
Preserving Confidentiality of Security Policies
in Data Outsourcing

Sabrina De Capitani di Vimercati
DTI - Università di Milano

26013 Crema - Italy
decapita@dti.unimi.it

Sara Foresti
DTI - Università di Milano

26013 Crema - Italy
foresti@dti.unimi.it

Sushil Jajodia
CSIS - George Mason University

Fairfax, VA 22030-4444
jajodia@gmu.edu

Stefano Paraboschi
DIIMM - Università di Bergamo

24044 Dalmine - Italy
parabosc@unibg.it

Gerardo Pelosi
DIIMM - Università di Bergamo

24044 Dalmine - Italy
gerardo.pelosi@unibg.it

Pierangela Samarati
DTI - Università di Milano

26013 Crema - Italy
samarati@dti.unimi.it

ABSTRACT
Recent approaches for protecting information in data out-
sourcing scenarios exploit the combined use of access control
and cryptography. In this context, the number of keys to be
distributed and managed by users can be maintained limited
by using a public catalog of tokens that allow key derivation
along a hierarchy. However, the public token catalog, by
expressing the key derivation relationships, may leak infor-
mation on the security policies (authorizations) enforced by
the system, which the data owner may instead wish to main-
tain confidential.

In this paper, we present an approach to protect the pri-
vacy of the tokens published in the public catalog. Con-
sistently with the data outsourcing scenario, our solution
exploits the use of cryptography, by adding an encryption
layer to the catalog. A complicating issue in this respect
is that this new encryption layer should follow a derivation
path that is “reversed” with respect to the key derivation.
Our approach solves this problem by combining cryptog-
raphy and transitive closure information. The result is an
efficient solution allowing token release and traversal of the
key derivation structure only to those users authorized to ac-
cess the underlying resources. We also present experimental
results that illustrate the behavior of our technique in large
settings.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion—Security, integrity, and protection; D.4.6 [Operating
Systems]: Security and Protection—Access controls; K.6.5
[Management of Computing and Information Sys-
tems]: Security and Protection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’08, October 27, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-60558-289-4 /08/10 ...$5.00.

General Terms
Security, Management

Keywords
Data outsourcing, encryption policy, security policy protec-
tion, privacy

1. INTRODUCTION
The realization of access control policies that rely on cryp-

tography to ensure confidentiality of data has traditionally
been considered incoherent with the basic security principle
of strict separation between policies and mechanisms. The
evolution of Information and Communication Technologies
(ICTs) is forcing a reconsideration of this attitude: sys-
tems present a growing variety of integrated components,
with ever growing interconnection needs. The assumption
that access to resources is controlled by an omniscient refer-
ence monitor exercising complete and efficient surveillance
on every request is becoming increasingly impractical. There
is therefore an increasing interest in the definition of secu-
rity solutions that allow the enforcement of regulations even
when the resources themselves are not under the strict con-
trol of the owner. A promising solution in this respect is
represented by approaches coupling authorizations and en-
cryption so to define encryption policies on resources that
reflects the access regulations to be enforced. The problem
of ensuring that users can only access resources for which
they hold authorizations is then translated into guarantee-
ing that only users with access privileges are able to retrieve
the key used to protect a resource.

One application that already shows a great potential from
the adoption of these techniques is represented by the data
outsourcing and dissemination services, which have recently
seen considerable growth and promise to become a common
component of the future Web. Users have access to an in-
creasing variety of devices generating and processing digi-
tal information. User owned content is therefore more and
more stored and managed by third parties delegated for this
service by the owner. Many companies have recently expe-
rienced significant success in the Web space providing solu-
tions that facilitate the dissemination of user-generated con-
tent (e.g., YouTube, Facebook). In all these scenarios, the
server is relied upon for ensuring availability of outsourced
data and for enforcing the basic security control on the data

Sara
Line

it stores. While trustworthy with respect to their services
in making published information available, third parties are
however trusted neither to access the content nor to fully en-
force possible access control policy reflecting selective release
that the owner may wish to impose. It is then conceivable
that users (and providers themselves) would find an inter-
esting opportunity in the realization of a dissemination ser-
vice offering strong guarantees about the protection of user
privacy against the service provider. Recently, selective en-
cryption techniques have emerged as a promising response
to this problem [9,10]. Selective encryption nicely enhances
outsourcing solutions by safely delegating to the server itself
also the management of the access control policy while en-
suring complete protection of the content as well as correct
enforcement of the policy against possible misbehaviors and
collusions. To limit the number of keys to be assigned to
users when applying selective encryption, the proposed ap-
proaches exploit the use of a public token catalog allowing
key derivation along a hierarchy. The access control policy
can then be safely and simply enforced by defining a key
derivation hierarchy, a user key assignment, and a resource
encryption policy in such a way that each user can, from her
own key and the public tokens, derive all and only the keys
enabling decryption of resources that the user is authorized
to access.

The use of a key derivation hierarchy and its tokens, while
greatly simplifying key management, introduces however a
new vulnerability related to policy confidentiality. As a mat-
ter of fact, public availability of tokens, and therefore of
the corresponding key derivation hierarchy, makes visible
the relationship between users and resources they are au-
thorized to access, and therefore discloses the authorization
policy. In several contexts, however, the policy itself should
be considered confidential as owners do not wish to publicly
declare to whom they give (or not give) access to their re-
sources. Also, an analysis of the policy may allow observers
to reconstruct the structure of the social network of users
accessing the system and of their real identities. Since the
overall aim of these novel solutions is to allow an efficient
confidentiality-preserving mechanism for resource dissemi-
nation, the protection of the access control policy appears a
natural requirement that systems will be interested in sup-
porting, as long as system performance remains guaranteed.

In this paper, we present a solution nicely complementing
selective encryption by protecting the privacy of the security
policy to be (indirectly) enforced by the third party. Con-
sistently with the context to which it is applied, our solution
basically provides a protection (encryption) layer to the pol-
icy information exploiting the key derivation hierarchy itself.
Our approach effectively combines encryption and transitive
closure information and takes into account the performance
requirements, considering several parameters that charac-
terize the system’s behavior in this scenario. The resulting
solution is shown to be efficient and promises to become a
natural component of real-world services exploiting the fea-
tures of the techniques developed in the last few years.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the access control model we assumed used
in the data outsourcing scenario, presenting also the public
catalog necessary for allowing users to access data and inter-
acting with the server. Section 3 presents our a solution for
protecting the access control policy enforced by the system,
while limiting the impact on the client-server interaction.

r1 r2 r3 r4 r5
A 1 1 0 1 1
B 1 1 1 1 1
C 0 1 1 1 1
D 0 0 1 1 1

Figure 1: An example of access matrix

Section 4 presents experimental results. Section 5 describes
related work. Finally, Section 6 presents our concluding re-
marks.

