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ABSTRACT
Data outsourcing is emerging today as a successful paradigm
allowing users and organizations to exploit external services
for the distribution of resources. A crucial problem to be
addressed in this context concerns the enforcement of selec-
tive authorization policies and the support of policy updates
in dynamic scenarios.

In this paper, we present a novel solution to the enforce-
ment of access control and the management of its evolution.
Our proposal is based on the application of selective encryp-
tion as a means to enforce authorizations. Two layers of
encryption are imposed on data: the inner layer is imposed
by the owner for providing initial protection, the outer layer
is imposed by the server to reflect policy modifications. The
combination of the two layers provides an efficient and ro-
bust solution. The paper presents a model, an algorithm for
the management of the two layers, and an analysis to iden-
tify and therefore counteract possible information exposure
risks.

1. INTRODUCTION
Contrary to the vision of a few years ago, where many

predicted that Internet users would have in a short time
exploited the availability of pervasive high-bandwidth net-
work connections to activate their own servers, users are to-
day, with increasing frequency, resorting to service providers
for disseminating and sharing resources they want to make
available to others.

The continuous growth of the amount of digital infor-
mation to be stored and widely distributed, together with
the always increasing storage, support the view that service
providers will be more and more requested to be responsible
for the storage and the efficient and reliable distribution of
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content produced by others, realizing a “data outsourcing”
architecture on a wide scale. This important trend is par-
ticularly clear when we look at the success of services like
YouTube, Flickr, Blogger, MySpace, and many others in the
“social networking” environment.

When storage and distribution do not involve publicly re-
leasable resources, selective access techniques must be en-
forced. In this context, it is legitimate for the data owner to
demand the data not to be disclosed to the service provider
itself, which, while trustworthy to properly carry out the re-
source distribution functions, should not be allowed access
to the resource content.

The problem of outsourcing resource management to a
“honest but curious” service has recently received consider-
able attention by the research community and several ad-
vancements have been proposed. The different proposals
require the owner to encrypt the data before outsourcing
them to the service. Most proposals assume that the data
are encrypted with a single key only [7, 10, 11]. In such
a context, either authorized users are assumed to have the
complete view on the data or, if different views need to be
provided to different users, the data owner needs to partic-
ipate in the query execution to possibly filter the result of
the service provider. Other proposals [13, 18], developed
for the protection of XML documents, avoid this problem
by applying selective encryption, where different keys are
used to encrypt different portions of the XML tree. In the
outsourcing scenario, all these proposals, in case of updates
of the authorization policy, would require to re-encrypt the
resources and resend them to the service. If the owner does
not have the resources stored locally, a further preliminary
step is needed to re-acquire them from the service and de-
crypt them.

In this paper, we propose a solution that removes these
issues, facilitating the successful development of outsourc-
ing data in emerging scenarios. In particular, we look at the
problem of defining and assigning keys to users, by exploit-
ing hierarchical key assignment schemes [3, 4, 8, 15], and of
efficiently supporting policy changes. Indeed, in scenarios
involving potentially huge sets of resources of considerable
size, re-encryption and re-transmission by the owner may
not be acceptable. The advantage compared with a solution
requiring to re-send a novel encrypted version of the resource



is typically huge and arbitrarily large (if the resource has a
size of 1 GByte and the request to the server requires a 100-
byte packet, in terms of network traffic, compared to the
transmission of the re-encrypted resource, the improvement
is in the order of 107).

The contribution of this paper is threefold. First (Sec-
tion 2), we propose a formal base model for the correct
application of selective encryption. The model allows the
definition of an encryption policy equivalent to the autho-
rization policy to be enforced on the resources. We note
that, while it is in principle advisable to leave authorization-
based access control and cryptographic protection separate,
in the outsourcing scenario such a combination can prove
successful: selective encryption allows selective access to be
enforced by the service provider itself without the owner
intervention.

Second (Section 3 and Section 4), building on the base
model we propose the use of a two-layer approach to en-
force selective encryption without requesting the owner to
re-encrypt the resources every time there is a change in the
authorization policy. The first layer of encryption is applied
by the data owner at initialization time (when releasing the
resource for outsourcing), the second layer of encryption is
applied by the service itself to take care of dynamic pol-
icy changes. Intuitively, the two-layer encryption allows the
owner to outsource, besides the resource storage and dis-
semination, the authorization policy management, while not
releasing data to the provider.

Third (Section 5), we provide a characterization of the
different views of the resources by different users and char-
acterize potential risks of information exposures due to dy-
namic policy changes. The investigation allows us to con-
clude that, while an exposure risk may exist, it is well de-
fined and identifiable. This allows the owner to address the
problem and minimize it at design time. Also, the fact that
exposure arises only in specific situations and over well iden-
tified resources, allows the owner to completely eliminate it
by resorting to re-encryption when necessary.

An important strength of our solution is that it does
not substitute the current proposals, rather it complements
them, enabling them to support encryption in a selective
form and easily enforce dynamic policy changes.

2. BASE MODEL
Consistently with the typical outsourcing scenario, we dis-

tinguish three roles: the data owner , who creates the re-
source; the server , who receives by the data owner a re-
source in an encrypted format and makes it available on
the network; and the user , who exploits the knowledge of
a small shared secret (a key) and possibly additional public
information (typically available on the server) to access the
resource plaintext.

2.1 Keys and tokens
We assume the existence of a set of symmetric encryption

keys K in the system. Also, we exploit the existence of the
key derivation method proposed by Atallah’s et al. [4] based
on the definition and computation of public tokens that allow
the derivation of keys from other keys. Given two keys ki

and kj , a token ti,j is defined as ti,j = kj ⊕h(ki, lj), where lj
is a publicly available label associated with kj , ⊕ is the bit-
a-bit xor operator and h is a deterministic cryptographic
function (in [4] it was proposed the use of a secure hash
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v1.k v6.k v6.k ⊕ h(v1.k, l6)
v2.k v6.k v6.k ⊕ h(v2.k, l6)
v3.k v6.k v6.k ⊕ h(v3.k, l6)
v3.k v7.k v7.k ⊕ h(v3.k, l7)
v4.k v7.k v7.k ⊕ h(v4.k, l7)
v5.k v8.k v8.k ⊕ h(v5.k, l8)
v6.k v8.k v8.k ⊕ h(v6.k, l8)

(a) (b)

Figure 1: An example of key derivation

r1 r2 r3 r4 r5 r6 r7 r8
A 0 0 0 0 1 1 1 1
B 0 0 0 0 1 1 1 1
C 1 1 1 1 1 1 1 1
D 0 0 1 1 0 0 0 0
E 0 0 0 0 0 0 0 1

Figure 2: An example of access matrix

u φ(u)
A v1.k

B v2.k
C v3.k
D v4.k

E v5.k

r φ(r)
r1,r2 v3.k

r3,r4 v7.k
r5,r6,r7 v6.k

r8 v8.k

(a) (b)

Figure 3: An example of key assignment

function). Since keys need to remain secret, while tokens are
public, the use of tokens greatly simplifies key management.
Key derivation via tokens can be applied in chains: a chain
of tokens is a sequence ti,l, . . . , tn,j of tokens such that tc,d

follows ta,b in the chain only if b = c. This is formally
captured by the following definition, associating with each
key the set of keys reachable by it via chains of tokens.

