
VODCA 2004 Preliminary Version

A Web Service Architecture for Enforcing
Access Control Policies

Claudio Agostino Ardagna 1, Ernesto Damiani 2,
Sabrina De Capitani di Vimercati 3, Pierangela Samarati 4

Dipartimento di Tecnologie dell’Informazione
Università degli Studi di Milano

26013 Crema, Italy

Abstract

Web services represent a challenge and an opportunity for organizations wishing
to expose product and services offerings through the Internet. The Web service
technology provides an environment in which service providers and consumers can
discover each other and conduct business transactions through the exchange of
XML-based documents. However, any organization using XML and Web Services
must ensure that only the right users, sending the appropriate XML content, can
access their Web Services. Access control policy specification for controlling ac-
cess to Web services is then becoming an emergent research area due to the rapid
development of Web services in modern economy.

This paper is an effort to understand the basic concepts for securing Web services
and the requirements for implementing secure Web services. We describe the de-
sign and implementation of a Web service architecture for enforcing access control
policies, the overall rationale and some specific choices of our design are discussed.

Key words: Web Services, Security, Interoperability, Distributed
System, XML.

1 Introduction

Accessing information on the global Internet has become an essential require-
ment of the modern economy. Web services, which are developed for this
purpose, represent a new technology that permits the exchange of informa-
tion through the network, using standard protocols and allowing communica-

1 Email: ardagna@dti.unimi.it
2 Email: damiani@dti.unimi.it
3 Email: decapita@dti.unimi.it
4 Email: samarati@dti.unimi.it

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Ardagna, Damiani, De Capitani di Vimercati, Samarati

tion between heterogeneous architectures. Today Web services are essentially
based on four standards [8]: the eXtensible Markup Language (XML) [14],
the Simple Object Access Protocol (SOAP) [17], the Web Services Descrip-
tion Language [18] (WSDL), and the Universal Discovery, Description and
Integration (UDDI) [19]. While XML Web services are an increasingly suc-
cessful paradigm for the development of complex Web-based applications, the
original specifications of their underlying technologies did not even mention
security. It is therefore easy to understand why security is currently one of the
biggest concerns about future development of XML Web services. Specifically,
two main issues need to be addressed:

• restricting access to an XML Web service to authorized users;

• protecting the integrity and confidentiality of XML messages exchanged in
a Web service environment.

At first sight, it may seem that both these issues can be addressed straight-
forwardly by relying on the security techniques already used for Web sites.
For instance, HTTPS (i.e., HTTP over the Secure Sockets Layer protocol) is
typically used as a tool for encrypting private information. It can also pro-
vide authentication, but it is only used to authenticate the identity of the
Web server to the client. It is capable of authenticating the client identity to
the server, but most Web servers are not set up for that. However, HTTPS
cannot provide, for example, authorization, that is, it cannot regulate what
a user is attempting to do and selectively allowing/disallowing the operation.
The result is that HTTPS is a good solution for providing strong encryption
and server identity authentication to the client and vice versa. Also, HTTPS
is a “point-to-point” security, which does not allow intermediaries to act on
the data, and requires trust between the HTTPS end-point and the location
of the application being secured.

Recently, the technology industry has been working on various XML-based
security languages to provide comprehensive and unified security solutions
for Web services. These languages include the Security Assertion Markup
Language (SAML) [28] and the Web Services Security specification (WS-
Security) [20]. SAML is an XML-based framework for exchanging security
information developed by the OASIS organization. The SAML specification
defines how to represent security credentials (assertions in SAML) using XML.
SAML is designed to enable secure single-sign-on to applications within or-
ganizations and across companies and supports many different authentication
mechanisms such as the combination of username and password, SSL client-
side certificate, X.509 certificate, and so on. After the subject authentication,
the server SAML returns a particular security token to the client that makes
the initial request. WS-Security specification has been developed by IBM,
Microsoft, and Verisign. WS-Security is a means of using XML to encrypt
and digitally sign SOAP messages. It also provides a mechanism for passing
security tokens for authentication and authorization for the SOAP messages.

2

Ardagna, Damiani, De Capitani di Vimercati, Samarati

A typical example of security token is a user name and password token, in
which a user name and password are included as text.