2. BASIC CONCEPTS
We consider a system with a set U of users, a set R of

resources, and a policy regulating the accesses of users to re-
sources (consistently with the data outsourcing scenario, we
assume access to be read-only) modeled via an access matrix
A with |U| rows and |R| columns. Each entry A[u , r] is set
to 1 if u can access r; it is set to 0 otherwise. Given an access
matrix A, acl(r) denotes the access control list of r (i.e., the
set of users that can access r). Figure 1 illustrates a sample
access matrix with four users (A, B, C, D) and five resources
(r1, . . . , r5), where, for example, acl(r2)={A,B,C}.

2.1 Encryption policy
Since the enforcement of the access control policy cannot

be delegated to the remote server, which is not trusted for
playing this role, we have proposed the application of a selec-
tive encryption technique [10]. This technique uses different
keys for encrypting data and gives to each user a set of keys
that allow her to decrypt all and only the resources she is
authorized to access. The key distribution required by the
selective encryption can be efficiently managed through a key
derivation strategy via tokens [4]. The release to each user
of a set K = {k1, . . . , kn} of keys can be obtained through
the release to each user of a single key ki ∈ K and a set of
tokens necessary to derive (directly or indirectly) all keys kj

∈ K, with j 6= i. Given two keys ki and kj , a token ti,j is de-
fined as ti,j = kj ⊕H (ki, lj), where lj is a publicly available
label associated with kj , ⊕ is the bitwise xor operator, and
H is a deterministic cryptographic function. Key derivation
via tokens can be applied in chains: a chain of tokens is a
sequence ti,l, . . . , tn,j of tokens such that tc,d directly follows
ta,b in the chain only if b = c.

Graphically, a set K of keys and a set T of tokens can
be represented via a key derivation graph, having a vertex
vi for each key kvi ∈ K, and an arc (vi, vj) for each token
tvi,vj ∈ T . Chains of tokens correspond then to paths in
the graph. For simplicity, we assume that each vertex vi is
uniquely identified by the public label associated with the
corresponding key kvi , that is, vi=li. A key assignment func-
tion φ determines the label φ(u) of the vertex corresponding
to the key assigned to u. Analogously, the key assignment
function determines the label φ(r) of the vertex correspond-
ing to the key with which r is encrypted.

The specification of keys and tokens must guarantee that
each user can, from her own key and the tokens publicly
available, derive all and only the keys used to encrypt the
resources she is authorized to access. A straightforward
approach to keys and token specification that satisfies this
property consists in: i) creating a key for each access control
list inA and for each singleton set of users that is not already
included in the acls in A; ii) define a token between pairs of
keys corresponding to sets of users for which there is a direct

?>=<89:;a

ÁÁ>
>>

>
?>=<89:;b

²²

ÁÁ=
==

==
==

==
==

?>=<89:;c

²²¡¡¢¢
¢¢

¢¢
¢¢

¢¢
¢

?>=<89:;d

¨¨³³
³³
³³
³³?>=<89:;e

²²
?>=<89:;f

ÀÀ<
<<

<
?>=<89:;g

¢¢¤¤
¤¤

?>=<89:;h

u φ(u)
A a
B b
C c
D d

r φ(r)
r1 e
r2 f
r3 g

r4,r5 h

(a) (b) (c)

Figure 2: An example of key derivation graph (a)
and key assignment (b)-(c)

Labels

res id label
r1 e
r2 f
r3 g
r4 h
r5 h

Tokens

token id source destination token value
α a e ke⊕H (ka,e)
β b e ke⊕H (kb,e)
γ b g kg⊕H (kb,g)
δ c f kf⊕H (kc,f)
ε c g kg⊕H (kc,g)
ζ d g kg⊕H (kd,g)
η e f kf⊕H (ke,f)
θ f h kh⊕H (kf ,h)
ι g h kh⊕H (kg,h)

Figure 3: Token catalog for Example 2.1

containment relationship [10]; iii) assign each user u to the
key corresponding to the singleton set {u} and encrypt each
resource r with the key corresponding to acl(r).

Example 2.1. Consider the access matrix in Figure 1.
Since there are 4 different acls (i.e., {A, B}, {A, B, C},
{B, C, D}, {A, B, C, D}), and 4 users we define 8 different
keys, one for each acl and one for each user. In particular,
keys ka, . . . , kd are associated with users A, . . . , D, respec-
tively, ke is associated with {A, B}, kf with {A, B, C}, kg

with {B, C, D}, and kh with {A, B, C, D}. We then define a
token between each pair of keys (kx, ky), x, y ∈ {a, b, . . . , h}
and x 6= y, such that the set of users corresponding to kx is
a subset of the set of users corresponding to ky. Figure 2(a)
illustrates the graphical representation of these keys and to-
kens, where vertex v corresponds to key kv. Figures 2(b)
and 2(c) illustrate the key assignment function φ enforcing
the policy.

2.2 Token management
The set T of tokens computed on the set K of keys in the

system is made publicly available by storing a token catalog
on the server [9, 10]. The token catalog is composed of two
tables: Labels and Tokens. Table Labels maintains the
correspondence between a resource (attribute res id) and its
vertex label (attribute label). Tokens contains a tuple for
each token tvi,vj∈T and is characterized by four attributes:
token id is the token identifier; source and destination are
the labels of the corresponding source and destination ver-
tices in the graph; token value is the token value computed
as kdestination⊕H (ksource ,destination). Figure 3 illustrates ta-
bles Labels and Tokens corresponding to the key deriva-
tion graph and the key assignment function in Figure 2.

