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ABSTRACT

Cloud storage services have recently emerged as a success-
ful approach for making resources conveniently available to
large communities of users. Several techniques have been
investigated for enabling such services, including encryption
for ensuring data protection, as well as indexing for enabling
efficient query execution on encrypted data. When data are
to be made available selectively, the combined use of the two
techniques must be handled with care, since indexes can put
the confidentiality protection guaranteed by encryption at
risk.

In this paper, we investigate this issue and propose an in-
dexing technique for supporting efficient access to encrypted
data while preventing possible disclosure of data to users not
authorized to access them. Intuitively, our indexing tech-
nique accounts for authorizations when producing indexes
so to ensure that different occurrences of the same plain-
text value, but accessible by different sets of users, be not
recognizable from their indexes. We show that our solution
exhibits a limited performance overhead in query evaluation,
while preventing leakage of information.

Categories and Subject Descriptors

D.4.6 [Operating Systems]|: Security and Protection—Ac-
cess controls; H.2.4 [Database Management|: Systems—
Relational databases; H.2.4 [Database Management]:
Systems—Query processing; H.2.7 [Database Manage-
ment|: Database Administration—=Security, integrity, and
protection; H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing—Indexing methods; K.6.5
[Management of Computing and Information Sys-
tems]: Security and Protection
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1. INTRODUCTION

Users as well as governmental, public, and private insti-
tutions are more and more relying on the use of service
providers for the remote storage and dissemination of data.
As a matter of fact, interest on cloud technology is con-
siderably increasing, and network storage services represent
one of its most successful applications, conveniently allow-
ing data owners to make their data and resources available
to a large community of users without the need of building
a complex infrastructure and dealing with the many orga-
nizational and security issues associated with managing an
own server connected to the outside world.

Wide scale adoption and acceptance of network storage
services can effectively take place only if the data owner has
some assurance that, while externally stored, data are prop-
erly protected. The basic approach typically adopted for
ensuring protection to externally stored data relies on the
use of encryption, which provides both integrity (allowing
detection of possible data tampering) as well as confiden-
tiality (since the data will be intelligible only to users who
know the decryption key) [14, 15, 17, 20, 25]. Data confi-
dentiality may need to be guaranteed not only from external
users but also from the storage server itself that, while usu-
ally relied upon for data availability and services, may not be
allowed to know the content of the data stored. The assur-
ance that data content be hidden from the server is typically
desired by the data owner and might be demanded by law
(e.g., in the case of sensitive financial [19] or health care
information [16]). Since maintaining confidentiality with re-
spect to the storing server implies that the server cannot
decrypt data for executing queries, outsourced encrypted
data are typically associated with indexing information that
can be exploited by the server to execute queries. Several
approaches have been proposed by the research and devel-
opment communities for indexing encrypted data so to effi-
ciently query them (e.g., [1, 7, 15, 24]).
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Td [City | Year|Sales |acl
t1[001[NY 2010 | 600 t1|A
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t4|004|NY 2011 | 700 ta|A,C
t5|005|Oslo | 2011 | 700 t5|C
@ )

Figure 1: An example of plaintext relation (a) and
its access control policy (b)

An orthogonal aspect that needs to be addressed in data
outsourcing relates to the need of the data owner to provide
different data views to different users. This selective data
access can be conveniently realized simply by assuming the
use of different encryption keys for different portions of the
data, producing for each user a view containing only the
data that she can decrypt. Exploiting key derivation tech-
niques and user group hierarchies, selective encryption can
be realized while avoiding the need for the users to store
different keys and for the data owner to produce different
encrypted versions of the resources [8].

While indexing can be realized limiting the potential expo-
sure of confidential information due to indexes (e.g., [1, 5, 7,
15, 24]) and selective encryption naturally extends existing
encryption approaches, the combination of the two solutions
in a safe way is still an open problem. In fact, the cloud stor-
age server is typically assumed to offer a pure storage service
and is not required to guarantee a strict separation among
the portions of information available to the different users.
As a matter of fact, selective encryption ensures obedience
to the authorization policy without need for the server to
enforce any control or to authenticate users. Hence, users
could potentially have visibility of indexes even of tuples
they are not allowed to access. Such visibility, together with
the ability to view data for which they are authorized, opens
the door to possible inferences by users.

In this paper, we address the problem of providing se-
lective access to encrypted data and exploiting indexes for
query execution, while ensuring that indexes do not allow
users to draw inferences on tuples they are not authorized to
access. Our work aims at closing the gap between indexing
for efficient querying on one side and selective encryption for
authorization enforcement on the other side, thus allowing
for their joint exploitation.

For concreteness and simplicity, in line with existing ap-
proaches, in this paper data are organized in a relational ta-
ble and indexes are defined on attributes. We note however
that our proposal can be adapted to scenarios considering
generic resources.

The contributions of this paper can be summarized as
follows. We characterize the exposure of confidential infor-
mation due to indexes, when access to the data is regulated
by an access control policy (Section 3). We introduce an
index function that computes index values that depend not
only on the plaintext values they represents, but also on the
users who can access them (Section 4). We then illustrate
how to define this indexing technique to guarantee protec-
tion against inferences and support for efficient query evalua-
tion (Section 5). We describe how queries formulated on the
original (plaintext) relation are translated into equivalent
queries on the corresponding encrypted relation using our
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Figure 2: An example of encrypted version of plain-
text relation SHOPS in Figure 1(a)

indexes (Section 6). We also present the result of an experi-
mental evaluation confirming the efficiency and effectiveness
of our solution (Section 7). Finally, we discuss related works
(Section 8) and give our conclusions (Section 9).

2. BASIC CONCEPTS

We consider a cloud scenario where a data owner out-
sources her data to an external cloud server. The cloud
server is considered honest but curious, that is, it is trusted
with providing the required service but not authorized to
read the content of the outsourced data. The cloud server
is in charge of executing searches on the outsourced data on
behalf of authorized users.

