A Fine-Grained Access Control System for XML
Documents

ERNESTO DAMIANI

Universita di Milano

SABRINA DE CAPITANI DI VIMERCATI
Universita di Brescia

STEFANO PARABOSCHI

Politecnico di Milano

and

PIERANGELA SAMARATI

Universita di Milano

Web-based applications greatly increase information availability and ease of access, which is op-
timal for public information. The distribution and sharing via the Web of information that must
be accessed in a selective way, such as the one involved in Electronic Commerce transactions,
requires the definition and enforcement of security controls, ensuring that information will be
accessible only to authorized entities. Different approaches have been proposed that address the
problem of protecting information in a Web system. However, these approaches typically operate
at the file system level, independently from the data that have to be protected from unauthorized
accesses. Part of this problem is due to the limitations of HTML, historically used to design Web
documents.

The eXtensible Markup Language (XML), a markup language promoted by the World Wide
Web Consortium (W3C), is de facto the standard language for the exchange of information in
Internet and represents an important opportunity to provide fine grained access control. We
present an access control model to protect information distributed on the Web that, by exploiting
XML’s own capabilities, allows the definition and enforcement of access restrictions directly on
the structure and content of the documents. We present a language for the specification of access
restrictions, which uses standard notations and concepts, together with a description of a system
architecture for access control enforcement based on existing technology. The result is a flexible
and powerful security system offering a simple integration with current solutions.

Categories and Subject Descriptors: H.2.0 [Database Management]: General—Security, in-
tegrity, and protection; H.2.7 [Database Management]: Database Administration—Security,

Authors’ addresses: Ernesto Damiani and Pierangela Samarati, Dipartimento di Tecnolo-
gie dell’Informazione, Universitda di Milano, Via Bramante, 65, 26013 Crema (CR), email:
{damiani,samarati}@dti.unimi.it; Sabrina De Capitani di Vimercati, Dipartimento di Elettron-
ica per I’Automazione, Universita di Brescia, Via Branze 38 - 25123 Brescia - Italy, e-mail: de-
capita@ing.unibs.it; Stefano Paraboschi, Dipartimento di Elettronica e Informazione, Politecnico
di Milano, Piazza L. da Vinci 32 - 20133 Milano - Italy, email: parabosc@elet.polimi.it

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 . E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati

integrity, and protection; K.6.5 [Management of Computing and Information Systems]|:
Security and Protection

General Terms: Security, XML

Additional Key Words and Phrases: Access control, Authorizations specification and enforcement,
‘World Wide Web, XML documents

1. INTRODUCTION

An ever-increasing amount of information is being made available in unstructured
and semi-structured form via Web sites both on corporate Intranets and on the
global Internet. Web-based information interchange is particularly important in
Electronic Commerce (EC) applications, where basic transactions such as vendor
registration, bidding submissions, requests for quotes and contracts are increas-
ingly realized by exchanging the appropriate digital documents. The huge success
of the Web as a platform for EC and information dissemination has brought an
increasing awareness of the fact that document exchange on the Internet should
meet precise security requirements such as fine-grained authenticity, secrecy, non-
repudiation, and access control, involving data units at the level of granularity
stipulated by communicating parties. However, fully meeting these requirements
through HTML-based information processing turns out to be rather awkward, due
to HTML’s inherent limitations. HTML provides no clean separation between
the structure and the layout of a document and some of its content is only used
to specify the document layout. Moreover, site designers often prepare HTML
pages according to the needs of a particular browser. Therefore, HTML markup
has generally little to do with data semantics. In the last few years, this situa-
tion has improved dramatically, following the standardization effort by the World
Wide Web Consortium (W3C) that gave birth to the eXtensible Markup Language
(XML) [Bray et al. 2000]. XML is a markup meta-language providing semantics-
aware markup without losing the formatting and rendering capabilities of HTML.
XML’s tags capability of self-description is shifting the focus of Web communication
from conventional hypertext to data interchange. While HTML was defined using
only a small and basic part of SGML (Standard Generalized Markup Language:
ISO 8879), XML is a sophisticated subset of SGML, designed to describe data us-
ing arbitrary tags. As its name implies, extensibility is a key feature of XML; users
and applications are free to declare and use their own tags and attributes. There-
fore, XML ensures that both the logical structure and content of semantically rich
information is retained. XML focuses on the description of information structure
and content as opposed to its presentation. Presentation issues are addressed by a
separate language, XSL (XML Style Language) [Adler et al. 2001], which is also a
W3C standard for expressing how XML-based data should be rendered. In addi-
tion to XML and XSL, XLink (XML Linking Language), which is a specification
language to define anchors and links within XML documents, is in the process of
standardization [DeRose et al. 2001]. Due to its advantages, XML is now widely
accepted in the Web community, and available applications exploiting this stan-
dard include OFX (Open Financial Exchange) [CheckFree Corp 2001] to describe

A Fine-Grained Access Control System for XML Documents . 3

financial transactions, CDF (Channel Definition Format) [Ellerman 1997] for push
technologies, and OSD (Open Software Distribution) [van Hoff et al. 1997] for soft-
ware distribution on the Net. This wealth of applications suggests that XML has
a great potential as an exchange format for semi-structured data. The application
to XML data of the latest advancement of public-key cryptography has remedied
most of the security problems in communication; commercial products are becoming
available (such as AlphaWorks’ XML Security Suite [AlphaWorks 2001]) providing
fine-grained security features such as digital signatures and element-wise encryp-
tion to transactions involving XML data as a way to meet authenticity, secrecy,
and non-repudiation requirements in XML-based transactions.

The objective of our work is to complete this picture, exploiting XML’s own ca-
pabilities to define and implement an authorization model for regulating access to
XML documents. The rationale for our approach is defining an XML markup for a
set, of security elements describing the protection requirements of XML documents.
Our security markup can be used to provide both instance level and schema level
authorizations at the granularity of XML elements. Taken together with a user’s
identification and associated group memberships, as well as with the support for
both permissions and denials of access, our security markup allows to easily express
different protection requirements with support of exceptions. The enforcement of
the requirements stated by the authorizations produces a view on the documents
for each requester; the view includes only the information that the requester is
entitled to see. A main feature of our model is that it smoothly accommodates
the needs of both organization-wide policy managers and single document authors,
automatically taking both into account to define who can exercise which access
privileges on a particular XML document. Our notion of subject comprises iden-
tity and location; identity can include information about group or organization
membership. The granularity of objects may be as fine as single elements or even
attributes within XML documents. Our model includes data-dependent conditions
and is open and extendable so that other enforcement conditions, such as temporal
ones, could be easily added. We also present an algorithm that ensures fast on-line
computation of such a view on XML documents requested via an HTTP connec-
tion. The proposed approach, while powerful enough to define sophisticated access
to XML data, makes the design of a server-side security processor for XML docu-
ments rather straightforward. We also describe the major aspects of our Java-based
implementation of the system.

1.1 Related Work

Although several projects for supporting authorization-based access control in the
Web have recently been carried out, authorizations and access control mecha-
nisms available today are at a preliminary stage. For instance, the Apache server
(www . apache. org) allows the specification of access control lists via a configuration
file (access.conf) containing the list of users, hosts (IP addresses), or host/user
pairs, which must be allowed/forbidden connection to the server. Users are identi-
fied by user- and group-names and passwords, to be specified via Unix-style pass-
word files. By specifying a different configuration file for each directory, it is possible
to define authorizations on a directory basis; files belonging to the same directory
are subject to the same authorizations. Although Apache 1.2 and later also allow

4 . E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati

to protect individual files, it is not possible to specify authorizations on portions
of files. This limitation may force protection requirements to affect data organi-
zation at the file system level. For instance, a file containing data with different
protection requirements will have to be split in two different files. The proposal
in [Samarati et al. 1996] overcome this limitation by allowing the specification of au-
thorizations on portions of HTML document. However, again, no semantic context
similar to that provided by XML can be supported and the model remains limited.
Some approaches, such as the EIT SHTTP scheme [Rescorla and Schiffman 1999],
explicitly represent authorizations within the documents by using security-related
HTML tagging. Every document may have associated security (meta)tags describ-
ing the authorizations on the document. While this seems to be the right direction
towards the construction of a more powerful access control mechanism, due to
HTML fundamental limitations these proposals cannot take into full consideration
the information structure and semantics.

The development of XML represents an important opportunity to solve this prob-
lem. Proposals are under development by both industry and academia, and com-
mercial products are becoming available which provide security features around
XML. However, some of these approaches focus on lower level features, such as en-
cryption and digital signatures [AlphaWorks 2001; Eastlake et al. 2001], on query
response authentication [Devanbu et al. 2001], or on privacy restrictions on the
dissemination of information collected by the server [Reagle and Cranor 1999].

Work closest to ours is represented by proposals related to the specification and
enforcement of security restrictions on XML documents or using XML. We first
proposed the notion of a fine-grained access control model for XML documents
in [Damiani et al. 2000a; Damiani et al. 2000b], were we introduced the use of
an authorization sheet associated with each XML document/DTD expressing the
authorizations on the document. The approach exploiting XML own capability as
each authorization sheet is itself an XML document. In this paper we extend these
proposals by enriching the authorization types supported by the model, proving a
complete description of the specification and enforcement mechanism, and report-
ing on its implementation. Among comparable proposals, Bertino et al. [Bertino
et al. 2000; Bertino et al. 2001] and Gabillon et al. [Gabillon and Bruno 2001] sub-
sequently proposed an access control environment for XML documents and some
techniques to deal with authorization priorities and conflict resolution issues. A
distinct, though related, line of research has been pursued by Kudo et al. [Ku-
doh et al. 2000], that proposed a fine-grained authorization specification language
where authorizations are always associated with single elements in a document.
Other related work concerns exploiting XML as a security specification language,
which include the current OASIS effort to define a standard XACML (eXtensi-
ble Access Control Markup Language) (http://www.oasis.org), and the XrML
proposal [ContentGuard 2001], an eXtensible rights Markup Language (XrML) for
describing usage restrictions on digital resources.

At the same time, the security community is proceeding towards the development
of sophisticated access control models and mechanisms able to support different
security requirements and multiple policies [Jajodia et al. 2001; Woo and Lam
1993]. These proposals have not been conceived for semi-structured data with their
flexible and volatile organization. They are often based on the use of logic languages,

A Fine-Grained Access Control System for XML Documents . 5

which are not immediately suited to the Internet context, where simplicity and easy
integration with existing technology must be ensured. In the Web, the advantages
brought by the use of a sophisticated language in terms of expressive power do not
seem to be justified with respect to the added complexity. Our approach expresses
security requirements in syntax, rather than in logic, leading to a simpler and more
efficient evaluation engine. This characteristic ensures that our proposal can be
smoothly integrated in an environment for XML information processing.

The use of authorization priorities with propagation and overriding, which is an
important aspect of our proposal, may recall approaches made in the context of
object-oriented databases, like [Fernandez et al. 1994; Jonscher et al. 1994; Rabitti
et al. 1991]. However, the XML data model is not object-oriented [Bray et al.
2000] and the hierarchies it considers represent part-of relationships and textual
containment, which require specific techniques different from those applicable to
ISA hierarchies in the object-oriented context.