Consider user u who needs to access resource r. Figure 4
describes the algorithm that receives as input the resource
identifier r, the key kφ(u) known to u, and the label φ(u),

INPUT
φ(u): label of the user’s key
kφ(u): user’s key
r: resource to be accessed

OUTPUT
kφ(r): key with which r is encrypted

KEY DERIVATION
1. chain := Find Path(φ(u),r) /* server-side query */
2. if chain 6= ∅ then /* client-side computation */

t := Pop(chain)
repeat
kt[destination] := t[token value]⊕H (kt[source],t[destination])
t := Pop(chain)

until t=null
return(kt[destination])

return(∅)
FIND PATH(from,r)
Let t ∈ Labels | t[res id]=r
to := t[label]
Topologically sort V in G
for each v∈V do

dist[v] := ∞
pred[v] := null

dist[from] := 0
for each vi∈V do /* visit vertices in topological order */

for each (vi,vj)∈A do /* the weight of each arc is 1 */
if dist[vj]>dist[vi]+1 then

dist[vj] := dist[vi]+1
pred[vj] := vi

chain := ∅
current := to
while current6=from and current6=null do

Let t ∈ Tokens | t[source]=pred[current]
and t[destination]=current

Push(chain,t)
current := pred[current]

if current=null then return(∅)
else return(chain)

Figure 4: Key derivation

and computes the key kφ(r) with which resource r is en-
crypted. The algorithm is composed of two steps. The
first step is based on function Find Path operating server-
side that, given a label φ(u) and a resource r, retrieves the
shortest token chain from φ(u) to φ(r). Basically, function
Find Path first determines φ(r) by querying table Labels
and then computes the shortest path in the key derivation
graph. To this aim, it uses a shortest path algorithm (an im-
proved version of Dijkstra working on DAGs), which exploits
the topological order of vertices. Function Find Path then
starts from vertex current=φ(r) and builds backward the
path to φ(u), following at each step pred[current], which is
an array that contains the label of the predecessor of vertex
current in the path previously computed, and adds to chain
the token in Tokens from pred[current] to current. The
second step is evaluated client-side and consists in deriving
keys following the chain of tokens (if not empty) returned by
Find Path, thus terminating with the derivation of kφ(r).

Example 2.2. Consider the key derivation graph in Fig-
ure 2(a) and the catalog in Figure 3 and suppose that B, with
φ(B)=b, wants to access r4. Function Find Path(b,r4)
computes φ(r4)=h and finds the shortest path in the key
derivation graph from b to h, thus setting pred[h] to g and
pred[g] to b. The returned chain is then composed of two
tokens corresponding to the tuples of table Tokens with to-
ken id ι and γ. The algorithm derives kg through user’s
secret key kb and token γ; it derives kh (which corresponds
to kφ(r4)) through the just computed kg and token ι.

3. PROTECTION OF THE ACCESS CON-
TROL POLICY

A drawback of the public availability of tables Tokens
and Labels is that users can infer the access control pol-
icy defined by the data owner. Indeed, table Tokens com-
pletely describes the topology of the key derivation graph,
and table Labels precisely indicates which resource is asso-
ciated with each of the vertices mentioned in Tokens. This
implies that any subject accessing the server could retrieve
the policy adopted by the owner. Analogously, any autho-
rized user of the system would be able to infer the existence
of other users in the system, authorized to read a set of re-
sources possibly wider than hers. To solve this problem, we
propose an encryption strategy that, while preserving effi-
ciency in key derivation, allows each user u to access only
the portion of the key derivation graph that she is autho-
rized to know, that is, the sub-graph rooted at the vertex
labeled φ(u).

3.1 Protection with encryption and no addi-
tional information

A simple approach for protecting the topology of the key
derivation graph consists in encrypting the tokens stored
in table Tokens in such a way to preserve the ability of
each user to retrieve the tokens needed to derive the keys
necessary to decrypt the resources that she can access. To
this purpose, given a tuple t of table Tokens (i.e., a to-
ken), the key associated with t[source] is used for encrypt-
ing t[destination] and t[token value] as a whole. In this way,
we have the guarantee that the decryption operation can
be performed only by users that directly or indirectly are
authorized to know the key associated with t[source]. The
advantage of this solution is that the topology of the key
derivation graph (and therefore the access control policy) is
protected since, from the encrypted tokens, a user can only
infer the number of vertices in the graph and the number of
the outgoing arcs of each vertex but cannot infer anything
about their connections. The drawback of this approach is
that the process for deriving a specific key becomes expen-
sive since, in the worst case, a user needs to traverse the
whole sub-graph rooted at the vertex corresponding to her
key. Indeed, to derive the key associated with a particular
vertex, which we call target vertex, a user u can only perform
a top down traversal of the key derivation graph, starting
from the vertex corresponding to φ(u). The user therefore
should interact with the server to progressively retrieve the
tokens that allow the derivation of the keys associated with
the descendant vertices of φ(u), until she reaches the key of
interest or the visit terminates.

Example 3.1. Suppose that user C wants to access re-
source r4. According to table Labels, the target vertex is h.
User C knows that her key is associated with vertex c and
therefore she first retrieves from the server the encrypted
tokens with source equal to c. The returned tokens (δ and
ε) correspond to the outgoing arcs of vertex c. After their
decryption, C is able to see that the destinations of such to-
kens are vertices f and g and therefore can derive their keys.
Subsequently, C retrieves the tokens with source equal to f
(token θ) or g (ι), decrypts them by using the key derived
in the previous step, and computes the key associated with
vertex h, which correspond to their destination.

As it is visible from this example, the increase in the com-
putational time of the key derivation process is due to the
fact that the user has no information on the position of the
target vertex within the key derivation graph. Consequently,
the user can only blindly explore the sub-graph rooted at her
vertex labeled φ(u). The fundamental observation for effi-
ciently reaching the target vertex is that the key derivation
process can be seen as a reachability query on the key deriva-
tion graph. In fact, to check whether a given user whose key
is associated with vertex vi can derive the key associated
with target vertex vj , it is necessary to check whether ver-
tex vj is reachable from vertex vi through a path in the
graph. Our goal is then to develop a strategy for efficiently
solving reachability queries and for efficiently retrieving a
path in the key derivation graph.

3.2 Computation of reachability information
In the literature there are different approaches that can

be used for solving a reachability query; we chose to care-
fully adapt the technique presented by Agrawal et al. [2]
because it provides optimality guarantees on the size of the
additional information. Given a DAG, the technique in [2]
labels the vertices using numerical intervals reflecting the
transitive closure of the ancestor-descendant relationship.
By looking at the intervals associated with a specific ver-
tex vi, it is then immediate to verify whether there is a path
from vertex vi to another vertex vj . These intervals are com-
puted in three steps. First, a spanning tree of the original
graph that minimizes the number of intervals is determined.
Second, each vertex in the spanning tree is associated with
a numeric identifier , representing the position of the vertex
in the postorder visit of the spanning tree. Each vertex vi

is also associated with an interval I = [i1, i2], where i2 is
the numeric identifier associated with vi and i1 is the small-
est numeric identifier of its descendants. Third, all vertices
vi in the original graph are examined in a reverse topolog-
ical order. For every arc (vi, vj) in the DAG, the intervals
associated with vertex vj are added to the intervals of vi.