Outsourced data are modeled as a relational table r over
schema R(A1,...,A,). Since the cloud server is not autho-
rized to know the content of relation r, the data owner en-
crypts r before outsourcing it. Consistently with existing
works (e.g., [5, 15, 24]), we assume symmetric encryption to
be applied and r to be encrypted at the tuple level (i.e., each
tuple is individually encrypted). Search operations (queries)
on the encrypted relation are supported via a set of indezxes
build on the plaintext values of the attributes of the relation.
The encrypted relation contains an index for each attribute
on which conditions need to be evaluated and for which the
advantage in query evaluation justifies the additional stor-
age cost of the index (i.e., attribute selectivity is not low).
An encrypted relation is formally defined as follows.

DEFINITION 2.1  (ENCRYPTED RELATION). Let r be a
relation over relation schema R(Ai,...,An). The en-
crypted wversion of v is a relation r° over schema
Re(tid,etuple,I1,...,I;), where Vi€r, Jt°€r® such that
t°[etuple]=Ey(t), with E a symmetric encryption function
with key k, and I; = 1(t[A;;]), ¢ = 1,...,1, with ¢ an index
function.

According to Definition 2.1, the encrypted version of relation
r over schema R(A1,...,A,) is a relation 7° with attributes:
tid, a numerical attribute added to the encrypted relation
that acts as a primary key; etuple, an attribute that con-
tains the ciphertext resulting from the encryption of a tu-
ple; I;, i=1,...,l, an attribute that corresponds to the index
over attribute A;,€R. With reference to plaintext relation
SHops Figure 1(a), Figure 2 illustrates the corresponding
encrypted relation SHOPS®, where I., I,, and I, are indexes
over attributes City, Year, and Sales, respectively. For the
sake of readability of our examples, we use Greek letters to
denote encrypted tuples and we report the tuples in the en-
crypted relation following the same order of the tuples in
the plaintext relation.

Most of the indexing techniques proposed in the literature
can be classified as follows.



e Direct indez (e.g., [7]). The index is obtained by ap-
plying an encryption function to the plaintext values of
the attribute. Index function ¢ then maps each plain-
text value to a different index value and viceversa.

e Flattened index (e.g., [24]). The index is obtained by
applying an encryption function to the plaintext values
of the attribute and a post processing that flattens
the distribution of index values. Index function ¢ then
maps each plaintext value to a set of index values,
but each index value corresponds to a unique plaintext
value.

e Bucket-based indez (e.g., [7, 15]). The index is ob-
tained by distributing the tuples in buckets. The buck-
ets can be explicitly defined by partitioning the domain
of the attribute or by applying a secure hash function
that distributes the plaintext values of the attribute
in buckets containing the tuples generating a collision.
Index function ¢ then maps different plaintext values
to the same index value.

These indexing techniques support the evaluation at the
cloud server of SELECT-FROM-WHERE SQL queries of the
form “SELECT Att FROM R WHERE Cond”, where AttCR
and Cond includes conditions of the form A=wv, with A€eR
and v a constant value in the domain of A. Each query on
the plaintext relation is translated into an equivalent query
on the encrypted relation by applying the index function
to the values appearing in the query. For instance, query
“SELECT City, Sales FROM SHOPS WHERE Year=2010" on
the plaintext relation in Figure 1(a) is translated into query
“SELECT etuple FROM SHOPS® WHERE I,=:(2010)” on the
encrypted relation in Figure 2.

3. PROBLEM DEFINITION

We consider a scenario where the data owner defines au-
thorizations on the outsourced data to provide different
views over the relation to different users of the system (we
assume access by users to the tuples is read-only, while write
operations are to be performed at the owner site, typically
by the owner herself). We consider authorizations to be de-
fined at the granularity of tuple, that is, each tuple within
the relation can be read by a potentially different set of
users. Given a tuple ¢, acl(t) denotes the access control list
associated with ¢, that is, the set of users who can access t.
Figure 1(b) illustrates an example of access control policy
for relation SHOPS in Figure 1(a). Authorizations holding
on a relation can be realized when outsourcing the data by
means of selective encryption, that is, by assuming the adop-
tion of different keys for different tuples, depending on their
acl, and ensuring that each user can decrypt all and only
the tuples she is authorized to access. Selective encryption
can be conveniently applied by releasing an individual key
to each user, by encrypting each tuple with one key, and by
exploiting key derivation techniques and a hierarchical orga-
nization of the keys based on the containment relationship
between groups of users (i.e., acls) [8].

While selective encryption guarantees the correct enforce-
ment of the access control policy (ensuring that each user
can decrypt all and only tuples that she is authorized to
access), the existence of indexes opens the door to possible
leakages allowing users to infer the content of tuples they are
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Figure 3: Knowledge of user B before (a) and after
(b) the inference

not authorized to access. In fact, index values are closely re-
lated to the plaintext values they represent. Inferences can
then happen when a user observes different occurrences of
the same index value, some associated with tuples she is au-
thorized to access and some associated with tuples she is not
authorized to access, or when the user exploits knowledge of
the index function to guess values that should be hidden to
her.

To illustrate the problem let us first clarify the user knowl-
edge on the system. The user knows: ) the index functions
used to define the indexes in the encrypted relation (since
they are available user-side for query generation); 4i) the
plaintext tuples that she is authorized to access (since she
can retrieve them from the external server and decrypt their
content); and #4) the encrypted relation potentially in its en-
tirety (we assume that the server does not restrict access to
the data based on the authorizations, and a query on the
encrypted data can retrieve a superset of the tuples acces-
sible by the user [10]). For instance, Figure 3(a) illustrates
the knowledge of user B for our example, providing her view
over the plaintext relation and over the encrypted relation.
Here, grey cells in relation SHOPS denote the information
that user B is not authorized to access.

Let us illustrate some knowledge that a user can infer over
the content of tuples she is not authorized to read.

