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Abstract—More and more organizations are today using the cloud for their business as a convenient alternative to in-house solutions
for storing, processing, and managing data. Cloud-based solutions are then permeating almost all aspects of business organizations,
resulting appealing also for sensitive or security critical applications, whose enforcement in the cloud requires however particular care.
In this paper, we provide an approach for securely relying on cloud-based services for the enforcement of Internal Controls and Audit
(ICA) functions for corporate governance. Our approach builds on a formalization of the ICA process and its requirements and on the
consideration of the protection guarantees to be provided when outsourcing the process to external cloud services. The enforcement of
the requirements leverages the use of selective encryption providing a self-protection layer on the data and on ICA reports, the
hierarchical organization of keys based on the organizational structure, and compact tags for regulating write operations. Our solution
enables the management of the ICA process with cloud-based services, while ensuring satisfaction of the protection requirements.
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1 INTRODUCTION

Corporate Governance is a collection of rules, best prac-
tices, and processes needed to achieve an organization’s
objectives and strategies. The benefits and the importance
of having a good corporate governance are continuously
increasing, due to the growth in business regulation and
capital mobility. Indeed, countries see corporate governance
as a key factor for their global competitiveness. There
are therefore several attempts to promote the adoption
of national Corporate Governance Codes by organizations
(e.g., the European Corporate Governance Codes Networks,
www.ecgcn.org). An important role in these Corporate Gov-
ernance Codes is given to the internal control and risk
management system, which has, as central mechanisms, the
Internal Controls and Audit (ICA) functions.

ICA functions aim mainly at verifying the effectiveness
and efficiency of operations, and their compliance with inter-
nal rules, regulations, and laws. Their successful realization
can contribute to the improvement of the quality of cor-
porate governance and management. ICA functions can be
performed in several ways, depending on how the general
principles described in the Corporate Governance Code are
implemented in the context of a specific organization. This
paper focuses on the case of an organization structured in
multiple units and where all the operations performed in
the units must be checked according to a three-level ICA
process. A structure with three levels is the most common in
companies that have to comply with market regulations, like
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banks and financial institutions. The first level of control is
executed by an employee of the unit where the operation has
been performed. The second level of control is performed by
the director of the unit. Finally, the third level of control is
performed by an independent auditor. Each level of control
aims at verifying different aspects related to, for example,
the operational and business area, and produces a report
summarizing the results of the control.

Due to the huge number of operations that are processed
on a daily basis, the adoption of cloud-based services, with
the involvement of external providers offering storage and
access service functionality may result convenient for the
management of the ICA process (see Figure 1). However,
given the nature of the operations and their processing, it
is critical to ensure their confidentiality, even against the
external provider, which is not under the direct control of
the organization. As a matter of fact, while the provider may
be assumed to be trustworthy providing storage and access
functionality, it may be not trusted to read the operations
content and reports (honest-but-curious paradigm [2]). Also,
the provider cannot be trusted by itself for the enforcement
of the ICA process.

Although several proposals exist for the secure outsourc-
ing of data and computations in the cloud, none of them
can be directly applied to correctly enforce the ICA pro-
cess of corporate governance. In this paper, we provide an
approach for relying on an external cloud provider for the
management of the ICA process, leveraging the provider not
only for data storage and access services, but also for sup-
porting the regulation and enforcement of ICA operations,
while ensuring confidentiality of the data and processes on
them against the provider itself. The contribution of the
paper is multifold. First, we provide a characterization of the
requirements for the ICA process and their formalization,
capturing the rules to be enforced. Second, we provide an
approach for external storage of operations and results of
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Figure 1. ICA process at an external cloud provider

the ICA process, leveraging selective encryption to provide
a self-enforcement layer guaranteeing both confidentiality
against the cloud provider and selective visibility of oper-
ations and reports to subjects accessing the service. Third,
we provide a solution based on compact and effective tags
that, together with selective encryption, enable enforcement
of write access restrictions on data, dynamically adjusting
access privileges with the evolution of the ICA process. The
main advantage of our solution is the direct support of the
ICA process in an effective and easy way, leveraging the
basic services of the cloud provider.

The remainder of this paper is organized as follows.
Section 2 presents the scenario, the main concepts, and
the requirements of the ICA process. Section 3 presents a
formalization of the ICA process, modeling the different
concepts and the enforcement of the requirements in terms
of access regulations. Section 4 introduces the organization
of storage for outsourcing and the basic elements of our
approach. Sections 5 and 6 present the realization of the
ICA process via selective encryption and tag management.
Section 7 illustrates the pseudocode of the functions im-
plementing our approach. Section 8 proves the correctness
of our approach for enforcing the ICA process. Section 9
discusses related work. Finally, Section 10 concludes the
paper.

2 SCENARIO AND PROBLEM STATEMENT

We consider an organization composed of units whose em-
ployees process and manage different operations. Each unit
is under the control of a unit director, who is responsible
for the activity of the unit. For simplicity of exposition, but
without loss of generality, we assume that each director is
responsible for one unit only. As an example, which is also
the scenario that inspired our work, the organization can
be a bank and the units the branches of the bank. Each
branch has one director and some employees. Independent
auditors - appointed by the bank - oversee the working of
all the branches of the bank. Operations are the different
transactions processed at each branch of the bank (e.g., cash
deposit, credit card payment, cheque deposit).
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Figure 2. Evolution of the operation record during the ICA process

All operations must undergo an Internal Controls and
Audit (ICA) process to ensure that they are compliant with
internal rules as well as with laws to prevent fraud. For
each operation, the ICA process requires the execution of
three phases, illustrated in Figure 2. The first phase, by
an employee of the unit, typically the same who processes
the operation, produces the employee report (denoted re)
on the operation. The second phase, by the unit’s director,
produces the director report (denoted rd) on the operation
and its re. Finally, the third phase, by an auditor, controls
the whole chain and produces the auditor report (denoted
ra) on the operation and its re and rd.

Rules regulating the ICA process can be summarized
with the following requirements.

R1 - Operation and report visibility. The information about
each operation and its ICA reports should be accessible
only to the employees and director of the unit in charge
of managing the operation and to the auditors.

R2 - Report generation. A report on an operation can be
generated only by subjects with the role (employee, director,
or auditor) for the report. A report can be updated only by
the individual (employee, director, or auditor) who created
it and only until its commitment. The director (auditor,
resp.) phase can start only when the employee (director,
resp.) phase has completed.

R3 - Report integrity and accountability. Tampering of ICA
reports should not go undetected and reports cannot be
repudiated.

In the next section, we first formalize the ICA process
assuming its execution within the trusted organization’s
domain, and then illustrate our approach for outsourcing
the whole operation management and ICA process to an
external cloud provider.

3 ICA PROCESS MODELING

The main concepts to be captured for the ICA process
management are the units of the organization, with its em-
ployees and directors, the auditors, as well as the operations
and the different reports on them. We model units as a set
U = {u1, . . . , un}, where each unit u∈U is in charge of a set
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Ou of operations and comprises a set Eu = {e1, . . . , em}
of employees and a director du , with du ̸∈Eu . We de-
note the unit where employee e (director d, resp.) works
with unit(e) (unit(d), resp.). Auditors are modeled as a set
A = {a1, . . . , az}. Notations O, D, and E are used to
refer to the set of operations, directors, and employees of
all units, respectively (i.e., given the set U = {u1, . . . , un}
of units, D = {d1, . . . , dn}, E = Eu1

∪ . . . ∪ Eun
, and

O = Ou1
∪ . . . ∪ Oun

). Notation S=E∪D∪A denotes the
set comprising all subjects (i.e., employees, directors, and
auditors). With A denoting the set of auditors, with a
slight abuse of notation, we will use {A} to denote the set
comprising symbol A.

Example 3.1. Our running example refers to a bank with two
units (branches) U={X , Y }, where unit X has employees
EX={x1 , x2 , x3 } and is directed by dX , and unit Y
has employees EY ={y1 , y2 } and is directed by dY . Sets
OX and OY denote the operations processed at units X
and Y , respectively. The set of independent auditors is
A={a1 ,a2 }.