While the approach presented in [2] minimizes the stor-
age required for representing the compressed transitive clo-
sure relationship, it does not provide any guarantee on the
length of the path that needs to be traversed for reaching
a specific vertex, since its main goal is to efficiently repre-
sent the reachability property of the graph. In our context,
the length of the path connecting two vertices is instead
an important property that has to be minimized to provide
an efficient key derivation process (as the longer the path
the more the queries to be processed). It is reasonable that
the number of queries on the server will represent in most
scenarios the most important parameter limiting the perfor-
mance in the retrieval of the keys by the user. We therefore
present a variation of the technique proposed in [2] that
permits the computation of the intervals in such a way to
remove those associated with “redundant paths” and that
guarantees the traversal of the shortest path between two
connected vertices of the graph, thus supporting access to
the catalog employing the minimum number of queries to
the server.

3.3 Transitive closure materialization
At a high level our algorithm is composed of five steps.

The first three steps correspond to the three steps of the
Agrawal et al.’s proposal. In the fourth step, the intervals

INPUT
G(V ,A): key derivation graph

OUTPUT
G(V ,A): with v.id ∀v ∈ V and a.intervals ∀a ∈ A

MAIN
1. /* assign id to each vertex in V */

Introduce a root vertex > in G
Let ST (V ,A′) be the depth-first spanning tree of G
id := 1
Assign Id(>)

2. /* assign intervals to each vertex in V */
Find Interval(>)

3. /* complete intervals considering also the additional arcs in G */
for each (>,v)∈A do A := A − {(>,v)}
V := V − {>}
for each v∈V do /* visit G in reverse topological order */
for each (v,vi)∈A do
for each I∈vi.intervals do
if @ I′ ∈v.intervals | I⊆I′ then
v.intervals := v.intervals ∪ {I}

4. /* assign intervals to each arc in A */
for each a=(vi,vj)∈A do a.intervals := vj .intervals

5. /* optimize arcs’ intervals by removing redundancies */
for each v∈V do
for each ai=(v,vi)∈A do
for each aj=(v,vj)∈A | vi 6=vj do
for each id | (∃ Ii∈ai.intervals | id∈Ii)

and (∃ Ij∈aj .intervals | id∈Ij) do
if Shortest Path Length(vi.id,id) ≤

Shortest Path Length(vj .id,id) then
Remove(id,aj)

else Remove(id,ai)

ASSIGN ID(v)
for each (v,vi)∈A′ do Assign Id(vi)
v.id := id
id := id+1

FIND INTERVAL(v)
min := v.id
for each (v,vi)∈A′ do
idchild := Find Interval(vi)
if idchild < min then min := idchild

v.intervals := [min, v.id]
return(min)

REMOVE(id,a)
Let I=[i1,i2]∈a.intervals such that id∈I
case id of

i1: a.intervals := a.intervals − {I} ∪ {[id+1,i2]}
i2: a.intervals := a.intervals − {I} ∪ {[i1,id−1]}
default: a.intervals := a.intervals − {I} ∪ {[i1,id−1],[id+1,i2]}

Figure 5: Derivation paths computation and mate-
rialization

associated with vertices are moved to the incoming arcs of
the vertices. The advantage of having intervals associated
with arcs (i.e., tokens) instead of having intervals associ-
ated with vertices is that the intervals can be immediately
integrated within the encrypted version of the tokens, thus
increasing the efficiency of the key derivation process with-
out impacting the storage requirements (see Section 4). In-
tervals on vertices would instead require a new table and
a doubling of the number of queries to the server. In the
fifth step, the possible redundancies among intervals are re-
moved. A redundancy may happen when there are two or
more paths connecting vertex vi to vertex vj . In this case,
there are two or more outgoing arcs of vertex vi such that
their intervals contain the numeric identifier associated with
vertex vj . We therefore modify such intervals so that the

numeric identifier associated with vj is included only within
the interval associated with arcs that belong to the shortest
path between vi and vj .

The algorithm for computing and materializing a transi-
tive closure for a given key derivation graph is represented
in Figure 5. The algorithm takes as input a key derivation
graph G(V ,A), computes its transitive closure, and returns a
labeled version of the graph, where each vertex v∈V is asso-
ciated with an identifier v.id and each arc a∈A is associated
with a set of intervals a.intervals, describing the identifiers
of the vertices reachable along that arc. The algorithm is
structured in the following 5 steps.

1. The algorithm first extends G with a root vertex >,
then it finds the depth-first spanning tree ST of the key
derivation graph G, and calls procedure Assign Id,
which recursively executes a postorder visit of ST . For
each visited vertex v, the procedure associates a pro-
gressive numeric identifier v.id , reflecting the order in
which vertices have been visited. Therefore, the identi-
fier of the left-most leaf in ST is 1, while the identifier
of the root is n, where n is the number of vertices in
V . Note that, by construction, each vertex v has an
identifier v.id higher than that of its ancestors in the
ST and all its ancestors have contiguous identifiers.

2. The algorithm calls function Find Interval that as-
signs to each vertex v in V an interval v.intervals rep-
resenting the set of vertices reachable from v, follow-
ing only arcs belonging to spanning tree ST . Function
Find Interval recursively determines, for each vertex
v, the minimum id (represented by variable min) in the
subtree rooted at v. The interval associated with v is
then [min, v.id], meaning that all the vertices with an
identifier between min and v.id belong to the subtree
of ST rooted at v.

3. The algorithm removes from the graph the vertex > as
well as all its outgoing arcs. Then, the algorithm com-
pletes the intervals information associated with each
vertex to represent the reachability property of the
whole graph, by visiting G in reverse topological order.
For each vertex v, the algorithm checks all arcs (v,vi)
in the set A of arcs in G. It then adds to v.intervals all
intervals in vi.intervals that are not already contained
in an interval in v.intervals (an interval I=[i1, i2] is
contained in another interval I′=[i′1, i

′
2], denoted I⊆I′,

only if i′1 ≤ i1 and i2 ≤ i′2). The reverse topologi-
cal ordering ensures that intervals are assigned to a
vertex only after those of its descendants have been
calculated.

4. Intervals are passed from vertices to their incoming
arcs. Therefore, for each arc a=(vi,vj)∈A, vj .intervals
is assigned to a.intervals. In this way, it is always
possible to easily determine the set of vertices that
can be reached through a path starting at vi.