Another important aspect to be considered for securing Web services is
the access control whose solution requires investigating policies for specify-
ing access control rules together with a language for expressing them, and
an architecture for their enforcement. Several proposals have been intro-
duced for access control to distributed heterogeneous resources from multiple
sources [3,4,5,6]. Two relevant access control languages using XML are WS-
Policy [21] and XACML [25]. Based on the WS-Security, WS-Policy includes a
set of general messaging related assertions defined in WS-PolicyAssertions [23]
and a set of security policy assertions related to supporting the WS-Security
specification defined in WS-SecurityPolicy [22]. In addition to the WS-Policy,
WS-PolicyAttachment [24] defines how to attach these policies to Web ser-
vices or other subjects such as service locators. The eXtensible Access Control
Markup Language (XACML) [25] is the result of a recent OASIS standard-
ization effort proposing an XML-based language to express and interchange
access control policies. XACML is designed to express authorization policies
in XML against objects that are themselves identified in XML. The language
can represent the functionalities of most policy representation mechanisms.

In this paper we provide an overview of the Web Service technology, and
illustrate the basic concepts for securing Web services. We then describe the
design of a Web service architecture for enforcing access control policies and
provide an example of implementation based on the WS-Policy as access con-
trol language [2]. Note, however, that our proposal is completely independent
from the specific access control language and can be therefore used with any
other solution.

The remainder of this paper is organized as follow. Section 2 illustrates
the basic characteristics of WS-Policy. Section 3 presents our architecture.
Section 4 describes how the access control is enforced. Finally, Section 5
presents our conclusions.

2 WS-Policy overview

Web Service Policy framework (WS-Policy) provides a generic model and a
flexible and extensible grammar for describing and communicating the policies
of a Web service [21]. Other specifications, such as WS-PolicyAssertions [23]
and WS-SecurityPolicy [22], provide specific applications of this grammar for
their domains. A policy is a collection of one or more policy assertions that
represent an individual preference, requirement, capability, or other proper-
ties that have to be satisfied to access the policy subject associated with the
assertion. The XML representation of a policy assertion is called policy expres-

3

Ardagna, Damiani, De Capitani di Vimercati, Samarati

Value Meaning

wsp:Required The assertion must be applied to the subject. If the assertion is not
satisfy, a fault or error will occur.

wsp:Rejected The assertion is not supported and if present will cause failure.

wsp:Optional The assertion may be applied but it is not required.

wsp:Observed The assertion will be applied and requestors of the service are informed
that the policy will be applied.

wsp:Ignored The assertion is processed, but ignored; no action will be taken as a
result of it being specified. Requestors are informed that the policy will
be ignored.

Fig. 1. Values for attribute Usage

sion. 5 Element wsp:Policy is the container for a policy expression. Policy
assertions are typed and can be simple or complex . A simple assertion can
be compared to other assertions of the same type without any special con-
sideration about their semantics. A complex assertion requires an assertion
type-specific means of comparison. The assertion type can be defined in such
a way that the assertion is parametrized. For instance, an assertion describ-
ing the maximum acceptable password size (number of chars) would likely
accept an integer parameter indicating the maximum char count. In contrast,
an assertion that simply indicates that a password is required does not need
parameters; its presence is enough to convey the assertion. Every assertion
is associated with a mandatory attribute called Usage that specifies how the
assertion should be processed. Figure 1 illustrates the five possible values for
attribute Usage together with their meaning.

In cases where there are multiple choices for granting a given access (e.g.,
different authentication mechanisms), attribute wsp:preference can be used
to establish an order among the different choices. Possible values for attribute
wsp:preference are integers, where a higher number represents a higher pref-
erence. WS-Policy also provides an element, called wsp:PolicyReference,
that can be used for sharing policy expressions between different policies.
Conceptually, when a reference is present, it is replaced by the content of
the referenced policy expression. Policy assertions are combined by using the
following policy operators :

• wsp:All requires that all of its child elements be satisfied;

• wsp:ExactlyOne requires that exactly one of its child elements be satisfied;

• wsp:OneOrMore requires that at least one of its child elements be satisfied.

Lack to specify a policy operator is equivalent to specify the wsp:All

operator. Figure 2(a) illustrates a simple example of policy stating that the

5 Note that using XML to represent policies facilitates interoperability between heteroge-
neous platforms and Web service infrastructures.