We model operations in O as records with multiple
fields. Figure 3 illustrates the fields of the operations, also
highlighting their sub-fields of interest for our modeling. In
particular, each operation o comprises the following fields:
id, reporting the operation identifier; op, corresponding to
the operation content, including the identifier of the unit
where the operation has been processed, denoted unit(o);
re, rd, ra, corresponding to the employee, director, and
auditor report, respectively. The reports, initialized as null
at the beginning of the process, are filled as the process ad-
vances. In particular, each report r includes the information
on the subject that produced it (signee(r)) and a signature
produced by the subject at report completion (seal(r)), which
have value null at the beginning of the process. In the
following, we will use the classical dot notation (e.g., o.op)
to refer to a specific field of an operation record, and o.∗ to
refer to all fields of the operation. Also, for simplicity, we
will use the term operation to refer interchangeably to the
operation and its record. Figure 4 summarizes the notation
used in the paper.

The generation of a report is modeled as a write op-
eration on the corresponding report field. Also, when the
report is taken in charge by a subject, the corresponding
signee sub-field is initialized to the subject’s identity. A
phase is considered completed for an operation when the
corresponding record is signed (i.e., the seal sub-field takes
a value.)

The enforcement of the requirements in the previous
section can be easily captured by controlling read and
write actions on the different fields of an operation and
considering as authorized only those actions that satisfy the
requirements.

The set AUTH of actions to be authorized according to
each requirement is defined as follows.

U set of units
E set of employees of the organization
D set of directors of the organization
A set of independent auditors
S set of subjects (E ∪D ∪A)
O set of operations processed at the organization
u unit
Eu set of employees of unit u
Ou set of operations processed at unit u
du director of unit u
o.id operation identifier
o.op operation content
o.re employee report of operation o
o.rd director report of operation o
o.ra auditor report of operation o
o.te tag regulating write of re
o.td tag regulating write of rd
o.ta tag regulating write of ra
o.tp tag regulating the evolution of the ICA phases
unit(o) unit where operation o has been processed
signee(o.r) creator of report r∈{re,rd,ra}
seal(o.r) signature for the integrity of report r∈{re,rd,ra}

Figure 4. Notation used in the paper

R1 - Operation and report visibility. ∀s ∈ S, ∀o ∈ Ou ,
∀u ∈ U :
read(s, o.∗)∈AUTH iff (s ∈ Eu ∪ {du} ∪A).

R2 - Report generation. ∀s ∈ S, ∀o ∈ Ou , ∀u ∈ U :
write(s, o.re)∈AUTH iff

(s ∈ Eu ∧signee(o.re) = null)∨
(s = signee(o.re) ∧ seal(o.re) = null);

write(s, o.rd)∈AUTH iff
seal(o.re) ̸= null ∧ s = du ∧ seal(o.rd) = null;

write(s, o.ra)∈AUTH iff
(seal(o.rd) ̸= null ∧ s ∈ A ∧signee(o.ra) = null)∨
(s = signee(o.ra) ∧ seal(o.ra) = null).

It is easy to see the correspondence (and equivalence) of
formalization above with the informal requirements stated
in the previous section. In particular, R1 considers autho-
rized to view an operation and its reports all and only the
employees and director of the unit to which the operation
pertains, and the auditors. R2 restricts authorized write
actions on reports as follows. An employee report that has
not started yet (signee is null) can be written by any
employee of the unit to which the operation pertains, while
if started it can be written only by the employee who has
started it, provided the employee phase has not completed
(i.e., the seal of the employee report is null). A director
report can be written only if the employee phase has been
completed (employee report is sealed), only by the director
of the unit to which the operation pertains, and provided
the director phase has not completed (i.e., the seal of the
director report is null). Finally, an auditor report can be
written only if the director phase has completed (director
report is sealed). If the auditor report has not started yet
(signee is null), it can be written by any auditor, while if
started only by the auditor who has started it, and provided
the auditor phase has not completed (i.e., the seal of the
auditor report is null).

Requirement R3 - Report integrity and accountability
does not need specific control on the action, and can be
simply guaranteed by having subjects signing a report when
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complete (seal field explained above). To this end, each
subject s (employee, director, and auditor) has a private-
public key pair. The signature of a subject on their report
is computed by encrypting (with the subject’s private key)
the result of a hash function on the concatenation of the
signature of the previous phase (or the operation field for
the employee’s phase) and the report. More precisely, let o
be an operation, and e, d, and a be the employee, director,
and auditor producing reports for it. Denoting with prs
the private key of subject s, the three signatures associ-
ated with the reports at each step are then computed as:
seal(re)=E(h(op||re), pre ); seal(rd)=E(h(seal(re)||rd), prd );
seal(ra)=E(h(seal(rd)||ra), pra ). Each signature guarantees
the integrity of the corresponding report (and of the in-
formation on which it was computed) and makes the sub-
ject who produced the report accountable for its content.
Figure 5 shows the layered organization of the signatures.
With this note on requirement R3, we consider it as part
of the internal processing and hence discard it from further
consideration.

4 ICA PROCESS OUTSOURCING

While the formalization, and subsequent enforcement, of
access control for the ICA process within the trusted orga-
nization setting is relatively simple, it bears several compli-
cations when outsourced to an external - not fully trusted
- provider. As a matter of fact, the external provider, while
trustworthy for correctly enforcing the services requested,
should not be allowed to know the content of the operations
and of their reports. Also, while offering storage and access
functionality, the provider cannot be fully trusted by itself
for access control enforcement.

Our approach to delegate storage and management to
the external provider while ensuring protection of data
confidentiality and control of accesses relies on the use
of selective encryption [3] dynamically applied to the data
and their reports. Such selective encryption offers a self-
protection layer to operations and reports, guaranteeing
their confidentiality against the provider while enabling
enforcement of access control. Selective encryption is based
on symmetric encryption and has then a limited overhead.
Also, our selective encryption leverages a hierarchical or-
ganization of encryption keys, so to enable the release of
a single key to each subject involved in the process. The
hierarchy of keys reflects the organizational structure of
the ICA process, enabling subjects to derive, from their
own key, other keys needed for the process. The external
provider collaborates in the execution of the ICA process,
while remaining agnostic with respect to it.

We start by defining the organization of operations and
of reports for external storage and by introducing the hier-
archical organization of encryption keys.

OPERATION REPORTS TAGS︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
oid op re rd ra te td ta tp

Figure 6. Structure of outsourced operation record

Operations and reports. Operations and their reports are
stored at the external provider as records of a relation O
encrypted at the field level. In addition to the operation
content and reports, each operation record also contains
some tags used for regulating write actions on the operation
reports. In particular, as illustrated in Figure 6, for each
operation, in addition to an operation identifier (id), the fol-
lowing fields (all encrypted) are maintained: the operation
content (op); its associated reports (re, rd, ra); and four
control tags, three for regulating write actions on the corre-
sponding reports (te, td, ta) and one (tp) for enforcing the
different phases of the ICA process.

Operation and report visibility (R1), as well as report
generation (R2), will be managed through the (agnostic)
provider simply as read/write accesses on the different
fields protected through encryption, which provides a self-
protection layer and enforces the access rules.

Key hierarchy. Our approach relies on the use of symmetric
encryption and on a hierarchical organization of encryption
keys, which supports the derivation of keys from other keys
and from some public information (tokens). Each symmetric
key has its secret value k and a public label l. Key derivation
is based on the use of precomputed public tokens between
keys [4]. Given two keys ki and kj , a public token ti,j is
computed as ti,j=kj⊕h(ki,lj), where h is a deterministic
cryptographic function, ⊕ is the bitwise xor operator, and
lj is the publicly available label associated with key kj . The
existence of public token ti,j allows any subject knowing
ki to derive key kj through token ti,j and public label
lj . Sequential application of tokens enables the derivation
of sequences of keys. Tokens, like key labels, need not to
remain secret and can be stored at the external provider. In
the following, for simplicity, we will use k to denote a key
k, its label l, or the pair ⟨k, l⟩ when clear from the context.
Also, we denote with ki⇝kj the existence of a sequence of
tokens enabling the derivation of kj from ki.

The enforcement of the requirements introduced in Sec-
tion 2 and formalized in Section 3 is then realized through
the application of different encryption keys to the different
fields of the operation records. We focus first on the op-
erations and reports visibility (R1) to be guaranteed to the
different subjects of the ICA process. We then address report
generation (R2) and management of the process.

5 OPERATIONS AND REPORTS VISIBILITY

The encryption of operations and their reports provides a
self-enforcement layer of protection guaranteeing operation
and report confidentiality against the external provider.
Also, selective application of encryption, meaning the use of
different encryption keys for different operations and their
different fields, enables the enforcement of access control
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restricting plaintext visibility of operations and reports only
to those subjects who know the corresponding key.