5. The algorithm removes redundancies from intervals.
Given a vertex vi, and a descendant vj of it in the
graph, there may exist different paths connecting vi to
vj . Since it is not necessary to keep track of all these
paths, we maintain the shortest path only. For each
pair of arcs ai, aj starting at the same vertex v, and
for each id belonging to both an interval in ai.intervals

º¹ ¸·³´ µ¶>, 9

uukkkkkkkkkkk

{{xx
xx

x
##FF

FF
F

))SSSSSSSSSSS

º¹ ¸·³´ µ¶a, 4

##GG
GG

G
º¹ ¸·³´ µ¶b, 6

²²

##GGGGGGGGGGGGGG
º¹ ¸·³´ µ¶c, 7

²²{{

º¹ ¸·³´ µ¶d, 8

¦¦

º¹ ¸·³´ µ¶e, 3

²²º¹ ¸·³´ µ¶f, 2

##FF
FF

F
º¹ ¸·³´ µ¶g, 5

{{º¹ ¸·³´ µ¶h, 1

(a) step 1

º¹ ¸·³´ µ¶>, 9

uukkkkkkkkkkk

{{xx
xx

x
##FF

FF
F

))SSSSSSSSSSS[1,9]

[1,4]
º¹ ¸·³´ µ¶a, 4

##GG
GG

G
º¹ ¸·³´ µ¶b, 6

²²

##GGGGGGGGGGGGGG[5,6] [7,7]
º¹ ¸·³´ µ¶c, 7

²²{{

º¹ ¸·³´ µ¶d, 8

¦¦

[8,8]

[1,3]
º¹ ¸·³´ µ¶e, 3

²²
[1,2]
º¹ ¸·³´ µ¶f, 2

##FF
FF

F
º¹ ¸·³´ µ¶g, 5

{{

[5,5]

º¹ ¸·³´ µ¶h, 1 [1,1]

(b) step 2

[1,4]
º¹ ¸·³´ µ¶a, 4

##GG
GG

G
º¹ ¸·³´ µ¶b, 6

²²

##GGGGGGGGGGGGGG
[1,3][5,6]

[1,2][5,5][7,7]

º¹ ¸·³´ µ¶c, 7

²²{{wwwwwwwwwwwwww
º¹ ¸·³´ µ¶d, 8

¦¦­­
­­

­­
­­

­­
[1,1][5,5][8,8]

[1,3]
º¹ ¸·³´ µ¶e, 3

²²
[1,2]
º¹ ¸·³´ µ¶f, 2

##FF
FF

F
º¹ ¸·³´ µ¶g, 5

{{xx
xx

x
[1,1][5,5]

º¹ ¸·³´ µ¶h, 1 [1,1]

(c) step 3

º¹ ¸·³´ µ¶a, 4

[1,3]
GG

##GG

º¹ ¸·³´ µ¶b, 6

[1,3]
²² [1,1][5,5]

GGG

##GG
GG

GG
GG

GG

º¹ ¸·³´ µ¶c, 7

[1,1][5,5]

²²

[1,2]
www

{{ww
ww

ww
ww

ww

º¹ ¸·³´ µ¶d, 8

[1,1][5,5]
­­

¦¦­­
­­

­­
­º¹ ¸·³´ µ¶e, 3

[1,2]
²²º¹ ¸·³´ µ¶f, 2

[1,1]
FF

##FF

º¹ ¸·³´ µ¶g, 5

[1,1]
xx

{{xxº¹ ¸·³´ µ¶h, 1

(d) step 4

º¹ ¸·³´ µ¶a, 4

[1,3]
GG

##GG

º¹ ¸·³´ µ¶b, 6

[2,3]
²² [1,1][5,5]

GGG

##GG
GG

GG
GG

GG

º¹ ¸·³´ µ¶c, 7

[5,5]

²²

[1,2]
www

{{ww
ww

ww
ww

ww

º¹ ¸·³´ µ¶d, 8

[1,1][5,5]
­­

¦¦­­
­­

­­
­º¹ ¸·³´ µ¶e, 3

[1,2]
²²º¹ ¸·³´ µ¶f, 2

[1,1]
FF

##FF

º¹ ¸·³´ µ¶g, 5

[1,1]
xx

{{xxº¹ ¸·³´ µ¶h, 1

(e) step 5

Figure 6: An example of the execution of algorithm
in Figure 5

Labels

res id label
r1 e
r2 f
r3 g
r4 h
r5 h

Ids

label vertex id
a 4
b 6
c 7
d 8
e 3
f 2
g 5
h 1

EncTokens

token id source enc token
α a Eka(e, ke⊕H (ka,e), [1, 3])
β b Ekb(e, ke⊕H (kb,e), [2, 3])
γ b Ekb(g, kg⊕H (kb,g), [1, 1][5, 5])
δ c Ekc(f , kf⊕H (kc,f), [1, 2])
ε c Ekc(g, kg⊕H (kc,g), [5, 5])
ζ d Ekd(g, kg⊕H (kd,g), [1, 1][5, 5])
η e Eke(f , kf⊕H (ke,f), [1, 2])
θ f Ekf (h, kh⊕H (kf ,h), [1, 1])
ι g Ekg (h, kh⊕H (kg,h), [1, 1])

Figure 7: Encrypted catalog for the example in Fig-
ure 3

and an interval in aj .intervals, the algorithm computes
the length of the shortest paths reaching id from v and
passing through ai and aj , respectively. Identifier id
is then removed from the intervals associated with the
arc involved in the longest of the two paths, possibly
splitting the interval containing id (see function Re-
move in Figure 5). If the paths have the same length,
id is however removed from one of the arcs to avoid
redundancy.

Example 3.2. Figure 6 presents the execution step by
step of the algorithm in Figure 5 applied to the example in
Figure 2. First, the algorithm adds a virtual root labeled > to
the graph in Figure 2(a) and builds the depth-first spanning
tree ST on G. Trees 6(a)(b) in Figure 6 represent G after
the execution of step 1 and step 2, respectively. Figure 6(c)
represents G after the execution of step 3, where vertex >
together with its outgoing arcs are removed from G. Fig-
ure 6(d) represents G, where the intervals have been moved
to arcs. Finally, Figure 6(e) represents the labeled graph re-
turned by the algorithm, where redundant labels have been
removed. To illustrate, consider vertices b and h (with id
1). They are connected by two different paths, but the algo-
rithm maintains only the one passing through e, since it is
the shortest.