When direct indexes are used, the user knowledge ex-
poses all the cells having the same plaintext values as the
ones that the user knows, since each plaintext value is al-
ways represented by the same index value and viceversa.
For instance, user B can access the second and third tu-
ple in SHOPS® and therefore she knows that index values
t(Rome), ¢(2010), ¢(2011), ¢(700), and ¢(600) correspond to
plaintext values Rome, 2010, 2011, 700, and 600, respec-
tively. As a consequence, user B infers that the first, fourth,
and fifth tuples of relation SHOPS include the association
(2010,600), (2011,700), and (2011,700) for the pair of at-
tributes (Year,Sales), respectively. Also, B can infer that
these tuples cannot assume value Rome for attribute City,
since their value for I. is different from ¢(Rome). Figure 3(b)
illustrates the view of user B over relation SHOPS after ex-
ploiting her knowledge on the index-plaintext value corre-
spondences. Here, light grey (orange) cells represent the
index values in relation SHOPS® and the information in rela-
tion SHOPS inferred by user B exploiting such index values.
Grey cells in relation SHOPS denote the (unauthorized) in-
formation that user B cannot infer. In addition to these
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Figure 4: An example of encrypted relation with
aclk-based indexes

inferences that exploit different occurrences of the same in-
dex, a user could exploit her knowledge of the index function
¢ to determine the index ¢(v) associated with each plain-
text value v in the domain of each attribute A in R. This
complete knowledge of the index-plaintext value correspon-
dences would then permit the user to infer the whole content
of the outsourced relation. Flattened indexes suffer from
the same exposure to inference as direct indexes, since all
the occurrences of an index value in the encrypted relation
represent the same plaintext attribute value and users know
the index function ¢. When a user decrypts a tuple that
she can access, the user can reconstruct the index-plaintext
value correspondences for all the attribute values in the tu-
ple. The user can then exploit her knowledge of the index
function ¢ to determine the different index values to which
the plaintext values that she knows have been mapped (to
flatten the distribution of index values). Bucket-based in-
dexes limit exposure to inference thanks to collisions as,
when observing multiple occurrences of an index value, the
user remains uncertain over which of the different colliding
plaintext values corresponds to each occurrence. However,
the user can establish with certainty that the index value
does not correspond to certain plaintext values.

In the remainder of this paper, we illustrate an approach
to compute indexes associated with data while ensuring pro-
tection from inferences such as the ones described above. To
simplify the discussion, we assume that all the indexes as-
sociated with an encrypted relation are direct indexes. By
ensuring protection in such a worst case scenario, our tech-
nique is clearly applicable when other indexing techniques
are used.

4. CONFIDENTIAL INDEXING

Our solution for producing privacy-aware indexes builds
on the observations made in the previous section character-
izing vulnerabilities from inferences. In particular, to block
such inferences, we require that different occurrences of a
same plaintext value be mapped to different index values
whenever such occurrences are subject to different autho-
rizations. For instance, with reference to Figure 1, the in-
dex associated with value 2010 of attribute Year in the first
tuple in relation SHOPS should be different from the index
associated with the same value in the second tuple, since the
two tuples have different acls. It is easy to see that guaran-
teeing such a property would block B’s ability to infer the
presence of 2010 in the first tuple.

A natural solution that first comes to mind, to guarantee
that indexes be different for a same plaintext value if acls are
different, is to produce index values directly depending on
the acls (i.e., obtained by encrypting plaintext values with
a key that only users in the acl know or can derive [2, §]).
Figure 4 illustrates an encrypted version of relation SHOPS in
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Figure 5: An example of encrypted relation with
user-based indexes

Figure 1(a), where indexes over attributes City, Year, and
Sales have been computed based on the acls in Figure 1(b).
Notation ¢y denotes an index function that only users in U
can compute. While providing the required protection, this
straightforward solution imposes a considerable burden at
the client side. In fact, every condition of the form A=wv in
a query submitted by user u would need to be translated
into an equivalent condition of the form I, IN V| where I,
is the index over attribute A and V' is the set of all possible
index values produced by all index functions ¢y with v € U.
For instance, condition “Year=2010" in a query submitted
by user B is translated as “I, IN {¢5(2010), ta(2010)}" if B
knows the acls of the two tuples that she can access; as “I, IN
{¢tB(2010), taB(2010), t5c(2010), tapc(2010)}”, otherwise.
Such index functions should be explicitly maintained and
computed by the user, making query evaluation cumbersome
at the client side.

To minimize the burden at the client side, our approach
makes indexing user-dependent while enabling automatic
(salt-based) computation of the different index values to
which a plaintext value can correspond. Each user u has
an index function ¢, that depends on a private piece of in-
formation (e.g., an encryption key k) that she shares with
the data owner. For each tuple ¢ in r over schema R, indexed
attribute A in R, and user u in acl(t), the data owner com-
putes an index value as ¢, (¢t[A]). (For the sake of exposition,
we assume that a user applies the same index function over
all attributes. Each user can easily adopt a different index
function for each attribute.) Considering relation SHOPS and
its access control policy in Figure 1, Figure 5 illustrates an
encrypted version of the relation, where the indexes for at-
tributes City, Year, and Sales have been computed adopt-
ing user-based indexing.

The adoption of user-based indexing does not close our
story as simple user-based indexing would remain vulnera-
ble to inferences. As per our starting observation, we must
ensure that different occurrences of the same value be not in-
ferrable by unauthorized users observing indexes. We note
that a user can potentially draw inferences on tuples that
she cannot access only when such tuples have index values in
common with other tuples that the user can access. In other
words, there can be inference whenever there are plaintext
tuples that have the same value for at least one attribute and
can be accessed by different, but overlapping, sets of users
(i.e., the tuples have different but overlapping acls). We call
plaintext tuples in such a relationship conflicting tuples, as
formally stated in the following definition.