4

Ardagna, Damiani, De Capitani di Vimercati, Samarati

<wsp:Policy xmlns:wsp=". . ." xmlns:wsse=". . .">
<wsp:ExactlyOne>

<wsp:All wsp:Preference="100">
<wsse:SecurityToken>

<wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>
</wsse:SecurityToken>
<wsse:SecurityToken>

<wsse:TokenType>wsse:UsernameToken</wsse:TokenType>
<wsse:Username>Alice</wsse:Username>

</wsse:SecurityToken>
</wsp:All>
<wsp:All wsp:Preference="1">

<wsse:SecurityToken>
<wsse:TokenType>wsse:X509v3</wsse:TokenType>

</wsse:SecurityToken>
<wsse:SecurityToken>

<wsse:TokenType>wsse:UsernameToken</wsse:TokenType>
<wsse:Username>Alice</wsse:Username>

</wsse:SecurityToken>
</wsp:All>
<wsp:PolicyReference URI="#opts" />

</wsp:ExactlyOne>
</wsp:Policy>

(a)

<wsp:Policy xmlns:wsse=". . ." xmlns:ns=". . .">
<wsp:All wsu:Id="opts">

<wsse:SecurityToken>
<wsse:TokenType>wsse:X509v3</wsse:TokenType>

</wsse:SecurityToken>
<wsse:SecurityToken>

<wsse:TokenType>wsse:UsernameToken</wsse:TokenType>
<wsse:Username>Bob</wsse:Username>

</wsse:SecurityToken>
</wsp:All>

</wsp:Policy>
(b)

Fig. 2. A simple example of policy (a) and the corresponding referred policy (b)

access is granted if exactly one security token among the following is provided:
i) a Kerberos certificate and a UsernameToken with Username Alice, ii)
an X509 certificate and a UsernameToken with Username Alice, or iii) an
X509 certificate and a UsernameToken with Username Bob. The third option
corresponds to the referred policy, called opts, illustrated in Figure 2(b).

3 System architecture

We describe our architecture for enforcing access control policies [3]. The
proposed architecture satisfies the following requirements.

5

Ardagna, Damiani, De Capitani di Vimercati, Samarati

Fig. 3. System Architecture

• Modularity: it includes different modules (i.e., the PAP, PEP, and PAP
modules described in the following) that can be realized by different parties
thus reducing, for example, the development time.

• Policies language independency: it is independent from the specific access
control language used for specifying restrictions. Therefore, different access
control languages can be adopted such as WS-Policy (used in our imple-
mentation) or XACML.

• Extensibility: it can be easily extended by adding modules thus resulting in
additional levels of control (see Figure 4).

• Re-usability: the architecture’s modules can be re-used and shared among
different entities making the architecture generic and scalable.

• High performance: it provides a low time response to eventually support
real-time applications.

• Hardware and software independency: it allows the distribution of different
modules on different machines and with different operating systems. This
independency is related to the programming language used for the imple-
mentation of the architecture.

• Programming language independency: the modules’ developers can use the
preferred programming language without any restriction. In other words,
the developers can select the preferred programming language for the im-
plementation of our architecture.

As shown in Figure 3, the architecture includes an Enforcer module that
wraps up entirely the computation of access permissions to individual Web
services, returning, for each request, the decision of whether the access should
be granted or denied. Internally, the Enforcer is composed of three main
modules implemented as Web services [10]:

• The Policy Decision Point (PDP) module receives an access request and
returns a “yes” or “no” decision.

6

Ardagna, Damiani, De Capitani di Vimercati, Samarati

Fig. 4. Waterfall Authentication

• The Policy Evaluation Point (PEP) module interacts with the PAP that
encapsulates the information needed to identify the applicable policies. It
then evaluates the request against the applicable policies and returns the
final decision to the PDP module.

• The Policy Administration Point (PAP) module retries the policies appli-
cable to a given access request and returns them to the PEP module.

The use of these modules can be regulated by means of an instance of
PDP-PEP-PAP. For instance, if the PAP module requires the authentication
of the PEP module, the PAP module has to create a new PDP and at least
a pair of PEP-PAP (see Figure 4). Client and service represent the entity
submitting an access request and the target service, respectively. A service
contains a set of publicly available functions that clients can invoke. To fix
ideas and make concrete examples, in the following we consider the simple
Web service illustrated in Figure 5. This Web service contains two functions,
called TemptureFAut and TemptureCAut, which convert temperatures from
Fahrenheit to Celsius and vice versa.