Definition 1. (Key derivation function).
Let K be the set of symmetric encryption keys in the system,
and T the set of tokens in the public catalog.

The direct key derivation function τ : K 7→ 2K is defined as
τ (ki)={kj∈K | ∃ti,j∈T }.

The key derivation function τ∗ : K 7→ 2K is a function such
that τ∗(ki) is the set of keys derivable from ki by chains of
tokens, including the key itself (chain of length 0).

We can graphically represent keys and tokens through a
graph, having a vertex vi associated with each key in the
system, denoted vi.k, and an edge connecting two vertices
(vi, vj) if token ti,j belongs to the public token catalog T .
Chains of tokens then correspond to paths in the graph.
In other words, the key derivation function associates with
each τ∗(k) the keys of vertices reachable from the vertex
associated with k in the graph. For instance, Figure 1(a)
represents an example of graph corresponding to a set of 8
keys, along with its public token catalog composed of 7 items
(see Figure 1(b)). As an example, τ (v3.k)={v6.k,v7.k} and
τ∗(v3.k)={v3.k,v6.k,v7.k,v8.k}.

2.2 Access control and encryption policies
Consistently with the data distribution and dissemination

scenario, we assume access by users to the outsourced data
to be read-only. The data owner therefore defines a discre-
tionary access control policy to regulate read operations on
the outsourced resources. Authorizations are of the form
〈user,resource〉.1

1For the sake of simplicity, here we do not deal with the fact



Let U be the set of users of the system and R the set of
outsourced resources. Authorizations can be modeled via a
traditional access matrix A, with a row for each user u∈U ,
a column for each resource r∈R. Each entry A[u, r] is set
to 1 if u can access r; 0 otherwise. Figure 2 illustrates an
example of access matrix with five users (A, B, C, D, E)
and eight resources (r1, r2, . . . , r8). Given an access matrix
A over sets U and R, acl(r) denotes the access control list
of r (i.e., the set of users that can access r), while cap(u)
denotes the capability list of u (i.e., the set of resources that
u can access). For instance, with reference to the matrix in
Figure 2, acl(r1)={C} and cap(B)={r5,r6,r7,r8}.

Our initial goal is to represent the authorizations by
means of proper encryption and key distributions. To avoid
users having to store and manage a huge number of (se-
cret) keys, we exploit the key derivation method via tokens.
Exploiting tokens, the release to each user of a set of keys
K = {k1, . . . , kn} can be equivalently obtained by the re-
lease to each user of a single key ki∈ K and the publication
of a set of tokens allowing to derive (directly or indirectly)
all keys kj∈ K, j 6= i. A major advantage of using tokens is
that they are public (typically they will be stored together
with resources) and allow each user to derive multiple en-
cryption keys, while having to securely manage a single one.
In the following, we use K and T to denote the set of keys
and tokens defined in the system, respectively.

We assume that each user is associated with a single key,
communicated to her by the owner on a secure channel at
the time the user joins the system. Also, each resource can
be encrypted by using a single key.

Definition 2. (Key assignment). A key assignment is a
function φ : U ∪ R 7→ K, which associates with each user
u ∈ U the (single) key released to her and with each resource
r ∈ R the (single) key with which the resource is encrypted.

It is easy to see that, by Definition 1, each user u can
retrieve (via her own key φ(u) and the set of public tokens
T ) all the keys derivable from φ(u), that is, all the keys in
τ∗(φ(u)). In the following, we use φ∗(u) as a short hand for
τ∗(φ(u)).
Figure 3 represents an example of key assignment, with ref-
erence to the key graph in Figure 1(a). Composing the graph
in Figure 1(a) with the function defined in Figure 3(a), we
obtain the set of keys each user knows. As an example,
φ∗(B)=τ∗(v2.k)={v2.k,v6.k,v8.k}. A key derivation defined
by tokens and the corresponding key assignment realize an
encryption policy. This is captured by the following defini-
tion.

Definition 3. (Encryption policy). Let E=(τ∗, φ) be an
encryption policy composed of a key derivation function τ∗

and a key assignment function φ.

An encryption policy E is said to correctly model a set of
authorizations A if and only if users are able to decrypt all
and only the resources for which they have the authorization.
This is formally captured by the following definition.

Definition 4. (Correctness). Let E=(τ∗, φ) be an encryp-
tion policy, and A an access control policy. E is said to

that authorizations can be specified for predefined groups of
users and groups of resources. Our approach will support
dynamic grouping, therefore subsuming any statically de-
fined group.

correctly enforce A, denoted E ⇐⇒ A, iff both the following
conditions hold:

• Soundness. ∀u ∈ U , r ∈ R :
φ(r) ∈ φ∗(u) =⇒ A[u, r] = 1

• Completeness. ∀u ∈ U , r ∈ R :
A[u, r] = 1 =⇒ φ(r) ∈ φ∗(u)

As an example, the encryption policy illustrated in Fig-
ures 1 and 3 correctly enforces the policy represented by the
access matrix in Figure 2.

A straightforward approach for defining a correct E can
exploit the hierarchy among sets of users, which is induced
by the partial ordering of sets of users, based on the set
containment relationship (⊆) [9]. This strategy works as
follows:

• define a key for each access control list as well as for
each singleton set of users (when not already included
in the acls);

• define tokens between keys corresponding to sets of
users in hierarchical relationships; 2

• assign to each user u the key corresponding to its sin-
gleton group {u};

• encrypt each resource r with the key associated with
acl(r).

As an example, consider policy A in Figure 2. Since there
is a set of 4 different acls (i.e., {C}, {C, D}, {A, B, C},
{A, B, C, E}), which includes a singleton acl , and 5 users,
we need to define 8 different keys. In particular, keys
k1,. . . k5 are associated, in the order, with users A,. . . ,E, k6

is associated with {A, B, C}, k7 with {C, D}, and k8 with
{A, B, C, E}. We then define a token between each pair of
keys (ki, kj), i, j = 1 . . . , 8 and i 6= j, such that the set of
users corresponding to ki is included in the set of users corre-
sponding to kj . Figure 1(a) illustrates a graphical represen-
tation of these keys and tokens, where vertex vi corresponds
to key ki. Resources r1, . . . , r8 are then encrypted as shown
in Figure 3(b).