We leverage the hierarchical key organization to enable
each subject (employee, director, and auditor) involved in
the ICA process to derive keys as needed starting from
their own individual key. To this end, we define the key
encryption hierarchy based on the organization of the ICA
process. Our ICA-based key derivation structure for sup-
porting read actions, which we call R-ICA key structure, is
defined as follows.
Definition 5.1 (R-ICA key structure). Let U,E,D, and A

be the set of units, employees, directors, and auditors
respectively. The R-ICA key structure for the ICA process
is defined as a triple ⟨K ,T ,ϕ⟩, with K a set of keys and
T a set of tokens such that there is:

• a key ks ∈ K for each subject s ∈ E ∪D ∪A;
• a key ku ∈ K for each unit u ∈ U ;
• a key kA ∈ K for the set A of auditors;
• a token ⟨ks , ku⟩ from each ks to ku , with s ∈ E ∪ D,

and u=unit(s);
• a token ⟨ka , kA⟩ from each ka to kA, with a ∈ A;
• a token ⟨kA, ku⟩ from kA to ku for each u ∈ U ;
and function ϕ : U ∪ E ∪ D ∪ A ∪ {A} → K such that
ϕ(x)=kx for each x in the domain of the function.

The R-ICA key structure can be represented as a directed
acyclic graph where nodes correspond to keys and arcs to
tokens. Figure 7 graphically illustrates, on the left hand-
side of the graph, the R-ICA key structure of our running
example. For simplicity, in the figure, we denote each key ki
simply with the entity i to which it refers (e.g., X denotes
key kX of unit X).

Intuitively, the R-ICA key structure enables each em-
ployee e∈Eu and director du to derive the key of their
unit u, denoted ke⇝ku and kdu

⇝ku , respectively (e.g.,
kdX
⇝kX ). Each auditor can directly derive key kA shared

among the set of auditors, and can indirectly derive the

key of each of the units (e.g., ka1
⇝kA⇝kX ). This ability of

subjects to derive keys of units is clearly visible from the
paths connecting nodes representing the keys of the subjects
to nodes representing the keys of the units in Figure 7. In
the figure, nodes (leaves of the R-ICA key structure) with
colored background denote the keys released to subjects,
while all other keys are derived.

The selective application of encryption to operations and
reports, besides protecting their confidentiality against the
provider, enables to control visibility against other subjects.
As a matter of fact, the encryption of a field with a key k
makes the field accessible (and hence its content visible)
only to subjects able to derive k. Hence, enforcement of
the visibility requirement (R1) corresponds to dictating the
encryption of operations and reports to be with the key
associated with the unit to which the operation refers. By
construction, such key is derivable only by the unit director
and employees, and all the auditors.

Denoting with function λ(o.f) the association between a
field f of an operation record o and the key with which it
is encrypted, R1 translates then to requesting satisfaction of
the following property.

Property 5.1 (Encryption key assignment). Let ⟨K ,T ,ϕ⟩
be a R-ICA key structure. Function λ(o.f) assigning
the key to be used for encrypting each field f ∈
{op,re,rd,ra} of each operation o∈O is defined as
λ(o.op)=λ(o.re)=λ(o.rd)=λ(o.ra)=ϕ(unit(o)).

In other words, the operation and all its reports are
encrypted with the key of the unit where the operation has
been processed.

The definition of the R-ICA key structure for key deriva-
tion (Definition 5.1) and the adoption of function λ for
identifying the key to be used for encrypting an operation
and its reports (Property 5.1) guarantee the satisfaction of
requirement R1. Indeed, all operations processed in a unit
and their reports are encrypted with the unit key that the
authorized subjects (i.e., the employees and director of the
unit as well as all the auditors) can derive through the R-
ICA key structure (see Section 8, Theorem 8.1).

6 REPORT GENERATION

The encryption of operations and reports illustrated in the
previous section naturally and simply enforces the visibility
requirement (R1) making operations and reports visible to
all and only authorized subjects.

The regulation of reports generation (R2), and hence of
the write actions on the report fields of operations, cannot be
enforced only with the encryption described in the previous
section. In fact, not all the readers of a report are authorized
to write it. Also, write authorizations change during the ICA
process. Hence, the selective encryption of reports enforced
for regulating visibility falls short for enforcing dynamically
changing write authorizations. Our approach to enforce
requirement R2 leverages the use of tags associated with
reports, where each tag represents an (again selectively)
encrypted randomly generated secret. To be allowed to
write a report, subjects need to prove to be able to decrypt
the associated tag. The control to check the subject ability
to decrypt tags relies on the cooperation of the provider,
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which remains however agnostic of the process as well as of
the operation and report contents. Clearly, since the verifi-
cation of tags for regulating write authorizations is with the
provider, and such a verification requires knowledge of the
key with which tags are encrypted, keys used for encrypting
tags cannot be the same ones used for regulating visibility
of operations and reports.

We first introduce the keys to be used for encrypting
tags, and then elaborate more on the control performed by
the provider on tags and on the management of tags.

6.1 W-ICA key structure

Keys for encrypting tags are designed similarly to the ones
for encrypting operations and reports, introducing a hierar-
chical key structure formally defined as follows.

Definition 6.1 (W-ICA key structure). Let U,E,D, and A
be the sets of units, employees, directors, and auditors
respectively, and P be the provider. The W-ICA key struc-
ture is defined as a triple ⟨K ′,T ′,ϕ′⟩, with K ′ a set of keys
and T ′ a set of tokens such that there is:

• a key k′s for each subject s ∈ E ∪D ∪A ∪ {P};
• a key k′Eu

for the set Eu of employees of each unit
u ∈ U ;

• a key k′A for the set A of auditors;
• a token ⟨k′s , k′Eu

⟩ from each k′s to k′Eu
, with s ∈ Eu ;

• a token ⟨k′a , k′A⟩ from each k′a to k′A, with a∈A;
• a token ⟨k′P, k′s⟩ from k′P to k′s for each s ∈ E ∪D ∪A;
and function ϕ′ : {Eu : u ∈ U}∪E∪D∪A∪{A}∪{P} →
K ′ such that ϕ′(x)=k′x for each x in the domain of the
function.

It is easy to see the correspondence between the W-ICA
key structure and the R-ICA key structure illustrated in the
previous section. Apart for the presence of the provider as a
subject, the only minor difference between them is that units
keys (derivable in the R-ICA key structure by employees,
directors, and auditors), are replaced by keys derivable by
employees only, to support write actions restricted to them
(e.g., EX instead of X and EY instead of Y ).

Figure 7 graphically illustrates, on the right hand-side
of the graph, the W-ICA key structure of our running
example.1 In the figure, nodes of the W-ICA key structure
are denoted with a double circle, to distinguish them from
the nodes of the R-ICA key structure. For simplifying key
management, and maintaining the release to each subject
of one key only, tokens are also defined enabling the
derivation of k′s from the corresponding ks for each subject
s ∈ E ∪D ∪ A (dotted lines connecting nodes in the R-ICA
key structure to the nodes in the W-ICA key structure in
Figure 7). Hence, each subject s will be able to derive all the
keys needed for operating from their own key (i.e., ks in
the R-ICA key structure, corresponding to the nodes with
colored background in Figure 7).

1. For readability of the figure, the node corresponding to the key of
the provider, which is connected with a token to each subject’s key of
the W-ICA key structure is omitted.

6.2 Write control and tags encryption
As anticipated, our approach to enforce requirement R2
leverages the use of tags. Each operation has four tags, one
for each report (i.e., te, td, and ta for re, rd, and ra, resp.)
and one for keeping track of the phase evolution of the ICA
process (i.e., tp). Tag encryption enables regulating write
actions on the reports. Intuitively, a subject will be allowed
to write a report (or the tag associated with it) only if the
subject proves to be able to correctly decrypt both the tag
associated with the report (which enforces the control on
the subject having the proper role for it) as well as the phase
tag (which enforces the control of the write action occurring
in the right phase of the ICA process).

Let λ′(o.tag) be the key that permits to decrypt a tag of
operation o (on which we elaborate in the next sub-section),
and W be the set of write actions accepted by the provider.
The regulation of write actions on reports via the use of
encrypted tags can be enforced by having the provider
accepting only write actions that pass tag verification, as
captured by the following definition.
Definition 6.2 (Write control (reports)). Let ⟨K ′,T ′,ϕ′⟩ be

a W-ICA key structure, and λ′ be a function assigning
keys to tags. A write action by subject s ∈ S on a report
field f ∈ {re,rd,ra} of an operation o ∈ O is accepted
iff the following conditions, depending on the specific
field, hold:

• write(s,o.re) ∈ W
iff ϕ′(s)⇝λ′(o.te) ∧ ϕ′(s)⇝λ′(o.tp);

• write(s,o.rd) ∈ W
iff ϕ′(s)⇝λ′(o.td) ∧ ϕ′(s)⇝λ′(o.tp);

• write(s,o.ra) ∈ W
iff ϕ′(s)⇝λ′(o.ta) ∧ ϕ′(s)⇝λ′(o.tp).