3.4 Confidential policy management
After the computation of the transitive closure of the key

derivation graph, the information about the encrypted to-
kens is stored in three tables: Labels, Ids, and EncTo-
kens. As in [10], table Labels maintains the correspon-
dence between a resource (attribute res id) and its ver-
tex label (attribute label). Table Ids maintains the cor-
respondence between a vertex label (attribute label) and
its numeric identifier (attribute vertex id) computed in the
first step of the algorithm in Figure 5. Table EncTokens
has the same role as table Tokens in [10] but its con-
tent is partially encrypted. More precisely, table EncTo-
kens contains a tuple for each token tvi,vj and is charac-

INPUT
φ(u): label of the user’s key
kφ(u): user’s key
r: resource to be accessed

OUTPUT
kφ(r): key necessary to decrypt r

MAIN
1. Let t ∈ Labels | t[res id]=r /* server-side query */

target label := t[label]
2. Let t ∈ Ids | t[label]=target label /* server-side query */

target id := t[vertex id]
3. current := φ(u)

while current6=target label do
/* server-side query */
token set := {t∈EncTokens| t[source]=current}
if token set=∅ then return(null)
found := false
while (found=false) and (token set 6= ∅) do

Let t∈token set
token set := token set − {t}
[destination,token value,intervals] := Dkt[source]

(t[enc token])

if target id∈intervals then
kdestination := token value⊕H (kt[source],destination)
current := destination
found := true

if found=false then return(null)
return(ktarget label)

Figure 8: Key derivation on the encrypted catalog

terized by three attributes: token id is the token identifier;
source is the label of the source vertex of the token; and
enc token represents the encryption portion of the token and
is obtained by encrypting with ksource the concatenation of
the destination of the token, the token value computed as
kdestination⊕H (ksource ,destination), and the intervals associ-
ated with the token and computed by the algorithm in Fig-
ure 5.

Figure 7 illustrates table EncToken corresponding to ta-
ble Token in Figure 3, considering the intervals represented
in Figure 6(e).

Figure 8 illustrates the key derivation process on the en-
crypted catalog like in [10] (see Section 2.2). The algorithm
receives as input a resource identifier r, the key kφ(u) known
by user u, and the corresponding label φ(u), and returns the
key kφ(r) with which resource r is encrypted. The algorithm
first determines φ(r) and the corresponding vertex identifier
(variable target id) by querying tables Labels and Ids on
the remote server. Then, it visits the key derivation graph
starting from vertex φ(u). At each iteration of the external
while loop, the algorithm retrieves from table EncTokens
the set token set of tuples representing the outgoing arcs
of the current vertex, that is, the tokens whose source is
the current vertex. At each iteration of the internal while
loop, attribute t[enc token] of a tuple t in token set is de-
crypted via key kt[source], which has been computed in the
previous iteration of the external while loop or is already
known to the user. From such an operation, the algorithm
retrieves the destination, the token value, and the intervals
of the current token. If the target id belongs to an inter-
val in intervals, the new current vertex is set to destination;
otherwise, another tuple in token set is analyzed. The algo-
rithm terminates when either φ(r) is reached (i.e., current
= target label) or when φ(r) is not reachable from φ(u) (in
the case u is not authorized to read r and cannot therefore
retrieve its key).

Example 3.3. Consider the catalog in Figure 7 and sup-
pose that B, with φ(B)=b, wants to access r4. The al-
gorithm retrieves target label=φ(r4)=h, the corresponding
target id=1, and sets current to b. Then, it retrieves from
table EncTokens the tuples with attribute source equal to
b, that is, tuples with token id β and γ, and decrypts them.
Since target id belongs only to intervals associated with to-
ken γ, whose destination is g, the algorithm computes kg

and sets current to g. The algorithm then retrieves all the
tuples in table EncTokens with source equal to g, that is,
tuple with token id ι. After decrypting the token, the algo-
rithm computes kh and current is set to h. Since φ(r4)=h,
the algorithm terminates.

A concern may arise that the content in tables Ids and
EncTokens may still leak information on the topology of
the key derivation graph, and therefore on the policy. We
can observe three different sources of exposure: (1) the nu-
merical identifiers in table Ids reflect the ordering in the
postorder visit of the graph, and therefore may leak informa-
tion on the topology of the graph; (2) the number of tokens
corresponding to a given label leak the number of outgoing
arcs characterizing each vertex; (3) the values of attribute
enc token have a variable size that depends on the number of
intervals described in each token. The most significant leak-
age relates to the combination of the first two sources; how-
ever it can be easily proved that, assuming an upper limit
on the number of direct descendants each vertex can have,
different graphs (their number grows exponentially with the
number of vertices) may correspond to the same visit order
and number of descendants. The three kinds of leakage can
then be considered negligible and we do not discuss them
further. We note however that trivial countermeasures can
be applied to block each of them, respectively: (1) numeri-
cal identifiers in Ids can start from a random value and then
cycle back, or fake entries can be added at the start and at
the end of the interval, to hide the initial and final point of
the postorder visit; (2) fake tokens can be added to table
EncTokens to keep the number of outgoing arcs constant
for all the vertices; (3) padding can be used to make the size
of attribute enc token uniform, with no significant impact
on storage requirements.

4. IMPLEMENTATION AND EXPERI-
MENTAL RESULTS

The algorithms presented in this paper were all imple-
mented, and experiments have been performed to assess ef-
fectiveness and performance of the proposed solution. The
experiments demonstrate that our technique quickly pro-
duces the labeling and the intervals for the optimal recon-
struction of the path. The comparison between the different
algorithms shows the advantages deriving from the use of
our approach.

4.1 Experimental setting
As representative of a potential selective dissemination

scenario, we consider the case study, also analyzed in [8], of
a sport news database.

The chosen service manages a system with t teams, where
each team is composed by pt players and is coordinated by
one manager. The service is supposed to be used by s team
supporters, referred in the following as subscribers. More-
over, a set of reporters follows the league and uses the service

 100
 90
 80
 70
 60
 50

 40

 30

 20

 10
 9
 8
 7
 6
 5

 4

 3

 2

 1

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 n
um

be
r

of
 v

er
tic

es
 in

 a
 s

ea
rc

h
pa

th

Number of vertices

 Blind depth-first visit
 Intervals on arcs

 Intervals on arcs with shortest path

Figure 9: Average number of vertices traversed dur-
ing a search operation

to work with tr teams. The reporters are grouped into sets
of rm elements, each of which coordinated by one manager.

In the considered scenario, each subject (team manager,
reporter, reporter manager, and subscribers) can subscribe
to any number of resources, partitioned between player news
and team news. Consistently with [8], the set of authoriza-
tions granted to subscribers is modeled to be quite large to
evaluate the algorithms in a significant scenario. The num-
ber of team news accessed by each subscriber, along with
the player news of the same team, follows a Zipf distribu-
tion that increases with the number s of subscribers.

We ran experiments by varying the number of teams from
2 to 50 and by considering the case of s = 10 subscribers,
pt = 5 players per team, tr = 5 teams per reporter and
rm = 5 reporters per manager. The key derivation graphs
corresponding to the above settings show a number of ver-
tices in the range [30, 500], where each vertex represents a
distinct configuration of access control list.