3. TWO LAYER MODEL
The model described in Section 2 assumes keys and tokens

are computed, on the basis of the existing authorization pol-
icy, prior to sending the encrypted resources to the server.
While we can note that, in general, the authorizations spec-
ified at initialization time may not change frequently, many
situations require dynamic changes of authorizations, for ex-
ample, for granting privileges to new users.

Every time an authorization on a resource r is granted or
revoked, acl(r) changes accordingly. In terms of the encryp-
tion policy this implies the need to change the key used to
encrypt the resource (i.e., φ(r)) to make it accessible (i.e.,
intelligible) only to users in the new acl . This operation re-
quires then decrypting the resource (with the key with which
it is currently encrypted) to retrieve the original plaintext
(the owner may possibly store resources only on the external
provider without keeping a local copy), and then re-encrypt
it with the new key. Imposing such an overhead (in terms

2As usual, only direct relationships are considered [12].



of both transmission and computation) for managing autho-
rization changes does not fit our working assumption, where
the owner outsources its data since it does not have the nec-
essary resources and transmission channels to manage them.

We put forward the idea of outsourcing to the server, be-
sides the resource storage, the authorization management as
well. Note that this delegation is possible since the server
is considered trustworthy to properly carry out the service.
Recall, however, that the server is not trusted with confiden-
tiality (honest but curious). For this reason, our solution has
been thought of with the goal of minimizing the case of the
server colluding with the users to breach data confidential-
ity (see Section 5). The way to make this possible is via a
solution that enforces policy changes on encrypted resources
themselves (without the need of decrypting them), and can
then be performed by the server.

3.1 Two-layer encryption
To delegate policy changes enforcement to the server,

avoiding re-encryption for the data owner, we adopt a two
layer encryption approach. The owner encrypts the re-
sources and sends them to the server in encrypted form;
the server can impose another layer of encryption (following
directions by the data owner).

We then distinguish two layers of encryption.

• Base Encryption Layer (BEL), performed by the
data owner before transmitting data to the server. It
enforces encryption on the resources according to the
policy existing at initialization time.

• Surface Encryption Layer (SEL), performed by the
server over the resources already encrypted by the data
owner. It enforces the dynamic changes over the policy.

Both layers enforce encryption by means of a set of sym-
metric keys and a set of public tokens between these keys, as
illustrated in Section 2, although some adaptations are nec-
essary as explained respectively in Sections 3.1.1 and 3.1.2.

In terms of efficiency, the use of a double layer of encryp-
tion does not appear as a significant computational burden;
experience shows that current systems have no significant
delay when managing encryption on data coming from ei-
ther the network or local disks, this is also testified by the
widespread use of encryption on network traffic and for pro-
tecting the storage of data on local file systems [16].

3.1.1 Base Encryption Layer
Compared with the model presented in Section 2, in the

BEL level we distinguish two kinds of keys: derivation keys
and access keys. Access keys are the ones actually used to
encrypt resources, while derivation keys are used to provide
the derivation capability via tokens, i.e., tokens can be de-
fined only with the derivation key as starting point. Each
derivation key k is always associated with an access key ka

obtained by applying a secure hash function to k, that is,
ka = h(k). In other words, keys at the BEL level always
go in pairs 〈k, ka〉. The rationale for this evolution is to
distinguish the two roles associated with keys, namely: en-
abling key derivation (applying the corresponding tokens)
and enabling resource access. The reason for which such a
distinction is needed will be clear in Section 4.

A key derivation function τ∗

b : K 7→ 2K associates with
each derivation key the set of keys derivable from it - either

directly or indirectly - via the public token catalog and/or
the application of the hashing function. Again, the key
derivation relationship is represented by means of a graph,
which now has a vertex b for each pair of keys 〈k, ka〉 and
an edge connecting vertices (bi, bj) if there is a token in
the public catalog allowing the derivation of either bj.k or
bj .ka from bi.k. To graphically distinguish tokens leading
to derivation keys from tokens leading to access keys we use
dashed lines for the latter. Given a key ki, τ∗

b (ki) returns
all keys reachable from vertex b with b.k=ki by following
paths of tokens and hashing. Note that dashed edges can
only appear as the last step of the path (and they allow the
derivation of the access key only).

A key assignment is a function φb : U ∪ R 7→ K that
associates with each user u∈ U the (single) derivation key
released to the user by the data owner and with each re-
source r∈ R the (single) access key with which the resource
is encrypted by the data owner. Figure 4 illustrates an ex-
ample of BEL corresponding to the example introduced in
Section 2.

3.1.2 Surface Encryption Layer
As in the base model of Section 2, at the SEL level there

is no distinction between derivation and access keys (intu-
itively a single key carries out both functions).

Again, we define a key derivation function τ∗

s : K 7→ 2K

that can be represented by means of a graph having a vertex
for each key k defined at SEL and an edge connecting vertices
(si, sj) if there is a token in the public catalog allowing the
derivation of sj.k from si.k.

A key assignment is a function φs : U ∪ R 7→ K ∪ {null}
that associates with each user u∈ U the (single) key released
to the user by the server and with each resource r∈ R the
(single) key with which the resource is encrypted by the
server (if any).

3.1.3 BEL and SEL combination
In the two-layer approach, each resource can then be en-

crypted twice: at the BEL level first, and at the SEL level
then. Users can access resources only via the SEL level.
Each user u receives two keys: one to access the BEL and
the other to access the SEL.3 Users will be able to access
resources for which they know both the keys (BEL and SEL)
used for encryption.

The consideration of the two levels requires to restate the
correctness property of the encryption policy, which is now
defined as follows.

Definition 5. (Correctness). Let Eb=(τ∗

b , φb) be an en-
cryption policy at the BEL level, Es=(τ∗

s , φs) be an encryp-
tion policy at the SEL level, and A an access control pol-
icy. The pair 〈Eb,Es〉 is said to correctly enforce A, denoted
〈Eb,Es〉 ⇐⇒ A, iff both the following conditions hold:

• Soundness. ∀u ∈ U , r ∈ R :
φb(r) ∈ φ∗

b(u) ∧ φs(r) ∈ φ∗

s (u) =⇒ A[u, r] = 1

• Completeness. ∀u ∈ U , r ∈ R :
A[u, r] = 1 =⇒ φb(r) ∈ φ∗

b(u) ∧ φs(r) ∈ φ∗

s (u)

3To simplify key management, the user key φs(u) for SEL
can be obtained by the application of a secure hash function
from the user key φb(u) for BEL. In this case, the data owner
needs to send in the initialization phase to the server the list
of SEL keys of each user.