In the remainder of this section, we describe the system components. We
then describe how access requests submitted by clients are processed.

3.1 Policy Administration Point (PAP)

The PAP module is a policy repository that provides an administrative inter-
face for inserting, updating, and deleting policies. One of the most important
features of this interface is that it can prevent from inserting invalid poli-

7

Ardagna, Damiani, De Capitani di Vimercati, Samarati

Fig. 5. A simple example of Web service

Public Class PAP : Inherits WebService

Public Function Insert(ByVal service As String, ByVal method As String,

ByVal policy As String)

...

End Function

Public Function Modify(ByVal service As String, ByVal method As String,

ByVal policy As String)

...

End Function

Public Function Delete(ByVal policy As String)

...

End Function

Public Function DeleteByService(ByVal service As String)

...

End Function

Public Function DeleteByMethod(ByVal method As String)

...

End Function

Public Function DeleteByServiceMethod(ByVal service As String, ByVal

method As String)

...

End Function

End Class

Fig. 6. Administrative interface of the PAP module

cies and from executing update operations that generate invalid policies: a
validation function ensures that the policies are well-formed. The PAP ad-
ministrative interface is depicted in Figure 6.

The PAP module invocation is realized with the following function:

8

Ardagna, Damiani, De Capitani di Vimercati, Samarati

Service Method PolicyLocation

TemperatureService TemptureFAut /Policy/policy1.xml

TemperatureService TemptureCAut /Policy/policy2.xml

Fig. 7. An example of policy repository

Public Class PAP : Inherits WebService
<WebMethod()> Public Function PolicyMatch(ByVal service As String,
ByVal method As String) As String()
. . .
End Function

End Class

The main purpose of this module is to retrieve the policies applicable to
a given access request. The PAP module performs a search in the reposi-
tory based on the received parameters (e.g., the service name and option-
ally the method name). In our implementation the repository is a relational
database that includes a table, called PolicyRepository, with three at-
tributes: Service, Method, and PolicyLocation. A tuple 〈s1, m1,path policy〉
in table PolicyRepository states that policy path policy is a policy applicable
to method m1 (if any) of service s1. The policies applicable to a given access
request are stored in an array that is then returned to the PEP module.

Example 3.1 Consider the Web service illustrated in Figure 5. The cor-
responding PolicyRepository is illustrated in Figure 7. It states that the
policies applicable to method TemptureFAut of service TemperatureService

are stored in the /Policy/policy1.xml file. Analogously, policies applicable
to method TemptureCAut of service TemperatureService are stored in the
/Policy/policy2.xml file.

3.2 Policy Evaluation Point (PEP)

The PEP module realizes the enforcement of the policies returned by the PAP
module. The access request is granted if at least one policy is satisfied; the
access is denied otherwise. In this latter case, the PEP module returns to
the client an exception string indicating the error (see Section 4). The PEP
module invocation is realized with the following interface:

<WebMethod()> Public Function Evaluation(ByVal MethodName As String,

ByVal theCallHeader As theHeaderClass) As Boolean

...

End Function

More precisely, the PEP module works as follows. The PEP module creates
a SAXParser [15] for analyzing the policies and enforces them iteratively. The
enforcement phase can generate two possible events: i) a policy is satisfied,
the enforcement process terminates, and the access request is granted; ii) a
policy is not satisfied, an exception is raised and stored in a vector. To verify

9

Ardagna, Damiani, De Capitani di Vimercati, Samarati

whether a policy is satisfied or not, all assertions in the policy are evaluated.
This evaluation depends on the assertion type and on the subelements of the
assertions. After that all policies have been evaluated and none of them is
satisfied, the PEP module selects the exception with the highest priority and
sends it to the service.

Example 3.2 The PEP module evaluates the following assertions’ types as
follows.

• SecurityToken. The PEP module extracts from the access request
all elements whose type is that specified in the attribute TokenType

(e.g., UsernameToken, X509SecurityToken, and Kerberos) and compares
them with the SecurityToken element specified in the policy. If the
SecurityToken has not subelements, the assertion is evaluated to true if
the access request includes a token of the same type of that specified in
the policy. Otherwise, if the SecurityToken has some subelements (e.g.,
SubjectName, UsePassword, Password), the assertion is evaluated to true
if there is a (partial/exact) match between the information specified in the
access request and the information contained in these subelements.