1.2 Qutline of the Paper

The paper is organized as follows. Section 2 illustrates the basic characteristics of
the XML proposal. Section 3 and 4 discuss the subjects and the objects, respec-
tively, of our authorization model. Section 5 presents the authorizations supported
by the access control model for expressing security requirements on XML docu-
ments. Section 6 introduces the process for computing, at access control time, the
document view to be returned to the requester and presents an algorithm for ef-
ficiently computing such a view; it also discusses data modeling issues taking into
account the schema changes due to the partial view. Section 7 discusses the sup-
port of write actions. Section 8 addresses design and implementation issues and
illustrates the architecture of the Access Control Processor. Section 9 presents our
concluding remarks.

2. PRELIMINARY CONCEPTS

XML [Bray et al. 2000] is a markup language for describing semi-structured infor-
mation. An XML document is composed of a sequence of nested elements, each
delimited either by a pair of start and end tags (e.g., <nurse> and </nurse>) or by
an empty tag (e.g., <organization/>). XML documents can be classified into two
categories: well-formed and wvalid. An XML document is well-formed if it obeys
the syntax of XML (e.g., non-empty tags must be properly nested, each non-empty
start tag must correspond to an end tag). A well-formed document is valid if it
conforms to a proper Document Type Definition (DTD). A DTD is a file (external,
included directly in the XML document, or both) which contains a formal definition
of a particular type of XML documents.

A DTD may include declarations for elements, attributes, entities, and notations.
Elements are the most important components of an XML document. Element dec-
larations in the DTD specify the names of elements and their content. The content
specification may coincide with Empty, Any, or with a group of one or more sub-
elements/groups. Empty means that the element has no content, where Any means
that the element may have any content. Groups can be either sequence or choice of
sub-elements and/or subgroups. Sequences of elements are separated by a comma

“,”, while choices are separated by the vertical bar “|”. Declarations of sequence

<!DOCTYPE department|

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

department (division?,medical_staff,research,patient™®)>
medical staff (physician,nurse4)>
physician (name,specialty,office,phone,address?,salary)>
nurse (name,address,salary)>

research (project)*>

project (leader,objective,laboratory?,publications?)>
laboratory (namelab,equipment)>

publications (author+,title,ps?)*>

patient (name,address,room?,illness,therapy®)>
room (number,bed)>

therapy (startdate?,enddate?,type,drug*)>
address (street,(city|county)?,addline)>

drug (name,daily-admin,cost)>

type (#PCDATA)>

division (#PCDATA)>

specialty (#PCDATA)>

office (#PCDATA)>

phone (#PCDATA)>

salary (#PCDATA)>

objective (#PCDATA)>

street (#PCDATA)>

city (#PCDATA)>

addline (#PCDATA)>

daily.admin (#PCDATA)>

illness (#PCDATA)>

equipment (#PCDATA)>

ps ANY>

cost (#PCDATA)>

author (#PCDATA)>

title (#PCDATA)>

bed (#PCDATA)>

startdate (FPCDATA)>

enddate (#PCDATA)>

name (#PCDATA)>

namelab (#PCDATA)>

leader (#PCDATA)>

county (#PCDATA)>

number (#PCDATA)>

<!ATTLIST department name CDATA #REQUIRED>

<!ATTLIST project

type CDATA #REQUIRED

name CDATA #REQUIRED>

<!ATTLIST ps

xmlns:xlink CDATA #FIXED
“http://www.w3c.org/. . . /[namespace”

xlink:type (simple|extended|locator|arc) #FIXED “simple”
xlink:href CDATA #REQUIRED>

1>

Fig. 1.

(2)

E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati

(department)}——{name |
? P

medical_staff
* (physician

“simple”

xlink:type
* _ xlink:href
L (patient] [i

(name] wptepl//www.w3.org/ .7

?

An example of DTD (a) and the corresponding graphical representation (b).

A Fine-Grained Access Control System for XML Documents . 7

and choices of sub-elements also describe the sub-elements’ cardinality; with a nota-
tion inspired by extended BNF grammars, “*” indicates zero or more occurrences,
“+” indicates one or more occurrences, “?” indicates zero or one occurrence, and no
label indicates exactly one occurrence. XML also allows to declare elements with a
mized content, that is, elements containing parsable character data (#PCDATA), op-
tionally interleaved with sub-elements. Attributes represent properties of elements.
Attribute declarations specify the attributes of each element, indicating their name,
type, and, possibly, default value. Attributes can be marked as required, implied,
or fixed. Attributes marked as required must have an explicit value for each oc-
currence of the elements with which they are associated. Attributes marked as
implied are optional. Attributes marked as fixed have a fixed value indicated at
the time of their definition. Entities are used to include text and/or binary data
into a document and can be internal or external. Internal entities are used to intro-
duce special characters in the document or as an alias for some frequently used text.
External entities are external files containing either text or binary data. Notation
declarations specify how to manage the binary entities. Entities and notations are
important in the description of the physical structure of an XML document, but
are not considered in this paper, where we concentrate the analysis on the XML
logical description. Our authorization model can be easily extended to cover these
components.

XML documents may include links that express relationships between resources.
A link is defined by an XLink (XML Linking Language) linking element [DeRose
et al. 2001]. XLink allows two types of links: simple links, similar to the HTML
links, and extended links, that express relationships among more than two resources.
We refer the reader to the W3C proposal [DeRose et al. 2001] for a complete
description of XLink elements and attributes.

Ezample 2.1. Figure 1(a) illustrates an example of DTD for XML documents
describing a department of a hospital. Each department is composed of zero, one,
or more divisions and is responsible to create an XML document for each division
(if any) conforming to the considered DTD. According to this DTD, a department
includes elements division (optional) and medical staff, research activity, and
patients. The medical staff is composed of physicians and nurses (physician and
nurse elements). Each physician is characterized by name, specialty, office,
phone, home address, and salary. Each nurse is characterized by name, home
address, and salary. The research activity of a department (or division) is orga-
nized into projects, each with a designated leader and consisting of an objective,
laboratory, and a set, possibly empty, of related publications. Each publica-
tion has a title, one or more author elements, and the corresponding postscript
file (linking element ps). Information about the patients includes name, address,
room, illness, and therapy. A therapy is characterized by its startdate and
enddate, a type, and a list of drugs. Each drug prescribed to a patient has a name,
a daily administration quantity (daily_admin element), and a cost. Properties of
each element are defined in the attribute definition portion of the document. Ele-
ments department and project have a required attribute name, which is a string
(character data). In addition, element project has an attribute type represent-
ing the project type (public vs private). Attribute xmlns:x1link of element ps is

8 . E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati

used to define an XLink namespace;! x1ink:type denotes the type of the link, and
xlink:href is the locator attribute that defines where the resource is located. o

XML documents valid according to a DTD obey the structure defined by the DTD.
Figure 2 illustrates an example of an XML document valid with respect to the
DTD in Figure 1. Intuitively, each DTD is a schema, and XML documents valid
according to that DTD are instances of that schema. Note that since elements
and attributes defined in a DTD may appear in an XML document zero (optional
elements), one, or multiple times, according to their cardinality constraints, the
structure specified by the DTD is not rigid; two distinct documents of the same
schema may differ in the number and structure of elements.

DTDs and XML documents can be modeled graphically as follows. A DTD is
represented as a labeled tree containing a node for each element, attribute, and
value associated with fixed attributes in the DTD. There is an arc between an
element and an element/attribute belonging to it, labeled with the cardinality of
the relationship, and between a fixed attribute and each of its value(s). Fig-
ure 1(b) illustrates the tree for the DTD in Figure 1(a). Elements are represented
as ovals and attributes as rectangulars. Arcs labeled or and with multiple branch-
ing are used to represent a choice in an element declaration. For instance, choice
(city|county)? in the address declaration is represented by an arc, labeled with
“?” and ‘or’, from address node to both city and county nodes. An arc with mul-
tiple branching is also used to represent a sequence with a cardinality constraint
associated with the whole sequence. For instance, sequence (author+,title,ps?)x*
in the publications declaration is represented with an arc labeled ‘x’ starting from
node publications and ending to nodes author, title, and ps. To preserve the
order between elements in an element declaration, for any two elements e; and e;,
if e; follows e; in the element declaration, node e; appears below node e; in the
tree. Each XML document is described by a tree with a node for each element,
attribute, and value in the document, and with an arc between each element and
each of its sub-elements/attributes/values and between each attribute and each of
its value(s). Each arc in the DTD tree may correspond to zero, one, or multiple arcs
in the XML document, depending on the cardinality of the corresponding contain-
ment relationship. Note that arcs in XML documents are not labeled. Figure 2(b)
illustrates the tree representation of the XML document in Figure 2(a). In the
remainder of this paper we will use the term tree to indiscriminately refer to the
graphical representation of either a DTD or an XML document. Also, we will use
the term object to refer to XML documents and DTDs indiscriminately. We will
explicitly distinguish them when necessary.

Each object can have associated metadata. These are data representing infor-
mation on the object, such as creator, creation date, expiration date, as well as
any other properties that may have been defined on it (e.g., public document, in-
ternal document, and so on). Metadata can be conveniently managed through a

LA namespace is a way of distinguishing element types and attribute names to allow correct
processing by a software module [Bray et al. 1999]. For instance, an XML document may include
one or more occurrences of the element title to represent either a paper’s title or an identifying
appellation such as Mr. or Professor. The different semantics is captured by associating them
with different namespaces.

A Fine-Grained Access Control System for XML Documents . 9

< 7?xml version=“1.0" ?>
<!DOCTYPE Hospital_ Department SYSTEM “dept.dtd”
< department name=“Medicine” >
<division> Cardiology </division>
<medical_staff>
<physician>
<name> Bob </name>
<specialty> Nuclear Cardiology </specialty>
<office> CDB393 < /office>
<phone> 415-5555 </phone>
< address>
<street> 25 Cherry Ave. </street>
<city> Emeryville </city>
<addline> CA, 94808 </addline>
< /address>
<salary> $ 30.000 </salary>
< /physician>
<nurse>
<name> Tina </name>
< address>
<street> 14th St. </street>
<city> Oakland </city>
<addline> CA, 94705 </addline>
< /address>
<salary> $ 20.000 </salary>
< /nurse>
< /medical_staff>
<research >
<project type="“private” name =“CardiovascularMed” >
<leader> Bob </leader>
<objective> This project. .. </objective>
< laboratory>
<namelab> MolecularLab < /namelab>
<equipment>Blood pressure cuffs</equipment>
< /laboratory>
<publications>
<author> Bob < /author>
<title> Reversible ischemia </title>

<ps xlink="“http://www.w3c.org/. . . /namespace”

type=“simple”

href="“http://hospital.com /cardiology/pl.ps” />

< /publications>
</project>
<project type=“public” name=“Nuclear Cardiology”>
<leader> Sam < /leader>
<objective> The aim of. . .
</project>
< /research>
<patient>
<name> Jane < /name>
< address>
<street> 10 Wayne Dr. </street>
<city> Berkeley </city>
<addline> CA, 94720 </addline>
< /address>
<room>
<number> 5 < /number>>
<bed> 1 </bed>

< /objective>

</room>
<illness> Angina </illness>
< theraphy>
<type> P.T.C.A. </type>
<drug>

<name> heparin </name>
<daily.admin> 30 U/Kg </daily_admin>
<cost> $ 20 </cost>
</drug>
< /theraphy>
< /patient>
< /department>

(2)

Fig. 2.
corresponding graphical representation (b).

