840

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

Managing and Sharing Servents’
Reputations in P2P Systems

Ernesto Damiani, Member, IEEE, Sabrina De Capitani di Vimercati, Member, IEEE Computer Society,
Stefano Paraboschi, and
Pierangela Samarati, Member, IEEE Computer Society

Abstract—Peer-to-peer information sharing environments are increasingly gaining acceptance on the Internet as they provide an
infrastructure in which the desired information can be located and downloaded while preserving the anonymity of both requestors and
providers. As recent experience with P2P environments such as Gnutella shows, anonymity opens the door to possible misuses and
abuses by resource providers exploiting the network as a way to spread tampered-with resources, including malicious programs, such
as Trojan Horses and viruses. In this paper, we propose an approach to P2P security where servents can keep track, and share with
others, information about the reputation of their peers. Reputation sharing is based on a distributed polling algorithm by which resource
requestors can assess the reliability of perspective providers before initiating the download. The approach complements existing P2P
protocols and has a limited impact on current implementations. Furthermore, it keeps the current level of anonymity of requestors and
providers, as well as that of the parties sharing their view on others’ reputations.

Index Terms—P2P network, reputation, credibility, polling protocol.

1 INTRODUCTION

IN the world of Internet technologies, peer-to-peer (P2P)
solutions are currently receiving considerable interest
[14]. The term peer-to-peer is a generic label assigned to
network architectures where all the nodes offer the same
services and follow the same behavior. In Internet jargon,
the P2P label represents a family of systems where the users
of the network overcome the passive role typical of Web
navigation and acquire an active role offering their own
resources. P2P communication software is increasingly
being used to allow individual hosts to anonymously share
and distribute various types of information over the
Internet [24]. While systems based on central indexes such
as Napster (www.napster.com) collapsed due to litigations
over potential copyright infringements, the success of
“pure” P2P products like Gnutella [32] and Freenet [10]
fostered interest in defining a global P2P infrastructure for
information sharing and distribution. Several academic and
industrial researchers are currently involved in attempts to
develop a common platform for P2P applications and
protocols [12], [19], [26]. Still, there are several thorny issues
surrounding research on P2P architectures [5].

First of all, popular perception still sees P2P tools as a
way to trade all kinds of digital media, possibly without the
permission of copyright owners, and the legacy of early
underground use of P2P networks is preventing the full

e E. Damiani, S. De Capitani di Vimercati, and P. Samarati are with the
Dipartimento di Tecnologie dell’Informazione, Universita degli Studi di
Milano, Via Bramante 65, 26013 Crema, Italy.

E-mail: {damiani, decapita, samarati}@dti.unimi.it.

e S. Paraboschi is with the Dipartimento di Ingegneria, Universitd di
Bergamo, Via Marconi 5, 24044 Dalmine, Italy.

E-mail: parabosc@unibg.it.

Manuscript received 15 July 2002; revised 15 Dec. 2002; accepted 6 Jan. 2003.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 118231.

1041-4347/03/$17.00 © 2003 IEEE

<+

acceptance of P2P technologies in the corporate world.
Indeed, P2P systems are currently under attack by
organizations like the RIAA (Recording Industry Associa-
tion of America) and MPAA (Motion Picture Association of
America), which intend to protect their intellectual property
rights that they see violated by the exchange of copyrighted
materials permitted by P2P systems. This opposition is
testified by the lawsuits filed against P2P software dis-
tributors by the RIAA and MPAA. Of course, with this
work, we do not intend to support the abuse of intellectual
property rights. Our interest arises from the observation
that P2P solutions are seeing an extraordinary success, and
we feel that a self-regulating approach may be a way to
make these architectures compliant with the ethics of the
user population and isolate from the network the nodes
offering resources that are deemed inappropriate by the
users.

Second, a widespread security concern is due to the
complete lack of peers’ accountability on shared content.
Most P2P systems protect peers’ anonymity allowing them to
use self-appointed opaque identifiers when advertising shared
information (though they require peers to disclose their IP
address when downloading). Also, current P2P systems
neither have a central server requiring registration nor keep
track of the peers’ network addresses. The result of this
approachis a kind of weak anonymity, that does not fully avoid
the risks of disclosing the peers’ IP addresses, prevents the
use of conventional Web of trust techniques [21], and allows
malicious users to exploit the P2P infrastructure to freely
distribute Trojan Horses and viruses. Some practitioners
contend that P2P users are no more exposed to viruses than
when downloading files from the Internet through conven-
tional means such as FTP and the Web, and that virus
scanners can be used to prevent infection from digital media
downloaded from a P2P network. However, using P2P

Published by the IEEE Computer Society

DAMIANI ET AL.: MANAGING AND SHARING SERVENTS’ REPUTATIONS IN P2P SYSTEMS 841

software undeniably increases the chances of being exposed,
especially for home users who cannot rely on a security policy
specifying which antivirus program to use and how often to
update it. Moreover, with FTP and the Web, users most
typically execute downloaded programs only when they
trust the site where the programs have been downloaded
from. We believe that the future development of P2P systems
will largely depend on the availability of novel provisions for
ensuring that peers obtain reliable information on the quality
of the resources they are retrieving. In the P2P scenario, such
information can be obtained by means of peer review, that is,
relying on the peers’ opinions to establish a digital reputation
for information sources on the P2P network.

In this paper, we propose an approach for managing and
sharing peer reputations in a P2P network. We focus on
pure P2P networks for file exchange and, more precisely, on
the Gnutella architecture [32]. The reason for focusing on a
pure P2P network is that it is closest to the ideal structure of
the peer-to-peer spirit, where all participants have a
uniform role. Also, our solution builds on Gnutella in
particular because it is an open and consolidated protocol
and many open source implementations are available that
permit to experiment with our protocol variants. However,
we note that our solution can be also adopted within other
environments where indexing schemes are present, such as
Chord [30].

Our digital reputations can be seen as the P2P counter-
parts of client-server digital certificates [15], [18], but
present two major differences that require them to be
maintained and processed very differently. First of all,
reputations must be associated with self-appointed opaque
identifiers rather than with externally obtained identities.
Therefore, keeping a stable identifier (and its good reputa-
tion) through several transactions must provide a consider-
able benefit for peers” wishing to contribute information to
the network, while continuously reacquiring newcomer
status must not be too much of an advantage for malicious
users changing their identifier in order to avoid the effect of
a bad reputation. Second, while digital certificates have a
long life-cycle, the semantics of the digital reputation must
allow for easily and consistently updating them at each
interaction. In our approach, reputations simply certify the
experience accumulated by other peers’” when interacting
with an information source and smoothly evolve over time
via a polling procedure.

2 SKETCH OF THE APPROACH

We first define the working of the Gnutella protocol and
then sketch the basic idea of our approach that extends the
Gnutella protocol to support reputation establishment and
sharing.

2.1 Gnutella Overview

Gnutella offers a fully peer-to-peer decentralized infra-
structure for information sharing. Each servent is associated
with a self-appointed servent_id, which can be commu-
nicated to others when interacting, as established by the
P2P communication protocol used. The servent_id of a
party (intuitively a user connected at a machine) can change

at any instantiation or remain persistent. The topology of a
Gnutella network graph is meshed, and all servents act both
as clients and servers and as routers propagating incoming
messages to neighbors. While the total number of nodes of a
network is virtually unlimited, each node is linked
dynamically to a small number of neighbors, usually
between 2 and 12. Messages, that can be broadcast or
unicast, are labeled by a unique identifier and can be used
by the recipient to detect where the message comes from.
This feature allows replies to broadcast messages to be
unicast when needed. To reduce network congestion, all the
packets exchanged on the network are characterized by a
given Time-To-Live (TTL). On passing through a node, the
TTL of a forwarded message is decreased by one; when the
TTL reaches zero, the message is dropped. The limit of the
TTL creates a horizon of visibility for each node on the
network. The horizon is defined as the set of nodes residing
on the network graph at a path length equal to the TTL and
reduces the scope of searches, which are therefore forced to
work on only a portion of the resources globally offered. A
node’s horizon depends on the number of connections that
it opens with its neighbors (typical values are in the range 2
to 6). For each Gnutella node, the number of reachable peers
increases polynomially with the number of connections and
exponentially with the value of TTL; nodes may dynami-
cally reduce the values of TTL and connections when they
detect congestion.

