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Abstract —We propose two extensions to the authorization model for relational databases defined originally by Griffiths and Wade.
The first extension concerns a new type of revoke operation, called noncascading revoke operation. The original model contains a
single, cascading revoke operation, meaning that when a privilege is revoked from a user, a recursive revocation takes place that
deletes all authorizations granted by this user that do not have other supporting authorizations. The new type of revocation avoids
the recursive revocation of authorizations. The second extension concerns negative authorization which permits specification of
explicit denial for a user to access an object under a particular mode. We also address the management of views and groups with

respect to the proposed extensions.
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authorizations.

1 INTRODUCTION

UTHORIZATION is an important functionality that any

multiuser database management system (DBMS) must
provide. When several users and applications need to share
data of different degrees of sensitivity, it is important that
the DBMS provides capabilities to define and enforce access
control policies. Therefore, the problem of defining suitable
authorization models and the proper techniques to support
them has been a relevant aspect in the development of
DBMS. An important milestone in the history of authoriza-
tion is the model defined by Griffiths and Wade [14], in the
framework of the relational DBMS System R [1]. This model
introduced the notion of decentralized administration of
authorizations, based on the principle that the creator of an
object is the administrator of the authorizations on the ob-
ject and is allowed to delegate this function to other users
by giving them authorizations with the grant option. Any
user who has the authorization for a privilege on a table
with the grant option can administer the privilege on the
table (i.e., grant to or revoke from other users authoriza-
tions on the table).

Another important contribution of the System R authori-
zation model is that it permits content-dependent authori-
zations, in addition to content-independent authorizations.
The approach proposed by Griffiths and Wade is based on
views. Since a view is defined in terms of a query, it is pos-
sible to define views containing predicates or statistical
summaries computed over table columns. Therefore, if an
authorization is granted to a user on a view, rather than on
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a table, the user only sees the data that are filtered through
the view, rather than the entire table.

The System R authorization model has been extended by
Wilms and Lindsay [25] with functionalities for group
management to allow authorizations to be granted to a
group of users, rather than to a single user. This functional-
ity is crucial for many organizations where groups of users
may perform similar tasks or cooperate on a task and,
therefore, need the same authorizations. Wilms and Lind-
say also extend the authorization mechanism to the frame-
work of the distributed DBMS System R*. The authorization
model of System R* has been further extended by Bertino
and Haas to deal with distributed views [6].

In this paper, we present two major extensions to the
System R authorization model. We base our work on the
System R model for the following reasons. First, this model
is the basis on which authorization models, used in com-
mercial relational DBMS, have been developed. Note that
commercial systems typically augment the System R model
by introducing new authorization types (such as the refer-
ence authorization needed to define referential integrity
constraints) to take into account the new functionalities that
have been added to the data model. Our extensions can be
orthogonally applied to the current authorization models as
well. Second, a formal foundation has been established for
the System R model [12]. One of the goals of our work is to
investigate how this formal model can be extended to ac-
count for new features of advanced authorization models.

The first of our extensions introduces a new type of re-
voke operation. In the original proposal by Griffiths and
Wade, if an authorization is revoked from a user, a recur-
sive revoke is applied whenever the authorization being
removed has the grant option specified. The recursive re-
voke removes authorizations that have been granted by the
user from whom the authorization is being revoked and do
not have other supporting authorizations. We call this ap-
proach cascading revoke. A problem with this approach is
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that it can be very disruptive sometimes [3]. Indeed, in
many organizations, the authorizations users possess are
related to their particular tasks or functions within the or-
ganization. Suppose there is a change in the task or function
of a user (say, because of a job promotion). This change
may imply a change in the responsibilities of the user and
therefore in his privileges. New authorizations will be
granted to the user and some of his previous authorizations
will be revoked. Applying a recursive revocation will result
in the undesirable effect of deleting all authorizations the
revokee granted and, recursively, all the authorizations
granted through them, which then will need to be re-
issued. Moreover, all application programs depending on
the revoked authorizations will be invalidated [8]. Many
other examples can be found where the effect of recursively
deleting the authorizations upon a revoke is not wanted.
We propose a new type of revoke operation, called noncas-
cading revoke, which differs from the cascading revoke in
that no recursive revocation of authorizations is performed.
We believe that both types of revoke should be offered by a
DBMS since a choice would then result in greater flexibility.
A similar extension has been proposed in a recent draft of
the SQL standard [18]; however, the SQL draft does not
address the problems related to its application.

The second extension concerns negative authorization.
Most DBMS use the closed world policy. Under this policy,
the lack of an authorization is interpreted as a negative
authorization. Therefore, whenever a user tries to access an
object, if a positive authorization (i.e., an authorization per-
mitting the access) is not found in the system catalogs, the
user is denied the access. This approach has a major prob-
lem in that the lack of a given authorization for a given user
does not prevent this user from receiving this authorization
later on. Suppose that a user x should not be given access to
an object o. In situations where authorization administra-
tion is decentralized (like in System R), a user possessing
the right to administer object o, can, perhaps by mistake,
grant x the authorization on that object. Since several users
may have the right to administer the same object, it is not
always possible to enforce with certainty the constraint that
a user cannot access a particular object. We, therefore, pro-
pose an explicit negative authorization as an approach for
handling this type of constraint. An explicit negative
authorization expresses a denial for a user to access an ob-
ject. In our approach negative authorizations are stronger
than positive authorizations. That is, whenever a user has
both a positive and a negative authorization on the same
object, the user is prevented from accessing the object.

Negative authorizations in our model are handled as
blocking authorizations. Whenever a user receives a nega-
tive authorization, his positive authorizations become
blocked. A blocked authorization is not removed from the
authorization catalogs. Rather, it is preserved and marked
as not usable. If later on, the negative authorization is re-
voked, the blocked positive authorizations are unblocked
and the user can once again use the privileges stated by
those positive authorizations. This approach has a number
of advantages. First of all, if a negative authorization is
given by mistake to a user, it is always possible to recover
from the error by simply revoking the negative authoriza-

tion, since the positive authorizations related to the same
privilege are preserved in the authorization catalogs. Sec-
ond, it is possible to temporarily suspend a privilege from a
user by granting him a negative authorization and revoking
it later on. In a system without negative authorization, the
privilege would have to be revoked and granted again later
on. However, a revoke operation has the disruptive effect
that all authorizations granted on the basis of the revoked
privilege are in turn revoked and, moreover, all views re-
quiring the revoked privilege are deleted. To our knowl-
edge, no current authorization mechanism allows the pos-
sibility of temporary suspension of authorizations, as we
support in our model through negative authorization.

Negative authorizations are also attractive since they al-
low exceptions to be specified. Without an exception
mechanism, certain requirements can only be expressed by
greatly increasing the number of groups or authorizations,
making the management of authorizations more difficult.
To illustrate, suppose we wish to grant an authorization to
all members of a group, except to one specific member m. In
the absence of negative authorizations, we would have to
express the above requirement by specifying a positive
authorization for each member of the group except m. If
negative authorizations are considered, the same require-
ment can be expressed by granting a positive authorization
to the group and a negative authorization to member m.
Note that the exception handling is included among the
requirements for high assurance systems [10], and the need
for negative authorizations has been recognized by several
researchers ([11], [19], [20], [21], [23]).