• MessageAge. The SAXParse compares the timestamp (or, more precisely,
the creation date) associated with the access request and the current date
and time. If the difference between these two values is less than the value
specified in the attribute Age, then the assertion is evaluated to true.

• Language. The SAXParse verifies whether the access request contains a
certificate that specifies the requested language.

3.3 Policy Decision Point (PDP)

The PDP module is the interface between the service and the Enforcer.
The service creates an instance of PDP and call the following web method
Response by using a SOAP message.

<WebMethod()> Public Function Response(ByVal theHeader As theHeaderClass,

ByVal ServiceName As String, ByVal MethodName As String) As Boolean

Return MyPEP.Evaluation(ServiceName, MethodName, theHeader)

End Function

The body of the SOAP message is used for communicating the target
service name and/or method name and the header can be used for specifying
additional information (e.g., information for authenticating the service to the
PDP). The PDP module instantiates one or more PEP modules that can be
based on different policy repositories (PAPs). The interaction between each
pair PEP-PAP can return a different decision; the PDP module defines a
policy for establishing how to compute a final decision based on the responses
of each PEP. Different decision criteria could be adopted, each applicable in
specific situations. A natural and straightforward decision policy is the one

10

Ardagna, Damiani, De Capitani di Vimercati, Samarati

<?xml version="1.0" ?>
<xs:schema xmlns:targetNamespace="http://seth/errors"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="All" type="Compositor"/>
<xs:element name="ExactlyOne" type="Compositor"/>
<xs:element name="OneOrMore" type="Compositor"/>
<xs:element name="Error" type="xs:string"/>
<xs:complexType name="Compositor">

<xs:group ref="CompositorContent" maxOccurs="unbounded"/>
</xs:complexType>
<xs:group name="CompositorContent">

<xs:choice>
<xs:element ref="All"/>
<xs:element ref="ExactlyOne"/>
<xs:element ref="OneOrMore"/>
<xs:element ref="Error" maxOccurs="unbounded"/>

</xs:choice>
</xs:group>
<xs:group name="root">

<xs:choice>
<xs:element ref="All"/>
<xs:element ref="ExactlyOne"/>
<xs:element ref="OneOrMore"/>

</xs:choice>
</xs:group>
<xs:element name="ErrorsReport" type="ErrorsReportExpression"/>
<xs:complexType name="ErrorsReportExpression">

<xs:group ref="root" minOccurs="0" maxOccurs="unbounded"/>
<xs:anyAttribute namespace="##any" processContents="lax"/>

</xs:complexType>
</xs:schema>

Fig. 8. XSD Schema of message errors

stating that the exception raised by the PEP module with the highest priority
wins, or a majority policy can be adopted.

3.4 Exception handling

When there is an exception during the evaluation of an access request sub-
mitted by a client, the system should not only capture the exceptions, but
also communicate the exception to the client. Such a communication should
be performed in a platform-independent way. To accomplish this, we exploit
a tree structure based on DOM [16]. Intuitively, the leaves of the tree are the
assertions and the internal nodes are the boolean operators (All, OneOrMore,
ExactlyOne corresponding to and, or, and xor) used for combining the as-
sertions. The PEP module simplifies the tree evaluating its leaves to true
or false. Then, the evaluation tree is simplifies using the usual boolean laws
for true and false. If the access request is denied, the Enforcer has to report
an error indicating the reason for which the access request has been rejected.
Such a error message can specify, for example, that there is no a particular

11

Ardagna, Damiani, De Capitani di Vimercati, Samarati

POST /QuoteService HTTP/1.1
SOAP-Action="http://www.acme.com/TemperatureService"
Content-Type: text/xml; charset="UTF-8"
Content-Length: nnnn
<SOAP-ENV:Envelope

<SOAP-ENV:Header>
<wsse:Security xmlns:wsse= "http://schemas.xmlsoap.org/ws/2002/04/secext">

<wsse:BinarySecurityToken ValueType="wsse:X509v3"
EncodingType="wsse:Base64Binary">

MIIEZzCCA9CgAwIBAgIQEmtJZc0...
</wsse:BinarySecurityToken>
<wsse:UsernameToken >

<wsse:Username>Alice</wsse:Username>
</wsse:UsernameToken>

</wsse:Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body>

<TemperatureService>
<TemptureFAut>32</TemptureFAut>

</TemperatureService>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Fig. 9. An example of access request