In other words, a subject will be allowed to write a report
if and only if the subject proves to be able to decrypt the tag
of the report and the phase tag (i.e., the subject can derive
the keys for their decryption, denoted ϕ′(s)⇝λ′(tag)).

While simply stated in the definition above, the control
of write actions via tag encryption is not trivial in its
enforcement. The complication arises from the need to sup-
port different write authorizations on the different reports
of the same operation, and from the dynamic nature of
such authorizations that evolve through the ICA process
(Section 3). This implies that the key used to encrypt tags
(i.e., function λ′) needs to change during the ICA process.
For instance, an employee report can be written by any
employee before the first phase starts, but when an em-
ployee (internally recorded in the report as signee) takes
it in charge, only this employee can be authorized to modify
it. Similar considerations hold for the auditor report. Also,
the encryption of the phase tag needs to evolve, to enable
execution of write actions only within the correct phase and
preventing subjects to operate on a report outside (before or
after) the corresponding phase. In fact, no report (director
or auditor) can be started if the previous phase has not
been completed, that is, its report (employee or director)
has not been sealed, and no report can be modified after
its corresponding phase is concluded (internally recorded in
the report as sealed). While the enforcement of the control
within the organization (Section 3) can make reference to the
signee and seal recorded in each report, such information is
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clearly not visible to the agnostic provider, which cannot
know the content of the report and does not even need to
know, nor should have understanding of, the ICA process.
The evolution of phases should then be reflected by a
corresponding evolution of the phase tag encryption.

In summary, the provider can only enforce basic (ag-
nostic) controls on write actions on report fields as per
Definition 6.2. Hence, not only the tags for a same operation
need to be encrypted with different keys, but also such
encryption - or more precisely the key (λ′) associated with
them - as well as the one of the phase tag need to change
with the evolution of the phases of the ICA process.

More formally, the enforcement of requirement R2
through tag encryption and the controls of Definition 6.2,
requires tags encryption to follow the phases of the ICA
process, as formalized by the following property.

Property 6.1 (Tag encryption). Let ⟨K ′,T ′,ϕ′⟩ be a W-ICA
key structure. Function λ′(o.tag) assigning the key to be
used for encrypting each tag tag ∈ {te,td,ta,tp} of
each operation o∈O is such that:

1) signee(o.re) = null ⇐⇒
λ′(o.te) =λ′(o.tp)=ϕ′(Eunit(o));

2) signee(o.re) ̸= null ∧ seal(o.re) = null ⇐⇒
λ′(o.te)=ϕ′(signee(o.re)) ∧ ϕ′(signee(o.re))⇝λ′(o.tp);

3) seal(o.re) ̸= null ∧ seal(o.rd) = null ⇐⇒
λ′(o.td)=λ′(o.tp)=ϕ′(dunit(o));

4) seal(o.rd) ̸= null ∧ signee(o.ra) = null ⇐⇒
λ′(o.ta)=λ′(o.tp)=ϕ′(A);

5) signee(o.ra) ̸= null ∧ seal(o.ra) = null ⇐⇒
λ′(o.ta)=ϕ′(signee(o.ra)) ∧ ϕ′(signee(o.ra))⇝λ′(o.tp).

In other words, following the enumerated list above:

1) at the start of the process for an operation within a unit,
the tag of the employee report and the phase tag should
be encrypted with the key associated with the set of
unit’s employees (initial state, phase 1 can start);

2) when the report is taken in charge by an employee, its
tag should be encrypted with the key of that specific
employee, who should also be able to derive the key
used for the phase tag (phase 1 started);

3) when the employee report is completed, the tag of the
director report and the phase tag should be encrypted
with the key of the unit’s director (phase 1 completed,
phase 2 can start/started);

4) when the director report is completed, the tag of the
auditor report and the phase tag should be encrypted
with the key of the auditors (phase 2 completed, phase 3
can start).

5) when the auditor report is taken in charge by an au-
ditor, its tag should be encrypted with the key of that
specific auditor, who should also be able to derive the
key used for the phase tag (phase 3 started).

Property 6.1 dictates the conditions that should hold to
enforce the write control in Definition 6.2 correspond to the
authorization control on write actions as it would be inter-
nally enforced as discussed in Section 8 (see Theorem 8.2).

We next illustrate the management of tags, namely their
generation, encryption, and evolution to ensure satisfaction
of Property 6.1.

6.3 Tag management

As said, tags are randomly generated secrets which are
encrypted with a key whose knowledge regulates write
actions. Basically, according to Definition 6.2, for a subject
to be able to write a report, the subject needs to be able
to decrypt both the tag of the report and the phase tag,
meaning the tags must be encrypted with keys derivable
by the subject.

Let us first concentrate on report tags, we will then
address phase tags. For simplicity, we refer the discussion
to a single operation at a given unit, following its evolution
through the ICA process. The enumerated items in the
discussion refer to the items in Property 6.1

Report tags. As per Property 6.1, to enable the start of each
phase (i.e., the creation of the respective report), report tags
should be encrypted as follows. For enabling start of phase 1
(initial state), te should be encrypted with the key of the
set of the unit’s employees (item 1); for enabling start of
phase 2, td should be encrypted with the key of the unit’s
director (item 3); and for enabling start of phase 3, ta should
be encrypted with the key of the set of auditors (item 4).
Although the control on such tags is enforced (and has
effect) when the respective phase starts, tags need not to
be generated on the fly, but can be generated in advance.
Generating tags in advance has the great advantage of not
requiring any synchronization between subjects. In particu-
lar, the employee who processes an operation does not need
to wait for tags generation by the other subjects, who do
not need to be online and available when the operation is
processed. We also note that, while the random values for
the different tags (i.e., te, td, and ta) need to be different
(else the protection by encryption could be bypassed), all the
operations of the same unit could even have the same triple
of tag values (since at start all operations of a same unit are
subject to the same authorizations). We then simply assume
that, for each unit, three tag values, one for each tag (te, td,
ta) are precomputed (randomly generated and encrypted).
Such precomputed tags will be attached to all operations
of the unit. Note that such precomputation of tags does
not require that auditors be defined a priori, but only the
existence of a key (that will be) known to and associated
with them and not known to employees and directors.

Tags associated with employee (auditor, resp.) reports
need also to evolve during the process, and their encryption
change when a report is taken in charge by a specific
employee (auditor, resp.). In particular, te (ta, resp.) needs
to become restricted only to the specific employee (auditor,
resp.) who started re (ra, resp.), as captured in item 2
(item 5, resp.) of Property 6.1. This evolution requires the
employee (auditor, resp.) to overwrite the corresponding
tag which should become encrypted with the employee
(auditor, resp.) individual key. Note that, not only the en-
cryption key associated with the tag needs to change but
also the encrypted randomly generated value needs to be
regenerated (as otherwise the re-encryption could clearly be
easily bypassed, since all employees/auditors would poten-
tially know the value behind the encryption). Note that this
rewriting is not requested in the director phase, since the
director is only one for each unit and hence authorizations
do not need to be restricted when the report is started.
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te td ta tp

at generation Eu du A Eu(du(A))
phase 1: e starts re e • du A Eu(du(A))
employee e seals re e du A du(A)
phase 2: du starts rd e du A du(A)
director du seals rd e du A A
phase 3: a starts ra e du a • A
auditor a seals ra e du a dummy

Figure 8. Evolution of keys associated with tags for operation (• denotes
that the random value is also refreshed)