The original contributions of our work can be summa-
rized as follows:

1) The formal definition of an authorization model that
includes two types of revoke operations (cascading
and noncascading) and negative authorization.

2) A detailed investigation of the effects of adding these
features on views and groups.

In this paper, we only deal with discretionary access
control since the focus of our research is how to extend the
authorization facilities provided by commercial relational
DBMS (RDBMS) and a large majority of commercial
RDBMS only provide discretionary access control. Manda-
tory access control models have been proposed as an alter-
native to cope against sophisticated attacks, such as Trojan
Horses or covert channels, that discretionary access control
mechanisms are unable to prevent [10]. Recent multilevel
RDBMS (like Trusted Oracle [17] and Secure Informix [15])
provide mandatory access control coupled with discretion-
ary access control. Therefore, the new features provided by
our model could be orthogonally incorporated into such
systems as well.

The paper is organized as follows. Section 2 discusses
related work. Section 3 introduces the basic authorization
model that is used and extended in subsequent sections.
The model is extended to include cascading and noncas-
cading revoke operations in Section 4, and negative
authorization in Section 5. The model is further extended to
incorporate views and groups in Sections 6 and 7, respec-
tively. Section 8 concludes the paper.
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2 RELATED WORK

Early authorization models only allowed the specification
of positive authorizations. More recent authorization mod-
els, in the context of operating systems and database sys-
tems, allow the specification of negative authorizations
stating accesses to be denied. As for operating systems, an
authorization model supporting positive as well as negative
authorizations has been proposed in the context of the An-
drew File System [23]. Subjects of the authorizations can be
users and groups of users. A group is a set of groups and
users and is associated with an owner who is allowed to
add and remove members from the group. A user operates
with the union of his authorizations and that of the groups
to which he belongs. A user can temporarily disable per-
sonal membership to some groups. Authorizations of dis-
abled groups are not available to the user. In case of simul-
taneous presence of negative and positive authorizations,
the model adopts the denials-take-precedence policy, i.e.,
the considered access is not allowed. The model provides a
limited form of authorization administration, where only
the owner of a file can grant and revoke authorizations to
other subjects. Moreover, since objects of the authorizations
can only be files, the problem of authorizations on derived
objects does not arise.

As for database systems, a model supporting positive
and negative authorizations has been developed at SRI in
the context of the SeaView project [20]. Subjects of authori-
zations can be users as well as groups. Only users can be-
long to groups, i.e., groups cannot be specified as members
of other groups. The SeaView model supports negative
authorizations by introducing a special access mode, called
“null.” Granting the null privilege on an object to a user
means denying the user all accesses on the object. Thus, if a
user is given a null privilege on an object, the user will not
be able to access the object, even if he owns an authoriza-
tion for the access. The administration of privileges is con-
trolled through the access modes “grant” and “give-grant.”
If a user has the “grant” access mode on a table, he can
grant and revoke any access mode (including “null”) on the
table from other subjects in the system. If a user has the
“give-grant” access mode on a table, he can additionally
grant and revoke the “grant” and “give-grant” access
modes on the table from other subjects in the system. Con-
flicts among authorizations are solved on the basis of the
following policy: 1) authorizations specified for a user take
precedence over authorizations specified for the groups to
which the user belongs, and 2) the authorization for the null
access mode specified for a user (group) takes precedence
over any other authorization specified for the same user
(group). The SeaView model suffers from several limita-
tions. First, the model does not support negative authoriza-
tion at the level of a single access mode. Thus, for example,
it is not possible to state that a user should be authorized
for the select access mode on an object while at the same
time denied for the insert access mode on the object. Sec-
ond, administrative authorizations are referred to all privi-
leges executable on an object and not to single privileges.
Thus, it is not possible to give a user the authorization to
administer a specific privilege (e.g., select) on a table. Third,

only users can belong to groups. Fourth, authorizations
specified for groups are considered only when no authori-
zations are explicitly specified for the user. Hence, if we
would like to give a user some authorization in addition to
the authorization he has as a member of some groups, we
need to respecify the authorizations of the groups for the
user himself.

Another model supporting negative authorization has
been proposed in the context of object-oriented systems in
the framework of the ORION/ITASCA project [21].
Authorizations can be specified only for “roles” (which are
groups of users) and not for single users. The model en-
forces derivation of additional authorizations, called im-
plicit, from the authorizations explicitly specified by the
users. In particular, a positive authorization granted to a
group implies the derivation of the same authorization for
all its subgroups. By contrast, a negative authorization
specified for a group implies the derivation of the same
negative authorization for the supergroups of this group.
Thus negative authorizations propagate up in the group
membership graph. Resolution of possible conflicts be-
tween positive and negative authorizations is based on the
concept of more specific authorization. In evaluating access
requests positive authorizations take precedence over
negative authorizations: A user can execute an access if at
least one of the groups to which he belongs has a
(nonoverridden) positive authorization for it, regardless of
possible negative authorizations for the access that other
groups to which the user belongs may have. The authori-
zation model of ORION suffers from several drawbacks.
First, negative authorizations specified for a group do not
propagate to its subgroups. This is due to the fact that this
model mixes the semantics of user groups with that of user
roles [22]. Moreover, the ORION authorization model re-
quires that certain very strict constraints be satisfied by the
authorization state. For example, the model requires no
conflicts among authorizations and the completeness of the
authorization state (i.e., for any possible access, an authori-
zation, either positive or negative, must exist). These re-
quirements complicate authorization management. In par-
ticular, the completeness requirement may lead to over-
loading the specification of authorizations, forcing the users
to specify negative authorizations for all accesses which
must not be granted. Finally, the ORION model does not
address authorization issues with respect to derived ob-
jects, like views.

Another model supporting both negative and positive
authorizations for protection in object-oriented systems has
been proposed by Gal-Oz et al. [11]. Conflicts among posi-
tive and negative authorizations are solved using the deni-
als-take-precedence policy. This model does not consider
groups of users; authorizations can be specified for single
users only. Moreover, the problem of authorization admini-
stration is not addressed.

3 NOTATION AND DEFINITIONS

In this section we introduce notations and definitions that
will be used later on in the paper. Let U be the set of users
in the system, S the set of subjects (users and groups), T the
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set of objects (i.e., tables), P = {select, insert, delete, update}1
the set of privileges executable on the objects, and N the set
of natural numbers. An authorization is characterized as
follows.

DEerINITION 1. (Authorization) An authorization a is a six-tuple
(subject, priv, table, ts, grantor, grant-opt)
where:

subject € S is the subject (user) to whom the authorization
is granted;

priv € P is the privilege;

table € T is the table to which the authorization refers;

ts € N is the time at which the authorization was granted;2
grantor € U is the user who granted the authorization;

grant-opt € {yes, no} indicates whether subject has the
grant option for priv on table.