A P2P file exchange in Gnutella involves two phases:
search and download (see Fig. 1). To search for a particular
file, a servent p sends a broadcast Query message to every
node to which it is directly linked. Since the message is
broadcast through the P2P network, each node not directly
connected with p will receive this message via intermedi-
aries (and will not know that p originated it). Servents that
receive the query and have in their repository the file
requested, answer with a QueryHit unicast packet that
contains a ResultSet plus their IP address and the port
number of a server process from which the files can be
downloaded using the HTTP protocol. Although p is not
known to the responders, responses can reach p via the
network by following in reverse the same connection arcs
used by the query. Among the servers responding to the
query, p can select the servent from which to execute the
download. This choice is usually based on the offer quality
(e.g., the number of hits and the declared connection speed)
or on preference criteria based on its past experiences. The
download is carried out via a direct connection based on
protocols on the TCP/IP family (FTP, HTTP).

Servents can gain a complete vision of the network within
the horizon by broadcasting Ping messages. Servents within
the horizon reply with a Pong message containing the
number and size of the files they share. Finally, communica-
tion with servents located behind firewalls is ensured by
means of Push messages. A Push message behaves more or
less like passive communication in traditional protocols such
as FTP, in as much it requires the “pushed” servent to initiate
the connection for downloading.

842

PHASE 1: RESOURCE SEARCHING

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

PHASE 2: RESOURCE DOWNLOADING

Legend
servent looking for a resource

[servents willing to offer the requested resource.
g

Fig. 1. Gnutella working.

PHASE 1: RESOURCE SEARCHING

PHASE 2: POLLING

e
,'l,\'
=

P

Fig. 2. P2PRep protocol working.

2.2 Basic Idea of P2PRep

The basic idea of our approach, called P2PRep, is to allow p,
before deciding from where to download the resource, to
enquire about the reputation of offerers by polling its peers.
The approach complements the Gnutella protocol with two
phases: polling and vote evaluation (phases 2 and 3 in Fig. 2).
After receiving the responses to its query, p can select a
servent (or a set of servents) based on the quality of the offer
and its own past experience. Then, p polls its peers by
broadcasting a (Poll) message requesting their opinion
about the selected servents. All peers can respond (Poll-
Reply) to the poll with their opinions about the reputation

of each of such servents. The poller p can use the opinions
expressed by these voters to make its decision.

The intuitive idea behind our approach is therefore very
simple. A little complication is introduced by the need to
prevent exposure of polling to security violations by
malicious peers. In particular, we need to ensure authen-
ticity of servents acting as offerers or voters (i.e., preventing
impersonation) and the quality of the poll, ensuring the
votes and detecting possible dummy votes expressed by
servents acting as a clique under the control of a single
malicious party. Also, our approach encourages persistence
of the servent identities as the only way to maintain history
of a servent_id across transactions. However, persistence of

DAMIANI ET AL.: MANAGING AND SHARING SERVENTS’ REPUTATIONS IN P2P SYSTEMS 843

a servent_id does not affect anonymity of the party behind
it, as the servent_id works only as an opaque identifier."

We present two flavors of reputation sharing. In the first
solution, which we call basic polling, the servents responding
to the poll do not provide their servent_id. In the second
solution, which we call enhanced polling, voters also declare
their servent_id, which can then be taken into account by p
for weighting the votes received (p can judge some voters as
being more credible than others).

In the next section, we illustrate how the different phases
resource searching, polling, vote evaluation, and resource down-
loading sketches in Fig. 2 are carried out in our protocols.

3 REPUTATION-BASED SOURCE SELECTION
PRoTOCOLS

Hashing and cryptographic techniques are used to provide
the basic security functionalities to our protocols. In
particular, we assume that poll responses have included
an integrity check computed via a secure hash function and
that direct transmissions (i.e., outside the P2P network) are
carried out on a secure channel (e.g., SSL). Also, our
protocols assume the use of public key encryption to
provide integrity and confidentiality of message exchanges.
Whether permanent or fresh at each interaction, we require
each servent_id to be a digest of a public key, obtained
using a secure hash function and for which the servent
knows the corresponding private key. This assumption
allows a peer talking to a servent_id to ensure that its
counterpart knows the private key, whose corresponding
public key, the servent_id, is a digest. A pair of keys is also
generated on the fly for each poll. In the following, we will
use (PK;, SK;) to denote a pair of public and private keys
associated with i, where ¢ can be a servent or a poll request.
We will use Ex(M) and Sk(M) to denote the encryption
and signature, respectively, of message M under key K,
and h(M) to denote the hashing of message M. Also, in
illustrating the protocols, we will use p to denote the
protocol’s initiator, O to denote the set of servents
responding to the query (offerers), and V to denote the set
of servents responding to p’s polling (voters).

3.1 Basic Polling Protocol

Fig. 3 illustrates the steps composing the different phases in
the basic polling solution. In the figure, a “(G)” associated
with a step indicates that the step pertains to traditional
Gnutella interchange; unmarked steps are peculiar to our
protocol. The protocol works as follows:

Phase 1: Resource searching. This phase works in the
same way as in the conventional Gnutella protocol. Servent
p looking for a resource broadcasts a Query indicating the
resource it is looking for. Every servent receiving the query
and willing to offer the requested resource for download,
sends back a QueryHit message stating how it satisfies the
query (i.e., number of query hits, the set of responses, and
the speed in Kb/second) and providing its servent_id and
its pair (I P, port), which p can use for downloading.

1. It must be noted that, while not compromising anonymity, persistent
identifiers introduce linkability, meaning transactions coming from a same
servent can be related to each other.

Phase 2: Polling. Upon reception of the QueryHit
messages, p selects a top list of favorite servents 7" and polls
its peers about the reputations of these servents. In the poll
request, p includes the set " of servent_ids about which it is
enquiring and a public key PK,,; generated on the fly for
the poll request, with which responses to the poll will need
to be encrypted.” The poll request is sent through the P2P
network and, therefore, p does not need to disclose its
servent_id or its IP to be able to receive back the response.
Peers receiving the poll request and wishing to express their
opinion on any of the servants in the list, send back a
PollReply expressing their votes and pair (IP,port) pair
(like when responding to queries). A hash of the votes and
pair (IP, port) is also added in order to allow p to check the
integrity of the message. The Pol1Reply is then encrypted
with PK,,; to ensure its confidentiality (of both the vote and
the voters) when in transit.

Phase 3: Vote evaluation. As a result of the previous
phase, p receives a set of votes, where, for each servent in 7T,
some votes can express a good opinion while some others
can express a bad opinion. To base its decision on the votes
received, p needs to trust the reliability of the votes. Thus, p
first uses the hash to detect tampered-with votes and
discard them. Second, p detects votes that appear suspi-
cious, for example, since they are coming from IPs
suspected of representing a clique.® Third, p selects a set
of voters that it directly contacts (by using the (IP, port) pair
they provided) to check whether they actually expressed
that vote. For each selected voter v;, p directly sends a
TrueVote request reporting the votes it has received from
v;, and expects back a confirmation message TrueVoteRe-
ply from v; confirming the validity of the vote. This forces
potential malicious servents to pay the cost of using IPs as
false witnesses. Note that, of course, nothing forbids
malicious servents to completely throw away the votes in
transit (but if so, they could have done this blocking on the
QueryHit in the first place). Also, note that servents will
not be able to selectively discard votes, as their recipient is
not known and their content, being encrypted with PK,;, is
not visible to them. Upon assessing correctness of the votes
received, p can finally select the offerer it judges as its best
choice, according to the 1) connection speed, 2) its own
reputation about the servents, and 3) the votes received.
Different criteria can be adopted for evaluating the votes
received, and any servent can use its own. For instance, p
can choose the offerer with the highest number of positive
votes, the one with the highest number of positive votes
among the ones for which no negative vote was received,
the one with the higher difference between the number of
positive and negative votes, and so on.