BEL Delta SEL Full SEL

u φb(u)
A b1.k
B b2.k
C b3.k
D b4.k
E b5.k

r φb(r)
r1,r2 b3.ka

r3,r4 b7.ka

r5,r6,r7 b6.ka

r8 b8.ka

u φs(u)
A s1.k
B s2.k
C s3.k
D s4.k
E s5.k

r φs(r)
r1,. . . ,r8 null

u φs(u)
A s1.k
B s2.k
C s3.k
D s4.k
E s5.k

r φs(r)
r1,r2 s3.k
r3,r4 s7.k

r5,r6,r7 s6.k
r8 s8.k
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Figure 4: An example of BEL and SEL combination with the Delta SEL and the Full SEL approaches

In principle, any encryption policy at BEL and SEL can be
specified as long as their combination is correct with respect
to the authorizations.

Let A be the authorization policy at the initialization time
and let (τ∗

b , φb) be the encryption policy at the BEL level
correctly enforcing it (i.e., (τ∗

b , φb) ⇐⇒ A). We envision two
basic approaches that can be followed in the construction of
the two levels.

Full SEL. The SEL policy is initialized to reflect exactly (i.e.,
to repeat) the BEL policy: for each derivation key in
BEL a corresponding key is defined in SEL; for each
token in BEL, a corresponding token is defined in SEL.
Note that the key derivation function τ∗

s corresponds
to a graph which is isomorphic to the one existing at
the BEL level. Each user is assigned the unique key
φs(u) corresponding to her φb(u). Each resource is
encrypted with the unique key φs(r) corresponding to
the unique derivation key associated with access key
φb(r). The SEL policy models exactly the BEL policy,
and hence by definition is correct with respect to the
access control policy (i.e., (τ∗

s , φs) ⇐⇒ A).

Delta SEL. The SEL policy is initialized to not carry out any
over-encryption. Each user u is assigned a unique key
φs(u). No encryption is performed on resources, that
is, ∀r ∈ R : φs(r) = null. The SEL level itself does
not provide any additional protection at start time,
but it does not modify the accesses allowed by BEL.

We note that a third approach could be possible, where
the authorization enforcement is completely delegated at
the SEL level and the BEL simply applies a uniform over-
encryption (i.e., with the same key released to all users) to
protect the plaintext content from the server’s eyes. We do
not consider this approach as it presents a significant expo-
sure to collusion (Section 5).

It is easy to see that all the approaches described pro-
duce a correct two layer encryption. In other words, given
a correct encryption policy at the BEL level, the approaches
produce a SEL level such that the pair 〈Eb,Es〉 correctly en-
forces the authorizations.

The reason for considering both the Full SEL and
Delta SEL approaches is the different performance and pro-
tection guarantees that they enjoy. In particular, Full SEL

always requires double encryption to be enforced (even when

authorizations remain unvaried), thus doubling the decryp-
tion load of users for each access. By contrast, the Delta SEL

approach requires double encryption only when actually
needed to enforce a change in the authorizations. However,
as we will see in Section 5, the Delta SEL is characterized
by greater information exposure, which instead does not af-
fect the Full SEL approach. The choice between one or the
other can then be a trade-off between costs and resilience to
attacks.

We close this section with a remark on the implementa-
tion. In the illustration of our approach we always assume
over-encryption to be managed with a direct and complete
encryption and decryption of the resource, as needed. We
note however that the server can, at the SEL level, apply
a lazy encryption approach, similar to the copy-on-write
(COW) strategy used by most operating systems, and actu-
ally over-encrypt the resource when it is first accessed (and
then storing the computed encrypted representation); the
server may choose also to always store the BEL representa-
tion and then dynamically apply the encryption driven by
the SEL when users access the resource.

4. POLICY UPDATES
Policy update operations can be of three kinds: 1) insert-

ing/deleting a user; 2) inserting/deleting a resource; and
3) granting/revoking an authorization. We note that inser-
tion/deletion of users and resources do not have any impact
on the policy (and consequently on the keys) as long as
these users and resources are not involved in authorizations.
Without loss of generality, we restrict ourselves to the con-
sideration of granting and revoking of authorizations (with
the note that deleting a user/resource implies revoking all
the authorizations in which the user/resource is involved).
Also, for the sake of simplicity, we assume grant and revoke
operations to be referred to a single user u and a single re-
source r. Their extension to sets of users and resources is
immediate.

Policy updates are demanded and regulated by the owner
(i.e., at the BEL level). The two-layer approach enables
the enforcement of policy updates without the need for the
owner to re-encrypt, and to resend them to the server. By
contrast, the owner just adds (if necessary) some tokens
at the BEL level and delegates policy changes to the SEL

level by possibly requesting the server to over-encrypt the
resources. The SEL level (enacted by the server) receives



over-encryption requests by the BEL level (under the control
of the data owner) and operates accordingly, adjusting to-
kens and possibly encrypting (and/or decrypting) resources.

Before analyzing grant and revoke operations let us then
see the working of over-encryption at the SEL level.

4.1 Over-encrypt
The SEL level regulates the update process through over-

encryption of resources. It receives from the BEL requests of
the form over-encrypt(R, U) corresponding to the demand
to the SEL to make the set of resources R accessible only to
users in U . Note here that the semantics is different in the
two different encryption modes. In the Full SEL approach,
over-encryption must reflect the actual access control policy
existing at any given time. In other words, it must reflect,
besides the - dynamic - policy changes not reflected in the
BEL, also the BEL policy itself. In the Delta SEL approach,
over-encryption is demanded only when additional restric-
tions (with respect to those enforced by the BEL) need to
be enforced. As a particular case, here, the set of users U
may be all when - while processing a grant operation - the
BEL determines that its protection is sufficient and there-
fore requests the SEL not to enforce any restriction and to
possibly remove an over-encryption previously imposed.

For the sake of simplicity, in the algorithm we make use
of a function Anc users that, given the key s.k of a vertex,
returns the set of users that can derive it (i.e., can reach
the vertex via a path of tokens). Anc users(s.k) is therefore
a short-hand defined as Anc users(s.k)={u ∈ U | s.k ∈
φ∗

s (u)}, which can be dynamically computed or explicitly
maintained for each vertex.

