocols and to the SOAP messages structure.

3. SOAP HIGHLIGHTS

SOAP requests carry remote method invocations over HTTP.

They are fully declarative, inasmuch they do not dictate how
the target component should handle the request. The overall
structure of a SOAP invocation is depicted in Figure 3; the
outside Multimedia Internet Mail Extension (MIME) layer
refers to the type of the message as reported in the HTTP
header, namely text/xml.

The SOAP XML payload contains an encoded method
invocation; its lexicon is defined by a standard XML names-
pace SOAP-ENV. In SOAP, the XML payload is used mainly
to encode parameters’ datatypes in a platform independent
way, much as CORBA’s Common Data Representation. The
XML payload includes a root Envelope element and a child

CLIENT SIDE "~

MIME

Message
Header

Message
Body

Figure 3: Overall structure of a SOAP invocation

N

. “SERVER SIDE
\
SOAP Client /// SOAP Gateway L ocal Component
B (1) SOAP request
\ /

Vo (2) RMC-based request

b (3) RM C-based response

Figure 4: Execution sequence of a SOAP call

Body element, the latter having an optional Header sibling.
The SOAP payload’s root element Envelope provides the
serialization context for the method calls that follow. The
Envelope element can contain additional attributes (quali-
fied by a suitable XML namespace). The SOAP Header ele-
ment contains auxiliary information (called header entries)
not functionally related to the method invocation, such as
transaction management and payment. SOAP headers may
contain the standard Actor and MustUnderstand attributes
(as well as other optional, namespace-qualified ones), respec-
tively stating the URI of the final destination of the message
and whether header processing capability on the part of the
recipient is mandatory (1) or not (0).

A SOAP response is similar to a request, apart from the
fact that it adds a Response suffix to the element name used

for the method. For instance, for the method QuotationRequest,

the response element is QuotationRequestResponse. Fig-
ure 4 summarizes the phases of a SOAP invocation.

4. THE ROLE OF HEADERS IN SOAP SE-
CURITY

Inside the Envelope SOAP message is broken up into two
portions: the SOAP header and body [4]. The header is
used to hold metadata associated with the request, while

<proc:QuotationRequest xmlns:proc="http://www.acme.com/Procurement">

<proc:ProductType code=‘AC350°/>
<proc:quantity>100,000</proc:quantity>
</proc:QuotationRequest>

<proc:signedQuotationRequest xmlns:proc="http://www.acme.com/Procurement">
<Signature xmlns="http://www.w3.0rg/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>

<Reference URI="">
<Transforms>

<Transform Algorithm="http://www.w3.0org/2000/09/xmldsig#enveloped-signature"/>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#shal"/>

<DigestValue>...... </DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>...... </SignatureValue>
<KeyInfo>
<X509Data>
<X509Certificate>...... </X509Certificate>
</X509Data>
</KeyInfo>
</Signature>

<proc:QuotationRequest xmlns:proc="http://www.acme.com/Procurement">

<proc:ProductType code=‘AC350’/>
<proc:quantity>100,000</proc:quantity>
</proc:QuotationRequest>
</proc:signedQuotationRequest>

Figure 1: An example of XML message (a) and the corresponding signed message (b)

the body is used to hold the service invocation and its pa-
rameters. In the approach proposed in [9], authentication
information is seen as metadata sent together with a mes-
sage. Furthermore, digital signatures can be hosted in this
field making SOAP headers play an important role in SOAP
security.>

4.1 Using Headers for Credential Transfer and
Access Control

A first proposal exploiting SOAP’s headers for carrying
credentials and enforcing access control was presented by
Damiani et al. in [9]. The authors exploit the features
of the SOAP protocol, and represent all the information
characterizing the subject of a request by means of a cus-
tom header included in each SOAP call. The motivation
for this approach is that custom headers provide a uniform
description framework for service requests and subjects sub-
mitting them, and represent an elegant and model-neutral
way to specify security arrangements. The proposed cus-
tom header has a root subject with three types of chil-
dren: user, location, and role; the first of which is manda-
tory (systems non requesting user authentication will have
a dummy Anonymous identifier and a dummy password hash
for this element) and the remaining two are optional. Also,
the latter can have multiple occurrences. Element user con-
tains the identity (element userid and the hashed password
passwdhash) of the user on behalf of whom the request is
submitted. Element location defines the network address

2There is of course an exception: if encryption is used, en-
crypted data will typically live in the SOAP body. However,
session keys can still be included in the SOAP headers.

of the machine from which the request originates and can
be symbolic (symname) or numeric (netaddr). Each element
role carries a certificate enabling the user to exercise the
stated role. While the authors acknowledge that different
systems may use different representations for certificates, in
their presentation they assume certificates enabling a role to
be characterized by four elements: roleid, issuer, holder,
and validity. Element roleid states the identifier of the
role enabled by the certificate. Element issuer specifies the
authority that released the certificate. Element holder de-
fines to whom the certificate is referred (and may refer to
its identity or key). Finally, element validity imposes con-
straints on the time in which the certificate is to be consid-
ered valid. Figure 5 illustrates an example of SOAP header
in [9].