The above tuple states that user subject has been granted
priv on table by user grantor at time ts. If grant-opt = “yes,”
subject has been given the grant option, meaning he is
authorized to grant other users priv on table as well as the
grant option on it. The grant option also authorizes the user
to revoke priv on table from other users. Note however that
a user can revoke only those authorizations he granted.

For example, tuple (B, select, T, 10, A, yes) indicates that
user B can select tuples from table T and grant other users
authorizations to select tuples from table T, and that this
privilege was granted to B by user A at time 10.

In the following, given an authorization a, the notations
subject(a), priv(a), table(a), ts(a), grantor(a), grant-opt(a) denote
respectively the subject, the privilege, the table, the time,
the grantor, and the grant option in a.

A user creating a table is the owner of the table. As
owner, the user is given the authorizations for all the privi-
leges executable on the table with the grant option. We refer
to these authorizations as basic authorizations. The grantor of
the basic authorizations is the system itself, denoted by “*”,
and the time is the time at which the table was created. Ba-
sic authorizations are deleted when the owner drops the
table. In our model, only the owner of a table is entitled to
drop the table. The model can be easily extended to policies
allowing users different from the owner to drop the table
by including “drop” in the set of privileges.

DerINITION 2. (Authorization State (AS)) An authorization
state AS is the set of authorizations present at a given time.

An authorization state can be represented by a labeled
graph as follows. Each user holding some authorization for
a privilege on a table is represented by a node labeled with
the triple (user, table, privilege). An arc between node n; =
(uy, t5, py) and node n, = (u,, t,, p,), with t; = t, and p; = p,,
indicates that user u; granted an authorization for p, on t,
to user u,. Every arc is labeled with a triple {a;, time, grant-
option) indicating, respectively, the identifier of the authori-

1. Unlike select, insert, and delete privileges, the update privilege can re-
fer to specific columns inside a table. However, for the sake of simplicity,
we consider authorizations as specified on whole tables.

2. A timestamp can be represented by a system maintained counter.
Timestamps are necessary to prevent cycles among authorizations.

zation,3 the time when the authorization was granted, and
whether the authorization was granted with the grant
option. The symbol “g” associated with the arc indicates
that the authorization is with the grant option, whereas, if
nothing is specified, the authorization is without the grant
option. A special node “*” indicates the system, and arcs
leaving from node “*” correspond to basic authorizations.
For the sake of simplicity, all examples in the paper will refer
to a single privilege (select). Thus, we will omit the privilege
in nodes and label each node with a pair {user, table). Simi-
larly, we will show only one basic authorization (for the
select privilege).

EXAMPLE 1. Suppose authorization state AS consists of the
following authorizations:

a; = (A, select, T, 10, *, yes)

a, = (B, select, T, 20, A, yes )
az = (C, select, T, 30, A, yes)
a, = (D, select, T, 40, B, yes)
as = (E, select, T, 50, D, yes)
ag = (D, select, T, 60, C, yes)
a; = (F, select, T, 70, D, yes)
ag = (G, select, T, 80, E, yes).

The graphical representation of AS is illustrated in Fig. 1.

In our authorization model, for every authorization for a
privilege on a table, a corresponding authorization must
exist for the grantor of the privilege on the table with the
grant option. This requirement, is represented by the fol-
lowing relationship among authorizations.

DEFINITION 3. (Supporting Authorization) Given two authori-
zations @;, 8 € AS, g supports authorization a; (written
a; — &) iff subject(a;) = grantor(y), priv(a) = priv(y),
table(a;) = table(a)), ts(a;) < ts(a;), grant-opt(a;) = “yes”.
Definition 3 states that authorization a; supports authori-
zation g if the authorizations have the same privilege and
table, the subject of g; is the grantor of a; and the timestamp
of ; is smaller than the timestamp of g;. If 3 — g, we say
that there exists a supporting relationship between a and a;.
In the authorization state of Fig. 1, the following supporting
relationships hold:

a; —> 8y, 8y —> ay, 84 — as, 8, — a7, 85 — g, 8 —> 83, A3 —> g,
ag — ay.

On the basis of the supporting relationship, we introduce
the following definition.

DerINITION 4. (Authorization Chain) Given an authorization
state AS, an authorization chain is a sequence {ay, a,, ..., an)
(n =1) of authorizations such that a;, a,, ..., a, € AS, a; >
a, —...—>a,and g(a;) = “*".

In terms of the graph representing the authorization
state, a chain corresponds to a path such that all arcs in the
path except perhaps the last one are with the grant option,
and every authorization has a timestamp greater than the
authorization preceding it in the chain.

3. We have associated identifiers with authorizations so that they can be
easily referenced.
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Fig. 1. The graphical representation of authorization state of Example 1.

In the following, C(AS) denotes the set of all authoriza-
tion chains in authorization state AS. For the authorization
state of Fig. 1, the set of chains is as follows:

((AS) = {(ay), (ay, 8, ), {ay, @, 84 ), (a1, @y, Ay, 85 ), @y, 8y, 8y, 8s, 8g ),
(ay, @y, ay, a7 ), (&, a3 ), {ay, a3, 8 ), (ay, a3, 8, a7 )}

Given the definitions above, the requirement that every
nonbasic authorization must have a supporting authoriza-
tion is formalized by the following property.

PROPERTY 1. (Connectivity) An authorization state AS satis-
fies the Connectivity Property iff Vae AS: 3(ay, ..., a,)
€ ((AS) (n=>1) such thata =a,.

DerINITION 5. (Consistency of the Authorization State) An
authorization state AS is consistent iff it satisfies the Con-
nectivity Property.

The consistency of the authorization state ensures that
every authorization in the system has an authorization sup-
porting it. Since an authorization can be revoked only by the
user who granted it, the consistency condition ensures that
every authorization in the system can be revoked.

4 REVOCATION

4.1 Revocation of Authorizations with Cascade

The semantics of the cascading revocation, as defined by
Griffiths and Wade [14], is to produce the authorization
state which would have resulted had the revoker never
granted the authorizations being revoked. Cascading revo-
cation implies than when a user x revokes from another
user y a privilege that x granted to y with the grant option,
all authorizations subsequently granted by y, without other
supporting authorizations, are recursively revoked.

We formalize the semantics of the recursive revocation
by a function cascade-rvk (revoke function with cascade)
defined next. We use the notation {y, p, t, X) to denote a re-
quest by user x (revoker) to revoke privilege p on table t
from subject y (revokee).

DeriNITION 4. (Revoke Function with Cascade) Given
an authorization state AS and a request for revocation
y,p, t, X), withy e S,pe P,te T, x € U, cascade-
rvk(AS, ¢y, p, t, X)) generates a new authorization state
AS defined as follows. Let REV and CREV be the sets of
authorizations defined as:

REV ={a € AS | subject(a) =y, priv(a) = p, table(a) = t,

grantor(a) = x}

CREV ={ae AS|V(a,, ..
1<i<n}

Then, AS = AS — REV — CREV.

. ay, ay € ((AS), Ja; € REV,

In the definition, REV denotes the set of authorizations
being revoked,4 and CREV denotes the set of authorizations
which, after deleting the authorizations in REV, do not be-
long to any authorization chain. The authorizations in
CREV are those authorizations which would not have ex-
isted had the revoker never granted the privilege to the
revokee.