Let us then see how the algorithm works. Algorithm over-

encrypt takes a set of resources R and a set of users U as
input. First, it checks whether there exists a vertex s whose
key s.k is used to encrypt resources in R and the set of
users that can derive s.k is equal to U (step 2). If such a
vertex exists, intuitively, this means that resources in R are
over-encrypted with a key that reflects the current acl of
resources in R. Note that since all resources in R share the
same key, it is sufficient to check the above condition on any
of the resources r′ in R. If this condition is evaluated to
true, the algorithm terminates. Otherwise, if the resources
in R are currently over-encrypted (step 2.1), they are first
decrypted.4 Then, if the set of users that should be allowed
access to the resources in R by the SEL is not all (step 2.2),
over-encryption is necessary. (No operation is executed oth-
erwise, as U=all is the particular case of Delta SEL ap-
proach discussed above.) The algorithm proceeds by check-
ing the existence of a vertex s such that the set of users that
can reach key s.k (i.e., belonging to Anc users(s.k)) corre-
sponds to U . If such a vertex exists, then the key that will
be used for over-encryption is set to s.k. Otherwise, a new
key key is generated and a corresponding new vertex snew

is created, setting then snew .k=key . Vertex snew is then in-
serted in the SEL graph and tokens defined accordingly so
to make snew .k derivable by all users in U (in terms of the
graph snew must be reachable by all the keys associated with
users in U ). To this purpose, the algorithm checks existing

4If φs(r) is no more used to protect other resources in the
system, the corresponding vertex can be removed. In this
case, all parents of vertex φs(r) are directly connected to its
children and the token catalog is changed accordingly [4].
For simplicity, we omit this operation.

vertices in decreasing order of cardinality of Anc users. For
each si considered, if the set of users that can reach key
si.k (i.e., Anc users(s i.k)) is contained in U , a new token
from si.k to snew .k is generated and added. Set U is then
updated by removing the set of users Anc users(s i.k) that
can now reach key snew .k thanks to the new token. This
token generation process continues until U is empty, i.e.,
until all users have been connected to the key. Finally, all
resources in R are encrypted with the designated key and
the key assignment φs updated accordingly.

4.2 Grant and revoke
Consider first a grant request grant(r,u) to grant user

u access to resource r. The BEL level starts and regulates
the update process as follows. First, acl(r) is updated to
include u, that is, A[u, r] = 1 (step 1). Then, the algorithm
retrieves the vertex bi whose access key bi.ka is the key with
which r is encrypted (step 2). If the resource’s access key
cannot be derived by u, then a new token from user’s key
φb(u) to bi.ka is generated and added (step 3). The new to-
ken is needed to make bi.ka derivable by u (i.e., belonging to
φ∗

b(u)). Note that the separation between derivation and ac-
cess keys for each vertex allows us to add a token only giving
u access to the key used to encrypt resource r, thus limiting
the knowledge of each user to the information strictly needed
to correctly enforce the authorization policy. Indeed, knowl-
edge of bi.ka is a necessary condition to make r accessible
by u. However, there may be other resources r′ that are
encrypted with the same key bi.ka and which should not be
made accessible to u. Since releasing bi.ka would make them
accessible to u, they need to be over-encrypted so to make
them accessible to users in acl(r′) only. Then, the algorithm
determines if such a set of resources R′ exists (step 4). If
R′ is not empty, the algorithm partitions R′ in sets such
that each set S ⊆ R′ includes all resources characterized by
the same acl , denoted aclS (step 5.1). For each set S, the
algorithm calls over-encrypt(S, aclS) to demand SEL to
execute an over-encryption of S for users in aclS (step 5.2).
In addition, the algorithm requests the SEL level to syn-
chronize itself with the policy change. Here, the algorithm
behaves differently depending on the encryption model as-
sumed. In the case of Delta SEL (step 6.1), the algorithm
first controls whether the set of users that can reach the
resource’s access key (i.e., belonging to Anc users(bi.ka))
corresponds to acl(r). If so, the BEL encryption suffices
and no protection is needed at the SEL level, and therefore
a call over-encrypt({r},all) is requested. Otherwise, a
call over-encrypt({r},acl(r)) requests the SEL to make r
accessible only to users in acl(r). In the case of Full SEL

(step 6.2), this is done by calling over-encrypt(r,acl(r)),
requesting the SEL to synchronize its policy so to make r
accessible only by the users in acl(r).

Consider now a revoke request revoke(r,u) to revoke from
user u access to resource r. The algorithm updates acl(r)
to remove user u, that is, A[u, r] = 0 (step 1). Then, it
calls over-encrypt({r},acl(r)) to demand SEL to make r
accessible only to users in acl(r) (step 2).

In terms of performance, the algorithm only requires a di-
rect navigation of the BEL and SEL structure and it produces
the identification of the requests to be sent to the server in
a time which in typical scenarios will be less than the time
required to send the messages to the server.



BEL SEL

GRANT(r,u)

1. acl(r) := acl(r) ∪ {u}
2. find the vertex bi with bi.ka = φb(r)
3. if φb(r)/∈φ∗

b(u) then
find the vertex bj with bj.k = φb(u)
add token(bj .k,bi.ka)

4. find the set R′ of resources r′ such that
r′ 6=r , φb(r

′)=φb(r), Anc users(bi.ka) 6=acl(r′)
5. if R′ 6= ∅ then

5.1 Partition R′ in sets such that each set S
contains resources with the same acl aclS

5.2 for each set S do over-encrypt(S ,aclS)
6. case encryption model of

6.1 Delta SEL:
if Anc users(b i.ka)=acl(r) then

over-encrypt({r},all)
else

over-encrypt({r},acl(r))
6.2 Full SEL:

over-encrypt({r},acl(r))

REVOKE(r,u)
1. acl(r) := acl(r) − {u}
2. over-encrypt({r},acl(r))

OVER-ENCRYPT(R,U )
1. let r′ be a resource in R
2. if (∃ a vertex s : s.k = φs(r

′) ∧ Anc users(s.k) = U ) then exit
else

2.1 if φs(r
′) 6= null then decrypt all r∈R

2.2 if U 6=all then
if ∃ a vertex s such that Anc users(s.k)=U then

key := s.k
else

generate and add to Ks a new key key
create a new vertex snew

snew.k := key
while U 6= ∅

choose a vertex si by considering vertices in
decreasing order of cardinality of Anc users(s i.k)

if Anc users(s i.k)⊆U then
add token(si.k,snew .k)
U := U − Anc users(s i.k)

for each r∈R do
φs(r) := key
encrypt r with key

Figure 5: Algorithms for granting and revoking authorizations

4.3 Example
We present an example that illustrates the behavior of the

revoke and grant operations described above. We assume
the initial configuration depicted in Figure 4. Figure 6 illus-
trates the evolution of the encryption policies at both BEL

and SEL in the Full SEL and Delta SEL modes, upon the fol-
lowing sequence of policy changes. Here, dashed edges at
the BEL level correspond to the tokens added by the grant

algorithm.