4.2 Performance evaluation
Our goal is to describe the performance of the technique

proposed in the paper along three directions. The first an-
alyzes the performance in terms of the number of vertices
visited on the graph compared to the number of vertices
visited by a blind search that does not use intervals on the
arcs. The second estimates the average number of vertices
that have to be visited to reach, starting from a user vertex,
all the vertices in the graph. The third evaluates the stor-
age requirements necessary to materialize the whole transi-
tive closure, comparing the technique in [2], which associates
intervals with the vertices, and our approach, which stores
intervals on the arcs and keeps only those representing the
shortest path.

The behavior is shown in Figures 9–11, where separate
metrics are used, all expressed as a function of the number of
vertices of the input graph, using a logarithmic scale on the
y-axis to better visualize percentage variations (a constant
percentage gain corresponds to a constant linear distance on
the y-axis).

Figure 9 shows the average length of a token chain re-
sulting from the retrieval of a target key. The value on the
y-axis was computed averaging the number of accessed ver-

 10
 9

 8

 7

 6

 5

 4

 3

 2

 1

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 n
um

be
r

of
 v

er
tic

es
 in

 a
 s

ea
rc

h
pa

th

Number of vertices

Figure 10: Average number of vertices traversed in
a search operation via the shortest-path method

tices resulting from the search of every key in the graph. As
expected, the presence of the transitive closure information,
in the form of intervals on the tokens, produces a config-
uration able to outperform a blind depth-first search by a
factor greater than 10 for all graphs having more than 100
vertices. The comparison between the algorithm that uses
the interval data stored on arcs (i.e., the graph obtained at
the end of Step 4 of the algorithm in Figure 5) and the one
that minimizes the token chains using the shortest-path ap-
proach (Step 5 of algorithm in Figure 5) outlines a better
performance of our proposal, with a percentage gain which
reaches a value of 36%.

Figure 10 plots the average number of vertices traversed
during a search operation by our solution (i.e., the graph as
obtained at the end of Step 5 of the algorithm), considering
the average on the search of all the vertices in the graph.
The number of visited vertices corresponds to the number
of queries on table Tokens that are needed to obtain the
information required to extract the target key. The graphic
confirms that the number of vertices traversed to reach a
target key is low (stable at around 2.5). The value does not
grow with the increase in the size of the graph, providing
convincing evidence that the technique for policy protection
proposed in the paper is able to provide an efficient retrieval
of keys even for large configurations.

Since the number of arcs in a graph grows potentially as
O(n2), where n is the number of vertices, it is important
to verify that the technique does not force excessive storage
requirements. Figure 11 shows that the proposed labeling
procedure requires a total number of intervals on the arcs
that is comparable (indeed, typically a little smaller) to the
number of intervals on the vertices produced by the method
of Agrawal et al. [2]. The experiments therefore confirm that
our technique is manageable, even for large graphs and sce-
narios with large user populations and complex protection
requirements.

5. RELATED WORK
Previous related work is in the area of database-as-a-

service [12,14], which considers the problem of database out-
sourcing. Most of this research focuses on the design of in-
dexing techniques that allow an efficient execution of queries

 10000

 8000

 6000

 4000

 2000

 1000

 800

 600

 400

 200

 100

 0 50 100 150 200 250 300 350 400 450 500

T
ot

al
 n

um
be

r
of

 in
te

rv
al

s

Number of vertices

Intervals on vertices
Intervals on arcs with shortest path

Figure 11: Total number of intervals using different
labeling choices

(e.g., [12,14,15,22,23]). Although many indexing techniques
that support various types of queries in the database-as-a-
service scenario have been developed, few proposals have
provided a deep analysis of the level of protection provided
by all these techniques against inference and linking attacks.
In [6] the authors provide an evaluation demonstrating that
even a limited number of indexes can greatly facilitate an
attacker who wants to violate the confidentiality provided
by encryption.

Few research efforts have addressed the issues of access
control in a data outsourced scenario. In [9, 10] the au-
thors present a selective encryption strategy as as a means
to enforce authorizations. Two layers of encryption are im-
posed on data: the inner layer is imposed by the owner for
providing initial protection, the outer layer is imposed by
the server to reflect policy modifications (i.e., grant/revoke
of authorizations). We note that the approach proposed
in this paper for preserving the confidentiality of security
policies can be easily integrated with the model in [9, 10].
In [19] the authors propose a framework for enforcing ac-
cess control on published XML documents by using different
cryptographic keys over different portions of the XML tree
and by introducing special metadata nodes in the structure.
Some approaches for ensuring the integrity in the database
outsourcing scenario have been also investigated [13,20,21].
All these approaches introduce the use of signatures com-
bined with Merkle hash trees. Other proposals have studied
solutions exploiting the combination of fragmentation and
encryption for storing data on a single server by minimizing
the amount of encrypted data, thus allowing for an efficient
query execution [1,7].

The problem of ensuring the confidentiality of access con-
trol policies has been investigated in the context of open
environments [5,11,16,24,25]. These works are based on the
assumption that parties may be unknown a-priori and there-
fore a multi-step trust negotiation process is necessary for
communicating policies and for releasing certificates, which
are both considered sensitive. Indeed, the goal of a trust ne-
gotiation process is to gradually establish trust among the
parties, by disclosing credentials and requests for creden-
tials. In the literature, a number of trust negotiation strate-
gies has been proposed. PRUdent NEgotiation Strategy
(PRUNES) [27] ensures that the client communicates her

credentials to the server only if the access will be granted and
the set of certificates communicated to the server is the min-
imal necessary for granting it. The Disclosure Tree Strategy
(DTS) family of strategies [28, 29] is instead a closed set of
strategies that grants interoperability, that is, if two parties
use different strategies from the DST family, they are able to
negotiate trust. TrustBuilder [26] is a prototype developed
to incorporate trust negotiation into standard network tech-
nologies. Traust [18] is a third-party authorization service
that is based on the TrustBuilder framework for trust ne-
gotiation. The Traust service provides a negotiation-based
mechanism that allows qualified users to obtain the creden-
tials necessary to access resources provided by the involved
server.

A related line of research has studied the materialization
of the transitive closure of graphs [2, 3, 17]. This topic has
been widely studied to the aim of efficiently solving the
graph reachability problem.

6. CONCLUSIONS
A crucial long-term objective of ICT research is repre-

sented by the investigation of the privacy issues that arise
in the electronic society. The benefits, in terms of availabil-
ity of large amounts of information and pervasive communi-
cation channels, have to be realized trying to minimize the
creation of novel threats to the privacy of citizens. These pri-
vacy requirements are today not satisfied; service providers
support large user communities, and their information inter-
change needs, in a way that gives rise to significant privacy
violations.