(department}— Iname | —“Medicine”
>

ardiology

division

medical_staff]
physician

(Gifiee}— csos
(phone}—415-5555

“private”

“CardiovascularMed”

MolecularLab

Blood pressure cuffs

‘Nuclear Cardiology”
Sam

The aim of. . .

10 Wayne Dr.
Berkeley

CA, 94720

An example of valid XML document (a) conforming to the DTD in Figure 1 and the

10 . E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati

description in RDF (Resource Description Framework) [Brickley and Guha 2000],
an application of XML resulting from a collaborative design effort among several
W3C members. The RDF description associated with an object can be seen as a
set of pairs of the form (property,value), where property is the name of a meta-
property and wvalue is its value with respect to the object. The value can be atomic
(e.g., string or number), another resource, a collection of atomic values, or a meta-
data instance. Meta-properties can be nested and their structure represented in a
graphical framework similar to that of XML and DTD documents.

3. AUTHORIZATION SUBJECTS

The development of an access control system requires the definition of the subjects
and objects against which authorizations must be specified and access control must
be enforced. In this section we present the subjects; in Section 4 we describe the
objects.

Usually, subjects can be referred to on the basis of their identities or on the lo-
cation from which requests originate. Locations can be expressed with reference to
either their numeric IP address (e.g., 150.100.30.8) or their symbolic name (e.g.,
tweety.cardiology.hospital.com). Our model combines these features. Sub-
jects requesting access are thus characterized by a triple (user-id,IP-address,sym-
address), where user-id is the identity? with which the user connected to the
server, and IP-address (sym-address, resp.) is the numeric (symbolic, resp.)
identifier of the machine from which the user connected.

To allow the specification of authorizations applicable to sets of users and/or
sets of machines, our model also supports user groups and location patterns. A
group is a set of users defined at the server. Groups do not need to be disjoint
and can be nested. A location pattern is an expression identifying a set of physical
locations, with reference to either their symbolic or numerical identifiers. Patterns
are specified by using the wild card character * instead of a specific name or number
(or sequence of them). For instance, 151.100.*.*, or equivalently 151.100.%,
denotes all the machines belonging to network 151.100. Similarly, *.mil, *.com,
and *.it denote all the machines in the Military, Company, and Italy domains,
respectively. If multiple wild card characters appear in a pattern, their occurrence
must be continuous (not interleaved by numbers or names). Also, consistently
with the fact that specificity is left to right in IP addresses and right to left in
symbolic names, wild card characters must appear always as right-most elements
in IP patterns and as left-most elements in symbolic patterns. Intuitively, location
patterns are to location addresses what groups are to users.

Users and groups together with their membership relationship, IP addresses with
patterns, and symbolic names with their patterns, form partially ordered sets (hier-
archies). To provide a uniform treatment for the different components of subjects,
we first give the definition of hierarchy as follows.

2We assume user identities to be local, that is, established and authenticated by the server,
because this is a solution relatively easy to implement securely. Obviously, in a context where
remote identities cannot be forged and can therefore be trusted by the server (using a Certification
Authority, a trusted third party, or any other secure infrastructure), remote identities could be
considered as well.

A Fine-Grained Access Control System for XML Documents . 11

Public * *
MedicalStaff Administrative 130.* 149.$|.t.* 200.% % % *.org *.r|:om *.edu
Hedi4 Pediatrics CompStaff o 149.135.1 s - *.hospiLal.ccm
Ca‘rd;ology phy(- - -h(sex;- - TLm o B 149_13|5_so_a B - .- *.cardiology.hospital.com
P& NurseC Slm . Ja|ne R 149.13|5.80.5 e -+ . tweety.cardiology.hospital.com - - -
Bt|:b o Alice
UGH IPH SNH

(=) (®) ()

Fig. 3. An example of user-group (a), IP (b), and symbolic name (c) hierarchies.

Definition 3.1. Hierarchy A hierarchy is a triple (X,Y, <), where < is a partial
order on'Y, called the dominance relation, and X CY is the set of minimal elements
of Y with respect to the partial order.

The model considers the following three hierarchies.

—A user-group hierarchy UGH = (U, UG, <yg), where U is a set of user identifiers
and UG = UUG, with G a set of group names in which users are organized.
Given two elements z,y € UG, x <yg v if and only if x is a member of y. In
most practical applications the hierarchy is rooted at a group, called Public or
Any, to whom everybody (directly or indirectly) belongs.

—An IP hierarchy IPH = (I,IP,<p), where | is a set of completely specified nu-
merical addresses and IP is a set of IP patterns. Given two elements z,y € IP,
z <p y if and only if each component of y is either the wild card character or is
equal to the corresponding (positionwise from left to right) component of z.

—A symbolic name hierarchy SNH = (S,SN, <gn), where S is a set of completely
specified symbolic names and SN is a set of symbolic name patterns. Given two
elements z,y € SN, x <gn y if and only if each component of y is either the wild
card character or is equal to the corresponding (positionwise from right to left)
component of z.

A hierarchy can be pictured as a directed graph containing a node for each
element of the hierarchy and with an arc from an element x to an element y, if
z directly dominates y in the hierarchy. Dominance relationships holding in the
hierarchy correspond to paths in the graph. User-group hierarchies are arbitrary
DAGs, while IP and symbolic name hierarchies are necessarily trees. Figure 3
illustrates an example of user-group, IP, and symbolic name hierarchies. We note
that the hierarchies introduced serve for explanatory purposes and only the user-
group hierarchy needs to be explicitly defined and stored at the server (or retrieved
at access control time).

Instead of specifying authorizations with respect to only one of either the
user/group identifier or location identifier, and having the problem of how different
authorizations should be combined at access request time, we allow the specifica-
tion of authorizations with reference to both user/group and location. This choice
provides more expressiveness (it allows to express the same requirements as the
alternative and more) and provides a natural treatment for different authorizations

12 . E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati

applicable to the same request.®> We define the authorization subject hierarchy as
the Cartesian product of the three hierarchies previously introduced, where a sub-
ject s; is dominated by another subject s; if each of s;’s components is dominated
by the corresponding component in s;, as clarified by the following definition.

Definition 3.2. Authorization subject hierarchy The authorization subject hier-
archy is a hierarchy ASH = (R, AS, <as), where R = (Ux1xS), AS = (UGxIP xSN),
and (ugi,ipi, sni) <as (ugj,ipj,sn;), if and only if ug; <ue ug;, ipi <ip ip;, and
sn; <sN ST

Authorizations can be defined with reference to any of the elements of ASH. In
particular, authorizations can be specified for users/groups regardless of the physi-
cal location (e.g., (Alice, %, *)), for physical locations regardless of the user identity
(e.g., (Public, 150.100.30.8, %)), or for both (e.g., (Sam, *, x.acme.com)). Intuitively,
authorizations specified for subject s; € ASH are applicable to all subjects s; such
that s; <as sj. Possible conflicts between authorizations applicable to a given
requester will be investigated in Section 5.

4. AUTHORIZATION OBJECTS

A set Obj of Uniform Resource Identifiers (URI) [Berners-Lee et al. 1998] denotes
the resources to be protected. For XML documents, URI’s can be extended with
path expressions, which are used to identify the elements and attributes within a
document. In particular, we adopt a W3C proposal for the identification of internal
components of an XML document, namely the XPath language [World Wide Web
Consortium (W3C) 2001]. There are considerable advantages deriving from the
adoption of a standard language. First, the syntax and semantics of the language
are known by potential users and well-studied. Second, several tools are already
available which can be easily reused to produce a functioning system.

We keep at a simplified level the description of the language which expresses
patterns in XPath. The W3C proposal [World Wide Web Consortium (W3C)
2001] contains the complete specification of the language.

Definition 4.1. Path expression A path expression on a document tree is a se-
quence of element names or predefined functions separated by character / (slash):
li/ls/ ... [l,. Path expressions may terminate with an attribute name as the last
term of the sequence. Attribute names are syntactically distinguished by preceding
them with special character Q.

A path expression I, /l2/ ... /1, on a document tree represents all the attributes
or elements named [, that can be reached by descending the document tree
along the sequence of nodes named I,ls,...,l,,_1. For instance, path expression
/department/medical _staff/physiciandenotes the physician elements that are
children of medical staff elements, that are children of the department element.
Path expressions may start from the root of the document (if the path expression
starts with a slash, it is called absolute) or from a predefined starting point in the
document (if the path expression starts directly with an element name, it is called

3We will elaborate on this in Section 5.

A Fine-Grained Access Control System for XML Documents . 13
Function Argument Description
ancestor element-name returns all element-name ancestors of the context node

ancestor-or-self element-name returns all element-name ancestors of the context node and,
if the context node is an element-name element, the context
node as well

returns all element-name descendants of the context node
returns all element-name descendants of the context node
and, if the context node is an element-name element, the
context node as well

returns all the element-name nodes that are after the con-
text node in the document order, excluding any descendants,
attribute nodes, and namespace nodes

returns all the following element-name siblings of the context
node

returns all the element-name nodes that are before the con-
text node in the document order, excluding any ancestors,
attribute nodes and namespace nodes

returns all the preceding element-name siblings of the con-
text node

element-name
element-name

descendant
descendant-or-self

following element-name

following-sibling element-name

preceding element-name

preceding-sibling element-name

parent element-name returns the parent of the context node, if there is one and it
is an element-name element, and otherwise returns nothing
child element-name returns all element-name elements children of the context
node
self element-name returns the context node, if it is an element-name element,
and otherwise returns nothing
attribute attribute-name returns attribute atiribute-name of the context node
namespace namespace returns the namespace nodes of the context node
Table 1. XPath Predefined Functions

relative). The path expression may also contain the operators dot, which repre-
sents the current node; double dot, which represents the parent node; and double
slash, which represents an arbitrary descending path. For instance, path expression
/department//leader retrieves all the elements leader descendants (at any level)
of the document root department.

Path expressions may also include functions. These functions serve vari-
ous needs, like the extraction of the attributes of an element and the nav-
igation in the document structure. Table 1 illustrates the XPath prede-
fined functions, their arguments type, and a brief description of the function.
The name of a function and its arguments are separated by a double colon
‘::’. For instance, expression research/ancestor::department returns the
department nodes that appear as ancestors of the research node; expression
ps/attribute: :x1link:href returns attribute x1link:href of ps elements; expres-
sion /department/child::medical _staff//city returns all city nodes descen-
dants of the medical staff node child of the department node (with reference
to the document in Figure 2, the expression identifies the cities “Emeryville” and
“Oakland”). Note that the operators dot, double dot, and double slash previously
listed can be used as abbreviations for functions self, parent, and descendant,
respectively. Analogously, character @ is used as an abbreviation for function
attribute. For instance, expression ps/@x1link:href is short for path expression
ps/attribute: :xlink:href. The syntax for XPath expressions also permits to

14 . E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati

associate conditions with the nodes of a path; in this case the path expression iden-
tifies the set of nodes that satisfy all the conditions. Conditions greatly enrich the
power of the language, and are a fundamental component in the construction of a
sophisticated authorization mechanism. The conditional expressions used to repre-
sent conditions may operate on the “text” of elements (i.e., the character data in the
elements) or on names and values of attributes. Conditions are distinguished from
navigation specifications by enclosing them within square brackets. Given a path
expression I1/ ... /l, on the tree of an XML document, a condition may be defined
on any label /;, enclosing in square brackets a separate evaluation context containing
a predicate that compares the result of the evaluation of the relative path expression
with a constant or another expression. Conditional expressions may be combined
via and and or operators to build boolean expressions. Multiple conditional expres-
sions appearing in the same path expression are considered to be anded (i.e., all
the conditions must be satisfied). In addition, conditional expressions may include
functions last() and position() that permit to extract the children of a node
which are in given positions. Function last () evaluates to true on the last child of
the current node. Function position() evaluates to true on the node in the evalu-
ation context whose position is equal to the context position. For instance, expres-
sion /department/research/project/publications/ps[position()=1] returns
the first ps child of the publications element (note that the conditional expression
[position()=1] can be abbreviated as [1]); expression /department[./@name
= "Medicine" and ./division = "Cardiology"]/medical _staff/nurse identi-
fies all the nurses of the "Cardiology" division of the "Medicine" department;
expression /department/research/project[./@type="public"][1] returns the
first “public” projects child of the research element.