DEFINITION 4.1  (CONFLICTING TUPLES). Let r be a
plaintext relation over relation schema R(A1,...,A,). Two
tuples t;,t;€r are said to be in conflict over attribute A, de-
noted ti~at;, iff: 1) t:[A] = ¢;[A]; i) acl(ts) # acl(t;), and
acl(t;) N acl(t;) # 0.



Id [City | Year|Sales |acl t1~cityta
t1 (001 |NY 2010 | 600 t1|A tarveityls
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Figure 6: Plaintext relation SHOPS (a), its access con-
trol policy (b), and conflicting tuples (c)

Figure 6(c) summarizes the conflicting tuples in relation
SHops in Figure 1(a) that, for the readers convenience,
has been reproduced together with its access control pol-
icy in Figures 6(a)-(b). Simple user-based indexing would
then allow visibility over the fact that: ¢;[City]=t4[City],
to[City|=t3[City], t1[Year]|=t2[Year], ta[Year|=ts[Year],
ta2[Sales]=t4[Sales], and t4[Sales|=t5[Sales].

When two tuples are in conflict over an attribute, the at-
tribute value in one of the tuples is exposed (through infer-
ence) to all users allowed to access only the other tuple. For-
mally, given two tuples ¢;,t;€r, with t;~at;, tuple t; ezposes
tuple t; over attribute A to all users u € acl(t;)\ acl(t;). For
instance, consider user B and the conflicting tuples t1~yeart2
and ta~saests in Figure 6(c). Tuple t2 exposes to user B the
value for attribute Year of tuple ¢; (2010) and the value for
attribute Sales (700) of tuple t4. Note that this last infer-
ence also allows B to infer the value for attribute Sales of
tuple t5 (by observing the common index present for C' in
tuples t4 and t5). Figure 7 illustrates the inferred view of
user B over relation SHOPS after exploiting her knowledge
on the index-plaintext value correspondences derived from
the encrypted relation in Figure 5. Here, grey cells repre-
sent information that user B cannot access/infer, light grey
cells represent information that user B has inferred from her
knowledge, and white cells represent information that user
B is authorized to access.

As discussed above, the inference channels previously de-
scribed can be blocked by imposing conflicting tuples to be
associated with different index values. An index function
that provides this guarantee is called safe and is defined as
follows.

DEFINITION 4.2  (SAFE INDEX FUNCTION). Let 7 be a
plaintext relation over relation schema R(A1,...,A,). An
index function v is safe iff Vt; t;€r s.t. ti~pt;, with AER,
and Yu€acl(t;)Nacl(t;), vu(ti[A]) # tu(t;]A]).

According to Definition 4.2, a safe index function ensures
that conflicting tuples have different index values for all users
that can access them. In this way, the index values cannot
be exploited anymore for inference purposes.

In the following section, we will present an approach for
defining a safe index function.

S. DEFINING A SAFE INDEX

To efficiently compute a safe index function, we start by
classifying tuples based on conflicts and impose diversity
of the indexes. To this end, we partition tuples in clusters
such that tuples that are in conflict for at least one attribute
belong to different clusters. A tuple partitioning satisfying
such condition is said to be safe. We formally define a safe

SHOPS
Id [City [Year[Sales
t1 2010
t2|002|Rome| 2010 | 700 ta|A,B
t3]003|Rome| 2011 | 600 t3|B
ta 700 ta|A,C
ts 700 ts5|C

Figure 7: Inferred view of user B over relation SHOPS

partitioning of tuples in r with respect to an arbitrary set
A of attributes in R as follows.

DEFINITION 5.1  (SAFE PARTITIONING). Let r be a
plaintext relation defined over relation schema R(A1, ..., Ay)
and A be a set of attributes in R. A safe partition Ca of r
w.r.t. A is a set of classes of tuples {C1,...,Cp} such that
U, Ci=r, CinCy =0, withi,j € {1,...,p} and i # j,
and YCEC 4, and Vt;,t;€C, and VAEA, t;at;.

A safe partitioning of r with respect to set A is composed
of classes of tuples such that the tuples in a class are not
in conflict over any attribute in A. For instance, according
to the example in Figure 6, a safe partition of SHOPS with
respect to: attribute City is Ceity = {{t1,t3}, {t2,l4,t5}}; at-
tribute Year is Cyear = {{t1,t3,t4}, {t2,t5}}; attribute Sales
is Csates = {{t1,t2,t3,t5}, {ta}}; set {City,Year,Sales} of at-
tributes is Ceity,vear,sates = {{t1,t3,t5}, {t2} ,{ta}}. Note that
tuples that cannot belong to the same class in Ccity, Cyear, OF
Csa1es cannot belong to the same class in Ceity,vear,sales. FOT
instance, t; and ¢4 cannot belong to the same class in Ceity,
since ti1~cityts. Then, t; and ¢4 must belong to different
classes in Ccity,vear,sales -

Intuitively, a safe partitioning induces a safe indexing for
attributes in A if different indexing computations (which we
differentiate by applying salts) are used for tuples in differ-
ent classes in C4. While any safe partitioning allows us to
define a safe index function, we are interested in computing
a minimal safe partition of r with respect to the attribute(s)
of interest. The reason for this is to minimize the different
index functions (salts) that need to be supported, especially
since salts lead to an increase in the size of the query gener-
ated by the user. The problem of computing a minimal safe
partitioning can be formally defined as follows.

PROBLEM 5.1  (MIN-PARTITION). Given a plaintezt re-
lation r defined over relation schema R(A1,...,A,) and a
set A of attributes in R, determine a safe partition Ca of r
w.r.t. A (Definition 5.1) such that the number of classes in
C4 is minimized.

The MIN-PARTITION problem is NP-hard, as formally proved
by the following theorem.

THEOREM 5.1. The MIN-PARTITION problem is NP-hard.