Phase 4: Resource downloading. At this point, before
actually initiating the download, p challenges the selected
offerer s to assess whether it corresponds to the declared
servent_id. Servent s will need to respond with a message
containing its public key PK; and the challenge signed with
its private key SK,. If the challenge-response exchange
succeeds and the PK,’s digest corresponds to the servent_id

2. In principle, p’s key could be used for this purpose, but this choice
would disclose the fact that the request is coming from p.
3. We will elaborate more on this in Section 3.4.

844 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

Protocol 1 Basic Polling protocol

Initiator: Servent p

Peers: Participants in the message broadcasting, among which a set O of offerers and a set V' of voters

INITIATOR
Phase 1: Resource searching
(G) 1.1 Start a search request by broadcasting a Query message
Query(min_speed,search_string)
(G) 1.2 Receive a set of offers from offerers O
QueryHit(num_hits,port,IP,speed, Result,trailer,servent_id;)
Phase 2: Polling
2.1 Select top list 7' C O of offerers
2.2 Generate a pair of public-secret keys (PKpoi1,SKpour)
2.3 Poll peers about the reputations of offerers T'
Poll(T,PKpoi)
2.4 Receive a set of votes from voters V'
PollReply(EprO” (IP,port, Votes,h(IP,port, Votes)))
Phase 3: Vote evaluation
3.1 Remove from V voters that appear suspicious (e.g., checking IP addresses)
3.2 Select a random set V' C V of voters and for each v; € V' check whether it actually expressed that vote
TrueVote(Votes;)
3.3 Expect back confirmation messages from each selected voter v; € V'
TrueVoteReply(response;)
Phase 4: Resource downloading
4.1 Select servent s from which download files
4.2 Generate a random string r
4.3 Send a challenge message to s
challenge(r)
4.4 Receive a response message from s containing its public key PKs and the challenge signed with its private key SKs
response(Ssk, (r),PKs)
4.5 If the challenge-response exchange fails terminate the process
(G) 4.6 Download the files

4.7 Update experience_repository

PEERS
Q.1 Upon receiving a search request (Query message), check if any locally stored files match the query and if so
send a QueryHit message

Q.2 Broadcast the query through the P2P network

P.1 Upon receiving a Poll message, check if any of the servents listed in it are known and express an opinion on them
by sending a PollReply message
P.2 Broadcast the Poll message through the P2P network

P.3 Upon receiving a TrueVote message, confirm the votes by sending a TrueVoteReply message

Fig. 3. Sequence of messages and operations in the basic polling protocol.

that s has declared, then p will know that it is actually done, like the download, via direct communication on a
talking to s. Note that the challenge-response exchange is secure connection, to prevent impersonation by which

DAMIANI ET AL.: MANAGING AND SHARING SERVENTS’ REPUTATIONS IN P2P SYSTEMS 845

servents can offer resources using the servent_id of other
peers. With the authenticity of the counterpart established,
p can finally download the resource and, depending on its
satisfaction for the download, update its reputation
information for s (see Section 3.3).

3.2 Enhanced Polling Protocol

The enhanced polling protocol differs from the basic
solution by requesting voters to provide their servent_id.
Intuitively, while in the basic polling a servent only
maintains a local recording of its peers reputation, in the
enhanced solution, each servent also maintains track of the
credibility of its peers, which it will use to properly weigh
the votes they express when responding to a poll request.
Fig. 4 illustrates the different steps composing the phases of
the protocol. Like for the basic polling protocol, a “(G)”
associated with a step indicates that the step pertains to
traditional Gnutella interchange; a “(*)” associated with a
step indicates that the step is different from the correspond-
ing step in the basic polling.

Phase 1: Resource searching. This phase works like in
the basic polling protocol.

Phase 2: Polling. Like for the basic protocol, after
receiving the QueryHit responses and selecting its top list
T of choice, p broadcasts a poll request enquiring its peers
about the reputations of servents in 7. A servent receiving
the poll request and wishing to express an opinion on any
of the servents in T" can do so by responding to the poll with
a Pol1lReply message in which, unlike for the basic case, it
also reports its servent_id. More precisely, Pol1Reply
reports, encrypted with PK,,;, the public key PK; of the
voter v; and its vote declarations signed with the corre-
sponding private key SK;. The vote declaration contains the
pair (IP,port) and the set of votes together with the
servent_id of the voter. Once more, the fact that votes are
encrypted with PK,,; protects their confidentiality and the
signature allows the detection of integrity violations. In
addition, the fact that votes are signed with the voter’s
private key guarantees the authenticity of their origin.

Phase 3: Vote evaluation. Again, after collecting all the
replies to the poll, p carries out an analysis of the votes
received removing suspicious votes. It then selects a set of
newcomer® voters to be contacted directly to assess the
correct origin of votes. This time, the direct contact is
needed to avoid servent_id to declare fake IPs (there is no
need to check the integrity of the vote as the vote’s signature
guarantees it). Selected voters are then directly contacted,
via the (IP,port) pair they provided with an AreYou
message reporting the servent_id that was associated with
this pair in the vote. Upon this direct contact, the voter
responds with an AreYouReply message confirming its
servent_id. Servent p can now evaluate the votes received
in order to select, within its top list 7', the server it judges
best. While in the basic polling, all votes were considered
equal; the knowledge about the servent_ids of the voters
allows p to weigh the votes received based on who
expressed them. This distinction is based on credibility
information maintained by p and reporting, for each servent
s that p wishes to record, how much p trusts the opinions
expressed by s (see Section 3.3).

4. Servents that have voted in past polls and for which an AreYou check
was already executed and the (IP,port) recorded need not be verified.

Phase 4: Resource downloading. Like for the basic case,
we assume that, before downloading, a challenge-response
exchange is executed to assess the fact that the contacted
servent s knows the private key SK; such that the digest of
the corresponding PK; is the declared servent_id. After the
downloading, and depending on the success of the down-
load, p can update the reputation and credibility informa-
tion it maintains (see Section 3.3).

3.3 Maintaining Servents’ Reputations and
Credibilities

When illustrating our protocols, we assumed that each
servent maintains some information about how much it
trusts others with respect to the resources they offer
(reputation) and the votes they expressed in the past
(credibility). Different approaches can be used to store,
maintain, and express such information, as well as to
translate it in terms of votes and vote evaluation. In fact,
many vote aggregation systems [8] are available, each
suited to a different set of applications. Some aggregation
techniques are independent from the polling algorithm;
others (e.g., the ones requiring multiple rounds) must be at
least partially known to the voters in advance. In our
protocol, we have chosen not to make voters aware of a set
of alternatives (i.e., the alternative servents offering a
resource), as this is known to introduce additional security
weaknesses in the voting protocol [8]. Our algorithm
proposes a single alternative per voting round and
transparently aggregates results using a (clustered) com-
pensative aggregation. Servent ranking is then computed
aggregating cluster-wide results. In this section, we briefly
illustrate the approach we adopted in our current imple-
mentation. Our technique includes three different steps,
each involving a distinct aggregation operator. First, each
voter aggregates stored values representing its past experi-
ence in order to decide the vote to cast about a given servent.
Second, the poller aggregates values representing the
reliability of past recommendations on the part of each
voter to represent each voter’s credibility. Third, the poller
uses voters’ credibilities to aggregate received votes for
each servent, in order to compute the final servents’ ranking
and to pick the best source from which it can download the
resource it needs.

Aggregating experience values into votes. Each servent
s maintains its overall experience_repository as a set ¥ of
triples i = (servent_id, num_plus, num_minus). Each triple
1 represents the history of past interactions with a given
servent_id, reporting the number of successful (num_plus)
and unsuccessful (num_minus) downloads that s experi-
enced. Servent s could judge a download as unsuccessful,
for example, if the downloaded resource was unreadable,
corrupted, or it included malicious content. This experi-
ence_repository is updated after each download by in-
crementing the suitable counter, according to the download
outcome. In our approach, each voter casts its vote by using
its experience values to compute a binary outcome that can
be either positive (1) or negative (0).° This outcome is based

5. While here we consider binary votes only, it is worth noting that votes
need not be binary and that servents need not agree on the scale on which to
express them. For instance, votes could be expressed in an ordinal scale
(e.g., from A to D or from ***** to *) or in a continuous one (e.g., a servent can
consider a peer reliable at 80 percent).

