Extending XACML for Open Web-based Scenarios

Claudio A. Ardagna'!, Sabrina De Capitani di Vimercati!, Stefano Paraboschi?,
Eros Pedrini!, Pierangela Samarati!, Mario Verdicchio?
'DTI - Universita degli Studi di Milano, 26013 Crema, Italia
firstname.lastname@unimi . it
2DIIMM - Universita degli Studi di Bergamo, 24044 Dalmine, Italia
{parabosc,verdicch}@unibg.it

Abstract

Traditional access control solutions, based on preliminary identification and authentication of the
access requester, are not adequate for open Web service systems, where servers generally do not have
prior knowledge of the requesters. In this paper, we provide some extensions to the eXtensible Access
Control Markup Language (XACML), which is the most significant and emerging solution for controlling
access in an interoperable and flexible way, to make it easily deployable and suitable for open Web-based
systems.

1 Introduction

Open Web service systems, in which servers do not normally have any prior knowledge of users, call for a
different solution from a traditional access control based on preliminary identification and authentication
of requesters. The solutions proposed so far are in most cases logic-based and, although expressive, they
hardly ever result applicable in practice, where simplicity, efficiency, and consistency with consolidated
technology play a fundamental role [4,5]. Although notably widespread in the research community and
the industry, and likely the most significant proposal to date, the eXtensible Access Control Markup
Language (XACML) [6] still suffers from some limitations when it comes to its capabilities in supporting the
requirements of open Web-based systems. Using XACML standard extension points is however possible to
define new functions, data types, and policy combination methods, thus exploiting the language’s flexibility
to adapt it to several different needs. In this paper, we propose a profile with a specific focus on those
aspects of open world scenarios that are not currently supported by the standard. The novel concepts that
access control in open Web services should include are going to be introduced together with guidelines on
the modifications that need to be applied to the current XACML language and architecture to include the
proposed extensions. We then illustrate how a support for certified information, abstractions, recursive
reasoning, and dialog management enabling an interactive access control between clients and servers based
on incremental releases of data and request for data can be deployed in XACML.

2 Deployment in XAMCL

XACML is not suitable for supporting the definition of access control policies in open scenarios, since it has
some significant limitations. First, traditional XACML policies allow for the definition of generic boolean
conditions referring to the different elements (e.g., subject, object, action) of a policy, thus enforcing an
attribute-based access control. However, no support for expressing and reasoning about credentials is
provided. Second, XACML neither provides the basis to reason about existing information, thus deriving

new concepts, nor an infrastructure to support recursive conditions like the features offered by logic-based
policy languages. Third, XACML implicitly assumes that the engine that enforces access control decisions
has all the necessary information to complete the evaluation process. Such an assumption is not realistic
in most cases, and we counter it by calling for an infrastructure to manage the dialog between the involved
parties. In the following of this section, we discuss how these limitations can be counteracted with the
addition of novel features to XACML having a limited impact on the original specification, towards an
extended XACML framework suitable for open Web services.

2.1 Credentials

Although designed to be integrated with the Security Assertion Markup Language (SAML) [1] for exchang-
ing security assertions and providing protocol mechanisms, XACML lacks a real support for considering
and reasoning about digital certificates, in particular, for expressing conditions on certified properties,
and on properties of the certificates themselves, to which we refer to as metadata (e.g., the certificate
type, or its issuer). XACML currently supports attribute-based access control; we aim at extending it
to support also credential-based access control. To represent and manage credentials in XACML, and
related properties and conditions on them, we need to model conditions on metadata and conditions on
the attributes separately. Attributes in the credentials can be treated as any other property and need
only to be associated with the proper certification. To do that with minimal impact on XACML, we reuse
the Issuer attribute in the SubjectAttributeDesignator element. In particular, an occurrence of a cre-
dential attribute in the subject expression will translate into an element SubjectAttributeDesignator,
where attribute Attributeld is equal to the attribute name, and attribute Issuer refers to the metadata. A
new XML schema is then introduced to represent credential metadata. The schema has a root element
certifications containing one or more elements certification. Each certification is composed by
one or more alternative group elements, each containing restrictions on metadata.