ExAMPLE 2. Consider the authorization state of Fig. 1 and
suppose that user B revokes the select privilege on ta-
ble T from user D. The authorization to be revoked is

the authorization granted by B to D (a,), i.e., REV =
{a4}. As a consequence also the authorization granted
by D to E (as) and by E to G (ag) must be revoked, i.e.,
CREV = {as, ag}. The resulting state, illustrated in Fig. 2,
is AS ={a,, a,, a;, 8, a,}. Note that the authorization

granted to F by D has not been deleted because of the
authorization granted to D by C at time 60.

4.2 Revocation of Authorizations without Cascade

The noncascading revocation allows a user to revoke a
privilege on a table from another user without entailing
automatic revocation of the authorizations for the privilege
on the table the latter may have granted. Instead of deleting
the authorizations the user may have granted by using the
privilege received by the revoker, all these authorizations
are restated as if they had been granted by the revoker.

The semantics of the revocation without cascade of
privilege p on table t from user y by user x is 1) to restate
with x as grantor all the authorizations in AS that y granted
by using the authorizations being revoked and 2) to remove
from the authorization state all the authorizations which
would not have existed if x, instead of granting the privi-
lege to y, had himself granted all the authorizations in AS
that y granted by using the authorizations being revoked.

Note that, since y may have received the grant option for
the privilege on the table from some other users different
from x, not all the authorizations he granted will be deleted
or given to x. In particular, x will be considered as grantor
only of the authorizations y granted after receiving the
grant option on the privilege from x; y will still be consid-
ered as grantor of all the authorizations he granted that are
supported by other authorizations not granted by x.

The semantics of the revocation is formalized by func-
tion rvk (revoke function), defined next.

4. Note that REV is a set since a single revoke operation may refer to
more than one authorization (i.e., x may have granted y more than one
authorization for privilege p on table t).
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Fig. 4. Authorization state after ag is revoked without cascade from Fig. 1.

DerINITION 7. (Revoke Function) Given an authorization state
AS and a request for revocation ¢y, p, t, X), withy e S,p e
P,te T, x € U, rvk(AS, {y, p, t, X)) generates a new
authorization state AS defined as follows. Let REV,
SUP, and AS be the sets of authorizations defined as:

REV = {a € AS| subject(a) =y, priv(a) = p, table(a) =t,
grantor(a) = x}

SUP = { (subject(a;), priv(a;), table(a;), ts(a;), X,
grant-opt(a;))| Ja; € AS, Ja; € REV: subject(a;) # X,
subject(a;) #y, a; — aj}

AS = AS U SuUP.
Then, AS = cascade-rvk (AS,(y, P, t, x)).

In the above definition, REV denotes the set of authori-
zations being revoked and SUP denotes the set of the
authorizations which are restated with the revoker as
grantor. State AS is obtained by adding to AS the authori-
zations that y granted by using the authorizations being
revoked with x as grantor (SUP) and then applying cas-
cading revocation.

ExXAMPLE 3. Consider the authorization state of Fig. 1
and suppose user B revokes the select privilege
on table T from user D without cascade. The
authorization to be revoked is the authorization
granted by B to D (a,), i.e., REV = {a,}. The
authorizations granted by D to E (as) and F (a;)
must be restated with B as grantor. Hence,
SUP ={a;, aj}, where a. = (E, select, T, 50, B, yes)
and a; = (F, select, T, 70, B, yes) derived from a;
and a;, respectively. These authorizations are
added to AS and then function cascade-rvk is ap-
plied to the resulting state. As a consequence of

revoking a, also the authorization granted by D
to E (a5) must be revoked, CREV = {as}. The re-
sulting authorization state, illustrated in Fig. 3, is
AS ={a, a,, a3, &, 8, 8;, &7, ay}.

As another example, consider the authorization
state of Fig. 1 and suppose user C revokes the select
privilege on table T from user D without cascade. The
resulting authorization state is illustrated in Fig. 4.
Note that the authorization granted by D to E has not
been specified with C as grantor because it was
granted before D received the privilege from C.

Note that in the case of noncascading revocation, a
user may become grantor of authorizations he did not
grant. This raises the issue of accountability, which can
be addressed either by informing the revoker of the
authorizations that will be respecified with him as gran-
tor or by keeping track of the user who initially inserted
the authorizations by using a log mechanism (see also
Section 8).

5 NEGATIVE AUTHORIZATIONS

In this section we extend our model with negative authori-
zations. In our approach, negative authorizations can only
be issued with respect to access privileges, and not to the
administration of the privileges themselves. Thus, it is pos-
sible to specify that a user cannot select tuples from a table,
but it is not possible to specify that a user cannot grant oth-
ers the authorization to select tuples from the table (i.e., it is
not possible to specify the negation for the grant option
alone). Note, however, that the negation for a privilege on a
table implies the denial of the administration of the privi-
lege itself. For instance, if a user has a negative authoriza-
tion for the select privilege on table t, the user can neither
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select tuples from table t nor grant or revoke other users the
select privilege on table t.

To represent negative authorizations, we extend the
definition of authorization as follows.

DEerFINITION 8. (Authorization) An authorization a is a seven-
tuple

(subject, priv, priv-type, table, ts, grantor, grant-opt),

where priv-type € {+, -} specifies whether the authoriza-
tion is positive or negative and the other elements have the
meaning illustrated in Definition 1.

Authorizations considered so far have priv-type = “+”.
Authorizations with priv-type = “=” have necessarily grant-
opt = “no,” i.e., a negative authorization cannot be specified
with the grant option.

If a user has an authorization for a privilege on a table
with the grant option, the user can also grant other users

negative authorizations for the privilege.5 Then, a positive

authorization with the grant option can support negative
authorizations; however, a negative authorization cannot
support any authorization (negative or positive).

To represent negative authorizations, we extend our
graphical notation by adding the signs of the authorizations
to the labels of arcs as follows. A “= will be associated with
the label of an arc if the arc corresponds to a negative
authorization, whereas nothing will be indicated if the arc
corresponds to a positive authorization.

In the remainder of this section we revisit grant and re-
voke operations to take into account negative authorizations.

5.1 Grant Operation for Negative Authorizations

5.1.1 Authorizations of the User Receiving Negative
Authorization

Negative authorizations introduce the possibility of con-
flicts. A negative authorization states that a user must be
denied a privilege, whereas a positive authorization states
that a user must be given a privilege. It should be the case,
therefore, that if user y has a negative authorization for
privilege p on table t, then y should not have at the same
time a positive authorization for p on t, and vice versa. This
situation, although desirable, cannot always be satisfied.

