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Abstract

The amount of information held by organizations’ databases is increasing very quickly. A recently proposed
solution to the problem of data management, which is becoming increasingly popular, is represented by
database outsourcing. Several approaches have been presented to database outsourcing management, in-
vestigating the application of data encryption together with indexing information to allow the execution of
queries at the third party, without the need of decrypting the data. These proposals assume access control
to be under the control of the data owner, who has to filter all the access requests to data.

In this paper, we put forward the idea of outsourcing also the access control enforcement at the third
party. Our approach combines cryptography together with authorizations, thus enforcing access control via
selective encryption. The paper describes authorizations management investigating their specification and
representation as well as their enforcement in a dynamic scenario.

Keywords: Encrypted databases, access control, key derivation, hierarchy, dynamic.

1 Introduction

Nowadays, databases hold a critical concentration of sensitive information and their
volume is increasing very quickly. In such a scenario, database outsourcing is becom-
ing increasingly popular. A client’s database is stored at an external service provider
that should provide mechanisms for clients to access the outsourced databases. The
main advantage of outsourcing is related to the costs of in-house versus outsourced
hosting (e.g., outsourcing provides significant cost savings and service benefits).
Moreover, the data owner can concentrate her attention on her core business. As
a consequence of this trend towards outsourcing, highly sensitive data are no more
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under the data owner’s control and their confidentiality and integrity may be put
at risk. To preserve the confidentiality of the outsourced data, cryptographic tech-
niques are usually adopted [7]. By encrypting the outsourced data, the client is
guaranteed that she alone can access the data. However, the problem becomes
how to guarantee a selective retrieval over encrypted information. To this purpose,
different techniques have been proposed [4,6,8,9] that associate indexes with the out-
sourced data to enable the server to enforce queries without the need of accessing
cleartext data.

Although the database outsourced scenario has been intensively studied in the
last few years, the access control issue in such a scenario has never been considered.
The existing access control mechanisms, designed for distributed applications, oper-
ate on client-server architectures according to the basic assumption that the server
is in charge of defining and enforcing access control. In our scenario this assump-
tion is no more applicable, since the server does not know the access control policy
defined by the data owner. Current proposals for querying encrypted outsourced
databases assume that clients have complete access to the query result and therefore
use a single key for encrypting the whole outsourced database. Access control can
therefore be enforced only by involving the data owner, who has to filter out from
the query result the tuples that a client cannot access. Obviously, this solution
is too expensive and not applicable in a real-world scenario, which demands for
selective access by different users or applications.

In this paper, we address the problem of enforcing access control by exploiting
data encryption. The idea is then to use different encryption keys for different data
as proposed, for example, for XML documents [10]. To access such encrypted data,
users have to decrypt them by using the appropriate key. If different users know
different keys, they have different access rights.

The remainder of this paper is organized as follows. Section 2 introduces the
main concepts of access control and presents our selective encryption solution.
Section 3 describes the algorithm we propose to efficiently enforce access control
through selective encryption in the specific scenario. Section 4 illustrates how
changes in the access control policies can be efficiently managed. Finally, Section 5
contains our conclusions.

2 Scenario and basic definitions

Given a system with a set U of users and a set 7 of resources, we assume that the
access control policies are represented via an access matrix A with || rows and |7 |
columns, where A[u,t] contains the operations that user u can perform on t. Since
we consider the read operation only, each entry in the access matrix can simply
assume two values: Alu,t]=1 if u can read t; 0 otherwise. Figure 1 represents an
example of access matrix for a system with 6 tuples (t;...tg) and 4 users (A, B,
C, and D). Given an access matrix A, acly denotes the access control list for tuple
t, that is, the set of users that can access t; cap, denotes the capability list of user
u, that is, the set of tuples she can access. For instance, with reference to Figure 1,
acly,={A,D} and capp={t1,ts,ta,ts,ts}.

In the considered scenario, the enforcement of access control policies cannot be

2



E. DAMIANI et al

t1 to ts ta ts te
A 0 1 1 0 1 1
B 1 0 1 1 1 1
C 0 0 1 1 0 1
D 0 1 0 1 1 1

Fig. 1. An example of access matrix

delegated to the remote server, as it is not trusted for accessing neither database
content nor access control policies. Consequently, the data owner has to be involved
in the access control enforcement, unless the data themselves implement selective
access. To this purpose, we propose to use selective encryption [2,10] as a technique
for enforcing selective access on encrypted data. Selective encryption consists of
using different keys for encrypting data and communicating each user the correct
key ring, such that she can access all and only the resources she is authorized to
access.