PrOOF. The proof is a reduction from the NP-hard prob-
lem of minimum vertex coloring [13], which can be formu-
lated as follows: given a graph G(V,E), determine a min-
tmum coloring of G, that is, assign to each vertex in V a
color such that adjacent vertices have different colors, and
the number of colors is minimized.

The correspondence between the MIN-PARTITION problem
and the minimum vertex coloring problem can be defined as
follows. The outsourced relation r is defined over schema
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Figure 8: Conflict graphs with respect to City (a),
Year (b), Sales (c), and {City,Year,Sales} (d)

R(A). Any vertex v in G corresponds to a tuple t€r. Any
edge (vi,v;) in G corresponds to a conflict between ¢; and
t; with respect to A, that is, ¢;[A]=t;[A], acl(t;)#acl(t;), and
acl(t;)Nacl(t;)#0. The definition of a safe partition Cy of r
such that the number of classes in Cy is minimized represents
a solution to the minimum vertex coloring problem. Specifi-
cally, the color assigned to a vertex v in G corresponds to the
class including the tuple ¢ represented by vertex v. There-
fore, any algorithm that solves the MIN-PARTITION problem
can be used to solve the minimum vertex coloring prob-
lem. [

We solve the MIN-PARTITION problem by translating it into
an instance of the minimum vertex coloring problem [13],
and take advantage of the heuristics and approximation al-
gorithms proposed for solving it, which efficiently compute a
solution near to the optimum. We therefore define a conflict
graph that models conflicts between tuples in r with respect
to a set A of attributes as follows.

DEFINITION 5.2 (CONFLICT GRAPH). Let r be a plain-
text relation defined over relation schema R(A1,...,An) and
A be a set of attributes in R. The conflict graph G4 of
w.r.t. A is a non-directed graph G 4(Va,Ea) where Va=r
and EA:{(ti7tj) : ti7tj S VA, and HAG.A, tiNAtj}.

According to Definition 5.2 a conflict graph has a vertex
for each tuple ter, and an edge between t; and ¢; iff there
exists at least an attribute A in A such that ¢;~t;. For in-
stance, according to the example in Figure 6, Figures 8(a)-
(c) illustrate the conflict graphs for attributes City, Year,
and Sales, respectively. A safe partition C4 minimizing the
number of classes then corresponds to a minimum vertex col-
oring of conflict graph G 4, where colors represent classes.
The coloring of the conflict graphs in Figures 8(a)-(c), de-
noted by drawing vertices with different lines (i.e., solid,
double, and dotted), correspond to safe partitions: Ceity =
{{t17t3}7 {t27t47t5}}7 Cyear = {{t17t37t4}7 {t27t5}}7 and Csates
= {{t1,ta,ts,ts}, {ta}}, respectively.

The conflict graph Ga(Va, E4) of r with respect to a
set A={A1,...,A;} of attributes corresponds to the compo-
sition of the conflict graphs Gu,,..., G, of r with respect
to attributes A; in A, ¢ = 1,...,l. In fact, all these con-
flict graphs are defined over the same set of vertices, and
edge (ti,t;)€E 4 iff there exists at least an attribute A in
A such that t;~,t;. For instance, according to the exam-
ple in Figure 6, the conflict graph with respect to the set
{City,Year,Sales} of attributes reported in Figure 8(d) is
the composition of the conflict graphs in Figures 8(a)-(c).
A coloring for G 4 then represents a coloring also for each
Gy, with A;€ A, i =1,...,l. However, a minimal coloring
for G 4 may not represent a minimal coloring for G,,. For
instance, the minimal coloring for the graph in Figure 8(d)

City Year Sales City Year Sales

ti|sa SA SA ti|sa SA SA
t2|Ss|SB sa|sB sAlse ta|ss|SB salss salss

t3 sp s sB ts s sp sp

’ ’ " 1" 1
ta|s'a sc|sa sc|sa sc||ta|sa sc|sa sc|sa sc
ts sc S/C s/c ts S/C s'c S/C

(a) (b)

Figure 9: Salt assignments for the attribute level (a)
and the relation level (b) approaches

requires 3 colors while the minimal colorings for the conflict
graphs in Figures 8(a)-(c) require only 2 colors each.

Once partition C 4 has been computed, the data owner de-
fines a safe index function ¢, for each user u in the system
in a way that the indexing computations for the tuples in
different classes are differentiated by applying different ran-
domly generated salts in the use of index function ¢,. More
precisely, we introduce a salt assignment function for each
attribute and user in acl(t), driven by the partition C4 of
r, which assigns different salts to tuples in different classes .
Formally, the salt assignment function of user u for attribute
A is defined as follows.

DEFINITION 5.3  (SALT ASSIGNMENT FUNCTION). Let 7
be a plaintext relation over relation schema R(A1,...,Ay), A
be an attribute in R, Ca be a safe partition of r w.r.t. a set A
of attributes in R such that A€A (Definition 5.1), S be a set
of random salts, u be a user, and T, = {t € r : u € acl(t)}.
The salt assignment function o : Ty — S of u for attribute
A implied by Ca associates a salt s€S with each t€T, such
that Yt t; €Ty, onu(ti)=0nu(t;) iff ti and t; belong to the
same class CEC4.