<wsp:Policy xmlns:wsse=". . ." xmlns:wssx=". . .">
<wsp:All wsp:Preference="1" wsp:Usage="wsp:Required">

<wsse:SecurityToken>
<wsse:TokenType>wsse:UsernameToken</wsse:TokenType>
<wsse:Username>Alice</wsse:Username>

</wsse:SecurityToken>
<wsse:SecurityToken>

<wsse:TokenType>wsse:X509</wsse:TokenType>
<Claims>

<SubjectName>SubscriptionDate=“31/01/2004”</SubjectName>
</Claims>

</wsse:SecurityToken>
</wsp:All>

</wsp:Policy>

Fig. 10. An example of policy

certificate or there is no a pair username-password. In our system, the error
messages are in XML format and are well-formed with respect to the XSD
schema shown in Figure 8.

4 Access request enforcement

We now describe the enforcement in more details. Suppose that user
Alice issues an access request for the method TemptureFaut of the service
TemperatureService illustrated in Figure 5. The access request evaluation
proceeds as follows.

12

Ardagna, Damiani, De Capitani di Vimercati, Samarati

• The access request issues by the client is passed to the requested service. In
our example, Alice issues the SOAP request illustrated in Figure 9, where,
for the sake of simplicity, the namespaces are omitted.

• The access request is then passed to the PDP module that instantiates one
or more PEP modules. The request is redirected to the PEP module by
using the Response method illustrated in Section 3.3.

• The PEP module sends the access request to the PAP module that
returns all the applicable policies. In our example, according to the
PolicyRepository table illustrated in Figure 7, the PAP module re-
turns the policies specified in /Policy/policy1.xml and shown in Fig-
ure 10. It states that the access is granted if the access request includes a
UsernameToken with Username Alice and an X509 certificate declaring a
specific subscription date.

• The PEP module then evaluates the policies returned by the PAP module.
If the access is granted, the decision is sent to the service that in turn
returns the response to the client. Otherwise, an exception is returned. In
our example, the policy in Figure 10 evaluates to false because the X509
certificate contained in the access request does not include any information
about the subscription date. The error message returned to the client is as
follows.

<ErrorsReport>
<All>

<Error>Needed subscription date</Error>
</All>

</ErrorsReport>

5 Conclusions

XML-based Web services represent a challenge and an opportunity for orga-
nizations wishing to expose product and service offerings through the Inter-
net. In such a context, security is currently one of the main concerns and
several initiatives are currently ongoing aimed at achieving a standardized
way for supporting integrity, confidentiality, and access control for XML Web
services. In this paper, we have presented a Web service architecture for en-
forcing access control policies. We conclude by mentioning some interesting
future directions for extending our work.

• UDDI integration. Since the modules of the Enforcer have been imple-
mented as Web services, it is possible to integrate our architecture with an
UDDI register where the available PEP, PAP, and PDP can be registered. A
trusted PAP module can, for example, use the UDDI register for searching
a particular PEP satisfying given requirements.

• Certificate validation. In our system, the validation of a certificate is per-
formed by checking the creation date an the expiry date contained in the
certificate itself. The next evolution of our architecture could include a
certification authority (CA).

13

Ardagna, Damiani, De Capitani di Vimercati, Samarati

• Other policy language specification. Our architecture is completely indepen-
dent from the particular access control language adopted. We can then use
the architecture to realize an access control policy enforcement based on
other languages such as XACML.

• Java and open source. Our architecture has been implemented in Visual
Basic and can be installed on Windows machines. Note, however, that as
discussed in Section 3, the architecture design is platform-independent. An
interesting alternative consists in implementing an open source, platform-
independent architecture based on Java services.

6 Acknowledgments

This work was supported in part by the European Union within the PRIME
Project in the FP6/IST Programme under contract IST-2002-507591 and by
the Italian MIUR within the KIWI and MAPS projects.

References

[1] Damiani, E., S. De Capitani di Vimercati and P. Samarati, Towards Security XML
Web Services, in Proc. of the 2002 ACM Workshop on XML Security, Washington,
DC, USA, November 2002.

[2] Ardagna, C.A., and S. De Capitani di Vimercati, A comparison of modeling strategies in
defining XML-based access control language, Computer Systems Science & Engineering
Journal, 2004 (to appear).