To see this, suppose that a user cannot have at the same
time both positive and negative authorizations for a privilege
on a table. Suppose that user x grants a negative authorization
for privilege p on table t to user y, who has some positive
authorizations for p on t. Since y cannot have at the same time
the positive and the negative authorization, then either all y’s
positive authorizations should be revoked or the grant request
should be refused by the system. Deleting y’s positive authori-
zations is not the correct approach, since it may cause deletion
of authorizations granted to y by users different from x. This is
contrary to the assumption that a user can revoke only the
authorizations he granted. On the other hand, the approach of

5. Note that this can be seen as being too permissive since any user with a
privilege on a table with the grant option can deny access to all users except
the creator of the table. One way to prevent this from happening is to
tightly control who can administer negative authorizations on a table by
introducing different types of privileges for the administration of negative
and positive authorizations. We will not make such a distinction in this
paper.

rejecting the insertion of the negative authorization would
deny x the execution of the grant operation for which he has
the necessary authorization. Therefore, we allow the insertion
of a negative authorization without deleting possible positive
authorizations that y may have.

The simultaneous presence of positive and negative
authorizations does not have to be interpreted as an incon-
sistency. In our model, negative authorizations override
positive authorizations: if a user has a negative authorization:
for a privilege on a table, the user will not be able to use any
possible positive authorizations for the privilege on the table
he may have. In this case, the positive authorizations are said
to be blocked. This is formalized by the following definition.

DEerINITION 9. (Blocked Authorization) An authorization a; €
AS, with grantor(a;) # “*”, and with priv-type(a;) = “+”, is
blocked for user u = subject(a;) iff there exists an authori-
zation a; € AS such that subject(a;) = subject(a;), priv(a;) =
priv(ay), priv-type(a;) = “~", table(a;) = table(y).

Authorization g is called a blocking authorization for g
for user u. We use the notation a; |, & to indicate that

authorization a; blocks authorization a;.

Condition “grantor(a;) # ** in the definition expresses the
fact that basic authorizations, i.e., authorizations of the
owner of a table on the table, can never be blocked.

The time at which an authorization becomes blocked is
defined as follows.

DeriNiTION 10. (Blocking Time) Given a blocked authorization
a; € AS, the blocking time of a; for user u = subject(a;) is
defined as the maximum between the time of & and the
minimum time of the authorizations blocking it. Formally:

bt(a;, u) = max(ts(a;), min({ts(a,) |ak H,ah).

ExAMPLE 4. Consider the authorization state illustrated in
Fig. 2 and suppose that, at time 80, user B grants user
D a negative authorization for the select privilege on
table T (see Fig. 5). As a result, authorization ag
granted by C to D becomes blocked. The blocking
time of the authorization bt(ag, D) is 80.

Authorization a; will no longer be blocked in case
blocking authorization ag is deleted. The deletion of ag
will occur if either B revokes the negation for the se-
lect privilege on T from user D or user A revokes the
select privilege on T from user B with cascade.

5.1.2 Authorizations Granted by the User Receiving
Negative Authorization

An important issue concerns the authorizations that have
been granted by a user who receives a negative authoriza-
tion. Whenever a user y receives a negative authorization
for a privilege on a table, all y’s authorizations for the
privilege on the table become blocked and, therefore, y will
not be able to revoke authorizations for the privilege on the
table he may have granted to others. For example, with ref-
erence to the authorization state illustrated in Fig. 5, user D
will not be able to revoke the select privilege on T from user F
(authorization a;) because of the authorization ag. This leads

6. This condition is not relevant now; we introduce it to avoid extending
some definitions later on.
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Fig. 5. An authorization state consisting of both positive and negative authorizations.

to the problem of dealing with the authorizations that the
user receiving the negative authorization may have granted
before receiving the negative authorization. In particular,
the question arises whether or not these authorizations
should also be recursively blocked. We note that the recur-
sive blocking of these authorizations may not be desirable.
Hence, in our model we do not take any particular action
over the authorizations granted by user y receiving the ne-
gation. If the user granting the negative authorization to y
wishes to additionally block the authorizations for p on t
granted by y to other users, he can do so by explicitly
granting the negative authorizations to these users.

Therefore, in our model, user y, after having received a
negative authorization for privilege p on table t, may still
appear as grantor of the authorizations for p on t granted
before receiving the negation. Since y can neither grant nor
revoke privilege p on table t, y will not be able to revoke
these authorizations until his negative authorization will be
revoked. Even if these authorizations cannot be revoked by
y, they can still be removed. They will be revoked upon
revocation of the blocked authorizations supporting them,
or made revocable upon revocation of the blocking authori-
zations. For example, although authorization a; in Fig. 5,
cannot be revoked by D, it will be deleted if A revokes the
select privilege from C with cascade or C revokes the select
privilege from D with or without cascade (in this latter case,
a new authorization will be specified for F with C as gran-
tor). It is important to note that, according to Definition 9,
the authorizations of the owner of a table cannot become
blocked. This ensures that authorizations supported by
blocked authorizations can always be revoked.

Although a user y, who has received the negative
authorization for a privilege on a table can appear as gran-
tor of an authorization for the same privilege to another
user, y cannot grant any authorization for the privilege on
the table after having received the negation. This means
that a blocked authorization cannot support authorizations
with timestamp bigger than the time at which the authori-
zation became blocked. This requirement is expressed by
the following property.

PROPERTY 2. (Blocking Conformity) An authorization state
AS satisfies the Blocking Conformity Property iff Va;,
a € AS, a; > a;: Ja,, a, |, &, u = grantor(a;) = bt(a;, u)
> 15(ay).
We extend the definition of consistency of the authori-

zation state requiring that the Blocking Conformity Prop-
erty also hold.

DerINITION 11. (Consistency of the Authorization State) An
authorization state AS is said to be consistent iff it satisfies
the Connectivity Property and the Blocking Conformity
Property.

5.2 Revocation of Negative Authorizations

The semantics of the revocation of the negation of privilege
p on table t from user y by user x is to delete all the negative
authorizations for p on t that x granted to y. Since no
authorization can be supported by a negative authorization,
there is no need to propagate the effect of the revocation.

The semantics of the revocation of the negation of a
privilege on a table from a user is formalized by function
rvk-ng (revoke negation function), defined next.

DerINITION 12. (Revoke Negation Function) Given authoriza-
tion state AS and a request for the revocation of a negation
,p, t, x), withye S,pe P,te T, x € U, rvk-ng(AS,
{y, p, t, X)) generates a new authorization state AS defined
as follows:

AS = AS —{a € AS |subject(a) =y, priv(a) = p, priv-type(a)
="_" table(a) = t, grantor(a) = x} '

ExAMPLE 5. Consider the authorization state illustrated in
Fig. 5 and suppose that user B revokes the negation
for the select privilege on table T from user D. The re-
sulting authorization state is as illustrated in Fig. 2,
where authorization ag has been deleted.

6 VIEWS

Most RDBMS allow users to define views, expressed in terms
of queries against base tables and other views. Views repre-
sent a simple and effective mechanism for enforcing content-
dependent authorization. For example, suppose user A cre-
ates table T and wants to give user B the authorization to
select only those tuples of T for which the value of attribute a,
is greater than 1,000. To accomplish this, A can simply define
a view of the form “select * from T where a, > 1,000” on top
of T, and grant B the select authorization on the view.