The salt assignment function computes, for each attribute
A and user u, the set of salts to be used in computing u’s
indexes for attribute A. Intuitively, each user will need, for
each attribute, as many salts as the number of classes C' in
C. that contain tuples readable by the user. For instance,
according to the partitioning induced by the coloring in Fig-
ure 8(a), the salt assignment function for attribute City will
produce: two salts for user A (one for ¢1, and a distinct one
for to and t4), two salts for user B (one for ¢z and a distinct
one for t3) and one salt for user C' (for 4 and t5). The salt
assignment function for attributes Year and Sales is defined
analogously. Figure 9(a) summarizes the salts assigned to
the tuples in relation SHOPS in Figure 1(a) according to the
partition induced by the colorings in Figures 8(a)-(c) for at-
tributes City, Year, and Sales, respectively. The table has
a row for each tuple in relation SHOPS, and three columns
representing users A, B, and C for each indexed attribute
City, Year, and Sales. A cell in the table contains o . (¢;),
with A € {City,Year,Sales}, u € {A, B,C}, and t; the i-th
row in the table corresponding to tuple ¢; in SHOPS. Given
a salt assignment function oy, the index value of user
for attribute A in tuple ¢ is then defined as ¢y (£[A], oa,. (1)).
Figure 10 illustrates the encrypted version of relation SHOPS
in Figure 1(a), where indexes have been computed adopting
the salt assignment functions reported in Figure 9(a). We
note that the salts used by salt assignment function o, ., are
generated through a pseudo-random function, different for
each u. The data owner has then to communicate to each
user u only the pseudo-random function used by oa,. and
the number of salts needed for each attribute A.
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tid|etuple I. I, I

1 a |ta(NY,sa) 14 (2010,54) L4 (600,54)

2 L a(Rome,s’y )t p(Rome,sp)[ta(2010,s" )5 (2010,55)|ta(700,5.4)5(700,55)
3 v |ts(Rome,s’s) L5(2011,s5) L3 (600,s3)

4 ) LA(NY,s))ec(NY,sc) L 4(2011,54)ec(2011,5¢)|ea(700,8"y)ec (700,5¢)
5 € |tc(Oslo,se) Lc(2011,s) Lc(700,s-)

Figure 10: An example of encrypted relation with
user-based indexes and salts

The data owner can apply different strategies when defin-
ing safe indexes for r: i) she can define a different parti-
tion of r with respect to each attribute A (attribute level
approach), separately solving the minimal coloring problem
for each attribute, or i) she can define a unique partition
applied to all the indexed attributes in R (relation level ap-
proach), essentially identifying the minimal vertex coloring
for the conflict graph defined with respect to the set of all
indexed attributes. With reference to the example in Fig-
ure 6, Figures 9(a)-(b) illustrate the salt assignment func-
tions obtained following the attribute level approach and the
relation level approach, respectively. The salt assignment in
Figure 9(b) has been defined, for all the indexed attributes
in relation SHOPS, according to the partition induced by the
coloring of the conflict graph in Figure 8(d), which produces
three salts for user A (one for ¢1, a distinct one for ¢2, and
another distinct one for ¢4), two salts for user B (one for t2
and a distinct one for ¢3) and two salts for user C' (one for
t4 and a distinct one for ¢5). Since the coloring is unique for
all the attributes, a single salt can be assigned to each user
to protect all the indexes of a given tuple. Each user will
then be communicated a single number of salts to be used
when querying any attribute.

Both attribute level approach and relation level approach
present advantages and disadvantages. In the attribute level
approach, we expect to obtain a lower number of classes
than the number of classes resulting in the relation level
approach, as confirmed by the example. The number of
salts for each u should then be lower, as well as the user
overhead in query generation. The attribute level approach
causes however a higher initialization overhead for the data
owner, who needs to compute as many partitions of r as
the number of attributes over which an index is defined.
When this additional initialization cost is not justified by
a considerable reduction in the number of salts used in the
generation of queries (see Section 6), the data owner may
prefer to apply a relation level approach (see Section 7).

6. QUERY EVALUATION

With our indexing technique, multiple index values (one
for each authorized user) may be defined for the same index
attribute of an encrypted relation. The representation of
sets of values, while not directly supported in the relational
data model, can be readily realized at the logical level by
fragmenting the encrypted relation and reporting indexes in
separate tables. The original encrypted relation can be sim-
ply obtained (by the server) by joining the different tables.
The data owner therefore outsources an encrypted relation
r; and a set r{,,...,rf, of index relations. Encrypted re-
lation r{ is defined over schema R{(tid, etuple), while each
index relation rf is defined over schema Rf(tid, I). At-
tribute tid in relation Rf references attribute tid in Ry and
represents the identifier of the tuple to which the index value

SHOPs Ry Ry, RY
tid | etuple tid I. tid I, tid I

1 « 1 [ta(NY,sa) 1 |¢a(2010,s4) 1 [ta(600,54)
2 B 2 |ta(Rome,s’y) 2 |1a(2010,5%) 2 |ta(700,54)
3 ~ 2 | tp(Rome,spg) 2 | tp(2010,55) 2 | vB(700,5B)
4 ) 3 | tp(Rome,s’s) 3 | tp(2011,s) 3 |t (600,5p)
5 € 4 |a(NY,s’y) 4 |1a(2011,84) 4 | 1a(700,s8")
4 |e(NY,sc) 4 |1c(2011,5¢0) 4 | o (700,s¢)
5 | tc(Oslo,se) 5 |te(2011,sp) 5 |tc(700,5¢)

(a) (b) () (d)

Figure 11: An example of encrypted (a) and index
(b-d) relations for the encrypted relation in Fig-
ure 10

stored in I refers. As an example, Figure 11 illustrates the
logical realization of the relation in Figure 10.

At the client side, each user u has knowledge of: i) the
index function ¢, mapping plaintext values to indexes; i)
the maximum number of salts n, ., used for mapping values
of attribute A that are accessible by u; and #4) the pseudo-
random function used by the data owner to generate these
salts. Each basic condition A=v in a query ¢ submitted by
user w is translated (client-side) into an equivalent condition
I, IN V, where I, is the index over attribute A and V' is the
set of index values corresponding to v that user u can com-
pute. The set V of values in the condition is obtained by
applying index function ¢, to v combined with each of the
na, salts generated by the user through the pseudo-random
function shared with the data owner, that is, ¢y (v,s:), @ =
1,...,na,. For instance, consider the outsourced relations
in Figure 11, representing plaintext relation SHOPS in Fig-
ure 1(a), and query ¢ = “SELECT City, Sales FROM SHOPS
WHERE Year=2010" submitted by user B. Since nyear,B=2,
user B computes the two index values, ¢tp(2010,s5) and
t5(2010,s3), that possibly represent value 2010 in the en-
crypted table, and translates her query as follows: “SELECT
etuple FROM SHOPS; JOIN Ry ON SHOPS;.tid=Rf .tid
WHERE I, IN {¢5(2010,s5),t5(2010,s3)}”. When the re-
questing user receives the result of her query from the cloud
server, she decrypts each tuple and possibly projects the
attributes of interest (City and Sales, in our example).