846 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

Initiator: Servent p

Peers: Participants in the message broadcasting, among which a set O of offerers and a set V' of voters

INITIATOR
Phase 1: Resource searching
(G) 1.1 Start a search request by broadcasting a Query message
Query(min_speed,search_string)
(G) 1.2 Receive a set of offers from offerers O
QueryHit (num_hits,port,IP,speed, Result,trailer,servent_id;)
Phase 2: Polling
2.1 Select top list 7" C O of offerers
2.2 Generate a pair of public, secret keys (PKo11, SKpor)
2.3 Poll peers about the reputations of offerers T’
Poll(T,PKpoi)
(*) 2.4 Receive a set of votes from voters V'
*) PollReply(EprO” (IP,port, Votes,servent_id;,Ssk, (IP,port, Votes, servent_id;),PK;))
Phase 3: Vote evaluation
3.1 Remove from V voters that appear suspicious (e.g., checking IP addresses)
(*) 3.2 Select a random set V' C V of voters and for each v; € V' check its identity by sending an AreYou message
(*) AreYou(servent_id;)
(*) 3.3 Expect back confirmation messages from each selected voter
*) AreYouReply(response;)
Phase 4: Resource downloading
4.1 Select servent s from which download files
4.2 Generate a random string r
4.3 Send a challenge message to s
challenge(r)
4.4 Receive a response message from s containing its public key PK, and the challenge signed with its private key SKg
response(Sgk (r),PKs)
4.5 If the challenge-response exchange fails terminate the process
(G) 4.6 Download the files

(*) 4.7 Update experience and credibility repositories

PEERS
Q.1 Upon receiving a search request (Query message), check if any locally stored files match the query and if so
send a QueryHit message

Q.2 Broadcast the query through the P2P network

P.1 Upon receiving a Poll message, check if know any of the servents listed in it and express an opinion on them
by sending a PollReply message
P.2 Broadcast the Poll message through the P2P network

(*) P.3 Upon receiving an AreYou message, confirm the identity by sending an AreYouReply message

Fig. 4. Sequence of messages and operations in the enhanced polling protocol.

on a suitable aggregation operator ¢ : ¥ — {0,1} that each only for servents with which it never had bad experiences
voter adopts independently [16]. For instance, a peer may (in this case, ¢(¢) =1 if num_minus =0, ¢()) =0 other-

take a conservative approach and decide to vote positively ~wise); on the other hand, other peers could adopt a more

DAMIANI ET AL.: MANAGING AND SHARING SERVENTS’ REPUTATIONS IN P2P SYSTEMS 847

compensatory attitude, balancing bad and good experiences
as follows: ¢(v)) = 1 if num_plus — num_minus > 0, ¢(vp) =
0 otherwise.

Computing voters’ credibility. Once received, votes
need to be aggregated to compute a ranking of available
sources. Of course, one could rank sources simply accord-
ing to the number of votes each one gets; but, this approach
would not make any distinction among voters that are
known to be reliable and others that are unknown or,
worse, that are known to have been unreliable in the past.
To take this difference into account, we introduce the
concept of voter’s credibility. Each servent s maintains a
credibility_repository as a set © of triples

0 = (servent_id, num_agree, num_disagree)

associating with each servent_id its accuracy in casting
votes. In particular, num_agree represents the number of
times the servent_id’s opinion on another peer x (within a
transaction in which = was selected by s for down-
loading) matched the outcome of the download. Con-
versely, num_disagree represents the number of times the
servent_id’s opinion on another peer z (again, within a
transaction in which z was then selected by s for
downloading) did not match the outcome of the down-
load. A simple approach to credibility_repository main-
tenance is as follows: At the end of a successful
transaction, the initiator p increases by one the num_agree
counter of all those servents that had voted in favor of the
selected servent z, and increases by one the num_disagree
counter of all those servents that had voted against x. The
vice versa happens for unsuccessful transactions. As in
the previous step, our credibility computation is based on
a simple aggregation operator. Such an operator may be
binary, that is ¢:© — {0,1}. Again, we can adopt a
conservative attitude simply by choosing ¢() =1 if
num_agree — num_disagree > k, and ¢(f) =0 otherwise,
where k is a positive integer.” While a complete
discussion on this topic is outside the scope of this paper,
it is interesting to note that the value of %k could be
adaptively tuned for each voter in order to reflect changes
in its reliability. Alternatively, we can define ¢ : © — [0, 1],
for example, as ¢ = mmJg;‘ggﬁ;%:ffdisagm. Note that, this
time, the codomain of the ¢ function is the whole unit
interval and not just the pair of values {0, 1}.

Aggregating votes to rank servents. The poller uses
votes and, optionally, the voters’ credibilities in order to
compute a final ranking of sources. Once again, this
aggregation can be performed using a number of techni-
ques, corresponding to different attitudes on the part of the
poller [4]. Basically, we can imagine that each vote is
weighted by multiplying it with the credibility of the voter
that casted it. Different aggregation techniques can provide
a different choice for combining these weighted votes,
including: logical conjunction, which considers the minimum
among the weighted votes; product-based conjunction, which
considers their product; or weighted averages that computes
the average of the weighted votes.

6. Such binary aggregations are often referred to as “k times and you are
out” operators.

3.4 Removing Suspects from the Poll

PollReply messages need to be verified in order to
prevent malicious users from creating or forging a set of
peers with the sole purpose of sending in positive votes to
enhance their reputation. We base our verification on a
suspects identification procedure, trying to reduce the impact
of forged votes. Our procedure relies on computing clusters
of voters whose common characteristics suggest that they
may have been created by a single, possibly malicious, user.
Of course, nothing can prevent a malicious user, aware of
the clustering technique, from forging a set of voters all
belonging to different clusters; this is however discouraged
by the fact that some of the voting peers will be contacted in
the following check phase (Step 3.2). In principle, voters’
clustering can be done in a number of ways, based on
application-level parameters, such as the branch of the
Gnutella topology through which the votes were received,
as well as on network-level parameters, such as IP
addresses. At first sight, IP-address clustering based on
net_id appears an attractive choice as it is extremely fast
and does not require generating additional network traffic.
An alternative, more robust, approach currently used by
many tools, such as IP2LL [20] and NetGeo [23], computes
IP clustering by accessing a local Whois database to obtain
the IP address block that includes a given IP address. We are
well aware that, even neglecting the effects of IP spoofing,
both IP clustering techniques are far from perfect, especially
when clients are behind proxies or firewalls, so that the
“client” IP address may actually correspond to a proxy. For
instance, the AOL network has a centralized cluster of
proxies at one location for serving client hosts located all
across the US, and the IP addresses of such clusters all
belong to a single address block [25]. In other words, while
a low number of clusters may suggest that a voters” set is
suspicious, it does not provide conclusive evidence of
forgery. For this reason, we do not use the number of
clusters to conclude for or against voters’ forgery; rather, we
compute an aggregation (e.g., the arithmetic mean) of votes
expressed by voters in the same cluster. Each cluster can
then correspond to one or more votes (depending on its
size). After the outcome has been computed, an explicit IP
checking phase starts: a randomized sample of voters are
contacted via direct connections, using their alleged IP
addresses. If some voters are not found, the sample size is
enlarged. If no voter can be found, the whole procedure is
aborted.