The proposed formalism can be also used to specify conditions on metadata, such
as the RDF descriptions illustrated in Section 2. In this case, a new predefined
function meta is used to access meta information on the XML document. For
instance, expression /[meta()./@creation_date = "2000-01-05"], evaluates to
true for documents created on January 5, 2000.

5. ACCESS AUTHORIZATION SPECIFICATIONS

We first describe the basic features that access authorizations need to provide to
regulate access to Web documents and then give their formal definition.

5.1 Basic Features of the Access Authorizations

The authorization model supports authorizations at all levels of granularity, in-
cluding individual documents and elements within them. The object granularity
for which authorizations can be specified spans from the DTD (meaning the set
of its instances) to single elements/attributes within individual documents, where
elements and attributes can be referenced by means of path expressions as illus-
trated in Section 4. Authorizations can be either positive (permissions) or negative
(denials). The reason for having both positive and negative authorizations is to
provide a simple and effective way to specify authorizations applicable to sets of
subjects/objects with support for exceptions [Jajodia et al. 2001; Lunt 1989].
Authorizations specified on an element can be defined as applicable to the el-
ement’s attributes only (local authorizations) or, in a recursive approach, to its

A Fine-Grained Access Control System for XML Documents . 15
XML
5]

!

Pediatrics

XML I
document

XML I
document

XML I
document

Fig. 4. An example of hospital organization.

sub-elements and their attributes (recursive authorizations). Local authorizations
on an element apply to the direct attributes of the element but not to those of its
sub-elements. As a complement, recursive authorizations, by propagating permis-
sions/denials from nodes to their descendants in the tree, represent an easy way to
specify authorizations holding for the whole structured content of an element (on
the whole document if the element is the root). To support exceptions (e.g., the
whole content but a specific element can be read), recursive propagation from a
node applies until stopped by an explicit conflicting (i.e., of different sign) autho-
rization on the descendants. Intuitively, authorizations propagate until overridden
by an authorization on a more specific object [Jajodia et al. 2001].

Authorizations can be specified on single XML documents (document or instance
level authorizations) or on DTDs (DTD or schema level authorizations). Autho-
rizations specified on a DTD are applicable (i.e., are propagated) to all XML doc-
uments that are instances of the DTD. Since large enterprises are often organized
into multiple domains, protection requirements may be specified both at the level of
the enterprise, stating general regulations that should hold, and at the level of spe-
cific domains (part of the enterprise) where, according to a local policy, additional
constraints may need to be specified or some constraints may need to be relaxed.
Organizations specify authorizations with respect to DTDs; specific sites can specify
authorizations with respect to individual documents (instance level authorizations)
as well as with respect to DTDs. The two types of DTD-level authorizations have
complementary roles in increasing access control flexibility. Organization DTD-
level authorizations stated by a central authority can be effectively used to imple-
ment corporate-wide access control policies on document classes. Site DTD-level
authorizations specified by departmental authorities allow for department-wide ac-
cess control policies complementing the corporate ones. Moreover, they alleviate
administration chores by allowing concise specification of site-wide authorizations.
For instance, suppose that a hospital is composed of different departments each of
which is responsible to manage specific XML documents (see Figure 4). In this sce-
nario, general protection requirements that should be satisfied by all departments

16 . E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati

Propagation
Level /Strength Local Recursive
Instance L R
Instance (soft statement) | LS RS
DTD LD RD
DTD (hard statement) LDH RDH

Table 2. Authorization Types

of the hospital can be expressed through (organization) DTD-level authorizations
stated at the hospital level. Specific protection requirements, applicable only within
a single department, can be expressed by means of (site) DTD-level authorizations.
Analogously, requirements applicable only to a specific document are expressed by
means of instance level authorizations associated with the document. We anticipate
that, in the access control processing, organization DTD-level authorizations and
site DTD-level authorizations are, with respect to each DTD, merged by perform-
ing a flat union. In other words, organization-wide and site-specific authorizations
are treated in the same way (although, remember, organization-wide authoriza-
tions apply to all the documents in the network while site-specific authorizations
apply only to documents stored at the site). Given this, in the following we will
simply refer to DTD authorizations without making any distinction of where they
have been specified. The reason for merging the two sets of authorizations with
a simple flat union is simplicity. We observe that, in principle, even at this level
some notion of “specificity” could be applied. This reasoning could also be possibly
extended by considering any number of intermediate organizational levels which
could be reflected in priorities associated with the authorizations [Jonscher et al.
1994]. Authorizations at the DTD level, together with path expressions with condi-
tions, provide an effective way for specifying authorizations on elements of different
documents, possibly in a content-dependent way. Again, according to the “most
specific takes precedence” principle, DTD level authorizations being propagated to
an instance are overridden by possible authorizations specified for the instance. To
address situations where these precedence criteria should not be applied (e.g., cases
where an authorization on a document should be applicable unless otherwise stated
at the DTD level, or cases where an authorization on a DTD must be applied to
all instances of the DTD), we allow users to specify instance level authorizations
as soft and DTD level authorizations as hard. Non-soft and non-hard authoriza-
tions have the behavior sketched above (i.e., non-soft instance-level authorizations
have priority over non-hard DTD-level authorizations). Soft authorizations are au-
thorizations that apply to the document unless otherwise stated at the DTD level
(intuitively, a department can state that its documents can/cannot be accessed un-
less the organization states otherwise). In a dual way, hard authorizations allow an
organization to specify authorizations that must be enforced to all instances of a
DTD, no exceptions. The combination of the options above introduces the eight au-
thorization types summarized in Table 2. Their semantics dictates a priority order
among the authorization types. The priority order from the highest to the low-
est is: LDH (local hard authorization), RDH (recursive hard authorization), L (local
authorization), R (recursive authorization), LD (local authorization specified at the

A Fine-Grained Access Control System for XML Documents . 17

Subject Object (path expression) Action|Sign|Type
user/group,IP,domain
a [Public,*,* /department/@name Tead + [T
b |Public,*,* /department/division read + |t
c |Administrative,*,*.hospital.com|/department//name read + |LDH
d |Administrative,*,*.hospital.com |/department//address read + |rDH
e |Administrative,159.101.80.5,% |/department/medical _staff//salary read + |LpH
f |Administrative,159.101.80.5,% |/department/patient//cost read + |LpH
g |Public,*,* /department/medical_staff//salary read — |LDE
h |Public,*,* /department/patient//cost read — |LDH
i |Public,*,* /department[./@name="medicine"]/medical_staff read + |R
J |Public,,* /department[./@name="medicine"]/medical_staff//address read — |R
k [Public,*,* /department[./@n: edicine"]/medical_staff//salary read - |L
m |PhyC,*,* /department[./@name="medicine" and ./division="cardiology"l/patient read + |R
n |Public,*,* /department[./@name="medicine" and ./division="cardiology"l/patient read — |R
© [MedicalStaff,*,* /department[./@name="medicine"]/research read + |R
p |Public,*,* /department[./@name="medicine"]/research read — |r
q [Phyc,159.%,* /department/research/project[./0type="private"] Tead + |’
ro %, /department/research/project [./@type="private"] read — |r
s |NurseC,*,* /department/patient//illness read + |Ls
t |NurseC,*,* /department/patient//name read + |
u |NurseC,*,* /department/patient//drug read + |[r
v |NurseC,*,* /department/patient/room read + |R

Fig. 5. Example of access authorizations.

schema level), RD (recursive authorization specified at the schema level), LS (local
soft authorization), and RS (recursive soft authorization). For instance, if there are
a positive local hard authorization and a negative local authorization both applica-
ble to the same object and subject, the positive local hard authorization overrides
the negative one. However, it may be also the case that several authorizations,
possibly of different sign, apply to a given request with reference to a given au-
thorization type and element/attribute. As we will see in the following section,
conflicts between such authorizations are solved by applying a conflict resolution
policy [Jajodia et al. 2001; Lunt 1989].

5.2 Access Authorizations

At each server, a set Auth of access authorizations specifies the actions that subjects
are allowed (or forbidden) to exercise on the objects stored at the server. Access
authorizations are formally defined as follows.

Definition 5.1. Access authorization An access authorization a € Auth is a 5-
tuple of the form: (subject, object, action, sign, type), where:

—subject € AS is the subject to whom the authorization is granted;

—object is either a URI in Obj or is of the form URI:PE, where URI € Obj and
PE is a path expression on the tree of document URI;

—action = read is the action being authorized or forbidden;*

—sign € {+, —} is the sign of the authorization, which can be positive (allow access)
or negative (forbid access);

—type € {LDH,RDH, L,R,LD,RD, LS, RS} is the type of the authorization (Local DTD
Hard, Recursive DTD Hard, Local, Recursive, Local DTD, Recursive DTD, Local
Soft, and Recursive Soft, respectively).

4We limit our consideration to read authorizations. The support of write actions like insert,
update, and delete does not complicate the authorization model (see Section 7). However, full
support for such actions in the framework of XML has yet to be defined.

18 . E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati

Ezample 5.1. Consider the XML document in Figure 2. This document is an in-
stance of the DTD in Figure 1 that includes information regarding the Cardiology
division of the Medicine department of a given hospital. We now illustrate some
examples of protection requirements that may need to be expressed and their rep-
resentation as authorizations in our model. The bold-face letters between square
brackets at the end of each requirement identify the authorizations in Figure 5 ex-
pressing the requirement. Figure 5 lists the resulting authorizations. The horizontal
line between authorizations p and q separates DTD-level authorizations (a through
p) from instance level authorizations (q through v). Note that for simplicity, in
the object field we report only the path expression and omit the URI.