• grant(r5,D): key b6.ka used to encrypt r5 does not
belong to φ∗

b(D). The data owner therefore adds a
BEL token t4,6 in the BEL. Since b6.ka is also used to
encrypt resources r6 and r7, these resources have to be
over-encrypted in such a way that they are accessible
only to users A, B, and C. In the Delta SEL scenario,
over-encrypt creates a new vertex s6 for resources r6
and r7. The protection of resource r5 at BEL level is
instead sufficient and no over-encryption is needed. In
the Full SEL scenario resources r6 and r7 are already
correctly protected and r5 is instead over-encrypted
with key s9.k.

• revoke(r2,C): user C is removed from acl(r2). Since
now this acl becomes empty, resource r2 has to be over-
encrypted with a key that no user can compute. Con-
sequently, both in the Delta SEL and in the Full SEL

scenario, a new vertex s⊤ is created and its key is used
to protect r2.

• grant(r4,E): b7.ka used to encrypt r4 does not be-
long to φ∗

b(E). The data owner therefore adds a
BEL token t5,7 allowing E to compute b7.ka. Since
b7.ka is also used to protect r3, we need to call over-

encrypt(r3,{C, D}). In the Delta SEL scenario, over-

encrypt creates a new vertex s7 for r3, while the

BEL protection of resource r4 is sufficient and no over-
encryption is needed. In the Full SEL scenario, r3 is
already correctly protected and r4 is over-encrypted
with s10.k, which only C, D, and E can derive.

• grant(r6,D): b6.ka used to encrypt r6 already belongs
to φ∗

b(D), and therefore the BEL encryption policy
does not change. However, since r6 shares its BEL

access key with r5 and r7, the SEL encryption pol-
icy may need to be updated. In particular, both the
Delta SEL and the Full SEL scenario already correctly
enforce the policy w.r.t. r5 and r7. In the Delta SEL

scenario, the over-encryption of r6 is removed because
the BEL encryption policy is sufficient, while in the
Full SEL scenario r6 is over-encrypted with a new key
s9.k.

4.4 Correctness
We now prove that the algorithm implementing the grant

and revoke operations preserves the correctness of the en-
cryption policy.

Theorem 4.1 (Correctness). Let Eb=(τ∗

b , φb) be an
encryption policy at the BEL level, Es=(τ∗

s , φs) be an encryp-
tion policy at the SEL level, and A an access control policy
such that 〈Eb,Es〉 ⇐⇒ A. Algorithms in Figure 5 generate
a new Eb

′ = (τ ′∗

b , φ′
b), Es

′ = (τ ′∗

s , φ′
s), and A′ such that

〈Eb
′, Es

′〉 ⇐⇒ A′.

Proof. (sketch)
Since we start with a BEL encryption policy and a SEL

encryption policy that satisfy Definition 5 (as discussed in
Section 3.1.3), we will therefore consider only users and re-
sources for which the encryption policies change. Grant and
revoke are based on the correct enforcement of the over-
encryption operation. We then examine it first.
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Figure 6: An example of grant and revoke operations



Over-encrypt. We need to prove that over-

encrypt(R, U) possibly encrypts all resources in
R with a key in such a way that a user u′ can derive
such a key if and only if u′ ∈ U . The only case we need
to consider is when the set of users U is different from
all (when U = all, resources in R are not needed to
be over-encrypted). Then, if the condition in the first
if statement (step 2) is evaluated to true, resources
in R are already correctly protected and since the
algorithm terminates, the result is correct. Otherwise,
resources in R are first possibly decrypted and then
encrypted with the correct key s.k or with the new
generated key , which is assigned to a new vertex
snew. In the first case, the result is trivially correct.
In the second case, correctness is guaranteed by the
construction of the tokens in the while statement (a
user will reach snew .k iff she belongs to U).

Grant. 〈Eb
′, Es

′〉 =⇒ A′ (soundness)
Consider user u and resource r . From step 3, it
is easy to see that φ′

b(r) = φb(r) ∈ φ′∗

b (u). From
step 6 and by the correctness of over-encrypt, either
φ′

s(r) = null or r is over-encrypted with a key such
that φ′

s(r) ∈ φ′∗

s (u) (user u is included in the current
acl(r)). Since φ′

b(r) ∈ φ′∗

b (u) and φ′

s(r) ∈ φ′∗

s (u), we
have that A′[u, r] = 1.

Consider now the set of resources R′ and suppose
that R′ is not empty. For each subset S of R′, user u
can now derive the key used to encrypt such a set of
resources. This implies that ∀r′ ∈ S, φ′

b(r
′) = φb(r

′) ∈
φ′∗

b (u). However, by the correctness of over-encrypt,
a call over-encrypt(S,aclS) guarantees that all
resources r′ in S are over-encrypted with a key such
that ∀r′ ∈ S, φ′

s(r
′) 6∈ φ′∗

s (u) because aclS does not
include user u.

〈Eb
′, Es

′〉 ⇐= A′ (completeness)
Consider user u and resource r. From step 1, we have
that A′[u, r] = 1. From step 3, it is easy to see that
φ′

b(r) = φb(r) ∈ φ′∗

b (u). Also, from step 6 and by the
correctness of over-encrypt, either φ′

s(r) = null or r
is over-encrypted with a key such that φ′

s(r) ∈ φ′∗

s (u).

Revoke. 〈Eb
′, Es

′〉 =⇒ A′ (soundness)
Consider user u and resource r . A call over-

encrypt({r},acl(r)) is requested to demand the SEL

to make r accessible only to users in the current
acl(r). We know that φ′

b(r) ∈ φ′∗

b (u). Also, from the
over-encrypt correctness, it is easy to see that φ′

s(r)
6∈ φ′∗

s (u).

〈Eb
′, Es

′〉 ⇐= A′ (completeness)
Consider user u and resource r. From step 1 we
have that A[u, r] = 0. The subsequent call over-

encrypt({r},acl(r)) makes resource r no more
accessible to user u because r is over-encrypted with
a key that is no more derivable by u (this property is
a consequence of the over-encrypt correctness), that
is, φ′

b(r) ∈ φ′∗

b (u) and φ′

s(r) 6∈ φ′∗

s (u). �

5. PROTECTION EVALUATION
Since the BEL and SEL are corrected at initialization time,

the correctness of the algorithm ensures that the encryption
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Figure 7: Possible views on resource r

policy E correctly models the authorization policy A. In
other words, at any point in time, users will be able to access
only resources for which they have - directly or indirectly -
the necessary keys both at the BEL and at the SEL level.