4 P2PRep IMPACT ON GNUTELLA-LIKE P2P
SYSTEMS

The impact of P2PRep on a real-world P2P system based on
Gnutella depends on several factors, some of them related
to the original design of Gnutella itself. First of all, in the
original design, there is no need for a servent to keep a
persistent servent identifier across transactions; indeed,
several Gnutella clients generate their identifiers randomly
each time they are activated. P2PRep encourages servents
keen on distributing information to preserve their identi-
fiers, thus contributing to a cooperative increase of the P2P
community’s ethics. Second, efficiency considerations

848 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

brought Gnutella designers to impose a constraint on the
network horizon, so that each servent only sees a small
portion of the network. This influences P2PRep impact,
since in real-world scenarios a poller may be able to get a
reasonable number of votes only for servents that have a
high rate of activity. In other words, P2PRep will act as an
adaptive selection mechanism of reliable information
providers within a given horizon, while preserving the
“pure” P2P nature of a Gnutella network. Another major
impact factor for P2PRep is related to performance, as
Gnutella is already a verbose protocol [28] and the amount
of additional messages required could discourage the use of
P2PRep. However, the protocol operation can be easily
tuned to the needs of congested network environments. For
instance, in Section 3, we have assumed that peers express
votes on others upon explicit polling request by a servent.
Intuitively, we can refer to this polling approach as client-
based, as peers keep track of good and bad experiences they
had with each peer s they used as a source. In low-
bandwidth networks, P2PRep message exchanges can be
reduced by providing a server-based functionality, whereby
servents keep a record of (positive) votes for them stated by
others. We refer to these “reported” votes as credentials,
which the servent can provide in the voting process.
Obviously, credentials must be signed by the voter that
expressed them, otherwise a servent could fake as many
credentials as it likes. Finally, when a P2P system is used as
a private infrastructure for information sharing (e.g., in
corporate environments), P2PRep vote semantics can easily
be tuned adopting a rating system for evaluating the quality
of different information items provided by a servent, rather
than its reliability or malicious attitude.

4.1 Security Improvements

Of course, the major impact of a reputation based protocol
should be on improving the global security level. P2PRep
has been designed in order to alleviate or resolve some of
the current security problems of P2P systems like Gnutella
[5]. Also, P2PRep tries to minimize the effects of some well-
known weaknesses usually introduced by poll-based dis-
tributed algorithms. In this section, we discuss the behavior
of our protocol with respect to known attacks. Throughout
the section, we assume Alice to be a Gnutella user searching
for a file, Bob to be a user who has the file Alice wants, Carl
to be a user located behind a firewall who also has the file
Alice wants, and David to be a malicious user.
Distribution of tampered-with information. The sim-
plest version of this attack is based on the fact that there is
virtually no way to verify the source or contents of a
message. A particularly nasty attack is for David to simply
respond providing a fake resource with the same name as
the real resource Alice is looking for. The actual file could
be a Trojan Horse program or a virus. Currently, this attack
is particularly common as it requires virtually no hacking of
the software client. Both the basic and enhanced version of
our protocol are aimed at solving the problem of imperso-
nation attacks. When Alice discovers that the resource she
downloaded from David is faked, she will downgrade
David'’s reputation, thus preventing further interaction with
him. Also, Alice will become a material witness against
David in all polling procedures called by others. Had David

previously spent an effort to acquire a good reputation, he
will now be forced to drop his identifier, reverting to
newcomer status and dramatically reducing his probability
of being chosen for future interactions.

Man in the middle. This kind of attack takes advantage
of the fact that the malicious user David can be in the path
between Alice and Bob (or Carl). The basic version of the
attack goes as follows: First, Alice broadcasts a Query
message and Bob responds. David intercepts the QueryHit
message from Bob and rewrites it with his IP address and
port instead of Bob’s. Alice then receives David’s reply.
Now, if Alice decides to download the file from David,
David can download the original content from Bob, infect it,
and pass it on to Alice. A variant of this attack relies on
push-request interception. In this case, Alice generates a
Query message and Carl responds. Alice attempts to
connect but Carl is firewalled, so she generates a Push
message. David intercepts the Push message from Alice
and forwards it with his IP address and port. Now, Carl
connects to David and transfers his content and then David
connects to Alice and provides the modified content.

While both flavors of this attack require substantial
hacking of the client software, they are very effective,
especially because they do not involve IP spoofing and,
therefore, cannot be prevented by network security mea-
sures. Our protocols address these problems by including a
challenge-response phase (Steps 4.2 through 4.5) just before
downloading. In order to impersonate Bob (or Carl) in this
phase, David should be able to design a pair of keys such
that the digest of the public key is the Bob’s identifier.
Therefore, both versions of this attack are successfully
prevented by our protocols.

5 IMPLEMENTING P2PRep IN THE GNUTELLA
ENVIRONMENT

We have implemented our protocol as an extension to an
existing Gnutella system. In this section, we describe how
the P2PRep protocol is implemented and the modifications
it requires to a standard Gnutella servent’s architecture.

5.1 P2PRep Messages

To keep the impact of our proposed extension to a minimum,
all P2PRep messages are carried as payload inside ordinary
Query and QueryHit messages. Fig. 5 shows the P2PRep
messages and their structure; the numbers below the
message’s fields represent their size expressed in bytes.
Specifically, Pol1l messages are implemented using the field
search_string of standard Query messages. To identify the
message and its encoding correctly, the search_string field
contains the string REP:poll:HEX as shown in Fig. 5,
followed by a list of the servent_ids of all servents whose
reputation is being checked. At the end of the message, there
is the public key of the polling session. Standard Gnutella
servents will process Poll messages as ordinary queries
that do not match any file.

In turn, PollReply messages are realized by using
QueryHit messages. The QueryHit standard message
includes num_hits triples of the form (file size, file index, file
name) that compose the Result set. In a Pol1Reply message,
the first triple contains zeros both as size and index, and the

DAMIANI ET AL.: MANAGING AND SHARING SERVENTS’ REPUTATIONS IN P2P SYSTEMS

849

Query ‘ min_speed ‘ search_string \0 ‘
Poll ‘ min_speed ‘ "REP:poll:HEX" |servent_id |servent_id | — seees | public key \0 ‘

2 12 16 16 128
QueryHit ‘ nun_hits ‘ port ‘IP address ‘ speed ‘ Result set trailer servent_id ‘
PollReply ‘ num_hits ’ port ‘IP address ‘ speed ‘ 0 ‘ 0 “'REP:prep :HEX \d trailer ‘ servent_id ‘

2 2 4

- 16

vendor code |open data size

open data \

encrypted payload ‘

‘IPaddress ‘ port Ferventindex ivute

‘hash‘ ’IPaddress ‘ port Ferventindex ivote

signature |servent public key

4 4 2 1
Basic Polling

Fig. 5. A description of P2PRep messages.

string REP : prep : HEX is specified as file name; this triple is
needed to identify the message. We then use the private data
field in the trailer (introduced by version v1.3.0 of the
BearShare servent) to store the encrypted payload. The
payload, encrypted with RSA (1024), begins with the
servent’s IP address and port. A sequence of (servent index,
vote) pairs follows, where servent index is a 2-byte field
specifying the position (first, second, ...) of the servent_id in
the corresponding Poll message, and vote is a 1-byte field
denoting the vote. We note that, in the enhanced polling
protocol, the encrypted payload must end with a 64-byte
long signature for the whole message. Also, the servent’s
public key is appended.

5.2 The Architecture

Most Gnutella servents share the architectural pattern
illustrated in the top portion of the diagram in Fig. 6 (we
have omitted a few aspects, like Push, Ping, and Pong
messages, that are not crucial and would obfuscate the
symmetry of the architecture). We assume that the system has
been designed with an object oriented model; inheritance can
be used, for instance, to model Pol1 messages as specializa-
tions of Query messages, and PollReply messages as
specializations of QueryHit messages. The general structure
of the architecture is the following. Three components are
directly connected to the network: the Connection Man-
ager, the Router, and the Poll Manager. Protocol
messages are illustrated as oriented arcs from their creator
to their consumer and are distinguished by a black point at
their origin (e.g., QueryHit messages are created by
component Query Processor and consumed by the
Router). The user interface permits creating queries (each
managed by a Query Manager), to start polls on servent
reputation (eachmanaged by a Po11 Manager), and to access
Shared resources and reputations. We now analyze each
of the architecture components, starting with the components
that characterize servents that do not support P2PRep.

e The Router is a software component dedicated to

message routing. An instance of the router is

2 1

Enhanced Polling

4 4 64 128

responsible for each direct open connection. Each
Router is managed by a thread that waits for the
arrival of messages on its connection or for requests
generated by the servent. Upon reception of a
message from the network connection, each Router
checks if the message has already been received by
the node and, if so, stops its propagation. The
Router then checks received messages and discards
those that are not compliant with the Gnutella
protocol; some clients also police the network and
do not propagate messages that have high values for
parameters Hops and TTL, fearing that they would
derive from opportunistic behavior from a node
desiring to increase its horizon at the expense of
global bandwidth.