Hospital’s policy. (Organization DTD-level authorizations applicable to all the
departments of the hospital). Requirements expressed as “must” specify statements
that do not allow exceptions (which translate to hard authorizations)

(1) Department and division names are publicly accessible. [a]-[b]

(2) Information about the name and home address of medical staff and of patients
must be accessible to the members of Administrative group connected from
domain *.hospital.com.[c]-[d]

(3) Information about the salary of the medical staff and the cost of the therapy
of all patients of the hospital must be accessible to the members of group
Administrative connected from host 159.101.80.5. [e]-[f]

Everybody else must be explicitly forbidden access to this information. [g]-[h]

Medicine department’s policy. (Site DTD-level authorizations to complement or
override the organization DTD-level authorizations)

(4) Information about medical staff working at the Medicine department with
exception of their salary and home address, is publicly accessible. [i]-[j]-[k]

(5) Information about patients hospitalized in a given division is accessible only to
the physicians working in the same division. [m]-[n]

(6) Information about the research activity of the Medicine’s divisions is accessible
only to the medical staff of the hospital. [o]-[p]

Cardiology division’s policy. (Specified at the instance level to complement or
override the hospital’s and department’s policy)

(7) Information about “private” projects of the Cardiology division is accessible
to the physicians working in the Cardiology division when connected from
network 159.*. [q]

Everybody else cannot access information about “private” projects. [r]

(8) Information about patients illnesses is accessible to nurses of the Cardiology
division unless otherwise stated at the DTD level. [s]

(9) Information about name, drug, and room of patients hospitalized in the
Cardiology division is accessible to the members of NurseC group. [t]-[u]-
[v]

<

The following section discusses the interpretation of authorizations to produce the
view of a requesting subject on the document requested.

A Fine-Grained Access Control System for XML Documents . 19

6. REQUESTER’S VIEW ON DOCUMENTS

The view of a subject on each document depends on the access permissions and
denials specified by the authorizations and their priorities. Such a view can be
computed through a tree labeling process, described next. In the following, we use
the term node (of a document tree) to refer to either an element or an attribute in
the document indiscriminately.

6.1 Document Tree Labeling

Each access authorization states whether a subject can (or cannot) access an ele-
ment /attribute (or set of them). The type associated with each authorization on
a given object (at the instance or schema level) determines the “behavior” of the
authorization with respect to the object structure, that is, whether it propagates
down the tree and whether it is overridden or it overrides other authorizations.
The enforcement of the authorizations on a document according to the principles
discussed in Section 5.1 essentially requires the indication of whether, for an ele-
ment/attribute in a document, a positive authorization (+), a negative authoriza-
tion (—), or no authorization (¢) applies. Since authorizations can be of different
level (instance vs schema), strength (hard vs soft) and propagation (local vs re-
cursive), we associate with each node n an array, n.veclabel, of eight components®,
one for each authorization type, which is a record including three fields: sign, Al-
lowed, and Denied. Let t € {LDH,RDH,L,R,LD,RD,LS,RS} be an authorization type.
The value of n.veclabel[t].sign can be ‘+’ for permission, ‘—’ for denials, and ‘¢’ for
no authorization, and it indicates the sign associated with the node according to
the authorizations and the conflict resolution policy. The determination of the sign
is preceded by the computation of n.veclabel[t]. Allowed and n.veclabel[t]. Denied,
that are two lists storing all the subjects for which there is a positive (negative,
respectively) authorization of type t that applies to n. Figure 6 illustrates an al-
gorithm, Compute-view, enforcing the labeling process. Given a requester rgq
and an XML document URI, the algorithm first initializes variable T' to the tree
representing the document and r to the root of T. After initialization, the algo-
rithm invokes procedure InitialLabel(T,rq). The purpose of InitialLabel is to
associate authorizations with the corresponding elements/attributes. Since not all
the authorizations defined on a document are applicable to all requesters, the set of
authorizations on the document’ elements, and the authorizations behavior along
the tree, can vary for different requesters. Thus, the first step of InitialLabel con-
sists in the determination of the set A of authorizations defined for the document
URI at the instance and schema level and applicable to the requester rq. For each
authorization a = (subject,object,action,sign,type) in A, the method determines
the set N of nodes in T that are identified by a.object. After that, for each node
n in N, InitialLabel adds a.subject to n.veclabel[a.type]. Allowed if a.sign is ‘+7; it
adds the subject to n.veclabel[a.type]. Denied if a.sign is ‘—’. Since several autho-
rizations, possibly of different sign, may exist for each authorization type t (i.e.,
n.veclabel[t]. Allowed and n.veclabel[t]. Denied can be both not empty), the determi-
nation of the n.veclabel[t].sign value requires the application of a conflict resolution

5We use a Java-like notation where obj.att (0bj.meth, resp.) denotes the attribute (method, resp.)
associated with object obj.

20 . E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati

ALGORITHM 6.1. Compute-view algorithm

Input: A requester r¢ and an XML document URI
Output: The document’s to be returned to rg

void main()

{ SecureDocument T(URI) /* Constructor creates tree from the XML document URI */
r = T.Root;
InitialLabel(T,rq);
r.SetLabel();
r.GetFinalLabel(empty); /* empty is a labeling vector whose components have
r.Prune(); all sign fields equal to e */

}

void InitialLabel(T,rq)
{ A = {a = (subject,object,action,sign,type) | a € Auth, rqg <as subject, uri(object)==URI
OR uri(object) == dtd(URI)};
For a in A do
{ N={n|n€T, n¢ca.object};
Case a.sign of
‘+’: For n in N do n.veclabella.type]. Allowed.Add(a.subject);
¢~ For n in N do n.veclabella.type]. Denied.Add(a.subject);
}
}

void SetLabel()
/* Evaluates the set of authorizations of each type on the node */
{ For t in [LDH,RDH,L,R,LD,RD,LS,RS]
{ s = this.veclabel[t]. Denied.Head(); keepSubject = TRUE;
‘While s != null do
{ s’ = this.veclabel[t]. Allowed . Head();
While s’ != null AND keepSubject do
{ If (s <as 8’ AND (s’ <ps 8)) /* s’ dominated and “most specific takes precedence” */
then this.veclabel[t]. Allowed. Remove(s’);
else If (s’ <as s AND (s <as s'))
then keepSubject = FALSE; s' = this.veclabel[t]. Allowed.Next();

If —keepSubject /* s dominated and “most specific takes precedence” */
then this.veclabel[t]. Denied.Remove(s);
s = this.veclabel[t]. Denied.Next();

}
If this.veclabelt]. Allowed.IsEmpty()
then If this.veclabel[t]. Denied. IsEmpty ()
then veclabel[t].sign = ‘e’;
else veclabel[t].sign = ‘—;
else If this.veclabel[t]. Denied.IsEmpty()
then veclabel[t].sign = ‘+7;
else veclabel[t].sign = CoNFLICTPOLICY; /* ‘—’ for the “denials take precedence” policy */

3
For c in this.Children() do c.SetLabel()

}

void GetFinalLabel(pveclabel)
{ this.finlabel = ‘c’;
For ¢ in [LDH,RDH,L,R,LD,RD,LS,RS]
{ this.veclabel[t].sign = this.veclabel[t].sign @ pveclabel[t].sign;
this.finlabel = this.finlabel @ this.veclabellt].sign;

For a in this.Attribute() do a.GetFinalLabel(this.veclabel);
For e in this.ElemChildren() do e.GetFinalLabel(masklocal(this.veclabel));

}

void Prune()
{ For c in this.Children() do c.Prune();
If this.Children() == 0 and this.finlabel # ‘+’ then remove the current node from T}

Fig. 6. Compute-view algorithm.

A Fine-Grained Access Control System for XML Documents . 21

policy. Different approaches can be used to solve these conflicts [Samarati and De
Capitani di Vimercati 2001]. One solution is to consider the authorization with
the most specific subject (“most specific subject takes precedence” principle), where
specificity is dictated by the partial order defined over ASH; other solutions can
consider the negative authorization (“denials take precedence”), or the positive au-
thorization (“permissions take precedence”), or no authorizations (“nothing takes
precedence”). Other approaches could also be envisioned, such as, for example, con-
sidering the sign of the authorizations that are in larger number. For simplicity, in
the examples and discussion in the remainder of this paper we refer to a specific pol-
icy and solve conflicts with respect to the “most specific subject takes precedence”
principle and, in cases where conflicts remain unsolved (the conflicting authoriza-
tions have incomparable subjects), we stay on the safe side and apply the “denials
take precedence” principle. We refer to the combination of these two conflict res-
olution policies as “most specific subject/denials take precedence” principle. The
reason for this specific choice is that the two principles so combined naturally cover
the intuitive interpretation that one would expect from the specifications [Lunt
1989]. This behavior is realized by method SetLabel, applied on all the document
nodes in a preorder visit starting from the root r. SetLabel combines, for each
type t, the two lists veclabel[t]. Allowed and veclabel[t].Denied of subjects according
to the “most specific subject/denials take precedence” principle. Intuitively, a given
subject s belonging to list veclabel[t]. Denied is compared with each subject s’ in
the list veclabel[t].Allowed. If s is more specific than s’, s’ can be removed from
veclabel[t].Allowed as it is dominated by s. If, on the contrary, s’ is more specific
than s, it is s that is dominated and can be removed from the list veclabel[t]. Denied.
When all the subjects appearing in veclabel[t]. Denied have been compared with the
subjects in veclabel[t]. Allowed, the content of the two lists is considered: if the two
lists are empty, this means that no authorization was originally defined on the node
and the value ‘e’ is assigned to veclabel[t].sign; if the list veclabel[t]. Allowed is empty
and the list veclabel[t]. Denied is not empty, only negative authorizations are appli-
cable on the node and ‘—’ is assigned to veclabel[t].sign; if the list veclabel[t]. Allowed
is not empty and the list veclabel[t]. Denied is empty, only positive authorizations
are applicable on the node and ‘4’ is assigned to veclabel[t].sign; finally, if both
the lists are not empty, this means that there is a conflict where authorizations
with unordered subjects have been defined on the same node and the sign spec-
ified by the conflict resolution policy must be assigned to veclabel[t].sign (in our
case, ‘—’). It is important to note, however, that our model can support any of
the conflict resolution policies discussed. Indeed, a different policy requires only a
change in method SetLabel. Also, different policies could be applied to the same
server, towards the definition of multiple policy systems [Jajodia et al. 2001]. The
only obvious restriction we impose is that no more than one policy applies for each
document.