The key derivation function adopted is proved to be se-
cure [4]. We also assume that all the encryption functions
and the tokens are robust and cannot be broken, even com-
bining the information available to many users. Moreover,
we assume that each user correctly manages her keys, with-
out the possibility for a user to steal keys from another user.

It still remains to evaluate whether the approach is vul-
nerable to attacks from users who access and store all in-
formation offered by the server, or from collusion attacks,
where different users (or a user and the server) combine their
knowledge to access resources they would not otherwise be
able to access. Note that for collusion to exist, both par-
ties should gain in the exchange (as otherwise they will not
have any incentive in colluding). We now discuss possible in-
formation exposure, with the conservative assumption that
users are not oblivious (i.e., they have the ability to store
and keep indefinitely all information they were entitled to
access). In the discussion we first refer to the Full SEL ap-
proach; we will then analyze the Delta SEL approach.

To be able to model exposure, we first start by examining
the different views that one can have on a resource r. To
do so, we exploit a graphical notation with resource r in the
center and with fences around r denoting the barriers to the
access imposed by the knowledge of the keys used for r’s
encryption at the BEL (inner fence, φb(r)) and at the SEL

(outer fence, φs(r)). The fence is continuous if there is no
knowledge of the corresponding key (the barrier cannot be
passed) and it is discontinuous otherwise (the barrier can be
passed).

Figure 7 illustrates the different views that can exist on
the resource. On the left, Figure 7(a), there is the view of
the SEL server itself, which knows the key at the SEL level
but does not have access to the key at the BEL level. On
the right, there are the different possible views of users, for
whom the resource can be:

• open: the user knows the key at the BEL level as well
as the key at the SEL level (Figure 7(b));

• locked: the user knows neither the key at the BEL level
nor the key at the SEL level (Figure 7(c));

• sel locked: the user knows only the key at the BEL

level but does not know the key at the SEL level (Fig-
ure 7(d));

• bel locked: the user knows only the key at the SEL

level but does not know the one at the BEL level (Fig-
ure 7(e)). Note that this latter view corresponds to
the view of the server itself.
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By the correctness of the approach (Theorem 4.1), the
open view corresponds to the view of authorized users, while
the remaining views correspond to the views of non autho-
rized users.

Before analyzing exposure, we illustrate how the differ-
ent views on a resource can be produced by authorization
changes (and consequent over-encryption).

5.1 View evolution
In the Full SEL approach, at initialization time, BEL and

SEL are completely synchronized. Then, for each user, a
resource is protected by both keys or by neither: authorized
users will have the open view, while non authorized users
will have the locked view. Figure 8 summarizes the possible
view transitions starting from these two views.

Let us first examine the evolution of the open view. Since
resources at the BEL level are not re-encrypted, the view of
an authorized user can change only if the user is revoked the
authorization. In this case, the resource is over-encrypted
at the SEL level, then becoming sel locked for the user. The
view could be brought back to be open if the user is granted
the authorization again (i.e., over-encryption is removed).

Let us now examine the evolution of the locked view.
First, we note that - for how the SEL is constructed and
maintained in the Full SEL approach - it cannot happen
that the SEL grants a user an access that is blocked at the
BEL level, and therefore the bel locked view can never be
reached. The view can instead change to open, in case the
user is granted the authorization to access the resource; or
to sel locked, in case the user is given the access key at the
BEL level but she is not given that at the SEL level. This
latter situation can happen if the release of the key at the
BEL level is necessary to make accessible to the user an-
other resource r′ that is, at the BEL level, encrypted with
the same key as r. To illustrate, suppose that at initializa-
tion time resources r and r′ are both encrypted with the
same key and they are not accessible by user u (whose view
on the resources is locked). The leftmost view in Figure 9
illustrates this situation. Suppose then that u is granted
the authorization for r′. To make r′ accessible at the BEL

level, a token is added to make φb(r) derivable by u, where
however φb(r)=φb(r

′). Hence, r′ will be over-encrypted at
the SEL level and φs(r

′) made derivable by u. The resulting
situation is illustrated in Figure 9, where r′ is open and r
results sel locked.

5.2 Exposure risk
Collusion can take place every time two entities, com-

bining their knowledge (i.e., the keys known to them) can
acquire knowledge that neither of them has access to. There-
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Figure 10: Classification of users for a resource r

fore, users having the open view need not be considered as
they have nothing to gain in colluding (they already access
r). By the same line of reasoning, also users having the
locked view need not be considered as they have nothing to
offer (and therefore no one will have to gain in colluding with
them). Also, recall that in the Full SEL approach, for what
said in the previous subsection, nobody (but the server) can
have a bel locked view. This leaves us only with users hav-
ing the sel locked view. Since users having the same views
will not gain anything in colluding, the only possible collu-
sion can happen between the server (who has a bel locked

view) and a user who has a sel locked view. In this situa-
tion, the knowledge of the server allows lowering the outer
fence, while the knowledge of the user allows lowering the
inner fence: merging their knowledge, they would then be
able to bring down both fences and enjoy the open view on
the resource.

We know, from the possible transitions between views,
that there are two reasons for which a user can have the
sel locked view on a resource.

• Past acl : the user was previously authorized to access
the resource and the authorization was then revoked
from her (transition from open to sel locked in Fig-
ure 8). By colluding with the server, in this case the
user would get access to a resource she previously had
authorization for. Since we assume users to be non
oblivious, the user - while not currently having ability
to access the resource - can have it cached at her side
already. Then she has no gain in colluding with the
server. It is therefore legitimate to consider this case
ineffective with respect to collusion risks. 5

• Policy split: the user has been granted the authoriza-
tion for another resource that was, at the initializa-
tion time, encrypted with the same key as r, leaving r
sel locked. In this situation (from locked to sel locked),
the user has never had access to r and should still not
have it; therefore there is indeed exposure to collusion.

In other words, the risk of collusion arises on resources
for which a user holds a sel locked view and the user never
had the authorization to access the resource (i.e., the user
never belonged to the acl of the resource). This observation
provides a way to measure the collusion risk to which a re-
source is exposed. Figure 10 provides a graphical illustration
of the set of users and their possible relationship with the

5We assume, without loss of generality, that any time a
resource is updated, the data owner encrypts it with the
right BEL key.
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resource. The outermost set represents all the users. For
a subset of them, denoted as Bel accessible, the resource
might be not protected at the BEL level (there is no fence
as they know φb(r)). Among them, there are the users, de-
noted as Past acl , who had in the past the authorization to
access r, some of whom (those in acl(r)) may still hold the
authorization. The users representing a collusion risk for
the resource are all those that belong to Bel accessible and
do not belong to Past acl .