Let K be the set of symmetric encryption keys used to protect data. We intro-
duce two functions:

* a user key assignment ¢ : U— 2, which associates with each user ue U the set
of keys ke in the user’s key ring;

e a resource key assignment X : K —27 which associates with each key k€K the
set of tuples t€7 encrypted with k.

Given a user key assignment function ¢, a resource key assignment A, and an
access matrix A, the pair (¢, \) is said to be complete with respect to A, denoted as
(¢, A) = A, if each user can decrypt all tuples she can access according to A. The
pair (¢, A) is said to be sound with respect to A, denoted as (¢, \) < A, if no user
can decrypt tuples that she cannot access according to A. The pair (¢, A) is said to
correctly enforce A, denoted as (¢, \) < A, iff it is both sound and complete with
respect to A.

A straightforward solution for adopting selective encryption in our scenario as-
sociates a key with each tuple t and communicates to each user u the keys used
to encrypt tuples in cap,. It is easy to see that this solution correctly enforces A,
but it is too expensive to manage, due to the high number of keys each user has to
keep. To overcome this problem, we propose to use a key derivation method that,
given a key and a piece of information publicly available, derives another key in the
system. Different key derivation methods have been proposed in the literature and
they usually work on tree hierarchies [11] or DAGs [1]. In our scenario, it is natural
to introduce the definition of a user hierarchy UH=(2/l, <), where the domain of
the hierarchy is the powerset of &/ and = is the subset containment partial order
relation. Graphically, the UH hierarchy can be represented as a graph, called user
graph, with a vertex for each element in 2! and a path connecting a with b iff b < a.
A vertex v of the graph is therefore characterized by the set of users to which it
corresponds. In the following, given a vertex v of the user graph, it will be used to
denote the set of users that it represents. Figure 2 illustrates an example of UH hi-
erarchy for U={A,B,C,D}, where the top element of the UH hierarchy is the vertex
corresponding to the empty set. A value, called level, is associated with each vertex
and corresponds to the cardinality of the set of users it represents. Also, each vertex
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Fig. 2. An example of UH

v in the user graph is associated with a key k, and a path vi — vy — ... — vy
in the graph represents a key derivation path, meaning that starting from the key
associated with vertex vy and following the path, it is possible to derive the keys of
all vertices vi,i = 2,...,n, in the path. For instance, path AB — ABC — ABCD
in the UH hierarchy in Figure 2 means that key kypep can be derived from key kypc
that in turn can be derived from key kpp. According to the UH definition, ¢(u)=ky,
with vi={u} (i.e., the key ring of each user contains one key only); and t€ A(ky)
with acly=v. Consequently, each user can derive all keys k, such that uev.

Here, it is important to highlight that key derivation methods working on trees
are more convenient than key derivation methods working on DAGs because they
better support dynamic scenarios where the access control policies may change.
Moreover, DAG key derivation methods are based on complex mathematical theo-
rems (e.g., modular exponentiation), which make the support of a dynamic scenario
complex and not efficient. By contrast, methods proposed for tree hierarchies ex-
ploit simple hash functions. To avoid the disadvantages due to DAG hierarchies,
we transform the UH hierarchy in a tree hierarchy, denoted TUH, where, as in UH,
te A(ky) with v=acly. The main disadvantage of TUH with respect to UH is that
now the key ring of each user u can now contain more than one key. For this reason,
we elaborate an algorithm that takes the UH hierarchy as input and returns a TUH
tree as output in such a way to minimize the whole number of keys in the system.

3 A transformation algorithm

We describe a greedy algorithm that tries to solve the NP-hard problem of minimiz-
ing the number of keys directly communicated to users (a proof sketch appears in
the Appendix). Figure 3 illustrates the algorithm we have developed. Here, parent()
and children() are two functions that take a vertex as input and return its parent
and the set of its children, respectively.

The algorithm builds a key derivation tree TUH, which correctly enforces A and
consists mainly of four steps briefly described in the following.