2.2 Abstractions

Abstractions, also referred to as abbreviations, macros, or ontological reasoning in several logic-based
proposals, allow for the derivation of new concepts (abstractions) from existing ones. They intuitively
represent a shorthand by which a single concept is introduced to represent a more complex one (e.g., a set,
a disjunction, or a conjunction of concepts). For instance, id_document (abstraction head) can be defined
as an abstraction for any element in set {identity_card, driver_license, passport} of credentials (abstraction
tail). A policy specifying that an access requester must provide an id_document can then be satisfied
by presenting any of the three credentials above. To support abstraction specification in XACML, we
prescribe the integration of XACML with XQuery [3], a language developed by W3C for querying XML
data. Abstractions can be defined via XQuery functions and referenced in XACML conditions as follows.
A new XML schema defines abstractions, where a root element, called abstractions, includes a set of
single abstractions. An XQuery function, called expansion function, takes in input the abstraction head
and produces in output the abstraction tail.

2.3 Recursive conditions

Recursion plays a fundamental part in the representation of restrictions on how authorities and, more in
general, trusted parties delegate the ability to issue credentials. The delegation can be seen as a certification
of the capability of another party to create credentials on behalf of the delegator. In distributed systems
characterized by a complex architecture, delegation is a feature that increases flexibility and allows for a
simple way to issue credentials, particularly in an open environment. In such systems, specifications of
restrictions in delegation are needed, and the support for recursion in the policy language can be exploited

Table 1: From formal concepts to XACML

Basic Constructs XACML

Certification metadata (certification)
(/certification)

Credential conditions Attribute Issuer in element
(SubjectAttributeDesignator)

Abstractions XQuery functions

Recursive statements XQuery functions

Dialog management Attribute Disclosure in any of:
- element (Condition) in XACML
- element (Apply) in XACML
- sub-elements of (group)

to specify conditions on data with a recursive structure. As for abstractions, we propose to use an XQuery
engine to manage recursion in XACML. Again, recursive conditions are defined via recursive XQuery
functions. These functions are then embedded and referenced in the policies, without changes to the
XACML language, to define policy conditions based on recursive concepts (e.g., the supervisor concept in
a business hierarchy). These functions take in input the XACML context, and produce new information
to be used in policy evaluation. As a consequence, XQuery offers recursive reasoning and it allows for the
creation of additional attributes to be used in the evaluation of the XACML policies during the policies
evaluation process.

2.4 Dialog

The introduction of dialog between the involved parties introduces several advantages, such as enabling the
server to communicate which information is needed to evaluate a policy, which in turn allows the access
requester to hand over only the necessary credentials, instead of her whole set, as in the current XACML
proposal. The access control process thus would become able to operate without an a-priori knowledge of
the requester [2]. Extending XACML with dialog management not only would avoid the simple evaluation
to indeterminate of all those cases for which the server is missing information, but it also permits to tackle
the issue of the privacy trade-off between providing the whole set of credentials (on the access requester
side) and disclosing the whole access control policy (on the server side). Such result can be achieved by
attaching a disclosure attribute to every condition in an access control policy. Such attribute indicates
what type of disclosure policy is associated with the condition, and it is then enforced by hiding from the
access requester the information that cannot be released according to the specified disclosure policy. The
more (less) of an access control policy is disclosed, the smaller (bigger) is the quantity of information in
terms of released credential that will have to be provided by the access requester. Differently from the
extensions provided to support previous concepts, dialog management requires a change in the XACML
language for representing the disclosure policies associated with conditions. Each condition appearing in a
XACML policy is associated with a disclosure policy represented through a new attribute Disclosure. This
attribute is added to those elements used for representing the conditions: elements Condition and Apply
in XACML, and each sub-element of element group in the credential schema. The admissible values
for the Disclosure attribute are: i) none, nothing can be disclosed about the condition; i) credential,
only the information that there is a condition imposed on some metadata/attributes can be disclosed;
ii1) property, only the information that a property needs to be evaluated can be released; iv) predicate,
both the information that a property needs to be evaluated and the related predicate can be released; v)
condition, all information about the condition can be disclosed.

Table 1 summarizes the mapping between the novel concepts and the changes introduced to XACML.