Queries submitted by users can be efficiently evaluated at
the server-side. In fact, the cloud server can resort to tradi-
tional optimization techniques for the execution of the join
operations between the encrypted (Rf) and index relations
(R%), which therefore do not impact performance. Also, to
guarantee an efficient retrieval of the tuples matching the
user condition, the cloud server can define a relational phys-
ical index over attribute I for each index relation Rf. The
physical index could be based on a hash (preferably) or B-
tree structure, depending on what is offered by the relational
engine used on the server.

7. EXPERIMENTAL RESULTS

To evaluate the behavior of the indexing technique pre-
sented in previous sections, we implemented a prototype
and executed a series of experiments. For the experiments
we had to generate; i) the data (relation) to be outsourced
and #7) the authorizations holding on the different tuples of
the relation. As for the data, to guarantee the value dis-
tribution within the attributes to mimic a real database,
we generated a relational table built following the TPC-H
benchmark [23] specifications (TPC-H is commonly used in
the database community to evaluate the performance of new
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Figure 12: Number of classes in the partition (a,c) and average number of salts per user (b,d) in the attribute

level (a,b) and relation level (c,d) approaches

solutions). We considered a relation of three attributes, in-
cluding 5, 25, and 11,000 distinct values, respectively, and
performed experiments with table cardinality varying be-
tween 500 and 100,000 tuples. As for the authorizations,
since no standard approach exists in the security commu-
nity to build the access privileges of a large scale community
of users over a set of resources, we built a collection of ac-
cess profiles by extracting the authorship information from
the DBLP repository [22], which is representative of large
social networking contexts. The idea is that each paper in
DBLP, which we made correspond to one tuple in the re-
lation generated as explained above,’ must be accessible by
all its authors. We implemented a C++ program that starts
from a random author and considers all his/her publications
and coauthors; then, one of the coauthors is randomly cho-
sen and his/her publications and corresponding coauthors
are iteratively retrieved. The program stops when the tar-
get number of publications has been retrieved (i.e., when all
the tuples in the table are associated with an acl).

The parameter we were interested in evaluating for assess-
ing the performance of the system is the number of salts per
user. Indeed, user side computation is considered the most

"We did not use the data from the DBLP repository itself
to generate our relation (opting instead for the generally
used TPC-H benchmark), since it would have produced only
attributes either with limited domain cardinalities or with
distinct values for every tuple.

valuable resource and query translation requires an over-
head that directly depends on the number of salts that the
user needs to use in query translation (see Section 6). The
time necessary to compute a correct coloring of the conflict
graphs (see Section 5) does not represent a critical aspect for
the proposed approach. In fact, this cost has to be paid only
at set up time, when the relation is first outsourced to the
cloud server. Analogously, the additional storage necessary
for the index is not critical, since storage handled by the
external server is inexpensive compared to other costs, like
network transfer and client-side storage and computation.

We performed experiments evaluating the number of
classes composing a safe partition of the outsourced rela-
tion, necessary to define a set of safe index functions, and
the average number of salts that users need to translate their
queries. Intuitively, the number of classes in the partition
represents the upper bound to the number of salts required,
while the average number of salts per user estimates the user
overhead in query translation. In our experiments, we con-
sidered two different configurations, depending on whether
the data owner defines a different partition for each attribute
in the relation (attribute level approach), or a unique parti-
tion for all the indexed attributes in the relation (relation
level approach).

Attribute level approach. Figure 12(a) reports the num-
ber of classes in the partition C, w.r.t. each of the attributes
in the outsourced relation, when the number of tuples varies
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from 500 to 100,000. The number of classes exhibits a range
from 1 to 3 for the attribute with a domain of 11,000 dis-
tinct values, from 3 to 23 for the attribute with a domain of
25 distinct values, and from 5 to 70 for the attribute with
a domain of 5 distinct values. Figure 12(b) illustrates, for
the same configurations, the average number of salts that
each user needs to use when translating her queries. The
results confirm that the major contribution derives from the
attribute with lowest domain cardinality. Also, it shows that
the average number of salts per user is in the range 1.2-2.7,
corresponding to a limited overhead in query execution.

Relation level approach. Figure 12(c) compares the num-
ber of classes in the partition C4 of the outsourced relation
when A includes: i) all the three attributes in the outsourced
relation, and i) two of the attributes in the outsourced rela-
tion (with domain of 11,000 and 25 values, that is, excluding
the least selective). The number of classes in C4 exhibits a
range from 5 to 67 if A includes all the attributes in the re-
lation, and from 2 to 24 if A includes only the two attributes
stated above. The configuration with three attributes in A
is characterized by a higher number of conflicts (i.e., edges
in the conflict graph), mainly due to the attribute with the
least cardinality. Figure 12(d) illustrates, for the same con-
figurations, the average number of salts that each user needs
to use in query translation. It is easy to see that, also when
the data owner defines a unique partition C 4 for all the in-
dexed attributes in the relation, the average number of salts
per user is low, in the range 1.2-2.7 already observed for the
attribute with the lowest domain cardinality. When using
only two attributes, the average number of salts per user
is even lower, in the range 1.1-2.0. The overhead in query
execution remains limited.

Figure 13 depicts the distribution of salts for the different
users, focusing on the most complex configuration, the one
with 100,000 tuples and A including all the three attributes.
An analysis of the data reported in the graph shows that less
than 0.1% of the users need to use a number of salts greater
than half the number of classes in the partition, while more
than half the users just need one salt. It is clear that the
number of classes corresponds to a relatively high number of
salts for an extremely small fraction of users, so small that
the impact on the overall performance is negligible.