Phase tag. The phase tag needs a separate discussion. In
principle, its initial setting for enabling start of phase 1 could
be simple: it should be encrypted with the key of the set of
unit’s employees (item 1). However, as a complicating factor,
its evolution cannot be carried out by the subject currently
operating like done for the report tags, since the key with
which the tag should evolve is the one of the subject(s) in
charge of the next phase. More precisely, when an employee
completes the employee phase, the phase tag should become
encrypted with the key of the director (item 3). Similarly,
when a director completes the director phase, the phase
tag should become encrypted with the key of the set of
auditors (item 5). To accommodate such evolution without
requiring any runtime action or synchronization between
subjects, phase tags are created with a layered encryption
process, where the different layers correspond to the (keys
of the) phases in which the tag should evolve. Phase tags
are therefore randomly generated secrets encrypted with
the key of the auditors, then with the key of the director,
and finally with the key of the set of employees. Again,
note that this application of different layers of encryption
with different keys does not require the different subjects
to be available at the same time nor the set of auditors to
be defined a priori. It is sufficient to start from a randomly
generated value encrypted with a key (that will be) known
only to the auditors, encrypt it with the key of the direc-
tor, and then with the key of the set of employees. This
process can be performed in advance again generating a
pool of tags from which a phase tag to be associated with
an operation can be extracted (and deleted from further
consideration) when an operation is created. Evolution of
the phase tag is then simply enforced by having a subject
completing a phase peeling off the outermost encryption
layer, hence making the phase tag encrypted with the key
of the subject(s) authorized to perform the next phase. Note
that random values used to generate the phase tags need to
be all different for the different operations. This is needed
to prevent the possibility that the phase tag of an operation
could be used for acting on another operation outside the
proper phase. Since a phase tag can be decrypted, during
each phase, only by subjects authorized for writing the
report of the phase, one could think that the phase tag
can make the other tags unnecessary. This is not the case
since, unlike report tags, phase tags cannot be regenerated
by considering new random values to restrict access to the
individual employee (auditor, resp.) who takes in charge
the report at the start of their respective phases. Due to their
layered structured, phase tags can be only peeled off.

at generation     Eu du duA A
Eu

phase 1:

employee

    e du duA A
Eu

    e du duA A

phase 3:

auditor

    e du a A

    e du a

phase 2:

director

    e du duA A

    e du A A

Figure 9. Evolution of the tags during the ICA process (• denotes that
the random value is also refreshed)

Tag evolution. Figures 8 and 9 illustrate the evolution of
tags by reporting the keys associated with them as the
phases of the ICA process evolve. A bullet close to a key
within a tag field denotes that the random value has been
regenerated before encrypting the field with the new key.
The layered structure of the phase tag is represented by the
application of the different encryptions. As visible from the
figures, when a new operation is created, tags associated
with it (extracted from the precomputed pools) are such
that: te is encrypted with the key k′Eu

of the set of em-
ployees, td with the key k′du

of the director, ta with the
key of the set of auditors k′A, and tp has three layers of
encryption with the three keys (in reverse order, that is,
with k′Eu

as external layer). The only write action allowed is
then the writing of the employee report and corresponding
tag by any of the employees in Eu . As the first phase
starts, the employee e who takes in charge the employee
report overwrites te with a new randomly generated value
encrypted with its own key k′e. Employee e will then be
the only one able to operate on the report. In fact, other
employees will not be able anymore to prove knowledge of
the key for tag te. Upon completion (and hence signature)
of the report, the employee simply overwrites the phase tag
tp by peeling off the outermost layer with k′Eu

. This exposes
now the phase tag as encrypted with director key k′du

, hence
making write actions on the director report (and its tag) now
possible. Again, upon completion of its report, the director
simply overwrites the phase tag tp by peeling off the new
outermost layer with k′du

. This exposes now the phase tag as
encrypted with key k′A of the set of auditors, hence making
write actions on the auditor report (and its tag) now possible
for any of the auditors. The auditor a who takes in charge
the report overwrites ta with a new randomly generated
value encrypted with its own key k′a. Auditor a will then
be the only one able to operate on the report (other auditors
will not be able anymore to prove knowledge of the key for
tag ta). Upon completion of the report, the auditor simply
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overwrites the phase tag nullifying it, which implies no
write action will be accepted anymore.

Write actions on tags. The support of tag evolution as
explained above implies the need to support write actions
also on tags. Again, like for reports, the writings of tags
by the subjects will simply translate in write actions on the
corresponding field, which will be executed by the (agnos-
tic) provider. Write actions on the tag fields are regulated
similarly to write actions on reports, as captured by the
following definition.

Definition 6.3 (Write control (tags)). Let ⟨K ′,T ′,ϕ′⟩ be a W-
ICA key structure, and λ′ be a function assigning keys
to tags. A write action by subject s ∈ S on a tag field
f ∈ {te,td,ta,tp} of an operation o ∈ O is accepted
iff the following conditions, depending on the specific
field, hold.

• write(s,o.te) ∈ W
iff ϕ′(s)⇝λ′(o.te) ∧ ϕ′(s)⇝λ′(o.tp);

• write(s,o.td) ∈ W
iff ϕ′(s)⇝λ′(o.td) ∧ ϕ′(s)⇝λ′(o.tp);

• write(s,o.ta) ∈ W
iff ϕ′(s)⇝λ′(o.ta) ∧ ϕ′(s)⇝λ′(o.tp);

• write(s,o.tp) ∈ W
iff ϕ′(s)⇝λ′(o.tp) ∧ (ϕ′(s)⇝λ′(o.te) ∨ ϕ′(s)⇝λ′(o.td)
∨ ϕ′(s)⇝λ′(o.ta)).

In other words, a subject will be allowed to write a report
tag only if the subject proves to be able to decrypt it as well
as the phase tag. A subject will be allowed to write the phase
tag if the subject proves to be able to decrypt the phase tag
and one of the report tags (to restrict the writing of the tag
to the subject who has completed a phase for the operation).

7 ICA PROCESS EXECUTION

In this section, we provide the pseudocode (Figure 10)
executed by the different subjects and the provider to en-
force the process illustrated in the previous section. The
pseudocode reports the ICA process on operations stored at
the provider, with fields initialized at operation generation
as discussed above. In particular, for each operation, the
values of the report tags (i.e., te, td, and ta) are set to
the triple of values computed for the operation’s unit, while
the value of its phase tag (i.e., tp) is extracted from a pool of
pre-computed tags (see Section 6). Figure 10 includes three
rows, one row for each phase of the ICA process. For each
phase, we report the functions executed by the subject in
charge of the phase (i.e., employee, director, auditor) and
the functions executed by the provider. For each phase and
each of the involved subjects and the provider, there are the
functions for starting the phase (Start* and Write_T*, with *
in E, A), updating the corresponding report (Write_Report*
and Write_R*, with * in E, D, A), and ending the control
phase (End* and Complete_*Phase, with * in E, D, A).2 In
the following, we describe the working of these functions.
We will prove their correctness in Section 8.

2. We note that the three functions managing the start of a phase,
the write of the corresponding report, and the end of the phase can be
(partially) combined. In this case, it is not necessary for the subject to
download the operation of interest more than once.

Start phase. The start phase is needed to allow a specific
subject to become in charge of the generation (and then
on the possible updates) of a report associated with an
operation. As a matter of fact, an employee (auditor, resp.)
report can be created by any of the employees (auditors,
resp.), while its update is to be restricted by the specific
employee (auditor, resp.) who has created it. For the director
phase, only the director can create and update the director
report and therefore the director has already the exclusive
control on the director report itself.

To start the employee phase on an operation, employee e
(through function StartE) downloads the operation from the
provider. Then, the employee decrypts both the employee
tag te and the phase tag tp, obtaining values σ and
σph, necessary to prove the provider that the employee is
authorized to write the employee report of the operation.
The employee then generates a new employee tag new_tag
for the operation by encrypting a randomly generated value
with their own key k′e , and invokes function Write_TE
passing to the provider the operation id, the new_tag, σ, and
σph.
Upon receiving the invocation of Write_TE, the provider
first retrieves the operation of interest and decrypts both
the employee tag te and the phase tag tp. The provider
verifies if the obtained values match with σ and σph and,
if this is the case, it overwrites te with the value received
from the employee and updates λ′(o.te) with the label of the
employee’s key (i.e., k′e ), thus making the employee report
not modifiable by other employees (they cannot decrypt the
new tag and do not know the new secret).
The start of the auditor phase (StartA) works in a similar
way, but it operates on ta: the auditor invokes function
StartA to retrieve the operation, decrypts ta and tp, com-
putes a new value for ta, and invokes Write_TA. Upon
receiving the invocation of Write_TA, the provider verifies
tags ta and tp and, if the check passes, overwrites ta with
the value received from the auditor and sets λ′(o.ta) to the
label of the auditor’s key.