Research on data outsourcing offers one of the most
promising approaches for the realization of these services
in a privacy-compliant way, by assigning greater control to
the user. The technique presented in this paper nicely com-
plements current approaches and provides a way to increase
the level of privacy protection with an acceptable impact on
system performance, offering a solution that certainly sup-
ports the real wide-scale deployment of this important novel
paradigm.

7. ACKNOWLEDGMENTS
This work was supported in part by the EU, within the

7FP project, under grant agreement 216483“PrimeLife”and
by the Italian MIUR, within PRIN 2006, under project
2006099978 “Basi di dati crittografate”. The work of Sushil
Jajodia was partially supported by National Science Foun-
dation under grants CT-0716567, CT-0627493, and IIS-
0430402 and by Air Force Office of Scientific Research under
grant FA9550-07-1-0527.

8. REFERENCES
[1] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina,

K. Kenthapadi, R. Motwani, U. Srivastava,
D. Thomas, and Y. Xu. Two can keep a secret: a
distributed architecture for secure database services.
In Proc. of CIDR 2005, Asilomar, CA, January 2005.

[2] R. Agrawal, A. Borgida, and H. Jagadish. Efficient
management of transitive relationships in large data
and knowledge bases. SIGMOD Rec., 18(2):253–262,
1989.

[3] R. Agrawal, S. Dar, and H. Jagadish. Direct transitive
closure algorithms: design and performance
evaluation. ACM TODS, 15(3):427–458, 1990.

[4] M. Atallah, K. Frikken, and M. Blanton. Dynamic and
efficient key management for access hierarchies. In
Proc. of the 12th ACM CCS, Alexandria, VA,
November 2005.

[5] P. Bonatti and P. Samarati. A unified framework for
regulating access and information release on the web.
Journal of Computer Security, 10(3):241–272, 2002.

[6] A. Ceselli, E. Damiani, S. De Capitani di Vimercati,
S. Jajodia, S. Paraboschi, and P. Samarati. Modeling
and assessing inference exposure in encrypted
databases. ACM TISSEC, 8(1):119–152, 2005.

[7] V. Ciriani, S. De Capitani di Vimercati, S. Foresti,
S. Jajodia, S. Paraboschi, and P. Samarati.
Fragmentation and encryption to enforce privacy in
data storage. In Proc. of ESORICS 2007, Dresden,
Germany, September 2007.

[8] E. Damiani, S. De Capitani di Vimercati, S. Foresti,
S. Jajodia, S. Paraboschi, and P. Samarati. An
experimental evaluation of multi-key strategies for
data outsourcing. In Proc. of the 22nd IFIP TC-11
International Information Security Conference, South
Africa, May 2007.

[9] S. De Capitani di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, and P. Samarati. A data outsourcing
architecture combining cryptography and access
control. In Proc. of the 1st Computer Security
Architecture Workshop, Fairfax, VA, November 2007.

[10] S. De Capitani di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, and P. Samarati. Over-encryption:
management of access control evolution on outsourced
data. In Proc. of the 33rd VLDB Conference, Vienna,
Austria, September 2007.

[11] K. B. Frikken, M. Atallah, and J. Li. Attribute-based
access control with hidden policies and hidden
credentials. IEEE Trans. Computers,
55(10):1259–1270, 2006.

[12] H. Hacigümüs, B. Iyer, and S. Mehrotra. Providing
database as a service. In Proc. of 18th ICDE, San
Jose, CA, February 2002.

[13] H. Hacigümüs, B. Iyer, and S. Mehrotra. Ensuring
integrity of encrypted databases in database as a
service model. In Proc. of the IFIP Conference on
Data and Applications Security, Estes Park Colorado,
CA, August 2003.

[14] H. Hacigümüs, B. Iyer, S. Mehrotra, and C. Li.
Executing SQL over encrypted data in the
database-service-provider model. In Proc. of the ACM
SIGMOD 2002, Madison, WI, June 2002.

[15] B. Hore, S. Mehrotra, and G. Tsudik. A
privacy-preserving index for range queries. In Proc. of
the 30th VLDB Conference, Toronto, Canada, 2004.

[16] K. Irwin and T. Yu. An identifiability-based access
control model for privacy protection in open systems.
In Proc. of the WPES 2004, Washington, DC, October
2004.

[17] H. Jagadish. A compression technique to materialize
transitive closure. ACM TODS, 15(4):558–598, 1990.

[18] A. Lee, M. Winslett, J. Basney, and V. Welch. The
traust authorization service. ACM TISSEC,
11(1):1–33, 2008.

[19] G. Miklau and D. Suciu. Controlling access to
published data using cryptography. In Proc. of the
29th VLDB Conference, Berlin, Germany, September
2003.

[20] E. Mykletun, M. Narasimha, and G. Tsudik.
Authentication and integrity in outsourced database.
In Proc. of the 11th NDSS, San Diego, CA, February
2004.

[21] M. Narasimha and G. Tsudik. DSAC: integrity for
outsourced databases with signature aggregation and
chaining. In Proc. of the 14th ACM ICIKM, Bremen,
Germany, 2005.

[22] R. Sion. Query execution assurance for outsourced
databases. In Proc. of the 31st VLDB Conference,
Trondheim, Norway, September 2005.

[23] H. Wang and L. V. Lakshmanan. Efficient secure
query evaluation over encrypted XML databases. In
Proc. of the 32nd VLDB Conference, Seoul, Korea,
September 2006.

[24] W. H. Winsborough and N. Li. Safety in automated
trust negotiation. ACM TISSEC, 9(3):352–390, 2006.

[25] M. Winslett, N. Ching, V. Jones, and I. Slepchin.
Using digital credentials on the world wide web.
Journal of Computer Security, 5(3):255–267, 1997.

[26] M. Winslett, T. Yu, K. Seamons, A. Hess, J. Jacobson,
R. Jarvis, B. Smith, and L. Yu. Negotiating trust on
the web. IEEE Internet Computing, 6(6):30–37, 2002.

[27] T. Yu, X. Ma, and M. Winslett. PRUNES: an efficient
and complete strategy for automated trust negotiation
over the internet. In Proc. of the 7th ACM CCS,
Athens, Greece, November 2000.

[28] T. Yu, M. Winslett, and K. Seamons. Interoperable
strategies in automated trust negotiation. In Proc. of
the 8th ACM CCS, Philadelphia, PA, November 2001.

[29] T. Yu, M. Winslett, and K. Seamons. Supporting
structured credentials and sensitive policies through
interoperable strategies for automated trust
negotiation. ACM TISSEC, 6(1):1–42, 2003.

	copyright: © ACM, (2008). This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 7th ACM Workshop on Privacy in the Electronic Society , Alexandria, Virginia, USA, October 27, 2008 http://doi.acm.org/10.1145/1456403.1456417