The Connection Manager manages incoming
requests for the creation of a new connection (if
successful, a new Router will be associated with the
connection) or for the download of a resource
available on the servent (using the HTTP protocol).
When a user decides to make a search, a Query
Manager instance is created which prepares a
Query message and asks all the active routers in
the node to insert it into the network.

After the Router has checked the correctness of received
messages, it analyzes the message type and manages it
appropriately, passing it to the appropriate processor. In
particular, the Router is responsible to manage the Query
and QueryHit messages, which it deals with as follows:

e Query messages are transferred to the other routers
for their forwarding on the network (if their TTL is
greater than zero) and are then delivered to a Query
Processor that verifies the presence of the
requested file in the local repository of shared files
(Shared resources).

If the Query Processor finds a match in the
Shared resources, it creates a QueryHit mes-

sage that is passed to the Router that returned the

850

Query Processor|

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

QueryHit NETWORK

Shared |

resources

Connection Manager|
® new connection
P

® TrueVote

Query

Query
Manager

QueryHit

ser Interface|

[—
Dynamic [i
Reputation

it

QueryHit
Procéssor | gueryH

[Query

[Pol1lReply

Poll

Poll

Tepository Ry

3 CryptoAgent

Experience
and

Poll Voter

TrueVote

Credibility
epositories

TrueVoteRepl:

TrueVote

Fig. 6. Gnutella’s information flow with protocol extensions.

Query. The QueryHit contains the location of the
requested resource.

QueryHit messages are routed following back the
path taken by the corresponding Query message,
using the routing tables that are also used to identify
duplicates. When a message reaches the node that
produced the query, the message is returned to the
Query Manager, which usually adds its contents to
a list of results and presents them on the search
interface.

Our protocol requires extending this architecture with a
few additional components, grouped in the dashed box in
the lower half of Fig. 6. The additions can be summarized as
follows:

e Inaway similar to the management of queries, when
a user expresses interest in acquiring reputation for a
servent (or a list of servents), a Poll Manager
instance is created. The Poll Manager immediately
produces a Poll message and asks all active routers
to propagate it through the P2P network.

Poll messages are passed by the Router to a Poll
Processor that verifies if there is any information on
the servent in the local experience_repository. If the
search is successful, an instance of Poll Voter is
created that casts its vote within a new PollReply
message that is sent back to the router.

PollReply messages are routed back like Query-
Hit messages and reach the correct Poll Manager.
The results of the poll are then used to populate a
Dynamic Reputation repository that caches
the poll results that have been obtained from the
network. The Poll Manager is also responsible for

checking vote authenticity and for creating True-
Vote messages that are sent directly to the voting
nodes.

e The Connection Manager is extended to process
TrueVote requests, which are passed to the
corresponding Poll Voter, which has to stay alive
until a timeout period has passed.

e A CryptoAgent component offers the set of

encryption functions required by P2PRep. P2PRep
requires only standard encryption facilities: All that
is needed is a public/private key pairs generation
scheme, an encryption function, and a digital
signature. For ease of implementation, we have
chosen to use the most popular schemes providing
the desired functionality.

Important modifications have to occur also in the User
Interface, that has to offer a synthetic and effective
representation of servent reputations. The User Interface
is also the component where reputations are created.
Typically, reputations are built monitoring every deletion of
aresource, requested directly within the interface or detected
at startup by a comparison of the currently offered resources
with alist stored on a file. For each deletion, the user is asked if
a negative vote must be expressed for the resource. The
expressed vote contributes to the reputation of the servent(s)
from which the resource had been downloaded.

6 PRAcTICAL CONSIDERATIONS AND DISCUSSION

We describe here a few additional aspects that may clarify
the potential of our solution and its possible integration
with current P2P technologies.

DAMIANI ET AL.: MANAGING AND SHARING SERVENTS’ REPUTATIONS IN P2P SYSTEMS 851

Limited added cost. The implementation of the P2PRep
protocol requires a certain amount of resources, in terms of
both storage capacity and bandwidth, but this cost is
limited and justified in most situations. The amount of
storage capacity is proportional to the number of servents
with which the servent has interacted. For the basic
protocol, this will require adding at most a few bytes to
the experience_expository, for an exchange that may have
required the local storage of a file with a size of several
millions of bytes. The enhanced version is more expensive
in terms of local storage, but usually, the limiting resource
in P2P networks is network bandwidth rather than storage.

The P2PRep protocol increases the traffic of the P2P
network. The additional traffic can be distinguished in
direct exchanges and broadcast requests. Direct exchanges
require a limited number of short messages. For instance,
direct connections are used to implement the TruevVote
and AreYou messages. This exchange is very quick, as the
messages contain only a few bytes and are directed only to
some of the nodes that expressed their votes on same
servent. Indeed, most performance models of P2P networks
identify as the main limiting factor the aggregate band-
width required by the exchange of broadcast messages. We
evaluate the size of the messages required to estimate the
reputation of servents offering a resource. First, we observe
that many servents can be polled with a single Poll
message. The size of a Pol1l message is proportional to the
number of servents to enquire. As most implementations
drop messages bigger than 64Kb [31], a Pol1l message can
carry up to around 4,000 different servent_id. We assume
that it is not necessary to ask on the reputation of that many
servents. Instead, when a resource is offered by many
servents, the client selects a subset of the servents to enquire
about. Overall, the most expensive operation is the polling,
which operates in the same way as a search. We observe
that our service approximately doubles the traffic in a
Gnutella network.

Several other optimizations can reduce the impact of
P2PRep on network performance. For instance, reputations
are cached on the nodes. Servents that have already been
voted as reliable following a search can keep the reputation
for the remainder of the session. Reputations may be kept
across sessions, further reducing the number of polling
requests (at the expense of an increase in the storage
requirements and a decrease in the responsiveness of the
network to node misbehavior).

Distribution of servents and resources. An aspect that
has an impact on the performance of P2PRep is the
distribution of servents and resources in the Gnutella
network. It is reasonable to expect that servents and
resources will be distributed nonuniformly, with a few
servents offering many resources and many servents
offering few resources. In particular, we were expecting a
Zipf (or, more generally, power-law) distribution since this
is the result that has been produced by many experimental
studies in similar contexts. The results we obtained
confirmed our expectations.

We analyzed the traffic on the current Gnutella network.
The goal was not an extensive performance study like the
one in [29]. Rather, our experiments were focused on the

determination of a few parameters that were not, to our
knowledge, available in existing literature and that are
critical to evaluate the behavior of our protocol in the
current Gnutella architecture.

An open source Gnutella client was modified and all the
QueryHit and Pong messages traveling along the network
were logged. As previously discussed, the QueryHit
message is generated by servents when they have in their
repository a resource that satisfies the criteria in the Query
message. The Pong message describes the number of files
shared and their cumulative size. It is produced as an
answer to Ping messages that are generated by servents
when they connect to the network. Pong messages let users
know the size of the portion of the network within their
reach and the total number and size of resources available.

We wanted to estimate the concentration of resources on
servents. We tried to estimate this distribution using the
number reported in each Pong message, but the curve we
obtained was quite irregular and unlikely to be a correct
representation of the system behavior (anomalies in the
information of Pong messages is also cited in [29]). Thus,
we used the QueryHit messages to evaluate resources’
concentration. We logged half a million QueryHit records.
Almost half of the 500,000 records were discarded, as they
represented duplicate responses (i.e., generated by the same
servent for the same resource in response to different
queries). We considered the name and the size of a resource
to recognize resource identity; resources with identical
semantic content, but with different size or name were
considered distinct. The 253,712 remaining messages
contained a description of 116,219 distinct resources;
89,485 of them were offered by a single node.

The results of this analysis are reported in Fig. 7,
showing the number of resources present on each servent.
Servents are ordered according to the number of resources
they offer. The graph in Fig. 7 uses logarithmic scales for
both axes. When a power law distribution is presented in a
log-log graph, a straight line appears; such a line is well
recognizable in the graph, confirming our expectations. In
particular, the alpha coefficient which characterizes the
power law is 1.14, very close to value 1 that characterizes
Zipf distributions.