Write report. During each of the three control phases of the
ICA process, the subject who started the phase (employee,
director, or auditor) can write (i.e., create or modify) the
corresponding report (function Write_Report*, with * in
E, D, A). To this aim, the subject downloads from the
provider the operation of interest and decrypts both the tag
regulating write access to the report (e.g., te for re) and the
phase tag tp and sends the resulting values to the provider,
together with the updated (encrypted) report content. The
provider, upon receiving the updated report content and the
result of tag decryption, retrieves the operation of interest
and verifies tags. If the control is successful, the provider
overwrites the report (function Write_R*, with * in E, D, A).

End phase. To conclude an ICA phase (function End*, with
* in E, D, A), the subject in charge of the phase downloads
from the provider the operation of interest and decrypts
both the tag regulating write access to the report (e.g., te for
re) and the phase tag tp and sends the resulting values to
the provider. The provider retrieves the operation of interest
and verifies tags. If the control is successful, the provider
overwrites the phase tag with the result of its decryption,
updating λ′(o.tp) accordingly (function Complete_*Phase,
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StartE(id)
1: Let o in O s.t. o.id=id
2: σ:=Dec(o.te, k′

Eu )
3: σph:=Dec(o.tp, k′

Eu )
4: Generate σ′ at random
5: new_tag:=Enc(σ′, k′

e)
6: Write_TE(e, id, σ, σph, new_tag)

Write_ReportE(id)
1: Let o in O s.t. o.id=id
2: σ:=Dec(o.te, k′

e)
3: σph:=Dec(o.tp, k′

Eu )
4: re:=Dec(o.re, ku) /* u=unit(o) */
5: Update re
6: Write_RE(id, σ, σph, Enc(re, ku))

EndE(id)
1: Let o in O s.t. o.id=id
2: σ:=Dec(o.te, k′

e)
3: σph:=Dec(o.tp, k′

Eu )
4: Complete_EPhase(id, unit(e), σ, σph)

P

Write_TE(e, id, σ, σph, new_tag)
1: Let o in O s.t. o.id=id
2: if σ=Dec(o.te, λ′(o.te)) AND

σph=Dec(o.tp, λ′(o.tp)) then
3: o.te:=new_tag
4: λ′(o.te):=k′

e

Write_RE(id, σ, σph, re)
1: Let o in O s.t. o.id=id
2: if σ=Dec(o.te, λ′(o.te)) AND

σph=Dec(o.tp, λ′(o.tp)) then
3: o.re:=re

Complete_EPhase(id, u, σ, σph)
1: Let o in O s.t. o.id=id
2: if σ=Dec(o.te, λ′(o.te)) AND

σph=Dec(o.tp, λ′(o.tp)) then
3: o.tp:=σph

4: λ′(o.tp):=k′
du
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Write_ReportD(id)
1: Let o in O s.t. o.id=id
2: σ:=Dec(o.td, k′

du )
3: σph:=Dec(o.tp, k′

du )
4: rd:=Dec(o.rd, ku) /* u=unit(o) */
5: Update rd
6: Write_RD(id, σ, σph, Enc(rd, ku))

EndD(id)
1: Let o in O s.t. o.id=id
2: σ:=Dec(o.td, k′

du )
3: σph:=Dec(o.tp, k′

du )
4: Complete_DPhase(id, σ, σph)

P

Write_RD(id, σ, σph, rd)
1: Let o in O s.t. o.id=id
2: if σ=Dec(o.td, λ′(o.td)) AND

σph=Dec(o.tp, λ′(o.tp)) then
3: o.rd:=rd

Complete_DPhase(id, σ, σph)
1: Let o in O s.t. o.id=id
2: if σ=Dec(o.td, λ′(o.td)) AND

σph=Dec(o.tp, λ′(o.tp)) then
3: o.tp:=σph

4: λ′(o.tp):=k′
A
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StartA(id)
1: Let o in O s.t. o.id=id
2: σ:=Dec(o.ta, k′

A)
3: σph:=Dec(o.tp, k′

A)
4: Generate σ′ at random
5: new_tag:=Enc(σ′, k′

a)
6: Write_TA(a, id, σ, σph, new_tag)

Write_ReportA(id)
1: Let o in O s.t. o.id=id
2: σ:=Dec(o.ta, k′

a)
3: σph:=Dec(o.tp, k′

A)
4: ra:=Dec(o.ra, ku) /* u=unit(o) */
5: Update ra
6: Write_RA(id, σ, σph, Enc(ra, ku))

EndA(id)
1: Let o in O s.t. o.id=id
2: σ:=Dec(o.ta, k′

a)
3: σph:=Dec(o.tp, k′

A)
4: Complete_APhase(id, σ, σph)

P

Write_TA(a, id, σ, σph, new_tag)
1: Let o in O s.t. o.id=id
2: if σ=Dec(o.ta, λ′(o.ta)) AND

σph=Dec(o.tp, λ′(o.tp)) then
3: o.ta:=new_tag
4: λ′(o.ta):=k′

a

Write_RA(id, σ, σph, ra)
1: Let o in O s.t. o.id=id
2: if σ=Dec(o.ta, λ′(o.ta)) AND

σph=Dec(o.tp, λ′(o.tp)) then
3: o.ra:=ra

Complete_APhase(id, σ, σph)
1: Let o in O s.t. o.id=id
2: if σ=Dec(o.ta, λ′(o.ta)) AND

σph=Dec(o.tp, λ′(o.tp)) then
3: o.tp:=dummy
4: λ′(o.tp):=null

Figure 10. Pseudocode of the ICA process

with * in E, D, A). At the end of the auditor phase, the phase
tag is set to dummy and λ′(o.tp) is set to null, since the
tag cannot be further decrypted. This terminates the ICA
process of the operation.

For simplicity, Figure 10 does not explicitly consider the case
in which the requesting subject is not authorized for the
write action (i.e., the decrypted tags provided do not match
with the ones computed by the provider). In this case, the
provider denies the write request.

We close this section with a comment on the integration
of the mechanisms above with cloud services at the practical
level. The integration with cloud services depends on the
specific architecture of the cloud solution and many factors
come into play. Our approach essentially integrates two
layers of protection: the first layer is the selective encryption,
the second layer is the tag-based control on write opera-
tions. The realization of the first layer is compatible with
a software architecture where the client-side component
applies encryption/decryption when interacting with the
cloud resources, so that the plaintext is only accessible at

the client side. This layer is realized client-side, does not
see the involvement of the service provider, and guarantees
data and report confidentiality against unauthorized users
as well as against the provider. The second layer can be
realized by enriching the access control module within
software architecture at the provider side. This enables
its enforcement within the regular access control services
and guarantees that write operations are only executed by
authorized subjects.

8 CORRECTNESS

We formally prove that our approach (illustrated in the
previous sections) correctly enforces the requirements of
the ICA process discussed in Section 2 and formalized in
Section 3. To prove the correct enforcement of requirements
R1 and R2, we focus separately on each of them.

To prove that requirement R1 (Operation and report
visibility) is correctly enforced, we demonstrate that the
adoption of selective encryption, combined with key deriva-
tion (Section 5) enables only authorized subjects to access
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operations and reports in plaintext. This is equivalent to
prove that only authorized subjects can derive the encryp-
tion keys used to encrypt operations and reports, as formally
stated by the following theorem.
Theorem 8.1 (Correct enforcement of R1 - Operation and

report visibility). Given sets U,E,D,A, and O of units,
employees, directors, auditors, and operations, respec-
tively; a R-ICA key structure ⟨K ,T ,ϕ⟩ (Definition 5.1);
and a function λ (Property 5.1), if
∀s ∈ E ∪ D ∪ A, ∀o ∈ O, ∀f ∈ {op,re,rd,ra}:
ϕ(s)⇝λ(o.f)⇐⇒ read(s, o.f )∈AUTH, then requirement
R1 is satisfied.

Proof: Since according to requirement R1, ∀s ∈ S, ∀o ∈ Ou ,
∀u ∈ U , read(s, o.∗)∈AUTH iff (s ∈ Eu∪{du}∪A), we need
to prove that ϕ(s)⇝λ(o.f) iff (s ∈ Eu∪{du}∪A). According
to Property 5.1, λ(o.f )=ϕ(u), ∀f ∈ {op,re,rd,ra}. There-
fore, ϕ(s)⇝λ(o.f) is equivalent to ϕ(s)⇝ϕ(u). According to
Definition 5.1, for each unit u, ϕ(u)=ku , and for each subject
s, ϕ(s)=ks . Therefore, ϕ(s)⇝ϕ(u) is equivalent to ks⇝ku .
According to Definition 5.1, for each s ∈ E ∪ D there is
a token ⟨ks , ku⟩ if unit(s)=u, that is, if s ∈ Eu ∪{du}. Hence,
ϕ(s)⇝λ(o.f). Since for subjects s ∈ E ∪D there is no other
token from ks in the R-ICA structure, s cannot derive the
key of any other unit. According to Definition 5.1, for each
s ∈ A, there is a token ⟨ks , kA⟩, and there is a token ⟨kA, ku⟩
for each unit u∈U . Hence, ϕ(s)⇝λ(o.f).