The comparison between the results in Figure 12(b) and
in Figure 12(d) allows us to better characterize the attribute

vs the relation level approaches. The definition of a different
partition for each attribute permits to reduce the overhead
of the queries that specify restrictions on the most selective
attributes, whereas the difference for less selective attributes
is minimal. This approach requires a more extensive charac-
terization of the schema, because a different value of number
of salts has to be recorded for every attribute, whereas a sin-
gle value has to be stored at the table level for each user if
a unique partition is defined for all the indexed attributes.
If the query profile exhibits a strong preference for queries
over selective attributes and there is no worry about the
slightly larger schema management costs, the definition of
multiple partitions (one for each attribute) should be pre-
ferred. Otherwise, the definition of a unique partition should
be preferred, due to its simplicity and limited overhead that
is near to the optimum for the least selective attribute and
still acceptable for the other attributes.

8. RELATED WORK

Several research efforts have been performed in the con-
text of data outsourcing [20]. Most proposals have addressed
the problem of efficiently performing queries directly on out-
sourced encrypted data, without decrypting sensitive infor-
mation at the server side. Such proposals typically define
indexes that are stored together with the encrypted data
and are used by the storage server to select the data to be
returned in response to a query [10]. A simple indexing
technique consists in using as index the result of an encryp-
tion function (direct index) over plaintext values (e.g., [7]).
While simple, this solution suffers from frequency-based at-
tacks since the frequency distribution of index and plaintext
values is exactly the same. In [7, 15] the authors propose
bucket-based index techniques. The index values are com-
puted by applying a hash function over the corresponding
plaintext values [7] or by first partitioning the domain of
an attribute into a set of non-overlapping subsets of con-
tiguous values, which are usually of the same size, each of
which is associated with a label [15]. The index value asso-
ciated with a given plaintext value corresponds then with
the label of the partition containing the plaintext value.
These index techniques map multiple plaintext values to
the same index value, thus generating collisions that pre-
vent frequency-based attacks. Although effective for dele-
gating to the cloud server the evaluation of equality condi-
tions, direct and bucket-based indexing techniques do not
support range queries. In [7], the authors present a B-+-
tree index that supports both equality and range queries (as
well as GROUP BY and ORDER BY SQL clauses) at the server
side. This approach is based on outsourcing an encrypted
version of a B+-tree built over a plaintext attribute of the
outsourced relation, which is iteratively visited by the user
for query evaluation. An alternative indexing technique that
supports equality and range conditions (as well as MAX, MIN,
and COUNT aggregation functions) over encrypted data has
been illustrated in [1] and is based on an order preserving
encryption schema. In [24] the authors propose a flattened
indexing method that exploits B-trees for supporting both
equality and range queries, while reducing inference expo-
sure thanks to an almost flat distribution of the frequencies
of index values. All these solutions provide support for the
evaluation of queries over encrypted data, but do not take
access control restrictions into account. As a consequence,
their observation may disclose confidential data.



In [21], the authors introduce the definition of B-tree in-
dexes, one for each different access control list in the sys-
tem. A B-tree index then supports access to all and only
the tuples whose acl corresponds to the acl of the index. To
guarantee confidentiality, the B-tree index of each acl is en-
crypted with a key that only the users in the acl know. This
solution suffers from a high client side overhead in query
evaluation, since the user submitting the query must visit
all the B-trees associated with the acls to which she belongs.

Another related line of work addresses the problem of
specifying and enforcing an access control policy on out-
sourced data, without the need for the data owner to filter
query results. In [18] the authors present a framework for
enforcing access control on published XML documents by
using different cryptographic keys over different portions of
the XML tree and by introducing special metadata nodes in
the structure. The solution illustrated in [8], which can be
adopted independently from the logical organization of the
outsourced data, is based on a selective encryption strat-
egy for enforcing the authorization policy specified by the
data owner and relies on key derivation to guarantee that
each user knows one secret key only and that each tuple is
encrypted with one key only. This approach also permits
to delegate to the cloud server the management of policy
changes. The proposal introduced in [26] adopts attribute
based encryption to provide system scalability. Each tuple is
encrypted using the public key components of the attributes
describing the context in which the tuple should be accessed.
Each user is assigned a secret key that satisfies the logical
expression over the system attributes representing the prop-
erties of the tuples she is authorized to access. All these
proposals address the problem of enforcing authorizations
and ensuring that users can decrypt only data that they are
authorized to access. Our work is complementary to these
proposals since it addresses the problem of ensuring that
users cannot withdraw any inferences on the data they are
not authorized to access (and hence not able to decrypt) by
observing indexes associated with the data.

9. CONCLUSIONS

We have presented an approach for indexing encrypted
data to be made accessible selectively. Our indexes are safe
from inferences, meaning that they do not leak information
on underlying data to users not authorized to access such
data. Experimental results show that our solution enjoys
limited overhead, ensuring light work on the client and net-
work bandwidth at the cost of additional storage on the
server. This choice fits well with cloud systems, where clients
have limited resources, network communication costs are
comparatively high, and storage costs are quite low. Our
approach closes the gap between indexing techniques and
selective encryption, therefore allowing their combined use
and enabling efficient query execution while ensuring that
indexes do not expose information to unauthorized users.

We note that while in the paper we presented our solution
for the worst case scenario of direct indexes, our approach
is readily applicable to other indexing techniques, such as
flattened and bucket-based indexes, simply by applying it
at the flat group or bucket granularity. Possible future work
includes the consideration of protection against threats to
index confidentiality due to the observation, by the server,
of multiple queries and the possible collusion between server
and users. A promising and directly applicable approach

against this threat consists in enriching the technique pre-
sented in this paper with tuple clustering approaches, such
as those illustrated in [9], associating indexes at the level of
clusters in contrast to individual tuples.
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