Certificates and subject’s information carried in headers
is exploited in [9] where every request directed to the SOAP
gateway?® is intercepted and evaluated against authorizations
specifying restrictions to service accessibility. Based on the
authorizations, the request may: be rejected; be allowed as
is; or be filtered and executed in a modified form, where
filtering of a request may involve elimination of some of its
parameters that the current invoker is not allowed to specify.
Once filtered, requests are passed to the SOAP gateway,
which will produce a response to be returned to the client.
The response also is sent through the access control system

3The SOAP gateway is the component that translates the
SOAP request to a call to a local or remote server; the an-
swer of the server is then translated back to the format of
the SOAP response. The communication between the client
and the gateway uses the HTTP protocol.

<proc:SendOrder xmlns:proc="http://www.acme.com/Procurement">
<proc:0rderID>64B4A0D1-814E-4FF6-918A-DD7E7TE1AECEA</proc:0rderID>

<proc:ProductType code=‘AC350°/>
<proc:quantity>100,000</proc:quantity>

<cc:paymentInfo xmlns:cc= "http://www.creditcardcompany/Charge">

<cc:Amount currency=‘Euro’>2000</cc:Amount>

<cc:CardNumber>1234123412341234</cc:CardNumber>

<cc:Expiry>08-15-2002</cc:Expiry>
</cc:paymentInfo>
</proc:SendOrder>

<proc:SendOrder xmlns:proc="http://http://www.acme.com/Procurement">
<proc:0rderID>64B4A0D1-814E-4FF6-918A-DD7E7TE1AECEA</proc:0rderID>

<proc:ProductType code=‘AC350’/>
<proc:quantity>100,000</proc:quantity>

<cc:paymentInfo xmlns:cc= "http://www.creditcardcompany/Charge">
<EncryptedData xmlns="http://www.w3.0org/2001/04/xmlenc#" ID="ED"

Type="http://www.w3.0org/2001/04/xmlenc#Content">

<EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
<ds:KeyInfo xmlns:ds="http://www.w3.0org/2000/09/xmldsig#">
<ds:RetrievalMethod URI="#SessKey" Type="http://www.w3.0rg/2001/04/xmlenc#EncryptedKey"/>

</ds:KeyInfo>
<CipherData>
<CipherValue>...... </CipherValue>
</CipherData>
</EncryptedData>

<EncryptedKey Id="SessKey" xmlns="http://www.w3.org/2001/04/xmlenc#">
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-1_5"/>
<ds:KeyInfo xmlns:ds="http://www.w3.0org/2000/09/xmldsig#">
<ds :KeyName>Supplier’s Public/Private Key</ds:KeyName>

</ds:KeyInfo>
<CipherData>
<CipherValue>...... </CipherValue>
</CipherData>
<ReferencelList>
<DataReference URI="#ED"/>
</ReferenceList>
</EncryptedKey>
<cc:Expiry>08-15-2002</cc:Expiry>
</cc:paymentInfo>
</proc:SendOrder>

Figure 2: An XML order message including payment information (a) and the corresponding encrypted

message (b)

and may be subject to some filtering.

4.2 Using Headers for Credential Transfer

Microsoft Web Services Security Language [2] develops
on this idea identifying three areas: Credential Transfer,
Message Integrity, and Message Privacy. While in [9] the
header contained an extension of an XML-SPKI certificate;
in Microsoft’s proposal, the credentials element passed in the
SOAP headers is used to carry standard X.509 certificates
and Kerberos tickets.

In both cases, while it is possible to refer to traditional
approaches assuming an encrypted username and password,

the credentials can be used to support complex RBAC schemata,

holding any number of certificates?. Figure 6 illustrates an
example of Microsoft header, where the credentials node
holds a public certificate.

4Note that certificates can be used for any number of reasons
beyond just authenticating the sender of the message. For
instance, they can specify the Certificate Authority guaran-
teeing a particular certificate.