Step 1: select vertices

Given the access matrix representing the policies to enforce, it is first of all nec-
essary to select which vertices should be part of TUH. In particular, since each tuple
t is encrypted with the key of the vertex representing acly, all vertices correspond-
ing to resource acls have to be part of the tree. The set of these vertices, called
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Algorithm 1 (TUH building)

MAIN
/* Initialization *

M::{%}U{aclt:te’f}
NM :=
E:=0

/* Step 1: select Vertices */
/* Choose non material vertices for TUH */
Forl:=|U|...1do
For v; € {(M UNM) : |v;|=1} do
For !’ :=1...1do
For v; € {(M UNM) : |vj|=1} do
Vg 1= v; N v
If (v, ¢ M) then NM := NM U {vg}

/* Step 2: TUH Construction */
/* Edges selection for TUH */
Forl:=|U|...1do
For v; € {(MUNM) : |v;|={} do parent(v;,l-1)
/* Step 3: prune Tree *
/* Delete non useful vertices from TUH */
Forl:=|U|...1do
For v; € {NM: |v;|=1} do
p = parent(v;)
If |children(v;)|=1 then /* v; is a non material vertex with one child */
¢ := children(v;)
B = F — {(vs,c), (pvi)}
NM := NM — {ov;}
parent(c7 1)
else If |children(v;)|=0 then /* v; is a non material leaf vertex */
E:=FE — {{(p,vi)}; NM := NM — {v;}

/* Step 4: key Assignment */
/* Define each user’s key set*/
For i=1...|U| do ¢(us) :==0
Fori=1...|U| do
For v € {(MUNM): |v|=1} do
For u € {v—parent(v)} do ¢(u) := ¢(u) U {ko}

PARENT(v, 1)
found_parent := false; p :=
While found_parent=false do
N = {viE(MU NM): |v;|=1}
found := false
While (N# 0) A (found =false) do
Choose v;€ N; N := N — {v;}
If v;Cv then
found_parent := true
If v;EM then
p = {v;}; found := true
else If |children(v;)|=1 then /* v; is a non material candidate parent with 1 child */

pi={vi
else If p# (0 then /* Choose the candidate parent with more children */
If (|children(p)| # 1)A(|children(p)| < |children(v;)|) then p:= {v;}
else p := {v;} /™ v; is the first candidate parent *
l:=1-1
E:=FE U (pyv)

Fig. 3. Algorithm that builds TUH

material, is denoted by M. This set contains also the empty set vertex that will be

the root vertex of the tree.

In addition to material vertices, also other vertices can be added to the structure,
if they can be useful for reducing the number of keys directly assigned to users. The
set of these vertices, called non material, is denoted by NM. It is easy to see that, the
only useful non material vertices are those that can be assigned as direct ancestors
of at least two vertices vy and vy in the tree. In this case, the key of a vertex v,
parent of the two vertices vy and v, can be communicated to all users in v, instead
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0) 0)

A B D A (B) D (B)
AB AD)  BC BD AB BC BD BC
(ABC) (ABD) (BCD) (ABC) (ABD) (BCD) (ABC) (BCD) (ABD)
(ABCD)
(a) Step 1 (b) Step 2 (c) Steps 3 and 4

Fig. 4. TUH building example

of separately communicating both k,, and ky,. Thanks to this property, we can
build NM by simply adding to it the vertices necessary to close MUNM with respect
to the intersection operator. As an example, consider the access matrix in Figure 1.
The set of vertices selected by the algorithm is represented in Figure 4(a), where
material vertices are circled, and non material vertices are not circled.

Step 2: TUH construction

Once vertices have been chosen, it is necessary to connect them in a tree hier-
archy, enforcing the policy in A while minimizing the size of the users’ key rings.
To this purpose, the algorithm selects for each vertex in MUNM but the empty set
vertex, a parent through function parent. To minimize the number of keys in the
system, function parent chooses a parent by applying the following criteria, which
are listed in the same order as they are used.

(i) Lower level vertices are preferred to higher level vertices.

(ii) In case of more candidate vertices at the same level, material vertices are
preferred to non material vertices.

(iii) Among non material vertices, the vertices with exactly one child are preferred.

iv) Among other non material vertices, the vertices with more children are pre-
g p
ferred.