Besides collusion between different parties, we also need to
consider the risk of exposure due to a single user (or server)
merging her own views on a resource at different points in
time. It is easy to see that, in the Full SEL approach, where
all non authorized users start with a locked view on the
resource (and transitions are as illustrated in Figure 8), there
is no risk of exposure. Trivially, if the user is released the
key at the SEL level (i.e., it is possible for her to bring down
the lower fence) it is because the user has the authorization
for r at some point in time and therefore she is (or has been)
authorized for the resource. There is therefore no exposure
risk.

As for the Delta SEL approach, we start by noting that
users not authorized to see a resource have, at initial time,
the bel locked view on it. From there, the view can evolve
to be sel locked or open (in case the user is given the autho-
rization for the resource). View transitions are illustrated in
Figure 11. It is easy to see that, in this case, a single user by
herself can then hold the two different views: sel locked and
bel locked. In other words a (planning-ahead) user could
retrieve the resource at initial time, when she is not autho-
rized, getting and storing at her side r’s bel locked view. If,
at a later point in time the user is released φ(r) to make
accessible to her another resource r′, she will acquire the
sel locked view on r. Merging this with the past bel locked

view, she can enjoy the open view on r. Note that the set
of resources potentially exposed to a user coincides with the
resources exposed to collusion between that user and the
server in the Full SEL approach.

It is important to note that in both cases (Full SEL and
Delta SEL), exposure is limited to resources that have been
involved in a policy split to make other resources, encrypted
with the same BEL key, available to the user. Exposure is
therefore limited and well identifiable. This allows the owner
to possibly counteract it via explicit selective re-encryption
or by proper design (as discussed in the next section).

The collusion analysis clarifies why we did not consider the
third possible encryption scenario illustrated in Section 3. In
this scenario, all users non authorized to access a resource
would always have the sel locked view on it and could po-
tentially collude with the server. The fact that the BEL key

is the same for all resources would make all the resources
exposed (as the server would need just one key to be able
to access them all).

5.3 Design considerations
From the analysis above, we can make the following ob-

servations on the Delta SEL and the Full SEL approaches.

• Exposure protection. The Full SEL approach provides
superior protection, as it reduces the risk of exposure,
which is limited to collusion with the server. By con-
trast, the Delta SEL approach exposes also to single
(planning-ahead) users.

• Performance. The Delta SEL approach provides supe-
rior performance, as it imposes over-encryption only
when required by a change in authorizations. By con-
trast, the Full SEL approach always imposes a double
encryption on the resources, and therefore an addi-
tional load.

From these observations we can draw some criteria that
could be followed by a data owner when choosing between
the use of Delta SEL or Full SEL. If the data owner knows
that:

• the access policy will be relatively static, or

• sets of resources sharing the same acl at initialization
time represent a strong semantic relationship rarely
split by policy evolution, or

• resources are grouped in the BEL in fine granularity
components where most of the BEL nodes are associ-
ated with a single or few resources,

then the risk of exposing the data to collusion is limited also
in the Delta SEL approach, which can then be preferred for
performance reasons.

By contrast, if authorizations have a more dynamic and
chaotic behavior, the Full SEL approach can be preferred to
limit exposure due to collusion (necessarily involving the
server). Also, the collusion risk can be minimized by a
proper organization of the resources to reduce the possibility
of policy splits. This could be done either by producing a
finer granularity of encryption and/or better identifying re-
source groups characterized by a persistent semantic affinity
(in both cases, using in the BEL different keys for resources
with identical acl).

6. RELATED WORK
Previous work close to our is in the area of “database-as-

a-service” paradigm [10, 11], which considers the problem
of database outsourcing. Its intended purpose is to enable
data owners to outsource distribution of data on the Inter-
net to service providers. The majority of existing efforts
on this topic focuses on techniques allowing the execution
of queries on encrypted outsourced data, trying to support
all SQL clauses and different kinds of conditions over at-
tributes [2, 7, 10, 11]. In general, these approaches are based
on indexing information stored together with the encrypted
data. Such indexes are used to select the data to be returned
in response to a query, without need of decrypting the data.
One of the major challenges in the development of index-
ing techniques is the trade off between query efficiency and



exposure to inference and linking attacks that strongly de-
pends on the attacker’s prior knowledge [7]. A related effort
in [14] focuses on the design of mechanisms for protecting
the integrity and authenticity of data from both malicious
outsider attacks and the service provider itself.
Other proposals have investigated the use of partitioning,
adopting a distributed architecture to allow an organization
to outsource its data management to two untrusted servers
while preserving data privacy [1].
In addition to the application-based approaches above-
mentioned, hardware-based approaches to the problem of
secure outsourced storage have also been investigated [6].
Here, the basic idea is to use a special security hardware
component, which can support secure computations at both
client and server sides.

A few research efforts have directly tackled the issues of
access control in an outsourced scenario. In [13] the au-
thors present a framework for enforcing access control on
published XML documents by using different cryptographic
keys over different portions of the XML tree and by intro-
ducing special metadata nodes in the structure. Our work is
complementary to this proposal, as it looks at the different
problem of enforcing policy changes.

On a different line of related work, other approaches have
investigated the hierarchical-based access control in the con-
text of distributed environments and pay-tv [5, 17]. While
some commonalities can be identified (e.g., the use of cryp-
tographic key-based hierarchical schemes), the outsourced
data scenario presents peculiar characteristics that require
the development of new solutions.

7. CONCLUSIONS
There is an emerging trend towards scenarios where re-

source management is outsourced to an external service pro-
viding storage capabilities and high-bandwidth distribution
channels. In this context, selective release requires enforc-
ing measures to protect the resource confidentiality from
both unauthorized users as well as “honest-but-curious”
servers. Current solutions provide protection by exploiting
encryption in conjunction with proper indexing capabilities,
but suffer from limitations requiring the involvement of the
owner every time selective access is to be enforced or the
access policy is modified. In this paper we have put for-
ward the idea of enforcing the authorization policy by using
a two-layer selective encryption. Our solution offers signifi-
cant benefits in terms of quicker and less costly realization
of authorization policy updates and general efficiency of the
system (replication of resources can carry along the policy
itself). We believe these benefits to be crucial for the success
of emerging scenarios characterized by a huge number of re-
sources of considerable size and that have to be distributed
in a selective way to a variety of users.
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