In the following, we will use the term table to refer to ei-
ther a base table or a view. We will explicitly indicate base
table or view when a distinction is needed.

The relationship between a view and the tables on which
the view is defined is formalized by the following definition.

DeriNITION 13. (Referenced Table) A table t is directly refer-
enced by a view v (written t — v) if t is used in the defini-
tion of v. A table t is referenced by a view v (written
t —» v) if either t — v or there exist tables vy, ..., v, n =1
suchthatt > v, > ... > v, > V.
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For any view v, we define a view derivation graph as fol-
lows. Every table directly or indirectly referenced by a view
is represented by a node. There exists an arc directed from
table t; to table t; iff t; — t;. For example, consider tables T,,
T,, V1, V,, V3, and V,, where T, and T, are base tables, V; is
defined on top of T;, V, is defined on top of T, and T,, V3 is
defined on top of T,, and V, is defined on top of Vs. The
derivation graphs for views V,, V,, V,;, and V, are illus-
trated in Fig. 6.

A path between a base table and a view in the derivation
graph of the view is called a derivation path for the view. In
the following, given a view v, DP(v) denotes the set of all
the derivation paths for v. For example, with reference to
the views in Fig. 6, DP(V,) = {{T;, V}, DP(V,) = {(T,, V),
(T2, Va)t, DP(V3) = {(Ty, Va)}, DP(V,) = {(Ty, Vs, V,)}. Base
tables have only one derivation path, containing the table
itself; thus, for any base table t, DP(t) = {{t)}.

6.1 Authorizations on Views

A user defining a view is its owner and, as such, is entitled
to drop the view. However, the view owner may not be
authorized to exercise all privileges on the view. The
authorizations a view owner has on the view depend on the
view semantics (certain operations may not be executable
on the view) and on the authorizations the user has on the
tables directly referenced by the view.

In the original System R model, in order to be authorized
for a privilege on a view, the owner must have authoriza-
tions for the privilege on all the tables directly referenced
by the view [14].7 The privileges on the view, however, may
be further restricted depending on the view semantics [14].
For example, in most commercial DBMS, updates are not
allowed on a view defined as a join of two tables, inde-
pendently of whether the view owner has the update
privileges on these two tables. In the remainder, we will not
discuss any further how to determine which update opera-
tions can be allowed on a view. We refer the interested
reader to the large body of literature dealing with this issue
[2], [7], [9], [16]. Any approach, used to determine the type
of operations allowed on a view, can be coupled with our
extended authorization model.

Although our authorization model allows the specifica-
tion of negative authorizations for base tables, we do not
permit negative authorizations for privileges on views. The
reason for this is that supporting negative authorizations on
views would make the access control too complex, making
it impractical. To see this, suppose that negative authoriza-
tions could be specified on views as well. Whenever a user
accesses a view V, all the authorizations on all the views
directly or indirectly referencing the same tables as V, will
have to be checked in order to prevent the user from ac-
cessing data denied to him. To illustrate this point further,
suppose that views V; and V, are defined on top of table T.
Suppose user A has an authorization for the select privilege
on V, and, at the same time, a negative authorization for

7. Although we have assumed that authorizations are specified on whole
tables, note that in general the only exception to this rule is the update
privilege which can specify single columns. A user can be authorized for
the update privilege on a column of a view if he has the update privilege on
the corresponding column in the table on which the view is defined.

the select privilege on V,. With respect to the protection
requirements, A should not be allowed to select tuples
contained in V,. Since V; and V, may be not disjoint (i.e.,
some tuples of T can belong to both of them) the access of A
to V; must be limited only to those tuples which are not
contained in V,. Therefore, when A accesses V;, those tu-
ples in V; contained also in V, should be withheld from A.
Enforcing this restriction would entail comparison of the
predicates used in defining the views. This approach is ob-
viously not very practical and, therefore, we do not permit
negative authorizations to be specified on views.

Negative authorizations are taken into account by al-
lowing the derivation of an authorization for a privilege on
a view only if the owner, beside having the authorization
for the privilege on all the tables directly referenced by the
view, does not have any negative authorization for the
privilege on any of the base tables directly or indirectly ref-
erenced by the views. Although the user may have multiple
authorizations for a privilege on a table, only one authori-
zation for the privilege on the view will be derived. If the
user defining the view is authorized for a privilege on all
the tables directly referenced by the view with the grant
option, the user will also be given the privilege with the
grant option on the view. In this case, two authorizations
for the privilege on the view are derived, one with the grant
option and one without the grant option.8 The grantor of
the authorizations derived on the view is the view owner
himself. The timestamp is the time of the view definition.

The relationship between authorizations on views and
authorizations on the underlying tables from which the
authorizations on the view are derived, is formalized by the
following definition.

DerINITION 14. (Derived Authorization) Given authorizations
a;, 8 € AS, a is directly derived from a; (written a, - a;)
iff subject(a;) = subject(a;) = grantor(a), priv(a;)) = priv(a),
priv-type(a;)) = priv-type(s;) = “+", table(ai)9—> table(a),
ts(a;) < ts(a), grant-opt(a) = grant-opt(a),” and gran-
tor(a;) is the owner of table(a;).

g is derived from a; (written g > a;) iff a; > a; or Jay,
..an€ AS,n21suchthata > a > ...> a, > a;.

If 3 #> a;, we say that derivation relationship exists be-
tween g; and ;.

Derived authorizations are graphically represented by
an arc connecting the node representing the user and a ta-
ble to the node representing the user and the view. The
timestamp on the arc is the time of the view definition. As
an example, consider the authorization state of Fig. 7 and
suppose that, user B defines view V; at time 40, view V, at
time 50, view V; at time 60, and view V, at time 70, as il-
lustrated in Fig. 6. Moreover, suppose that, at time 80, B

8. The reason for adding two authorizations is to simplify the definition
of the revoke function. Suppose we add only one authorization with the
grant option, and suppose that the user’s grant option is taken away from
one of the underlying tables. In this case, we would need to change his
authorization on the view by taking away the grant option. By contrast, if
we add two authorizations, we can express the revoke operations as previ-
ously defined as deletion of all authorizations for which there are no
authorization chains.

9. We consider “yes” > “no”.
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Fig. 6. Derivation graphs of views V,, V,, V3, and V,.

grants the select privilege on V, to user C, and at time 90, B
grants the select privilege on V, to user D. The authoriza-
tion state resulting after the execution of all these opera-
tions is illustrated in Fig. 8. The direct derivation relation-
ship between the authorizations are as follows:

a3 >, 83 > 3y, 83 > 85, 33 B> ag, 33 B> 8, A3 > &,
A8, a;, a8, a, a5 > a.

Fig. 7. An authorization state.

We restate the definition of authorization chain by in-
cluding the derivation relationship as follows.

DEFINITION 15. (Authorization Chain) An authorization chain
is a sequence {ay, a,, ..., a,) (N = 1) of authorizations such
that a;, a, ..., a, € AS, a; rel a,rel ... rel a,, where rel €
{—, B} andg(a;) = “*".