For instance, with respect to the set of vertices in Figure 4(a), the structure obtained
through the second step of the algorithm is represented in Figure 4(b). As an
example of application of the criteria above, consider vertex ABD. Our algorithm
chooses vertex AD as parent of ABD, instead of AB or BD, because it is material.

Step 3: prune tree

When all vertices in MUNM have been correctly connected in a tree, the algo-
rithm removes non material vertices that do not reduce the number of keys in the
system, as they just make key derivation paths longer.

More precisely, a non material vertex can be removed if it has less than two
children, because its key is used neither for tuple encryption nor for key reduction.
The removal of a non material vertex with a child v, requires the assignment of an
alternative parent to v through function parent, which evaluates candidate direct
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ancestors at higher levels than the removed vertex. The removal of a non material
leaf has instead no consequences on the structure.

Figure 4(c) represents the hierarchy obtained after pruning vertices AB, A, D,
and BD. In this case, vertex ABC, child of AB, is connected to BC and AD, child
of A, is connected to the root.

Step 4: key assignment

The last step is in charge of assigning a key to each vertex and preparing each
user’s key ring. The key of a vertex v belongs to the key ring of u iff uév and
u¢parent(v). If u€parent(v), u would be able to derive k, through the key of
parent(v), which she knows either by derivation or by direct communication.

For instance, with respect to the tree in Figure 4(c), ¢(A) = {kasc, kap} (from
which user A can derive kppep and kapp); ¢(B) = {kg,kasp}; ¢(C) = {kpc}; and
¢(D) = {kap, kncp, kapep }- The system has then eight different keys to manage.

The algorithm in Figure 3 builds a tree that correctly enforces the access control
policy represented by the access matrix A (a proof sketch can be found in the
Appendix). Its time complexity is O(|MUNM]|?), that is, polynomial in the number
of vertices selected to build the tree hierarchy. Since in the worst case M U NM
coincides with the powerset of U (a proof sketch can be found in the Appendix),
the time complexity is at most exponential in the number of users in the system.
Note that the worst case time complexity depends on the number of users and not
on the number of resources, and the first is usually lower than the second one. The
space complexity of the solution found by the algorithm strictly depends on the
number of vertices in TUH [3]. In the worst case, it is O(2M!), if the tree has all
the vertices in UH. The quality of the solutions computed through our algorithm
has been experimentally proved in [5], where the algorithm has been applied to a
simulated system with common characteristics to real life ones. The experiments
evaluate both the average number of keys in users’ key rings and the number of
material and non material vertices in TUH. Obviously, as the number of users and
resources grows, also the number of keys increases, but it scales well with the system
size.

4 Key management and dynamic access control policies

The algorithm in Figure 3 builds TUH on the basis of the policy A defined at con-
struction time. Therefore, changes in the access control policy, which are translated
in changes on the access matrix, may require to change the TUH and the users’ key
rings too.

To address dynamic changes of the access control policy, a straightforward solu-
tion consists of rebuilding the tree hierarchy any time a change in the access matrix
occurs. However, this method would be too expensive both in terms of data owner
computation and in terms of system network usage; the data owner should recom-
pute, and notify to the users, the encryption keys and then re-encrypt the tuples in
the remote database. We therefore propose a method for adapting the TUH tree to
a new access control configuration, trying to preserve the keys in the system. Obvi-
ously, the tree obtained adapting the original TUH will not have the same structure
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as the tree we would obtain by executing the transformation algorithm over the new
access control policy, but it has the great advantage of saving computational time
and bandwidth occupation.

Insert/delete vertex

The main operations necessary to adapt TUH to changes in the access control
policy are insertion and deletion of vertices; if a vertex moves from material to non
material or viceversa, neither the tree structure nor the key derivation are affected.

Due to the characteristics of the key derivation methods operating on trees, the
only operations that do not require re-encryption are insertion and deletion of leaf
vertices. Instead, when an internal vertex is removed (or inserted) the keys of its
descendants have to be changed, because they depend on the key of the deleted (or
inserted) vertex. This operation causes the redistribution of keys to users and the
re-encryption of the tuples encrypted through the keys that have been changed.