Skewed distributions may appear at first to be detri-
mental to the success of our protocol, as many servents offer
only few resources and would probably not have offered
enough resources to get a reputation in the network. We
argue instead that skewness is advantageous to the protocol.
Indeed, while only a few servents offer many resources, such
servents have a considerably higher probability of being well
known to network participants and answer with greater
frequency to queries. Even if we consider the restriction set
on the population of voters by the presence of the horizon in
Gnutella, a polling mechanism is an effective mechanism to
evaluate servent reputation.

Overload avoidance. Even if polling does not introduce
an overload in the P2P network, our reputation service
presents a considerable risk of focusing transfer requests on
the servents that have a good reputation, reducing the
degree of network availability. A possible solution to this
problem is to consider reputable nodes as the sources of file

852 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

10000

1000 [

Number of resources on servent

10 |

L L
1 10 100 1000
Order of servent

10000 100000

Fig. 7. Servent distribution: number of resources on servents.

identifiers of correct resources. The idea is to associate with
every file a secure hash (e.g., using the SHA1 function),
which is returned with the resource description. When a
node identifies a resource it is interested in downloading, it
first has to verify the offerers’ reputation. As soon as a
reputable offerer is identified, the requestor can interact
directly with the offerer only to check the association
between its servent_id and the SHAI signature. It can then
request a download from any of the nodes that are
exporting the resource with the same SHA1 signature. Once
the file transfer is completed, the correctness of the hash is
checked.

Integration with intermediate P2P solutions. Intermedi-
ate P2P solutions (like FastTrack) identify nodes of the
network characterized by an adequate amount of CPU
power and network bandwidth, assigning to them the role
of indexing what is offered on the network. The visible
effect is a P2P network where response time and network
congestion are greatly reduced, and users are not limited to
searches on a portion of the resources offered on the
network. In this situation, as in centralized solutions, when
users connect to the network they are required to transfer to
the indexing nodes a description of the resources they are
sharing. For the implementation of our reputation mechan-
ism, a synthesis of the votes on servents that each node has
built and of its experience should also be transferred to the
indexing node at the start of the session. A great
opportunity in this context derives from a possible pre-
processing, done on the indexing node, to associate a
reputation with each servent. In this way, the reputation
could be returned immediately in the result of a search.
Since we have no access to a public description of this
architecture, we did not consider this solution at the
moment.

7 RELATED WORK

Several researchers have recently addressed the problem of
enforcing security in the peer-to-peer scenario. One main
line of work in the security community has been devoted to
the enhancement of access control approaches with new

authentication and authorization capabilities to address the
fact that access requests may represent interactions between
parties that know little about each other. Digital certificates
then have been introduced as a way to establish properties
of a party, such as identity, accreditation, or authorizations
(e.g., [6], [13], [15], [18], [22]). Based on these proposals,
access control systems have also been enhanced, loosening
the authentication prerequisite for authorization control
and supporting credential-based authorizations where the
ability of a peer to access resources depends on properties
and certificates it can present, rather than on who it is, also
allowing support for anonymous access and possibly
introducing a form of negotiation (e.g., [7], [34]).

All these works focused on allowing a peer acting as a
server to restrict others’ ability to access its resources. Peer-
to-peer systems, however, also introduce other problems
that reverse the security assumptions of traditional access
control and require us to focus the attention on providing
protection from those who offer resources (servers), rather
than from those who want to access them (clients). This
paradigm shift is due to the inherent vulnerability of peer-
to-peer systems from providers abusing the network to
widespread tampered-with resources.

Proposals to prevent peers from distributing invalid or
malicious content into the network are based on two main
techniques: micropayment systems and reputation-based trust
systems [24].

Micropayment approaches require peers to offer some-
thing of value in exchange of their participation in the
system. In particular, peers wishing to export their contents
should provide the counterpart with a payment, which may
or may not have redeemable value. Redeemable payments
can be used by the recipient as digital cash for acquiring
services from other peers. Whether redeemable or not,
micropayments can discourage malicious peers by forcing
on them a cost before they can become an active part of the
system. The idea is to balance what peers get from the
network with what they provide, which also has the effect
of preventing free-rider behaviors [3]. As an example, Mojo
Nation (www.mojonation.net) is a distributed file sharing
system based on a digital currency called Mojo. Peers earn
Mojo when they provide resources (e.g., bandwidth and
drive space) to the network. Mojo can then be used to
request services from other peers. Therefore, to insert
invalid content into the network malicious peers need first
to provide an equal amount of resources.

Reputation models allow the expression and reasoning
about trust in a peer based on its past behavior [27] and
interactions other peers have experienced with it. Open-
Privacy (www.openprivacy.org) introduces a set of reputa-
tion services that can be used to create, use, and calculate
results from accumulated opinions and reputations. Sierra,
Talon, and Reptile are OpenPrivacy projects that incorpo-
rate reputations to enhance searching as well as to discard
unwanted information. Reputations are effectively used in
electronic marketplaces as a measure of the reliability of
participants [35]. For instance, in eBay (www.ebay.com),
each participant in a transaction can express a vote (-1, 0,
or 1) on its counterparts. Votes so collected are used by
eBay to provide cumulative ratings of users that are made
known to all participants. In systems like eBay, reputations
are associated with physical identities and are centrally

DAMIANI ET AL.: MANAGING AND SHARING SERVENTS’ REPUTATIONS IN P2P SYSTEMS

managed at the eBay server. More in line with the peer-to-
peer paradigm, several proposals (e.g., Poblano [9]) worked
around the notion of Web of trust where trust relationships
and reputations are managed by each participant which
then distributes them. The common ancestor of such
approaches is probably PGP (www.pgpi.org), that allows
users to certify other user’s public keys without need for a
Certification Authority. Other approaches, such as Advo-
gato (www.advogato.org/trust-metrichtml), assume full
knowledge of the degree of trust that each peer has on
others and compute the transitive trust based on the closure
of the resulting labeled graph. A more realistic approach is
obtained by assuming that, while no peer can have full
knowledge on the network, each of them can record the
trust/distrust it has in others on the basis of its own
experience, and communicate this information to others.
For instance, the proposal by Aberer and Desptovic [2]
assumes that peers are usually “honest” and considers only
dishonest interactions as relevant. After each transaction,
and only in case of malicious behaviors, peers may file a
complaint. Before engaging in interactions with others,
peers can enquire the network about existing complaints on
their counterparts. Full support of negative reputations,
however, can only be achieved at the price of sacrificing
anonymity [17]. Also, support of negative reputations only
is risky, as failure to retrieve existing complaints may result
in trusting unreliable peers. As negative reputations can be
nullified by taking on a fresh new identity, Free Haven
proposes, like us, recording and exchanging positive
reputations. However, the issues of maintaining and ex-
changing such reputations are not fully investigated. Other
proposals on the same line distinguish reliability of peers
depending on the specific context of interaction [1], [33].

8 CONCLUSIONS

We described a reputation management protocol for
anonymous P2P environments that can be seen as an
extension of generic services offered for the search of
resources. The protocol is able to reconcile two aspects,
anonymity and reputation, that are normally considered as
conflicting. We demonstrated our solution on top of an
existing Gnutella network.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their helpful comments. A preliminary version of this
paper appeared under the title of Choosing Reputable
Servents in a P2P Network, in the Proceedings of the 11th
International World Wide Web Conference, Honolulu,
Hawaii, 7-11 May, 2002. [11].

REFERENCES

[1] A. Abdul-Rahman and S. Hailes, “Supporting Trust in Virtual
Communities,” Proc. Hawaii Int’l Conf. System Sciences, Jan. 2000.

[2] K. Aberer and Z. Despotovic, “Managing Trust in a Peer-2-Peer
Information System,” Proc. 10th Int’l Conf. Information and Knowl-
edge Management (CIKM 2001), Nov. 2001.

[3] E. Adar and B. Huberman, “Free Riding on Gnutella,” technical
report, Xerox PARC, Aug. 2000.