The labels (signs) associated with nodes are then propagated to their sub-
elements and attributes according to the following criteria: (1) authorizations on
a node take precedence over those on its ancestors, and (2) authorizations at the
instance level, unless declared as soft, take precedence over authorizations at the
schema level, unless declared as hard. The complete labeling of the document
tree is thus obtained by calling method GetFinalLabel(veclabel) on root node r

22 . E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati

A B|AAB A B|AVB A=A A B|A@B
g € € € € € el + g € €
e — € e — — e g — —
e +| € e +| + +] € e +| +
- € € - | - - €| -
- +| - - +| + - +| -
+ € € + | + + | +
+ - - + - + + - +
+ +| + + +| + + +| +

Fig. 7. Truth tables of the propositional connectives A, V, and -, and operator &.

of T. Method GetFinalLabel considers the nodes of T according to a preorder
visit of the tree and propagates permissions/denials associated with a node to its
descendants. Propagation of the value, for each type t, of p.veclabel[t].sign of a
node p parent of a node n is obtained by assigning to n.veclabel[t].sign the value
of p.veclabel[t].sign if and only if n.veclabel[t].sign is equal to ‘c’. This propaga-
tion can be performed by interpreting the three values ‘+’, ‘—’, and ‘e’ as values
of a 3-valued logic. To this end, we first need to map ‘+’, ‘—’, ‘€’ in the logic.
The only condition that such mapping must satisfy is that ‘€’ must be mapped to
0 (false). To understand the reason for this, think of false as “no statement”
has been made. Signs ‘4+’ and ‘—’ must then be mapped to the other two values,
namely 1 (true), and } (indeterminate); whatever choice would do. Here, we map
‘+’to 1 and ‘-’ to % It is easy now to see that, with the defined mapping, the
propagation is obtained by assigning to n.veclabel[t].sign the result of the formula
n.veclabel[t].sign V (—n.veclabel[t].sign A p.veclabel[t].sign), where the truth tables
of the propositional connectives V, =, and A coincide with the truth tables defined
in the 3-valued logic of Lukasiewicz [Rescher 1969] (see Figure 7). We denote such
formula as n.veclabel[t].sign @ p.veclabel[t].sign in the following. The truth table for
@ is reported in Figure 7. In the case where n is an element, propagation follows
the same principle but n.veclabel is combined with a masked version of the parent
array p.veclabel obtained by means of function masklocal that sets to ‘e’ the sign
field of components LDH, L, LD, and LS. The reason for this is that local authoriza-
tions applicable to a node p can be propagated only to attributes of p. After this
propagation step, according to the defined priorities, GetFinalLabel determines
the sign finlabel that must hold for the specific node n. In particular, the final sign
finlabel of each node n is determined as the result of operation @ between the sign
field of components of array n.veclabel considered in their priority order: LDH (local
hard), RDH (recursive hard), L (local), R (recursive), LD (local, schema level), RD
(recursive, schema level), LS (local soft), and RS (recursive soft).

6.2 Transformation Process

As a result of the labeling process, the value of finlabel for each node n contains the
sign, if any, reflecting whether the node can be accessed (‘+’) or not (‘—’). The value
of finlabel is equal to ‘€’ in the case where no authorizations have been specified
nor can be derived for n. Value ‘e’ can be interpreted either as a negation or as
a permission, corresponding to the enforcement of the closed and the open policy,
respectively [Jajodia et al. 2001]. In the following, we assume the closed policy.
Accordingly, the requester is allowed to access all the elements and attributes whose

A Fine-Grained Access Control System for XML Documents . 23

& ‘ ‘
<o+ + > |
Document tree T, ST EEEE !
|
/E :

I

| <+,£,€ &, §+,-> <g- g6+, 6> - | requester’sview
I
I

Fig. 8. Execution steps of the Compute-view algorithm.

label is positive. To preserve the structure of the document, the portion of the
document visible to the requester will also include start and end tags of elements
with a negative or undefined label that have a descendant with a positive label.
The view on the document can be obtained by pruning from the original document
tree all the subtrees containing only nodes labeled negative or undefined. This
pruning is enforced by method Prune in Figure 6, which executes a postorder
visit on the document tree and removes any leaf labeled ‘—’ or ‘¢’. The pruned
document may be not valid with respect to the DTD referenced by the original XML
document. This may happen, for instance, when required attributes are deleted. To
avoid this problem, a loosening transformation is applied to the DTD. Loosening
a DTD simply means to define as optional all the elements and attributes marked
as required in the original DTD. DTD loosening prevents users from detecting
whether information was hidden by the security enforcement or simply missing in
the original document.
Figure 8 summarizes all the execution steps of the Compute-view algorithm.

Example 6.1. Consider the set of authorizations defined in Figure 5, and the
user-group hierarchy in Figure 3(a). Consider a request to read the XML document
in Figure 2 submitted by user Alice connected from host 159.101.80. 10 with sym-
bolic name tweety.cardiology.hospital.com. According to the authorizations
stated at the DTD and instance level, since Alice is a member of the medical staff
of the hospital, she can only access medical information like the name of patients,
their room, the drug name, and the corresponding daily administration quantity
given to patients. Consider now the same request submitted by user Tom connected
from host 159.101.80.5 with symbolic name hole.admin.hospital.com. Since
Tom is a member of group Administrative, he can access administrative informa-
tion such as the name, home address and salary of the medical staff. By contrast,
not belonging to the medical staff he cannot access medical information on patients
(e.g., illness, type of therapy and drug name). Figures 9(a) and 9(b) show the re-
sulting view on the document returned to Alice and Tom, respectively. These views
reflect a general principle according to which each user can access only information
needed to complete his activity (need-to-know principle [Samarati and De Capitani
di Vimercati 2001]): Alice’s view contains all the information that she might need
as a nurse, while Tom’s view contains information related to administrative tasks.
Neither Alice nor Tom have a full view on the document. o

We conclude this section with a mention at the performance characteristics of
our system. The two tasks that have the greatest impact on performance are the
identification of the authorization objects and the evaluation of node labels.

Authorization objects are identified by XPath expressions, which are evaluated

24 . E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati

department }——{ name |—“Medicine”
(department)—' name '—“Medicine“ (l_
ardiology
‘medical_staff
medical _staff
physician

Nuclear Cardiology
Gty 993
(Phone) — 415-5555

(Sieey—cn s
(phone}—415-5555

25 Cherry Ave.

Emeryville

“public”
CA, 94808

“Nuclear Cardiology” I e —
(salary) $ 30.000

10 Wayne Dr.
Berkeley

CA, 94720

(2) (p)

Fig. 9. The view of user Alice (a) and the view of user Tom (b).

inside the ImitialLabel procedure. This step dominates the complexity in the
system, as XPath is a rich programming language that permits the definition of
search expressions requiring exponential time for their evaluation [Mendelzon and
Wood 1995]. Several works identify restrictions on XPath that reduce its complexity
characteristics [Buneman et al. 2000; Deutsch and Tannen 2001; Mendelzon and
Wood 1995], keeping a level of expressivity adequate for most situations.

The evaluation of node labels, while expressive and flexible, bears limited com-
putational cost. This can be noticed by quickly evaluating Algorithm 6. In fact,
the tree labeling initialization (InitialLabel) is linear in the number of authoriza-
tions associated with the document, while the label computation (GetFinalLabel)
and the pruning process Prune) are linear in the number of nodes in the docu-
ment. The most expensive operation seems therefore the set label computation
(SetLabel), that, for each node in the tree enforces the conflict resolution policy
for solving inconsistencies among authorizations of the same type. In principle such
an operation could have a worst-case cost, for each node, quadratic in the highest
number of authorizations of a given type that are associated with the node (subject
comparison for specificity being assumed constant [Raynaud and Thierry 2001]). It
is however legitimate to assume the number of such authorizations to be very small,
and limited by a reasonable constant, making the SetLabel method also linear in

A Fine-Grained Access Control System for XML Documents . 25

the number of nodes in the document.

7. SUPPORTING WRITE ACTIONS

In previous sections, we treated only read authorizations. This is justified by prac-
tical considerations, as currently XML applications are mostly read-only. Read
authorizations permit also a simpler description of the approach, since the emer-
gence of conflicts is easier to understand if only read privileges are involved. Finally,
whereas read operations can be immediately modeled, no consensus has emerged
up to now in the research community on a model for XML updates. In this sec-
tion, we introduce a basic model for XML writes that permits to introduce write
authorizations. Richer models have already been defined for the representation of
XML writes (e.g., [Abiteboul et al. 1999; Goldman et al. 1999; Liefke and Davidson
2000] and write authorizations could be specialized for a specific model, with direct
support for the complex operations that the model offers (e.g., movement of nodes
in the Lorel model [Goldman et al. 1999] or merge of XML trees in the WHAX
model [Liefke and Davidson 2000]), but these are specific customizations that we
do not treat here. Like read authorizations, write authorizations can be local or
recursive, hard and soft, and can be specified on elements/attributes within either
single XML documents or DTDs. The semantics of local and recursive authoriza-
tions remains unchanged; local authorizations on elements/attributes apply only
to the considered elements/attributes while recursive authorizations apply also to
their sub-elements. Write authorizations specified at DTD level apply to all the
DTD instances and write authorizations specified at instance level apply only to
the document on which they are defined. Conflict resolution is applied in the same
way as for read operations, with a complete separation among authorizations on
different actions.®

We define write operations with a basic model where only operations on single
nodes are considered. The operations on the node can be insert the node, delete
the node, and update the node (i.e., change the value for an attribute or a change
of the text for an element). The three operations correspond to distinct write priv-
ileges: insert, delete and update. Note that insert privileges allow the insertion
of new elements and attributes in a document, which, although not existing before
the insert operation itself, can be specified with reference to the schema (DTD).
For instance, an insert authorization on element therapy of a document allows the
insertion of a new therapy within the document. The consideration of the three
write privileges above offers most of the services required for an access control
mechanism on write operations. Being at low level, it is also compatible with many
models for the representation of XML operations (e.g., graph-based [Goldman et al.
1999], object-based [Abiteboul et al. 1999], tree-based [Liefke and Davidson 2000],
or object-relational [Oracle Corp. 2000]), which can all be mapped in terms of
simple operations.

Insert operations are evaluated by executing the labeling process on the doc-
ument with the new node inserted. If the labeling produces a positive label on

6The model could be extended to the support of action hierarchies in the form of authorization
implication (e.g., a write access implies a read access) or pre-condition (e.g., a write access on an
element requires at least a read access on the element’s ancestors) [Sandhu and Samarati 1997].

26 . E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati

the new node the insert complete successfully, otherwise the document remains
invaried. Note that possible conditions associated with authorizations can be
exploited to specify restrictions on the document where the insertion can be
executed as well as on the values that can be inserted. For instance, authorization
((PhyC,*,*.hospital.com),/department[./@name="‘medicine’]/patient//therapy
[./cost < 10,000],insert,+,R) states that members of group PhyC can insert

a new therapy for a patient in the Medicine department, and that the privilege is
limited to insertion of therapies whose cost does not exceed $10,000.

Deletion of a node is permitted only if the labeling of the document produces
a final positive label for the node to be deleted. If so the node is elimi-
nated and will not be present in the new document. For instance, authorization
((Administrative,159.101.80.77,secws.hospital.com),/department/medical._
staff// bonus,delete,+,L) states that users of the Administrative group con-
nected from the specified location have the privilege to delete element bonus of
the members of the medical staff.

Updates are evaluated by executing the labeling process on both
the existing document and on the document that results from the ex-
ecution of the update. If the final label associated with the node
being updated is positive in both versions the operation is com-
pleted successfully, otherwise it is rejected. For instance, authorization
((NurseC, *,*.hospital.com),/department[./@name=‘medicine’]/patient/
room/bed [number (value())>=100 and number (value())<=150] ,update,+,L)
specifies that members of group NurseC can update element bed of patients, only
if the bed belongs to the block of beds 100 through 150. They are thus responsible
for updating the distribution of patients in the block, but they are not allowed to
transfer patients across blocks. From the example it is then clear that the reason
for considering both the original and the updated version of the document is to
require the satisfaction of the the condition in the authorizations in both the old
and the new document’s state [Atzeni et al. 1999].7

When the XML document is modified, the system must also check the correctness
of the document with respect to the DTD and, if the document is not valid, the write
must not be accepted. Incidentally, if the document is characterized by a loosened
DTD, this check can have an impact only on insertions and updates: insertions can
introduce elements with a tag incompatible with the DTD, and updates can specify
a value in contrast with what the DTD specifies for the node; deletions are always
accepted. With a generic DTD and possibly with semantically richer specifications,
like those proposed by XML Schema [Thompson et al. 2001; Biron and Malhotra
2001], the constraints that must be verified on the document can become quite
complex and checks are required for every action.