Let us now consider the case of an insertion of a new (material) vertex v that
corresponds to a group of users that is not currently represented in the tree. Vertex
v is inserted in TUH as a leaf and then function parent is used to choose an
adequate parent for it. When v has been properly connected to the tree, its key
ky, is computed starting from the parent’s key. Key k, is then communicated to all
users in v that cannot obtain it by derivation from other keys in their key rings.
For instance, if we need to insert AB in the tree in Figure 4(c), we insert the new
vertex as child of B and kg is then communicated to A.

Let us now consider the case of a deletion of a vertex in TUH. Whenever a
leaf vertex becomes non material, it is convenient to remove it from TUH because
it is no more useful and causes just a waste of space for its key storage. In this
case, it is sufficient to remove the vertex from the hierarchy and to notify all users
knowing the corresponding key that the vertex has been deleted. For consistency
with the algorithm that builds TUH, also when a vertex with only a child becomes
non material, it should be removed from the tree. However, this deletion is quite
expensive because all the direct and indirect descendants should change their keys.
Consequently, non material vertices with only a child are not deleted. Due to the
presence of non material internal vertices with just a child, whenever a leaf is deleted
from TUH, also its parent is evaluated: if it becomes a non material leaf too, it is
removed as well. This implies that the deletion operation is recursively applied along
the path connecting the deleted leaf to the root. For instance, suppose that vertex
AD in Figure 4(c) becomes non material. Suppose now that also ABD becomes
non material and therefore is removed. Due to this removal, AD becomes a non
material leaf as well, and it is removed too. Note that due to vertices insertion
and deletion, the tree structure degrades in a lower quality TUH, that is, users’
key rings grow more than necessary. For instance, consider the TUH in Figure 4(c)
and suppose to insert vertices CD, AC, and C. Figure 5(a) represents the TUH
obtained inserting these vertices according to the procedure above-mentioned, and
Figure 5(b) illustrates a better TUH, where C is inserted as an internal vertex, thus
saving three keys. The causes of this increase in the key rings are mainly two:

(i) a new vertex is inserted as a leaf, even if it could be the root of a subtree in
TUH;
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)

BC (AD CD)

(ABC) (BCD) (ABD) (ABC) (BCD) (ABD)

(a) (b)
Fig. 5. An example of vertex insertion

(ii) non material vertices are removed but never inserted.

For this reason, the data owner should periodically rebuild the TUH hierarchy on
the basis of the new access control policy, re-encrypt data, send the new encrypted
database to the remote server, and communicate the new keys to the users. Since
this operation is expensive, it is only executed when the system performances de-
crease under a predefined threshold.

Insert/delete tuple

When the data owner inserts a new tuple t in the database, she has to specify
its acly because, on the basis of acly, it is then possible to individuate the key that
will be used to encrypt t (i.e., the key associated with the vertex corresponding to
acly). Two cases can occur, depending on whether TUH contains such a vertex or
not. In the first case, it is sufficient to encrypt t using kaci,, while in the second
case it is first necessary to insert a new vertex representing acly. Note that in both
cases acly becomes a material vertex.

For instance, with respect to the tree in Figure 4(c), suppose that tuple t7 is
inserted and that acly,={A, C, D}. Since vertex AC'D does not belong to the tree,
it is inserted as a child of AD. Suppose now to insert tg with acly,={B, C}. In this
case BC' belongs to TUH and therefore it is sufficient to use its key to encrypt tg
and to move this vertex from NM to M.

When the data owner removes a tuple t from the remote database, she needs
also to eventually update the TUH structure. If the key of the vertex corresponding
to acly is no more used for encryption purpose, the vertex becomes non material
and is eventually removed from the hierarchy.

For instance, with respect to the tree in Figure 4(c), suppose that tuple t, with
acly,={A, D} is deleted. Since kyp is no more used for encryption, AD becomes
non material but it is maintained in the tree because it has a child. Suppose now
that tuple te with acle,={A, B, C, D} is deleted. In this case, ABC'D becomes non
material and is removed from TUH because it is a leaf vertex.