(4

(5]

o]

(7]

(8]

]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(171

(18]

(19]
(20]
(21]

(22]

(23]
[24]

[25]

[20]

[27]

(28]

(29]

[30]

853

A. Bardossy, L. Duckstein, and I. Bogardi, “Combination of Fuzzy
Numbers Representing Expert Opinions,” Fuzzy Sets and Systems,
vol. 57, pp. 173-181, 1993.

S. Bellovin, “Security Aspects of Napster and Gnutella,” Proc.
USENIX 2001, June 2001.

M. Blaze,]. Feigenbaum, J. Ioannidis, and A.D. Keromytis, “The
Role of Trust Management in Distributed Systems Security,”
Secure Internet Programming: Issues in Distributed and Mobile Object
Systems, 1998.

P. Bonatti and P. Samarati, “Regulating Service Access and
Information Release on the Web,” Proc. Seventh ACM Conf.
Computer and Comm. Security, 2000.

S.J. Brams, “The Ams Nomination Procedure is Vulnerable to
Truncation of Preferences,” Notices of the Am. Math. Soc., vol. 29,
pp- 136-138, 1982.

R. Chen and W. Yeager, “Poblano—A Distributed Trust Model for
Peer-to-Peer Networks,” JXTA Security Project White Paper, 2001.
I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A
Distributed Anonymous Information Storage and Retrieval
System,” Proc. ICSI Workshop Design Issues in Anonymity and
Unobservability, July 2000.

F. Cornelli, E. Damiani, S. De Capitani di Vimercati, S. Paraboschi,
and P. Samarati, “Choosing Reputable Servents in a P2P Net-
work,” Proc. 11th Int’l World Wide Web Conf., May 2002.

R. Dingledine, M.]. Freedman, and D. Molnar, “The Free Haven
Project: Distributed Anonymous Storage Service,” Proc. Workshop
Design Issues in Anonymity and Unobservability, July 2000.

V. Doshi, A. Fayad, S. Jajodia, and R. MacLean, “Using Attribute
Certificates with Mobile Policies in Electronic Commerce Applica-
tions,” Proc. 16th Ann. Computer Security Applications Conf. (ACSAC
"00), pp. 298-307, 2000.

P. Druschel and A. Rowstron, “Past: A Large-Scale Persistent
Peer-to-Peer Storage Utility,” Proc. Eight IEEE Workshop Hot Topics
in Operating Systems (HotOS-VIII), May 2001.

C. Ellison SPKI certificate documentation, http://www.pobox.
com/~cme/html/spkihtml, 2002.

R. Fagin, “Combining Fuzzy Information from Multiple Systems,”
Proc. 15th ACM SIGACT-SIGMOD-SIGAR Symp. Principles of
Database Systems, June 1996.

E]J. Friedman, P. Resnick, “The Social Cost of Cheap Pseudo-
nyms,” J. Economics and Management Strategy, vol. 10, no. 2, pp. 173-
199, 2001.

B. Gladman, C. Ellison, and N. Bohm, “Digital Signatures,
Certificates and Electronic Commerce,” http://citeseer.nj.nec.
com/277887 html, 1999.

L. Gong, “JXTA: A Network Programming Environment,” IEEE
Internet Computing, vol. 5, no. 3, pp. 88-95, May/June 2001.

IP to Latitude/Longitude Server, Univ. of Illinois, http:/ /cello.cs.
uiuc.edu/cgi-bin/slamm/ip2ll.

“Web Security—A Matter of Trust,” The World Wide Web]. (Special
Issue), R. Khare, ed., vol. 2, summer 1997.

U. Maurer, “Modeling a Public Key Infrastructure,” Proc. Fourth
European Symp. Research in Security and Privacy, pp. 325-350, Sept.
1996.

D. Moore, “Where in the World is Netgeo.Caida.Org?” Proc. INET
2000, June 2000.

Peer-to-Peer: Harnessing the Power of Disruptive Technologies,
A. Oram, ed. O'Reilly & Associates, Mar. 2001.

V. Padmanabhan and L. Subramanian, “An Investigation of
Geographic Mapping Techniques for Internet Hosts,” Proc.
ACM-SIGCOMM '01, Aug. 2001.

M. Parameswaran, A. Susarla, and A.B. Whinston, “P2P Network-
ing: An Information-Sharing Alternative,” Computer, vol. 34, no. 7,
pp- 31-38, July 2001.

P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara,
“Reputation Systems,” Comm. ACM, vol. 43, no. 12, pp. 45-48,
Dec. 2000.

M. Ripeanu, “Peer-to-Peer Architecture Case Study: Gnutella
Network,” Technical Report TR-2001-26, Univ. of Chicago, Dept.
of Computer Science, July 2001.

S. Saroiu, P.K. Gummadi, and S.D. Gribble, “A Measurement
Study of Peer-to-Peer File Sharing Systems,” Proc. Multimedia
Computing and Networking, Jan. 2002.

I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrish-
nan, “Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” Proc. 2001 Conf. Applications, Technologies, Architec-
tures, and Protocols for Computer Comm., 2001.

854 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

[31] S. Thadani, “Free Riding on Gnutella,” technical report, LimeWire
LLC, 2001, http://www.limewire.org.

[32] The Gnutella Protocol Specification v0.4 (Document Revision 1.2).
June 2001, http:/ /www.clip2.com/GnutellaProtocol04.pdf.

[33] B. Yu and M.P. Singh, “A Social Mechanism for Reputation
Management in Electronic Communities,” Proc. Fourth Int’l Work-
shop Cooperative Information Agents (CIA), July 2000.

[34] T. Yu, M. Winslett, and K. Seamons, “Interoperable Strategies in
Automated Trust Negotiation,” Proc. Eighth ACM Computer and
Comm. Security, Nov. 2001.

[35] G. Zacharia, A. Moukas, and P. Maes, “Collaborative Reputation
Mechanisms in Electronic Marketplaces,” Proc. 32nd Hawaii Int’l
Conf. System Sciences, Jan. 1999.

Ernesto Damiani received the laurea degree in
ingegneria elettronica from Universita di Pavia
and the PhD degree in computer science from
the Universita di Milano. He is currently a
professor in the Department of Information
Technology at the University of Milan. His
research interests include distributed and ob-
ject-oriented systems, semistructured informa-
tion processing, and soft computing. He is the

! vice-chair of the ACM Special Interest Group on
Applled Computlng (SIGAPP). He is the author, together with |. Sethi
and R. Khosla, of the book Multimedia MuiltiAgent Systems (Kluwer
2001). He is a member of the IEEE.

Sabrina De Capitani di Vimercati received the
laurea and PhD degrees, both in computer
science, from the University of Milan in 1996
and 2001, respectively. She is an associate
professor in the Department of Information
Technology at the University of Milan. Her
research interests are in the areas of information
security, databases, and information systems.
She has been an international fellow in the
Computer Science Laboratory at SRI in Califor-
nia. She is core0|p|ent of the ACM-PODS’99 Best Newcomer Paper
Award. The URL for her web page is http://www.dti.unimi.it/~decapita.
She is a member of the IEEE Computer Society.

Stefano Paraboschi received the laurea degree
in ingegneria elettronica in 1990 and the PhD
degree in ingegneria informatica in 1994, both
from Politecnico di Milano. He is a professor in
the Department of Engineering at the University
of Bergamo. His main research interests are in
the areas of databases, Web technologies, and
security. The main topics he worked on are
active databases, data warehouses, data-inten-
sive Web sites, query languages for XML,

)
b2

A
\

i
access control for XML, and security for P2P applications. He is a
coauthor of the book Database Systems: Concepts, Languages and
Architectures (McGraw-Hill, 1999).

Pierangela Samarati is a professor in the
Department of Information Technology at the
University of Milan. Her main research interests
are in data and application security, information
system security, access control policies, models
1 and systems, and information protection in
! general. She has been a computer scientist in

(v the Computer Science Laboratory at SRI in
‘ . California. She has been a visiting researcher in

. the Computer Science Department at Stanford
University, California, and in the ISSE Department at George Mason
University, Virginia. She is coauthor of the book Database Security
(Addison-Wesley, 1995). She is corecipient of the ACM-PODS’99 Best
Newcomer Paper Award. The URL for her web page is http:/
seclab.crema.unimi.it/~samarati. She is a member of the IEEE
Computer Society.

——

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