Both [2] and [9] guarantee the integrity of the SOAP mes-
sage in the sense the supplier will know that the SOAP
message comes from an authorized source. However, us-
ing headers to carry credentials and certificates is not in
itself sufficient to create a security infrastructure for XML
Web services. Indeed, such infrastructure needs to include
support for Policy Administration, that is, the possibility
of writing policies that exploit information carried in the
headers for subject and environment specification. Also,
the infrastructure needs to address Policy Evaluation, that
is, processing a policy when a certain SOAP message is re-
ceived, and Policy Decision, that is, the kind of notification
that the sender must receive about the access decision. A
preliminary assessment of these problems was given in in [9];
in the next section we will briefly discuss recent research and
standardization approaches to this issue.

<SOAP:Envelope xmlns:SO0AP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:S0AP-SBJ = "http://www.xmlsec.org/subject">
<S0AP:Header>
<SO0AP-SBJ:subject>
<SOAP-SBJ:user>
<S0AP-SBJ:userid>Alice</SOAP-SBJ:userid>

<S0AP-SBJ:passwdhash SOAP-SBJ:hash-alg="shal">xxj31ZMTZzkVA</SOAP-SBJ:passwdhash>

</S0AP-SBJ:user>
<SOAP-SBJ:role>

<S0AP-SBJ:roleid>ACME_Client</SO0AP-SBJ:roleid>

<SOAP-SBJ:issuer>

<S0AP-SBJ:public-key>...</SOAP-SBJ:public-key>

</SOAP-SBJ:issuer>

<SO0AP-SBJ:holder>
<S0AP-SBJ:name>Alice</S0AP-SBJ :name>

</S0AP-SBJ:holder>

<SO0AP-SBJ:validity>

<S0AP-SBJ:notbefore>2002-09-22_12:00:00</S0AP-SBJ:notbefore>
<SO0AP-SBJ:notafter>2002-11-22_24:00:00</S0AP-SBJ:notafter>

</SO0AP-SBJ:validity>
</S0AP-SBJ:role>
</S0AP-SBJ:subject>
</S0AP:Header>
<SOAP:Body>

<proc:SendOrder xmlns:proc="http://www.acme.com/Procurement">

<proc:ProductType code=‘AC350’/>
<proc:quantity>100,000</proc:quantity>

<cc:paymentInfo xmlns:cc= "http://www.creditcardcompany/Charge">

<cc:Amount currency=‘Euro’>2000</cc:Amount>

<cc:CardNumber>1234123412341234</cc: CardNumber>

<cc:Expiry>12-15-2002</cc:Expiry>
</cc:paymentInfo>
</proc:SendOrder>
</SOAP:Body>
</S0AP:Envelope>

Figure 5: An example of header in [9]

5. USINGHEADERSINCONNECTIONWITH

XML-BASED ACCESS CONTROL LAN-
GUAGES

Header-based authentication is of course only the first
step: in the Policy Evaluation phase it must be possible
to reference information contained in the headers, as well as
other environment metadata in a suitable policy language.
Starting from early research proposal such as [7, 8] and [14],
standards are underway allowing to refer to various types of
XML-based metadata from inside policies. Their applica-
tion envisions a complete infrastructure for XML Web ser-
vices access control following the line of [9] and [14].

e Security assertion markup language (SAML) [1].
SAML handles the actual exchange of authentication
and authorization requests and responses. An SAML
request is sent, via SOAP over HT'TP, to a system with
the appropriate means for processing the request. A
SAML request plays much the same role of a SOAP
security header: it contains information such as au-
thentication username and password, or other details
about the individual making the request. SAML uses
an “assertion schema” to determine who the requesting
agent (or user) is, what it is requesting, and whether
or not their request has been granted.

e eXtensible access control markup language
(XACML) [10]. XACML is a specification from Oa-
sis that is used in conjunction with SAML (explained

below), and it provides a means for standardizing ac-
cess control decisions for XML documents. XACML
is used to define whether to permit requested access
to a resource. XACML uses a contezt, that can easily
mapped on SAML requests, in order to determine if ac-
cess should be granted to a resource based on rule-sets,
or policies. Once the policy is evaluated and returns a
true or false value to indicate whether or not access is
granted, an SAML authorization decision assertion is
returned, which is then processed accordingly.

6. CONCLUSION

Thanks to work done in the XML signature and encryp-
tion standards, security for SOAP messaging (as opposed to
protocol-level security) is being tackled successfully. How-
ever, some problems related to establishing a global security
infrastructure for XML Web services are still to be solved,
especially concerning the coexistence and relations among
a number of different, though related, standard proposals,
none of which has been fully realized and adopted yet. This
paper attempts to start a discussion on the different propos-
als and how they can coexist and be exploited for providing
a secure infrastructure to XML Web services.