Grant /revoke authorization

When a user (or a set thereof) u is granted (or revoked) access to a tuple t,
acly changes and, consequently, also the key used for encrypting t is changed. Let
Vo1q be the vertex in TUH representing acly; before the change, and let vney be
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hoAELE

[ABC) (BCD) (ACD) (ABC) (ACD) (4ABC) (BCD) (ACD)
(a) Grant (C,ts) ( ) Grant (C,t2) (c) Revoke (D,ta) (d) Revoke (4,ts)

Fig. 6. Grant and revoke operations

the vertex representing acly after the change. If ky ,, is no more used for tuple
encryption, vertex vy14 becomes non material and is eventually removed from the
tree. If vertex vyey does not belong to TUH, it is inserted as a new material vertex.
Otherwise, if vy belongs to TUH as a non material vertex, it is moved to the set M
of material vertices. Tuple t is then re-encrypted by the data owner using the new
key. However, it is important to note that re-encryption may be avoided whenever
Vo1d CVnew (i.€., for grant operations only) and ve14 has to be removed and vyey has
to be inserted. In this case, key ky,,, can be associated with vyey, thus avoiding the
re-encryption of tuple t and vye, takes the place of vo14 in TUH. Moreover, k
has to be communicated to the set of users vyey—vo14 oOnly.

Vold

For instance, with respect to the tree in Figure 4(c), suppose that the data owner
grants access to tuple ts to user C. In this case, vo1q=ABD and vpe,=ABCD and
Vo1q 18 removed from the tree because it becomes a non material leaf. Also, ts is
re-encrypted through kypep because ABC' D already belongs to the hierarchy. Now,
if the data owner grants access to to to C, vo14=AD becomes a non material leaf
and can be removed. However, since vpe,=AC D does not belong to the hierarchy,
it is sufficient to associate ky,, with vpey, thus avoiding re-encryption. The results
of these operations are represented in Figure 6(a) and in Figure 6(b).

Suppose now to revoke the access to ts from D. The new value of acly, is { B, C'}.
Vertex BC'D becomes a non material leaf and it is removed from the tree, while BC
becomes a material vertex. The tree resulting from this operation is represented in
Figure 6(c). If we then revoke access to ts from A, vertex ABC'D becomes a non
material leaf and is removed, while material vertex BC' D is inserted, as a child for
BC. In this case it is not possible to associate kypcp with the new vertex BC'D, as
A knows kypep and she can read ts even if she is not allowed to. Moreover, it would
be possible to derive kpep from kype but this derivation is not allowed by the partial
order relation in TUH. Figure 6(d) represents the TUH after the execution of this
revoke operation.

Insert/delete user

When the data owner adds a new user u to the system, all tuples t € cap, should
be re-encrypted because their acls change (i.e., user u is added in these acls) and
therefore they are associated with a different vertex in TUH. Although user insertion
can be treated as a set of grant operations, this solution is not efficient. In this
situation, it is possible to avoid re-encryption operations simply considering the
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(a) Insert E (b) Delete D

Fig. 7. User insertion and deletion

fact that, if the data owner communicates to the new user a key k associated with a
vertex in the tree, the new user will be able to access all the tuples encrypted with
any key derivable from k. A more efficient solution consists then of visiting TUH
and verifying, for each vertex v; visited, whether the following four cases arise.

(i) u can access all the tuples associated with vertices in the subtree rooted in v;.
In this case, ky, is communicated to u and no re-encryption is needed.

(ii) u can access all the tuples associated with v, but not the tuples associated
with the vertices in its subtree. In this case, we create a new vertex vj=v;U{u},
child of v, and the corresponding key ky, is communicated to u and is used
to re-encrypt the tuples protected through ky,. At that point, v; becomes non
material but, as it has at least two children, it is maintained in TUH.

(iii) u can access a subset of the tuples associated with v;i. In this case, we create
a new vertex vy=v;U{u}, child of v;, and the corresponding key ky, is used to
re-encrypt the tuples protected through k,, and accessible to u.

(iv) u cannot access the tuples associated with v;. No action is needed.

It is important to note that, in cases (ii) and (iii), vertex vj is inserted in the
tree without calling function parent, because it is simply a new child of v;. This
procedure reduces the time needed for updating TUH and works well because v; is
in the lowest possible level where we can find a candidate parent for v;. Moreover,
in case (iii) v; is a material vertex, and in case (ii) v; is a non material vertex with
at least a child, consequently it is maintained in TUH, independently from v;.