To prove that requirement R2 (Report generation) is
correctly enforced, we operate in two steps: i) we first prove
(Theorem 8.2) that the pseudo-code in Figure 10 satisfies
Property 6.1, and ii) we then prove (Theorem 8.3) that the
evolution of tags according to Property 6.1 guarantees that
write actions permitted by the pseudo-code in Figure 10
are all and only those in AUTH, according to the formal
definition of requirement R2. For the sake of readability, in
the proofs of Theorems 8.2 and 8.3, we rely on Figure 11,
which illustrates the evolution of tags according to the
pseudo-code in Figure 10, and the corresponding evolution
of variables signee and seal of reports during the different
phases of the ICA process.
Theorem 8.2. Given a set U,E,D,A, and O of units, em-

ployees, directors, auditors, and operations, respectively;
a W-ICA key structure ⟨K ′,T ′,ϕ′⟩ (Definition 6.1); and a
function λ′ (Definition 6.2), the functions in Figure 10
satisfy Property 6.1.

Proof: We discuss each phase of the ICA process separately
for an operation o ∈ O, with unit(o)=u.
Employee phase. The evolution of variable signee(o.re)
corresponds to the evolution of o.te. The evolution of
variable seal(o.re) corresponds to the evolution of o.tp.
At initialization time, when signee(o.re)=null,
tags o.te and o.tp are encrypted with key
λ′(o.te)=λ′(o.tp)=k′Eu

=ϕ′(Eu ), lines 2-3 in StartE. Note
that neither λ′(o.te) nor λ′(o.tp) are set to k′Eu

anywhere
in Figure 10. Hence, item 1 in Property 6.1 is satisfied (row
“at generation” in the table in Figure 11).
When employee e takes in charge report o.re and
signee(o.re) becomes e (i.e., signee(o.re)̸=nulland
seal(o.re)=null), the value of tag o.te is overwritten
with a value encrypted with k′e=ϕ′(e), that is,

λ′(o.te)=ϕ′(e)=ϕ′(signee(o.re)), lines 5-6 in StartE. The
value of tag o.tp remains instead unchanged. Since
by Definition 6.1 only employees e∈Eu can derive
k′Eu

, ϕ′(signee(o.re))=ϕ′(e)=k′e ⇝λ′(o.tp)=ϕ′(Eu )=k′Eu
.

Since λ′(o.te) is updated only in Write_TE iff
λ′(o.te)=λ′(o.tp)=k′Eu

, λ′(o.te) cannot be set to
ϕ′(signee(o.re)) when signee(o.re)̸=null. Hence, item 2 in
Property 6.1 is satisfied (row “e starts re” in the table in
Figure 11).
When employee e completes report o.re and seal(o.re)
becomes not null, tag o.tp is updated peeling off
the external layer. Therefore, λ′(o.tp)=ϕ′(du )=k′du

,
line 4 in Complete_EPhase (row “e seals re” in the
table in Figure 11). Note that λ′(o.tp) can be set to
k′du

only by Complete_EPhase when λ′(tp)=k′Eu
and

λ′(te)=ϕ′(e). Therefore, λ′(tp) can be set to k′du
only if

signee(o.re) ̸=nulland seal(o.re)=null.
Director phase. The evolution of variable seal(o.rd) corre-
sponds to the evolution of o.tp.
Tag td is encrypted with key λ′(td)=k′du

=ϕ′(du ), line 2
in Write_ReportD, and is never modified. When di-
rector du takes in charge report rd, as noted above,
tag tp is encrypted with the same key k′du

. Therefore,
λ′(td)=λ′(tp)=k′du

=ϕ′(du ), satisfying item 3 in Property 6.1
(row “du starts rd” in the table in Figure 11).
When director du completes report o.rd and seal(o.rd)
becomes not null, tag o.tp is updated peeling off
the external layer. Therefore, λ′(o.tp)=ϕ′(A)=k′A, line 4
in Complete_DPhase (row “du seals rd” in the ta-
ble in Figure 11). Note that λ′(o.tp) can be set to
k′A only by Complete_DPhase when λ′(o.tp)=k′du

and
λ′(o.td)=ϕ′(du ). Therefore, λ′(o.tp) can be set to k′A only
if signee(o.rd) ̸=nulland seal(o.rd)=null.
Auditor phase. The evolution of variable signee(o.ra) corre-
sponds to the evolution of o.ta. The evolution of variable
seal(o.ra) corresponds to the evolution of o.tp.
At initialization time and till signee(o.ra)=null, tag o.ta
is encrypted with key λ′(o.ta)=k′A=ϕ′(A), line 2 in StartA.
As noted above, also tag o.tp is encrypted with key k′A.
Therefore, λ′(o.ta)=λ′(o.tp)=k′A=ϕ′(A), satisfying item 4 in
Property 6.1 (row “du seals rd” in the table in Figure 11).
When auditor a takes in charge report o.ra and
signee(o.ra) becomes a (i.e., signee(o.ra)̸=null), the value
of tag o.ta is overwritten with a value encrypted
with k′a=ϕ′(a), that is, λ′(o.ta)=ϕ′(a)=ϕ′(signee(o.ra)),
lines 5-6 in StartA. Since λ′(o.ta) is updated only in
Write_TA iff λ′(o.ta)=λ′(o.tp)=k′A, λ′(o.ta) cannot be set
to ϕ′(signee(o.ra)) when signee(o.ra) ̸=null. The value of
tag o.tp remains instead unchanged. By Definition 6.1
only auditors a∈A can derive k′A, ϕ′(signee(o.ra))=ϕ′(a)=k′a
⇝λ′(o.tp)=ϕ′(A)=k′A. Hence, item 5 in Property 6.1 is satis-
fied (row “a starts ra” in the table in Figure 11).
When auditor a completes report o.ra and seal(o.ra) be-
comes not null, tag o.tp is set to dummy. Therefore,
λ′(o.tp)=null, line 5 in Complete_APhase (last row ‘a seals
ra’ in the table in Figure 11).

Note that functions Write_Report* (with * in E, D, A),
which modify the reports content, check the same condi-
tions as functions StartE* (with * in E, D, A) and do not
modify the keys with which reports and tags are encrypted.
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signee(re) λ′(te) signee(rd) λ′(td) signee(ra) λ′(ta) seal(re) seal(rd) seal(ra) λ′(tp)
at generation − ϕ′(Eu ) − ϕ′(du ) − ϕ′(A) − − − ϕ′(Eu )
phase 1: e starts re e ϕ′(e) − ϕ′(du ) − ϕ′(A) − − − ϕ′(Eu )
employee e seals re e ϕ′(e) − ϕ′(du ) − ϕ′(A) sealed − − ϕ′(du )
phase 2: du starts rd e ϕ′(e) du ϕ′(du ) − ϕ′(A) sealed − − ϕ′(du )
director du seals rd e ϕ′(e) du ϕ′(du ) − ϕ′(A) sealed sealed − ϕ′(A)
phase 3: a starts ra e ϕ′(e) du ϕ′(du ) a ϕ′(a) sealed sealed − ϕ′(A)
auditor a seals ra e ϕ′(e) du ϕ′(du ) a ϕ′(a) sealed sealed sealed −

Figure 11. Correspondence between in-house variables and outsourced tags

Therefore, the considerations discussed above for report
generation hold also for report updates (i.e., only authorized
subjects can modify reports).

Having demonstrated that the functions in Figure 10
guarantee the satisfaction of Property 6.1, we now prove
that the satisfaction of such a property implies the correct
enforcement of requirement R2, as formalized in the follow-
ing theorem.
Theorem 8.3 (Correct enforcement of R2 - Report genera-

tion). Given a set U,E,D,A, and O of units, employ-
ees, directors, auditors, and operations, respectively; a
W-ICA key structure ⟨K ′,T ′,ϕ′⟩ (Definition 6.1); and a
function λ′ (Definition 6.1), if ∀s ∈ E ∪D ∪ A, ∀o ∈ O,
∀r ∈ {re,rd,ra}: write(s, o.r)∈W ⇐⇒ write(s,
o.r)∈AUTH, then requirement R2 is satisfied.