Authorizations in an authorization chain can be defined
on different tables. Given an authorization chain ch € C(AS),
the coverage of ch, denoted with cov(ch), is a sequence of tables
defined as follows: cov(ch) = (t;, ..., t,) such that t; - t;,; and
Va; € AS : a; € ch = table(a;) € cov(ch). For instance, with
reference to Fig. 8, cov({ay, as, ag, a7, ag )) = (Tq, V3, Vy).

Given these definitions, we represent the constraint that
the owner of a view can own an authorization for a privi-
lege on the view only if he owns the authorization for the
privilege on all the tables directly referenced by the view by
extending the Connectivity Property as follows.

PROPERTY 3. (Connectivity) An authorization state AS satis-
fies the Connectivity Property iff for every authori-
zation a € AS, and every derivation path of table(a)
there exists an authorization chain covering the path.
Formally:

Va e AS, dp € DP(table(a)) : Iay, ..
such that a = a, and cov({a, ..

L ay e C(AS),n>1,

. ay) = dp.

T —V3

n—Vs—V

Note that if all authorizations refer to base tables only
this property reduces to Property 1, by observing that for
any base table t, DP(t) = {{t)}.

If a user receives the authorization for a privilege on a
view with the grant option, he can grant other users the
privilege, possibly with the grant option, on the view. In
order for these users to exercise their privileges on the
view, it is not necessary that they be authorized for the
privilege on the tables directly referenced by the view.

Note that it is possible for a user to have, at the same
time, a positive authorization for a privilege on a view and
a negative authorization for the same privilege on a base
table referenced by the view. In the case of a view owner,
this can occur if the negative authorization was granted
after the owner defined the view. For other users, this can
occur if they independently receive the authorization on the
view and the negative authorization on some base table. In
our model, negative authorizations always take precedence
over positive authorizations. Therefore, if a user has a
negative authorization for a privilege on a base table, he
will not be able to exercise the privilege on any view refer-
encing the table. Note that this approach is consistent with
the use of views as a mechanism for enforcing content-
dependent authorizations. To formalize this, we extend the
definition of blocked authorization as follows.

DerINITION 16. (Blocked Authorization) An authorization a; €
AS with grantor(a;) # “*”, and with priv-type(a;) = “+”,
is said to be blocked for user u = subject(a;) iff there ex-
ists another authorization g € AS such that subject(a;)
= subject(a), priv(a) = priv(a), priv-type(a) = “-7,
(table(a;) = table(ay) or table(a;) —» table(a;)).

Authorization g; is called a blocking authorization for &;
for u, written a -,

Given this definition, we represent the requirement that
no authorization for a privilege can be derived for the
owner of a view if he owns a negative authorization for the
privilege on any table referenced by the view by extending
the Blocking Conformity Property as follows.

PROPERTY 4. (Blocking Conformity) An authorization state
AS satisfies the Blocking Conformity Property iff

Fig. 8. An authorization state consisting of base tables and views.
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Va;, aj€ AS, &y > g;or a — a;:33,,a,-,3, u = subject
= bt(a;, u) > ts(g).

If, after having defined a view, the view owner receives
additional privileges on the underlying tables, the owner
will not receive authorizations for them on the view. By
contrast, if after having defined a view, a privilege of the
view owner on any of the underlying tables is revoked, that
privilege may be revoked on the view also (since according
to the Connectivity Property the authorizations on the view
no longer hold). Therefore, the authorizations of the view
owner on the view can only decrease due to revocation of
the privileges on the underlying tables, and never increase.

6.2 Extension of the Revoke Operations on Views

6.2.1 Cascading Revocation and Views

According to the semantics of cascading revocation, in ad-
dition to the authorizations the revokee may have granted,
the authorizations he may have acquired on views refer-
encing the table may need to be revoked. The revoke func-
tion with cascade extended to the consideration of views is
formalized as follows.

DerINITION 17. (Revoke Function with Cascade) Given
authorization state AS and a request for revocation (y, p, t,
X)ye S peP, te T, xe U, cascade-rvk(AS, y, p, t, X))
generates a new authorization state AS defined as follows.
Let REV and CREV be the sets:

REV = {ae AS|subject(a) =y, priv(a) = p, priv-type(a)
=“+" table(a) =t, grantor(a) = x}
CREV ={ae AS|ddp € DP(table(a)), (a;, ..., a, aye C(AS),
cov({ay, ..., ay, ) =dp, da; € REV, 1 <i<n}.
Then, AS = AS— REV - CREV.

In the above definition, REV denotes the set of authori-
zations being revoked, i.e., the authorizations for the privi-
lege on the table granted by the revoker to the revokee.
CREV denotes the set of all authorizations a for which, after
deletion of the authorizations being revoked, there would
exist a derivation path of table(a) which is not covered by
any authorization chain. CREV is the set of authorizations
which would not have existed if the authorizations being
revoked (i.e., REV) had never been granted.

ExAaMPLE 6. Consider the authorization state of Fig. 8 and
suppose that user A revokes the select privilege on ta-
ble T, from user B. The authorization to be revoked is
ay, i.e., REV={a3}. Thus, CREV = {a,, a,, as, &, a, 4a;,
as; a,, ag}. The resulting authorization state is as illus-
trated in Fig. 9.

Fig. 9. Authorization state after as is revoked with cascade from Fig. 8.

6.2.2 Noncascading Revocation and Views

According to the semantics of the noncascading revocation,
if user x revokes a privilege on a table from user vy, the
authorizations for the privilege on the table granted by y
using the authorizations being revoked are respecified with
X as the grantor. If y granted the privilege with conditions,
i.e., by defining a view, x should become the grantor of the
authorizations for the privilege on the view granted by .
With respect to the Connectivity Property, in order for x to
appear as grantor of any authorization for the privilege on
a view, x must own the authorization for the privilege on
the view with the grant option. Therefore, if x needs to be-
come the grantor of any authorization on the view, the
authorization for the privilege on the view with the grant
option must be given to x.° The timestamp of the authori-
zation is the definition time of the view, the grantor is x
himself. To avoid the authorization derived for x on the
view to be deleted if y drops the view, x is also considered
as an owner of the view. Therefore, a view can have more
than one owner, and any of them can drop the view. The
view will be actually dropped when the last one of its own-
ers asks for its deletion.

However, the user requiring revocation of a privilege on
a table may not always be able to receive the authorization
on the views defined on the table. According to the Con-
nectivity Property, if the view is defined on multiple tables,
X receives the privilege on the view with the grant option,
only if he has the authorization for the privilege, with the
grant option and with timestamp smaller than the view
definition time, on all the tables directly referenced by the
view. Moreover, according to the Blocking Conformity
Property, x must not have any negative authorization for
the privilege on any of the base tables referenced by the
view with timestamp smaller than the view definition time.

Therefore, absence of positive authorizations, or the
presence of negative authorizations on a table referenced by
a view, affects the possibility of the user requiring revoca-
tion to appear as grantor of the authorizations on the view.

Let {y, p, t, X) be a request of user x to revoke privilege p
on table t from y. The revoke function is based on the defi-
nition of the following sets:

» REV, the set of authorizations being revoked, i.e., the
authorization for p on t granted by x to y.

e SUP, the set of authorizations for p on t to be specified
with x as grantor.