For instance, with respect to the tree in Figure 4(c), suppose that user E is
inserted and that capgp={ta,ts,ta,te}. Visiting the tree, we note that user £ can
access all the tuples associated with vertices in the subtree rooted in BC. The data
owner can then communicate kge to F, and change the groups of users represented
by these vertices, adding F. By contrast, with respect to AD, only t, but not ts
is in capg, so we add vertex ADFE as a child of AD, which becomes non material.
Figure 7(a) represents the resulting TUH.

When the data owner removes a user u from the system, she has to re-encrypt
all the tuples t€cap, because acly changes, and tuples in cap, are associated with
a different vertex in TUH. Like for insertion, although user deletion can be treated
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as a series of revoke operations, this solution is not efficient. Therefore, the removal
of user u is partitioned into three main steps, described in the following.

(i) Delete each vertex v in TUH such that uev.

(ii) For each t&cap,, insert in TUH the vertex representing the new acly, starting
from high-level vertices and going down in the hierarchy. In this way, previously
inserted vertices can be parent of subsequently inserted vertices.

(iii) Re-encrypt tuples in cap, with the correct keys.

For instance, with respect to the tree in Figure 4(c), suppose that user D with
capp={ta,ta,ts,te} is deleted. First, we delete all the vertices containing D, that
is, ABCD, BCD, ABD and AD. The vertices needed for re-encryption reasons
are ABC, BC, AB, and A. Following the increasing level order, A is inserted as
a child of the root; AB is inserted as a child of A; BC' is already part of the tree
and becomes material; ABC' is already part of the tree and is a material vertex.
Figure 7(b) illustrates the resulting tree.

Update optimization

As previously noted, TUH updates result in a lower quality hierarchy than re-
building the tree. This is also due to the fact that non material vertices are inserted
in the tree during the initial construction phase only. To mitigate such disadvan-
tages, we propose to adopt a preallocation strategy. According to this strategy, a
tree can only include edges (v;,vj) such that v;Cvj and |vj—v;| = 1. For instance,
with reference to the tree in Figure 5(a), edge (0,AC) is not allowed.

To fill in gaps due to not allowed edges, we add preallocated vertices in the tree,
between vertices that cannot be adjacent. A preallocated vertex is not adopted for
encryption reasons and is not useful for key rings reduction, it is only needed to
better accommodate updates. For instance, with respect to edge (0,AC), we add a
preallocated vertex C' between () and AC'. In this case, when vertex C'D is inserted,
it is added as a child of preallocated vertex C, which now becomes non material.
Moreover, when the acl corresponding to C' is inserted, vertex C' becomes material.

However, also the preallocation strategy has some drawbacks. First, the tree is
composed of a high number of vertices and each of them has a key. Second, since
the insertion and deletion operations cannot be known a priori, it is not possible to
choose, among the sets of users that each preallocated vertex can represent, the set
that is more convenient. For instance, with respect to the previous example, if we
associate A with the preallocated vertex between () and AC, we do not have any
advantage.

5 Conclusions

In this paper we introduced the problem of access control enforcement in the
database outsourced scenario and proposed an interesting solution based on selec-
tive encryption, which exploits hierarchical key derivation methods. In particular,
we proposed to build a user-based tree hierarchy and discussed how this structure
can be modified in case of a dynamic scenario, where the access control policy may
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change. The proposed solution has the advantage of outsourcing access control en-
forcement, thus it does not request the constant online presence of the data owner.
Moreover, this mechanism reduces the number of private keys that each client has
to keep, as empirically demonstrated in [5].

Issues to be investigated will include: the testing, on a real or simulated sys-
tem, of the methods proposed for managing access control policy updates; and the
management of write privileges.
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A Proof sketches

A.1  Minimal key rings

We now present a sketch of a demonstration for the NP-completeness of the problem
of minimizing the size of users’ key rings while building TUH. Such a demonstration
is based on the polynomial reduction of the minimization problem to the 3-SAT
problem, which is NP-complete. We start by describing these two problems.