Proof: We prove that the Theorem holds for each report of
an operation o ∈ O, with unit(o)=u.
Employee report: According to requirement R2,
write(s,o.re)∈AUTH iff (s ∈ Eu ∧signee(o.re) = null)∨
(s = signee(o.re) ∧ seal(o.re) = null). According to
Definition 6.2, write(s, o.re)∈W iff ϕ′(s)⇝λ′(o.te) ∧
ϕ′(s)⇝λ′(o.tp).
Let us first consider the scenario where (s ∈ Eu

∧signee(o.re) = null). By item 1 in Property 6.1,
signee(o.re) = null implies λ′(o.te) =λ′(o.tp)=ϕ′(Eu ).
Since s ∈ Eu , s can derive k′Eu

=ϕ′(Eu ), which is used
to encrypt both o.te and o.tp. Therefore the equivalence
holds.
Let us now consider the scenario where (s =
signee(o.re)∧seal(o.re) = null). By item 2 in Property 6.1,
signee(o.re) ̸= null ∧ seal(o.re) = null implies
λ′(o.te)=ϕ′(signee(o.re)) ∧ ϕ′(signee(o.re)⇝λ′(o.tp). Since
s=signee(o.re), s can derive both the keys used to encrypt
o.te (key k′s of subject s) and o.tp (k′Eu

). Therefore the
equivalence holds.
Director report. According to requirement R2, write(s,
o.rd)∈AUTH iff seal(o.re) ̸= null ∧ s = du ∧ seal(o.rd) =
null. According to Definition 6.2, write(s, o.rd)∈W iff
ϕ′(s)⇝λ′(o.td) ∧ ϕ′(s)⇝λ′(o.tp).
By item 3 in Property 6.1, seal(o.re) ̸= null∧ seal(o.rd) =
null implies λ′(o.td)=λ′(o.tp)=ϕ′(du ). Since s=du , s
knows the keys used to encrypt o.td and o.tp (key k′s of
subject s). Therefore the equivalence holds.
Auditor report. According to requirement R2, write(s,
o.ra)∈AUTH iff (seal(o.rd) ̸= null ∧ s ∈ A
∧signee(o.ra) = null)∨ (s = signee(o.ra) ∧ seal(o.ra) =
null). According to Definition 6.2, write(s, o.ra)∈W iff

ϕ′(s)⇝λ′(o.ta) ∧ ϕ′(s)⇝λ′(o.tp).
Let us first consider the scenario where seal(o.rd) ̸=
null ∧ s ∈ A ∧signee(o.ra) = null. By item 4 in Prop-
erty 6.1, seal(o.rd) ̸= null ∧ signee(o.ra) = null implies
λ′(o.ta)=λ′(o.tp)=ϕ′(A). Since s∈A, s can derive key k′A
used to encrypt both ta and tp. Therefore the equivalence
holds.
Let us now consider the scenario where s = signee(o.ra) ∧
seal(o.ra) = null. By item 5 in Property 6.1,
signee(o.ra) ̸= null ∧ seal(o.ra) = null implies
λ′(o.ta)=ϕ′(signee(o.ra)) ∧ ϕ′(signee(o.ra))⇝λ′(o.tp). Since
s=signee(o.ra), s can derive both the keys used to encrypt
o.ta (key k′s of subject s) and o.tp (k′A). Therefore the
equivalence holds.

The theorems above prove that our approach correctly
enforces requirements R1 and R2. Clearly, the security of
the overall architecture relies on the robustness of the cryp-
tographic primitives used and on the assumption that all
the subjects involved in the ICA process (i.e., employees,
directors, auditors) and the provider are trustworthy and
operate according to the functions in Figure 10 during the
different phases of the ICA process. For the first aspect,
we note that the used cryptographic primitives commonly
recognized to be effective in protecting resources. For the
second aspect, we note that a possible misbehavior by any
of the subjects involved in the process can be detected by
any user authorized to access reports through signature
verification. For instance, if the provider enables a non-
authorized subject to generate or modify a report for an
operation, the signature of such a report will reveal the
violation of requirement R2.

9 RELATED WORK

With the widespread adoption of the cloud computing
paradigm, data owners can take advantage of the availabil-
ity of reliable and convenient services at limited economic
costs [5], [6], [7]. Relying on external could providers for
data storage and management however raises the problem
of ensuring proper protection of data and computations
over them [2]. Indeed, cloud providers are usually assumed
to be honest-but-curious (i.e., trusted to manage the data
but not with respect to data confidentiality) and hence
data confidentiality, integrity, and availability are possibly
at risk [8]. In this scenario, data protection usually relies
on data encryption at the owner-side before outsourcing
(e.g., [9]). Many efforts have then been devoted to the
design of solutions for supporting queries and computations
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over encrypted data, to delegate expensive elaborations to
the cloud provider without revealing sensitive (encrypted)
information (e.g., [10], [11], [12]). Since the cloud providers
processing data might even be considered not trustworthy,
solutions have been also designed for verifying the integrity
of data processing results (e.g., [13], [14]).

In this outsourcing scenario, a line of research related
to our proposal is the enforcement of access control re-
strictions. Existing solutions are based on the adoption of
Attribute-Based Encryption (ABE) or of selective encryp-
tion. ABE is a public key encryption schema that regulates
access to resources according to access policies defined over
a set of attributes associated with the secret key of users,
or vice versa (e.g., [15], [16]). It can be combined with
Attribute-Based Signature (ABS) approaches for supporting
the management of write privileges (e.g., [17], [18]). While
interesting and widely studied, the adoption of public key
encryption and of signature schemas makes ABE less effi-
cient than to our proposal, which is based on symmetric en-
cryption. Performance analysis of ABE implementations [19]
show the significant computational cost of these algorithms,
significantly more expensive than the algorithms used in
our proposal. The integration with the architecture of Cloud
Services is also less direct for ABE algorithms, which rely
on cryptographic primitives unfamiliar to practitioners, as
opposed to the well-known primitives adopted in our de-
sign. Also, despite recent solutions supporting policy up-
dates (e.g., [20], [21], [22]), the fine-grained management of
policy updates remains not easy to manage. Differently from
ABE, selective encryption techniques rely on symmetric
encryption and translate the authorization policy into an
equivalent encryption policy, regulating resource encryption
and key distribution to users (e.g., [3], [23], [24]). Selective
encryption is possibly combined with key derivation strate-
gies (e.g., [4], [25]), to limit the key management overhead
for users. Even if our solution is inspired and presents
similarities with these approaches, existing selective encryp-
tion solutions cannot be directly adopted when outsourcing
the ICA process, due to the peculiarities of the relation-
ship among subjects (reflected in a specific key derivation
structure). Also, selective encryption has been extended to
regulate write operations through the adoption of digital
signatures and/or on HMAC functions (e.g., [26]), which
are not suited to a very dynamic scenario characterized by a
large number of small resources like the reports of the ICA
process.

A problem that presents similarities with the one ad-
dressed in this paper is the object-level tracking along
supply chains [27]. However, while also supply chains are
characterized by data generated during different phases of
object-level tracking, moving the management of these data
collections to the cloud presents different security issues
than the ones characterizing the ICA process, due to the
peculiar roles of the actors interacting in the two scenar-
ios [28]. Selective encryption has been adapted to supply
chain management, but there is no need to dynamically
regulate write access privileges [29].

A preliminary version of this work was first proposed
in [1]. In this paper we have considerably revised and
extended the work. We have now provided a formalization
of the ICA process, with formal definitions for the require-

ments and the process modeling. The proposed approach
for outsourcing data and operations to cloud providers is
also now formally defined and accompanied by properties
and proofs of correctness. Also, the approach has been
improved with a new tag-based approach for controlling
write actions, based on a more efficient and slim solution
with precomputed tags and the inclusion of a layered phase
tag supporting the evolution of the process.

10 CONCLUSIONS

We presented an approach enabling organizations to se-
curely rely on cloud-based services for performing cor-
porate governance Internal Controls and Audit functions.
By leveraging hierarchical selective encryption built on
the organizational structure, our approach provides a self-
protection layer to data and their reports for outsourcing,
which guarantees both confidentiality against the cloud
provider and support for access regulation. Report man-
agement is also conveniently enforced with the support of
the cloud provider via compact tags similarly selectively
encrypted. Our work can help removing possible barriers to
the adoption of cloud-based services and enable their wider
and confident adoption.
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