[3] Bonatti, P., and P. Samarati, A unified framework for regulating access and information
release on the web, Journal of Computer Security, 10, 241-272.

[4] Damiani, E., S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati, Securing
SOAP E-services, International Journal of Information Security (IJIS), 1, 100-115,
February 2002.

[5] Bacon, J., J.A. Hine, K. Moody, and W. Yao, An architecture for distributed OASIS
services, In Proc. of the IFIP/ACM International Conference on Distributed Systems
Platforms nd Open Distributed Processing, Hudson River Valley, New York, USA, April
2000.

[6] Koshutanski, H., and F. Massacci, An access control framework for business processes
for web services, In Proc. of the 2003 ACM workshop on XML security, Fairfax,
Virginia, November 2003.

[7] De Capitani di Vimercati, S., and P. Samarati, Access control: Policies, models, and
mechanisms, Foundations of Security Analysis and Design, 2001.

[8] Newcomer, E., “Understanding Web Services : XML, WSDL, SOAP, and UDDI”,
Addison Wesley, 2002.

[9] Galbraith, B., W. Hankinson, A. Hiotis, M. Janakiraman, D. V. Prasad, R. Trivedi,
and D. Whitney, “Professional Web Services Security”, Wrox Press Ltd., December
2002.

14

Ardagna, Damiani, De Capitani di Vimercati, Samarati

[10] “Web Services Architecture”, http://www.w3.org/TR/ws-arch/.

[11] Hoque, R., “CORBA 3”, IDG Books Worldwide, Inc., 1998.

[12] Bray, T., E. Maker, J. Paoli, and C. M. Spenberg-McQueen , “Extesible Markup
Language (XML) 1.0 (Second Edition)”, World Wide Web Consortium (W3C),
http://www.w3.org/TR/REC-xml, October 2000.

[13] “Apache XML Project”, http://xml.apache.org/.

[14] Bradley, N., “The XML Companion”, Addison Wesley, 2002, 3rd.

[15] “Official website for SAX”, http://www.saxproject.org/.

[16] “Document Object Model (DOM)”, http://www.w3.org/DOM/.

[17] Box, D., “Simple Object Access Protocol (SOAP) 1.1”, http://www.w3.org/TR/SOAP,
May 2000.

[18] Chinnici, R., M. Gudgin, J. Moreau, and S. Weerawarana, “Web Services
Description Language (WSDL) version 1.2. World”, Wide Web Consortium (W3C),
http://www.w3.org/TR/wsdl12, July 2002.

[19] “UDDI Technical White Paper”, http://www.uddi.org.

[20] Atkinson, B., and G. Della-Libera et al., “Web services security (WS-Security)”,
http://msdn.microsoft.com/library/en-us/dnglobspec/
html/ws-security.asp, April 2002.

[21] Box, D., “Web Services Policy Framework (WS-Policy) version 1.1”,
http://msdn.microsoft.com/library/en-us/dnglobspec/
html/ws-policy.asp, May 2003.

[22] Della-Libera, G., and other, “Web Services Security Policy Language (WS-
SecurityPolicy) version 1.0”,
http://msdn.microsoft.com/library/en-us/dnglobspec/
html/ws-securitypolicy.asp, December 2002.

[23] Box, D., “Web Services Policy Assertions Language (WS-PolicyAssertions) version 1.1”,
http://msdn.microsoft.com/library/en-us/dnglobspec/
html/ws-policyassertions.asp, May 2003.

[24] Box, D., “Web Services Policy Attachment (WS-PolicyAttachment) version 1.1”,
http://msdn.microsoft.com/library/en-us/dnglobspec/
html/ws-policyattachment.asp, May 2003.

[25] Box, D., “OASIS eXtensible Access Control Markup Language TC”,
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml.

[26] Ambler, S., T. Jewell, and E. Roman, “Mastering Enterprise JavaBeans”, Wiley
Computer Publishing, 2002.

[27] Brown, N., and C. Kindel, “Distributed Component Object Model Protocol”,
http://www.globecom.net/ietf/draft/draft-brown-dcom-v1-spec-03.html.

[28] “OASIS Security Services TC (SAML)”,
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security.

[29] “XML Schema”, http://www.w3.org/XML/Schema.

15