Minimum TUH. Given two sets of vertices, M and NM, build a minimum TUH
connecting all vertices in M and a subset of NM, such that edge (v;,v;) in TUH
is allowed iff v; Cvy. Each edge (vi,vj) costs |vj-v].
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Fig. A.1. Demonstration example

3-SAT. Let f be a logic formula obtained AnDing [ clauses ¢y, co, . . . ¢; defined over
boolean variables 1,3 ...2,, where each clause contains three literals (i.e., a
clause contains a variable x; or its negation Z;) composed through the or logic
operator. Evaluate if there exists an assignment to the n variables in f that
makes the formula true.

To demonstrate that our problem is at least as complex as the 3-SAT, we need to
show that, if there exists an algorithm solving the minimum TUH problem, this
algorithm solves also 3-SAT. To this purpose, we first show that each instance of
3-SAT can be mapped in an instance of minimum TUH. Given a formula f with
variables x1,x2 ...z, and clauses ¢, ca, ... ¢, we build M and NM sets as follows.

e () €M, is the root.
e For each xz;, x; eENM, z; eNM, and x;z; €M.
e For each ¢;, ¢; M.

We suppose now that there exists an algorithm that solves the minimum TUH
problem. Consequently, we just need to map the solution found by this algorithm in
a solution for the corresponding instance of 3-SAT. The idea is that, if the obtained
TUH contains just one between z; and z; for each ¢ = 1...n, f is satisfiable. This
is because, if vertex x; belongs to TUH, a true value is assigned to z;; if vertex T;
belongs to TUH, a false value is assigned to x;. According to this assignment, each
clause ¢;, which is connected with one of the literals in it, will be evaluated to true
and therefore f will be satisfied. Since the algorithm computes the minimal TUH,
non material vertices that are not useful for minimization are removed because they
need at least an edge to be connected to the rest of the tree. Vertices x; and x;
are both non material and, consequently, one of them is removed if it is not needed
(one is always maintained as parent for z;7;).

As an example, let f be (z1 Va2 VZ3) A (T1 Ve Vas)A(x1 VTzVaes). Figure 1(a)
represents the material vertices M (circled) and the non material vertices NM (non
circled). Figure 1(b) represents the minimum TUH, which corresponds to a solution
for f where x1 = 2o = x3 = true.

A.2 Correctness

To demonstrate the correctness of Algorithm 1, it is necessary to prove the following
three different assertions.

TUH is a tree. Each vertex in a tree has exactly one parent. In our algorithm, it
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is assigned through function parent, which adds edge (p,v) to the tree and is
called exactly once for each v in MUNM. Moreover, as the cardinality of the set
of users corresponding to p is always lower than the cardinality of the set of users
corresponding to v, the hierarchy cannot have cycles.

A correctness. Each tuple is correctly encrypted with the key of the vertex rep-
resenting its acl because we initially add a vertex v in M for each acly such that
t€7. Moreover, material nodes are never removed from the tree.

¢ correctness. Each user u is directly communicated key ky, such that uev and
u does not belong to the set of users represented by the parent of v. Since edge
(vi,vj) belongs to TUH only if v;Cvj (see the condition in function parent), u
can derive only keys of vertices she belongs to. Moreover, as the whole tree is
visited for key assignment, u knows all these keys.

A.8 Complexity analysis

To evaluate the time complexity of Algorithm 1, we compute the cost of the steps
composing it.

Step 1: select vertices. The selection of material vertices has linear cost in |7,
as we scan all tuples to find out their acls. The selection of non material instead
requires the computation of all possible couples of vertices in MUNM. Given a
set of n elements, the number of non ordered couples of distinct elements is:
(3)=1/2-n-(n—1). The cost of NM computation is then O(|M U NM|?).

Step 2: TUH construction. The edges selection scans all the vertices in the tree,
to find out a good direct ancestor through function parent, which is called |M U
NM]| times. The function is composed of two nested cycles, which look for a parent
for v in a subset of MUNM. The cost of this step is then O(|M UNM|?).

Step 3: prune tree. Also this third step scans all the vertices in the tree, calling
sometimes function parent. The cost of the pruning phase is then O(|[MUNM|?).

Step 4: key assignment. This step visits the tree and computes, for each vertex,
its key. The cost of this step is then O(|M UNM| - «v), where « is the cost of key
derivation; it can be considered a constant as its value does not depend on the
size of the tree.

The computational cost of the proposed algorithm is therefore: |43 -O(|]MUNM|?),
that is, O(|]M UNM|?).
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