7. REFERENCES

[1] Advancing SAML, an XML-based security standard
for exchanging authentication and authorization

<SOAP:Envelope xmlns:SO0AP="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP:Header>
<m:path xmlns:m="http://schemas.xmlsoap.org/rp">
<m:action>http://supplier.com/orders</m:action>
<m:to>soap://supplier.com/orders</m:to>
<m:id>uuid:...... </m:id>
</m:path>
<wsse:credentials xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">
<ds:KeyInfo xmlns:ds="http://www.w3.0org/2000/09/xmldsig#" Id="SigningCertificate">
<ds:X509Data><ds:X509Certificate>...... </ds:X5609Certificate></ds:X509Data>
</ds:KeyInfo>
</wsse:credentials>
<wsse:integrity xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">
<ds:Signature xmlns:ds="http://www.w3.0org/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/xml-exc-cl4n#"/>
<ds:SignatureMethod Algorithm="http://www.w3.0org/2000/09/xmldsig#trsa-shal"/>
<ds:Reference URI=""/>
<ds:Transforms>
<ds:Transform Algorithm="http://schemas.xmlsoap.org/2001/10/security#RoutingSignatureTransform"/>
<ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<ds:DigestValue>j6lwx3rvEPOOvKtMup4NbeVu8nk=</DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>aiYECAxNqK2PivQaRweWajXupbzJa...</ds:SignatureValue>
<ds:KeyInfo><wsse:licenseLocation>#SigningCertificate</wsse:licenselLocation></ds:KeyInfo>
</ds:Signature>
</wsse:integrity>
</S0AP:Header>
<S0AP:Body>
<proc:SendOrder xmlns:proc="http://www.acme.com/Procurement">
<proc:ProductType code=‘AC350°/>
<proc:quantity>100,000</proc:quantity>
<cc:paymentInfo xmlns:cc= "http://www.creditcardcompany/Charge">
<cc:Amount currency=‘Euro’>2000</cc:Amount>
<cc:CardNumber>1234123412341234</cc: CardNumber >
<cc:Expiry>12-15-2002</cc:Expiry>
</cc:paymentInfo>
</proc:SendOrder>
</SOAP:Body>
</SOAP:Envelope>

Figure 6: An example of Microsoft header

information. [7] E. Damiani, S. De Capitani di Vimercati,
http://www.oasis-open.org/committees/security/. S. Paraboschi, and P. Samarati. Controlling access to
[2] B. Atkinson and et al. Web services security XML documents. IEEE Internet Computing,
(ws-security), April 2002. 5(6):18-28, November/December 2001.
http://msdn.microsoft.com/ws/2002/04/Security. [8] E. Damiani, S. De Capitani di Vimercati,
[3] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and S. Paraboschi, and P. Samarati. A fine-grained access
E. Simon. XML-Signature Syntaz and Processing. control system for XML documents. ACM
World Wide Web Consortium (W3C), February 2002. Transactions on Information and System Security,
http://www.w3.org/ TR /xmldsig-core. 5(2):169-202, May 2002.
[4] D. Box. Simple Object Access Protocol (SOAP) 1.1. [9] E. Damiani, S. De Capitani di Vimercati,
World Wide Web Consortium (W3C), May 2000. S. Paraboschi, and P. Samarati. Securing SOAP
http://www.w3.org/TR/SOAP. e-services. International Journal of Information
[5] T. Bray, J. Paoli, C.M. Sperberg-McQueen, and Security (1JIS), 1(2):100-115, February 2002.
E. Maler. Extensible Markup Language (XML) 1.0 [10] Defining XACML, an XML specification for expressing
(Second Edition). World Wide Web Consortium policies for information access over the internet.
(W3C), October 2000. http://www.oasis-open.org/committees/xacml.
http://www.w3.org/TR/REC-xml. [11] A.O. Freier, P. Karlton, and P.C. Kocher. The SSL
[6] R. Chinnici, M. Gudgin, J. Moreau, and Protocol - Version 3.0, March 1996.
S. Weerawarana. Web Services Description Language http://ftp.nectec.or.th/CIE/Topics/ssl-
(WSDL) Version 1.2. World Wide Web Consortium draft/INDEX.HTM.

(W3C), July 2002. http://www.w3.org/ TR /wsdl12. [12] J. Gettys, J. Mogul, H. Frystyk, L. Masinter,

P. Leach, and T. Berners-Lee. Hypertext Transfer [14] M. Kudo and S. Hada. XML Document Security and

Protocol — HTTP/1.1, June 1999. e-Business applications. In Proc. of the 7th ACM
http://www.ietf.org/rfc/rfc2616.txt. Conference on Computer and Communication
[13] T. Imamura, B. Dillaway, and E. Simon. XML Security, Athens, Greece, November 2000.

Encryption Syntaz and Processing. World Wide Web
Consortium (W3C), August 2002.
http://www.w3.org/ TR /xmlenc-core.