__ DAwibutes ||
' : Requester : :
Access PEP Obligations
Requester 2. Access Request 13. Obligations Serv'ce

15. Sanitization
Rules
A
3. Request 12. Response
- XQuery v 4. Request Notification
teee Englne ceier 5. Attribute Queries Context :
. 14. Undefined
PDP H and |er 9. Resource Content Resource ¢ Attributes
10. Attributes
11 Response Context
A
6. Attribute Query 8. Attributes
DAMrbUtes | b
Logger
"""""""""" 7.3. Resource
1. Policy Pl P Attributes
7.2. Enviroment
Attributes
7.1. Subject
Attributes
PAP Subject Environment

Figure 1: Extended XACML architecture

3 Extended XACML Architecture

The integration of the above novel concepts and new functionalities within the existing XACML spec-
ification requires some extensions to the standard XACML architecture. The standard architecture is
comprised of functional components interacting to take an access control decision, which are depicted in
Figure 1 with solid lines. Our proposed extensions are shown with dashed contours.

The Policy Enforcement Point (PEP) receives all access requests and enforces access decisions. The
Policy Decision Point (PDP) computes the access decision by retrieving the policies applicable to an
access request from the Policy Administration Point (PAP). The PDP needs all the relevant information
in advance for the decision process, and the Context Handler manages accordingly the data directly
provided by the requester. Also, the Context Handler works as an interface to access relevant additional
information, such as the one retrieved by the Policy Information Point (PIP), in the form of attribute
values about the subject, the resource, or the environment from the system information storage (e.g., a
DBMS).

The enhancement of XACML with credentials calls for changes in the PDP component, which needs to
be extended to support the evaluation of conditions regarding restrictions on the certification mechanisms.
The PDP is further extended by an XQuery engine to evaluate recursive conditions. The XQuery engine is
then responsible to access the Context Handler, thus retrieving all relevant attributes for policy evaluation.
Since abstractions can be defined by means of XQuery functions, which take abstract concepts (e.g.,
id_document) in input and provide their expansion (e.g., the set {identity_card, driver_license, passport})
as output, the XQuery-based extension is used for the definition and evaluation of XACML conditions
involving abstractions. When the PDP needs to reason on abstractions, it extracts the definition of the

abstractions stored in the XACML policies or profiles, and processes them in the policy under evaluation.
The integration of credentials, recursive conditions, and abstractions in XACML only requires to expand
the functionalities of the PDP, without modifying the communication flow of the standard architecture.
The communication flow needs to be modified to take dialog management into account. In particular, a
more complex PIP is needed to determine and store all the attributes that are not available at evaluation
time and must be requested to the client (Attributes Logger). To manage such a case, resulting in an
indeterminate evaluation returned by the PDP to the PEP via the Context Handler, the standard PEP
must be extended with a direct communication channel to the PIP, to retrieve the list of missing attributes.
Through such a channel, the PEP collects all the information requests that need to be forwarded to the user
to complete the evaluation process (Attributes Requester). Before sending these requests, the PEP retrieves
from the PDP the conditions associated with each missing attribute, and the disclosure policies relevant
to such conditions. The dialog also supports XQuery-based abstractions by providing the requester with a
request for data after the abstractions have been expanded. After collecting all conditions for which some
attributes are missing, and applying the disclosure policy, a response that calls for additional information
is returned to the requester.

4 Conclusions

We presented possible extensions to the XACML language and architecture for fully supporting the re-
quirements of an open Web-based scenario. The extended XACML language and architecture have been
designed to support several novel functionalities, including credential-based restrictions, abstractions, re-
cursive conditions, and dialog management, with minimal impact on the standard.

References

[1] A. Anderson and H. Lockhart. SAML 2.0 profile of XACML. OASIS, September 2004.

[2] C.A. Ardagna, J. Camenisch, M. Kohlweiss, R. Leenes, G. Neven, B. Priem, P. Samarati, D. Sommer,
and M. Verdicchio. FExploiting cryptography for privacy-enhanced access control: A result of the
PRIME project. Journal of Computer Security, 2009. (to appear).

[3] S. Boag et al. XQuery 1.0: An XML Query Language. World Wide Web Consortium (W3C), 2007.

[4] P. Bonatti and P. Samarati. A unified framework for regulating access and information release on the
Web. Journal of Computer Security, 10(3):241-272, 2002.

[5] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati. Access control policies and
languages in open environments. In T. Yu and S. Jajodia, editors, Secure Data Management in De-
centralized Systems. Springer-Verlag, 2007.

[6] T. Moses. eXtensible Access Control Markup Language (XACML) Version 2.0. OASIS, 2005.