The model above considers write operations on single nodes. However, write
requests often refer to sets of nodes (typically a subtree in the document). In this
case it may be convenient to introduce a transactional mechanism based on the

"We note that alternative approaches could interpret the conditions in the authorizations only
as conditions on the values being updated, in which case only the original document should be
labeled (like for the delete operation) or only as conditions on the new values being introduced,
in which case only the new document should be labeled (like for the insert operation).

A Fine-Grained Access Control System for XML Documents . 27

“deferral” of controls, analogous to the SQL command set constraints deferred
that relational systems offer for the management of constraints. The idea is that
writes are collected in an atomic sequence, and all the checks on the correctness
of the updates are deferred at the end of the sequence, when each single write
is considered for permissions and correctness. If a single write is not permitted,
the sequence is invalid and the XML data is rolled back to its original state. The
transactional mechanism also allows the support of coordinated write operations
which are individually incorrect but globally correct. We can consider this example.
Suppose a user is given the authorization to manage the description of patients
that are in the Medicine department and are in a critical condition. If a control is
executed on every single write of a node, the user may be forbidden to insert new
patients: the insertion of a new patient node is not allowed because the patient
node has no other node and the user is not permitted to modify patients who are
not in a critical condition. By contrast, deferring the control at the end of the
update sequence, the write operation can be successfully completed.

8. SOFTWARE ARCHITECTURE

We briefly present the architecture of the XML Access Control Processor (ACP),
the component which wraps up entirely the computation of access permissions to
individual elements and performs the corresponding transformation on the XML
document.

8.1 Architectural Requirements

From the architectural point of view, a first point to note is that our design is
fully server side. The choice between server-side and client-side processing is a
typical one when XML is used in the Web context [Park et al. 2001]. As the access
control process should clearly be trusted to operate correctly and restrict each
requestor to the data he is entitled to access, it is highly preferable to use server-
side processing, otherwise protected information should be transmitted to the client
and a complex infrastructure should be implemented to guarantee clients’ trust in
properly enforcing the access restrictions. The satisfaction of the requirements
specific to the protection of information, is not sufficient to guarantee a successful
adoption of this technology in real applications. Indeed, the following requirements
must also be considered.

—Seamless integration: XML access control should be provided as seamlessly
as possible, without interfering with the operation of other presentation or data-
processing services. Moreover, the access control service should be introduced on
existing servers with minimal interruption of their operation.

—AQuality of service: The emergence of the World Wide Web as a mainstream
technology has highlighted the problem of providing a high quality of service
(QoS) to application users. This factor alone should caution about the risk of
increasing substantially the processing load of Web servers.

With respect to the first requirement, the key technology used for the integration
of access control with other services is the Document Object Management (DOM)
specification [World Wide Web Consortium (W3C) 1998], an API defined by the
W3C to process XML information. Several systems implement the DOM interface,

28 . E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati

Technique Advantages Disadvantages
Single threaded No context switch overhead. | Not scalable on multiprocessors
Process-per-request Portability Resource intensive
Process pool No process creation costs Not available on every OS
Thread-per-request Speed Requires mutual exclusion
Thread pool Speed Mutual exclusion on some OS

Table 3. Advantages and disadvantages of concurrency control techniques

in various languages; each of these systems offers services for the bidirectional
transformation between the textual representation of an XML file and an internal
proprietary representation, on which the methods of the API operate. The use of
the DOM API offers a great potential in the integration of different components
managing XML information, because each component can be designed as a DOM
transformer independent from the others. For instance, our access control processor
can operate on the DOM representation produced by a cache manager and the
result of its simplification may be passed to an XML query engine computing a
new document.

The system has been designed following the principles of object-orientation and
is based on the specification of a set of classes. The classes have been defined
in an abstract way using the Interface Definition Language (IDL) [Mowbray and
Malveau 1997]. The classes are organized into two families. The first family is an
extension of the DOM class hierarchy and enriches the description of the nodes of
a document with the required security attributes. This extension makes use of the
inheritance mechanism that permits an immediate integration with existing DOM
implementations. The second family of classes is strictly related to the processing of
the access control model and describes all the concepts that are part of the model,
like authorization signs, subjects, path expressions, and complete authorizations.

The quality of service issue centers on performance. Several techniques are avail-
able to implement Web-based, high-concurrency systems, each having its positive
and negative aspects, as illustrated in Table 3. Multi-threaded designs are cur-
rently the preferred choice for Web servers, as the cost of spawning a thread is
usually much lower than that of a process. This is also our design choice for our
ACP implementation. Beside being usable in a single-thread execution, our pro-
cessor can be easily interfaced to a Dispatcher registered with an Fvent Handler.
Dispatcher-based multi-threading can be managed synchronously, according to the
Reactor/Proactor design pattern [Lavender and Schmidt 1995], or asynchronously,
as in the Active Object pattern. We adopted the former choice, as it further facili-
tates the integration of our XML access control code in the framework of existing
general-purpose server-side transformers based on the same design pattern (like
Cocoon [Apache Software Foundation 2000]). To obtain a multi-threaded system,
the classes must be implemented in a thread-safe way, making all the parameters
of each request isolated in the context of a specific method invocation.

An architectural solution that further enhances the performance is the separa-
tion of the threads managing the user hierarchy. The services that compute if an
authorization is applicable to a given user require to evaluate if a user is a mem-
ber, directly or indirectly, of the group specified in the authorization’s subject.
The efficiency of this computation can be greatly increased building auxiliary in-

A Fine-Grained Access Control System for XML Documents . 29

<!ELEMENT set_of_authorizations (authorization)+> <!ATTLIST set_of_authorizations about CDATA #REQUIRED >
<!ELEMENT authorization (subject,object,action,sign,type)> <!ATTLIST type value (L|R|LDH|RDH|LS|RS|LD|RD) #REQUIRED >
<IELEMENT subject (#PCDATA)> <IATTLIST sign value (+ | —) #REQUIRED>

<!ELEMENT object (#PCDATA)> <!ATTLIST action value (read) #REQUIRED >
<!ELEMENT action empty>

<!ELEMENT sign empty>

<!ELEMENT type empty>

Fig. 10. XAS syntax.

dexes [Agrawal et al. 1989] that synthetically describe the memberships in groups.
These structures are expensive to build and describe relatively static information,
thus it is best to build them once in a thread that stays always active and offers its
services to the threads managing the document transformation.

Explicit synchronization mechanisms must be used to ensure that conflicting
write requests for shared resources are correctly managed. In the ACP object, the
only shared resource where writes can occur is the user hierarchy, but requests
for user/group changes are infrequent, thus the synchronization does not have an
impact on system performance.

8.2 Execution Phases

We are now ready to describe how the ACP works. Qur processor takes as in-
put a valid XML document requested by the user, together with its XML Access
Sheet (XAS) listing the associated access authorizations at the instance level. The
processor operation also involves the document’s DTD and the associated XAS
specifying schema level authorizations. The processor output is a valid XML doc-
ument including only the information the user is allowed to access. To provide a
uniform representation of XASs and other XML-based information, the syntax of
XASs is given by the XML DTD depicted in Figure 10. The XASs associated with
an XML document and its DTD are located by relying on the abstract nature of
XML XLink specification [DeRose et al. 2001] to define out-of-line links that reside
outside the documents they connect, making links themselves a viable and manage-
able resource. The repertoire of out-of-line links defining access control mappings
is itself an XML document, easily managed and updated by the system manager;
nonetheless it is easily secured by standard file-system level access control.

Our security processor computes an on line transformation on XML documents.
Its execution cycle, illustrated in Figure 11, consists of three basic steps:

(1) Parsing The parsing step consists in the syntax check of the requested doc-
ument with respect to the associated DTD and its compilation to obtain an
object-oriented document graph according to the DOM format. Since the pars-
ing is performed externally when the ACP is used as a transformer in the
framework of a complete architecture complying to the well-know Pipes and
Filters design pattern [Buschmann et al. 1996], here we do not deal with pars-
ing issues in detail.

(2) Compute View The compute view step determines the requester’s view, by
applying the algorithm presented in Section 6 and according to the authoriza-
tions listed in the X ASs associated with the document and its DTD. As already
discussed, the resulting view preserves the validity of the document with respect
to the loosened version of its original DTD.

30 . E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati

XAS

loose
DTD

L]

DTD +/ |oosening

XAS

transformed
XML
document

XML
document]

‘é‘

[
o

—* ComputeView Algorithm Hg Ei

ee

]

OM tr

requester

Fig. 11. Execution steps of the security processor.

(3) Unparsing Finally, the third step is the generation of a valid XML document
in text format, simply by unparsing (again, by means of a standard component)
the DOM tree computed by the previous step. Once again, this step is per-
formed externally when the ACP is executed as a transformer in the framework
of a Pipes and Filters system.

8.3 The Java Implementation

We designed the prototype of the access control model
(http://seclab.dti.unimi.it/~xml-sec) in Java, using the services of a
Java implementation of the DOM API (we used the IBM’s XML4J processor [Al-
phaWorks 2001], which has now evolved into the Apache’s Xalan tool [Foundation
2001]). This choice had several consequences on the behavior of our prototype.
Here we make a few observations that strictly depend on this choice.

First, it must be noted that no Java-based design of multi-threading components
has full control on thread management: when running on an operating system
that supports threads, the Java Virtual Machine (JVM) automatically maps Java
threads to native threads [Lea 1996], while when no native thread support is avail-
able, the JVM has to emulate threads. In the latter case, the emulation technique
chosen by the JVM implementors can have a significant impact on performance.

Another interesting point to discuss is the mechanism used for the integration of
the ACP with the HTTP server. A simple technique consists in the adoption of
the Common Gateway Interface (CGI), which allows a Web server to run a generic
executable when managing a request; this solution is available independently from
the language used to implement the IDL specification. A Java implementation
offers specific solutions and indeed our prototype is invoked by the HTTP server

A Fine-Grained Access Control System for XML Documents . 31

using Java servlets. The servlet specification [Sun Microsystems 1999b] defines a
protocol for the exchange of information between the server and the JVM, where a
request to the server for a resource identified by a URL generates the invocation of
the JVM from the server, passing all the parameters part of the request. Overall,
servlets constitute an interesting solution for the implementation of Web services,
offering a higher level interface than CGI, with a relatively easy integration between
the HTTP server and the Java environment. Other solutions, specific for Java, are
available for the prototype implementation. In particular, for the next version of the
prototype, we are investigating the use of Java Server Pages (JSP) [Sun Microsys-
tems 1999a], a technology built upon servlets offering template-based invocation of
Java services.

9. CONCLUSIONS

The definition of an authorization mechanism for protecting data offered on Web
sites is an important research direction and a practical pressing need. Existing pro-
posals, specifying protection requirements at the file system level or with reference
to the HTML constructs, turn out to be very limited. By exploiting the opportuni-
ties offered by XML, we have defined an access control model for restricting access
to Web documents that takes into consideration the semi-structured organization
of data and their semantics. The result is an access control system that, while pow-
erful and able to easily represent different protection requirements, proves simple
and of easy integration with existing applications. Our proposal leaves space for
further work. Issues to be investigated include: the consideration of requests in
form of generic queries, extension of the model to role-based and credential-based
authorizations, and the investigation of performance optimizations.

ACKNOWLEDGMENTS

The work reported in this paper was partially supported by the Italian MURST
DATA-X project and by the European Community within the Fifth (EC) Frame-
work Programme under contract IST-1999-11791 — FASTER project.

REFERENCES

ABITEBOUL, S., AMANN, B., CLUET, S., EYAL, A., MIGNET, L., AND M1Lo, T. 1999. Active
views for electronic commerce. In Proceedings of 25th International Conference on Very
Large Data Bases (Edinburgh, Scotland, UK, September 1999), pp. 138-149.

ADLER, S., BERGLUND, A., CARUSO, J., DEACH, S., GRAHAM, T., GROSSO, P., GUTENTAG,
E., MiLowskl, A., PARNELL, S., RICHMAN, J., AND ZILLES, S. 2001. Eztensi-
ble Stylesheet Language (XSL) Version 1.0. World Wide Web Consortium (W3C).
http://www.w3.org/TR/xsl.

AGRAWAL, R., BORGIDA, A., AND JAGADISH, H. V. 1989. Efficient management of transitive
relationships in large data and knowledge bases. In Proceedings of the ACM SIGMOD’89
Conference (Portland, Oregon, May-June 1989), pp. 253-262. ACM Press.

ALPHAWORKS. 2001. XML Security Suite. http://www.alphaWorks.ibm.com/tech/xmlsecuritysuite.

APACHE SOFTWARE FOUNDATION. 2000. Cocoon, a Java publishing framework.
http://xml.apache.org/cocoon.

ATZENI, P., CERI, S., PARABOSCHI, S., AND TORLONE, R. 1999. Database Systems - Con-
cepts, Languages and Architectures. McGraw-Hill.

BERNERS-LEE, T., FIELDING, R., IRVINE, U., AND MASINTER, L. 1998. Uniform Resource
Identifiers (URI): Generic syntax. http://www.isi.edu/in-notes/rfc2396.txt.

32

. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati

BERTINO, E., CASTANO, S., AND FERRARI, E. 2001. Securing XML documents with author-
x. IEEE Internet Computing 5, 3 (May/June), 21-31.

BERTINO, E., CASTANO, S., FERRARI, E., AND MEsITI, M. 2000. Specifying and enforcing
access control policies for XML document sources. World Wide Web Journal 3, 3.

BIRON, P. AND MALHOTRA, A. 2001. XML Schema Part 2: Datatypes. World Wide Web
Consortium (W3C). http://www.w3.org/TR/xmlschema-2.

BrAy, T., HOLLANDER, D., AND LAYMAN, A. 1999. Namespaces in XML. World Wide Web
Consortium (W3C). http://www.w3.org/TR/REC-xml-names.

Bray, T., Paori, J., SPERBERG-MCQUEEN, C., AND MALER, E. 2000. Eztensible
Markup Language (XML) 1.0 (Second Edition). World Wide Web Consortium (W3C).
http://www.w3.org/TR/REC-xml.

BRICKLEY, D. AND GUHA, R. 2000. Resource Description Framework (RDF) Schema Spec-
ification 1.0. World Wide Web Consortium (W3C). http://www.w3.org/ TR /rdf-schema.

BunNEMAN, P., FAN, W., AND WEINSTEIN, S. 2000. Path constraints in semistructured
databases. JCSS 61, 2, 146-193.

BuscHMANN, F., MEUNIER, R., ROHNERT, H., SOMMERLAD, P., AND STAL, M. 1996.
Pattern-Oriented Software Architecture - A System of Patterns. Wiley and Sons Ltd.
CheckFree Corp. 2001. Open Financial Ezchange Specification 2.0.1. CheckFree Corp.

http://www.ofx.net/.

ContentGuard. 2001. eXtensible rights Markup Language (XrML) 2.0. ContentGuard.
http://www.xrml.org/.

DamiaNi, E., DE CAPITANI DI VIMERCATI, S., PARABOSCHI, S., AND SAMARATI, P. 2000a.
Design and implementation of an access control processor for XML documents. Computer
Networks 33, 1-6 (June), 59-75.

DaAmiANI, E., DE CAPITANI DI VIMERCATI, S., PARABOSCHI, S., AND SAMARATI, P. 2000b.
Securing XML documents. In Proceedings of EDBT 2000, Volume 1777 of Lecture Notes
in Computer Science (Konstanz, Germany, March 2000), pp. 121-135. Springer.

DEROSE, S., MALER, E., AND ORCHARD, D. 2001. XML Linking Language (XLink) Version
1.0. World Wide Web Consortium (W3C). http://www.w3.org/TR/xlink.

DEUTSCH, A. AND TANNEN, V. 2001. Containment and integrity constraints for xpath.
In Proceedings of the 8th International Workshop on Knowledge Representation meets
Databases (Rome, Italy, September 2001).

DEVANBU, P., GERTZ, M., KWoNG, A., MARTEL, C., NUCKOLLS, G., AND STUBBLEBINE, S.
2001. Flexible authentication of XML documents. In Proceedings of the 8th ACM Con-
ference on Computer and Communications Security (Philadelphia, PA, USA, November
2001).

EASTLAKE, D., REAGLE, J., AND SoLo, D. 2001. XML-Signature Syntaz and Processing.
ftp://ftp.rfc-editor.org/in-notes/rfc3075.txt.

ELLERMAN, C. 1997. Channel definition format (CDF). http://www.w3.org/TR/NOTE-
CDFsubmit.html.

FERNANDEZ, E., GUDES, E., AND SoNGg, H. 1994. A model of evaluation and administra-
tion of security in object-oriented databases. IEEE Transactions on Knowledge and Data
Engineering 6, 2 (April), 275-292.

FOUNDATION, A. S. 2001. Xalan-J version 2.2.d14. http://xml.apache.org/xalan-j/.

GABILLON, A. AND BruNoO, E. 2001. Regulating access to XML documents. In Proceedings
of the Fifteenth Annual IFIP WG 11.3 Conference on Database Security (Niagara on the
Lake, Ontario, Canada, July 2001).

GoOLDMAN, R., McHUGH, J., AND WIDOM, J. 1999. From semistructured data to XML:
Migrating the lore data model and query language. In Proceedings of the 2nd International
Workshop on the Web and Databases (WebDB ’99) (Philadelphia, Pennsylvania, June
1999).

JAJODIA, S., SAMARATI, P., SAPINO, M., AND SUBRAHMANIAN, V. 2001. Flexible support
for multiple access control policies. ACM Transactions on Database Systems 26, 2 (June),
214-260.

A Fine-Grained Access Control System for XML Documents . 33

JONSCHER, D., MOFFETT, J., AND DITTRICH, K. 1994. Complex objects or: The striving for
complexity is ruling our world. In T. KEEFE AND C. LANDWEHR Eds., Database Security,
VII: Status and Prospects (1994), pp. 19-37. Elsevier Science Publishers B.V. (North-
Holland).

KupoH, M., HIRAYAMA, Y., HADA, S., AND VOLLSCHWITZ, A. 2000. Access control speci-
fication based on policy evaluation and enforcement model and specification language. In
Symposium on Cryptograpy and Information Security, SCIS’2000 (2000).

LAVENDER, R. G. AND ScEHMIDT, D. 1995. Reactor: A object behavioral pattern for concur-
rent programming. In J. VLISSIDES, D. CoPLIEN, AND M. KERTH Eds., Pattern Languages
of Program Design 2. Addison Wesley.

LEa, D. 1996. Concurrent Programming in Java. Addison Wesley.

LIEFKE, H. AND DAVIDSON, S. 2000. View maintenance for hierarchical semistructured data.
In Proceedings of Data Warehousing and Knowledge Discovery (DaWaK 2000) (London
Greenwich, UK, Sept. 2000).

LunT, T. 1989. Access control policies for database systems. In C. LANDWEHR Ed., Database
Security, 1I: Status and Prospects (1989), pp. 41-52. North-Holland, Amsterdam.

MENDELZON, A. AND WooD, P. 1995. Finding regular simple paths in graph databases.
SIAM J. Comput 24, 6, 1235-1258.

MowBRAY, T. AND MALVEAU, R. 1997. CORBA Design Patterns. John Wiley & Sons.

ORACLE CORP. 2000. Oracle and XML. http://www.oracle.com/xml.

PARK, J., SANDHU, R., AND AHN, G. 2001. Role-based access control on the web. ACM
Transactions on Information and Systems Security 4, 1 (February), 37-71.

RasBITTI, F., BERTINO, E., KIM, W., AND WOELK, D. 1991. A model of authorization for
next-generation database systems. ACM TODS 16, 1 (March), 89-131.

RAYNAUD, O. AND THIERRY, E. 2001. A quasi optimal bit-vector encoding of tree hier-
archies. application to efficient type inclusion tests. In Proceedings of the 15th European
Conference on Object-Oriented Programming (ECOOP) (Budapest, Hungary, June 2001).

REAGLE, J. AND CRANOR, L. 1999. The platform for privacy preferences. Communications
of the ACM 42, 2 (February), 48-55.

RESCHER, N. 1969. Many Valued Logics. Mc Graw-Hill, New York.

RESCORLA, E. AND SCHIFFMAN, A. 1999. The secure hypertext transfer protocol.
http://www.ietf.org/rfc/rfc2660.txt.

SAMARATI, P., BERTINO, E., AND JAJoDIA, S. 1996. An authorization model for a dis-
tributed hypertext system. IEEE Transactions on Knowledge and Data Engineering 8, 4
(August), 555-562.

SAMARATI, P. AND DE CAPITANI DI VIMERCATI, S. 2001. Access control: Policies, models,
and mechanisms. In R. FOCARDI AND R. GORRIERI Eds., Foundations of Security Analysis
and Design, LNCS 2171. Springer-Verlag.

SANDHU, R. AND SAMARATI, P. 1997. Authentication, access control and intrusion detection.
In A. TuckiER Ed., CRC Handbook of Computer Science and Engineering, pp. 1929-1948.
CRC Press Inc.

SUN MICROSYSTEMS. 1999a. Java Server Pages (JSP) specification, release 1.1.
http://www.javasoft.com/.
SUN MICROSYSTEMS. 1999b. Java servlet API specification, release 2.2.

http://www.javasoft.com/.

THOMPSON, H., BEECH, D., MALONEY, M., AND MENDELSOHN, N. 2001. XML Schema Part
1: Structures. World Wide Web Consortium (W3C). http://www.w3.org/TR/xmlschema-
1.

VAN HOFF, A., PArRTOVI, H., AND THAI, T. 1997. The open software description format
(OSD). http://www.w3.org/TR/NOTE-OSD.html.

Woo, T. AND LaM, S. 1993. Authorizations in distributed systems: A new approach. Jour-
nal of Computer Security 2, 2,3 (February), 107-136.

34 . E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati

World Wide Web Consortium (W3C). 1998. Document Object Model (DOM) Level 1 Speci-
fication Version 1.0. World Wide Web Consortium (W3C). http://www.w3.0org/TR/REC-
DOM-Level-1.

World Wide Web Consortium (W3C). 2001. XML Path Language (XPath) 2.0. World Wide
Web Consortium (W3C). http://www.w3.org/TR/xpath20.