 POT-DER, all possible authorizations which could
need to be derived for x on views defined by y. They
are obtained from authorizations derived for y from
some authorization being revoked.

* DER, the subset of authorizations in POT-DER which
satisfies the Connectivity and the Blocking Confor-
mity Properties, i.e., which can be derived from x’s
authorizations (either already in AS or being derived),
and which, according to the authorizations in AS,
were not blocked at the time of the definition of the
considered view.

10. Since x is given the authorization on the view only to allow him to
appear as grantor of the authorizations on the view, the only authorization
for the privilege being revoked with the grant option is given to him.
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* SDER, the set of authorizations on views defined on t
to be specified with x as grantor.

Given an authorization state AS and a request for revo-
cation of privilege p on table t from user y by user x, the
revoke function determines which authorizations on the
table must be revoked (REV) and which must be specified
with the revoker as grantor (SUP). Then, the views refer-
encing the table are considered to determine the authoriza-
tion which can be derived for the revoker (POT-DER). The
authorizations which can be actually derived for the re-
voker (DER) and which have to be specified with the re-
voker as grantor (SDER) are determined. The authoriza-
tions to be specified with the revoker as grantor (SUP and
SDER) and the authorizations to be derived (DER) which
either supports some authorizations in SDER or are needed
to derive some authorizations which supports authoriza-
tion in SDER are added to the authorization state. The cas-
cade revoke function is then applied to the authorization
state so obtained. The revoke function without cascade is
formally defined as follows.

DeriNITION 18. (Revoke Function) Given authorization state
AS and a request for revocation ¢y, p, t, x), withy e S,p e
P,te T, x € U, rvk(AS, {y, p, t, X)) generates a new
authorization state AS defined as follows. Let REV, SUP,
POT-DER, DER, and SDER be the following sets of
authorizations:

REV ={ae AS|subject(a) =y, priv(a) = p, priv-type(a) = “+",
table(a) = t, grantor(a) = x}
SUP = { (subject(a;), priv(a;), priv-type(a;), table(a;), ts(a;), X,
grant-opt(a;)) | 3a; € AS, Ja; € REV : subject(a;)
# X, subject(a;) 2y, a, — aj}.
POT-DER = { {x, priv(a;), priv-type(a;), table(a;), ts(a;), X,
grant-opt(a;)) | 3a; € AS, Ja; € REV:
grant-opt(a;) = “yes", a; #» a;}
DER ={ a; € POT-DER | Vdp € DP(table(a;)),
Jch € C(AS U SUP U POT-DER),
Aay,e AS:ch={ay, ..., a) a, ... ¢ REV, a, > a,,
cov({ch, a))) = dp, a, -, a,, bt(a, x) < ts(a)}
SDER = { (subject(a;), priv(a;), priv-type(a;), table(a;), ts(a;), X,
grant-opt(a;)) | Ja;, & € AS, 3; € DER,
A a, € AS: subject(a) = X, subject(a;) = grantor(a;) =,
priv(a)) = priv(a)), table(a]) = table(a)), ts(a]) = ts(a),
subject(a;) # X, subject(a;) =, a; —>a;, & -, 3,
bt(ay, X) < ts(ay)}
AS = AS U SUP U SDER U {a; € DER |3 4 € SDER,
a€ DER: a; b» g, —ava —aj}

Then AS = cascade-rvk(AS, {y, p, t, X)).

EXAMPLE 7. Consider the authorization state illustrated in
Fig. 8 and suppose that user A revokes the select

privilege on table T, from user B. As a result B loses
the authorizations derived for him on views V,, V,,

V3, V,. The authorization granted by B to C on V, is
respecified with A as grantor and, therefore, A be-

comes owner of V3 and V, and is given the authoriza-
tion for the select privilege with the grant option on

these views. No authorization is derived for A on V;
since there is no authorization granted on V;. Simi-
larly, no authorization is derived for A on V, since A

does not have the necessary authorization on T,. The
revocation process works as follows. The authoriza-

tion to be revoked is authorization as, i.e., REV = {as}.
No authorization is supported by the authorization
being revoked, SUP = 0 . The set of potential authori-
zations to be derived for the revoker is POT-DER =

{a;, ag, ag, a7}, where &}, a;, and a; are equal to a, as,

ag, and ay, respectively (i.e., all authorizations with the
grant option derived for B) but with A as subject and
grantor. The set of authorizations in POT-DER which
can actually be derived is then determined as DER =
{a;, a5, a7}. Authorization a;, belonging to POT-DER,
does not belong to DER, since it cannot be derived
given that A does not own any authorization for the

select privilege on T,. The set of authorizations on
views to be restated with A as grantor is then deter-
mined as SDER = {ag}, where a; is equal to ag but with
A as grantor. Then, the authorizations to be specified
with the revoker as grantor (SUP and SDER) and the
authorizations in DER needed to support authoriza-
tion in SDER or to derive authorizations supporting
some authorization in SDER (a;, a;) are added to the

authorization state. Finally, cascade revocation is ap-
plied. The application of function cascade-rvk deter-

mines REV = {a;}, and CREV = {a,, &,, as, &, 8, &, a7,
a,, ag}. The resulting authorization state is as illus-
trated in Fig. 10.

7 GROUPS

In the extended model [25], groups can appear as subjects
of authorizations. Members of groups can be users as well
as other groups. A user can exercise any authorization that
has been given to the groups to which he belongs. When a
user grants an authorization by using the grant option of
some group to which he belongs, an additional authoriza-
tion (called connecting authorization), with the group as
grantor and the user as subject, may be added to the
authorization state. Revocation of authorizations from
groups and from users requires special handling and may
require the insertion of new connecting authorizations.

Unfortunately, the approach proposed by Wilms and
Lindsay is inadequate for the noncascading revocation and
the negative authorizations [5]. Instead of adding connect-
ing authorizations, we represent the relationship between
authorizations of a group and authorizations that users of
the group may have granted or acquired (on views) from
them by extending the definitions of supporting and de-
rived authorizations.
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Fig. 10. Authorization state after a3 is revoked without cascade from Fig. 8.

7.1 Group Membership

As in [25], we also assume that members of groups can be
both users as well as other groups and groups need not be
disjoint. A timestamp is associated with the membership of
a subject (user or group) to a group stating the time the
subject became a member of the group. In the following,
tm(m, G) indicates the time associated with the membership
of m to group G, where m is either a user or a group. Mem-
bership of a user u to a group G is direct, if the user is de-
fined as a member of G. It is indirect, if the user is a member
of a group G;, which is member, either direct or indirect, of
G. Therefore, a user can belong to a group in multiple ways,
either as a direct or an indirect member. For example, sup-
pose C belongs to groups G; and G, which are both mem-
bers of a same group G;. Then, C indirectly belongs to G,
both as a member of G; and as a member of G,.

The membership relation between users and groups is
formalized by the following definition.

DerINITION 19. (Membership) Given a user u and a group G, u
belongs directly to group G, written u € G, if u is a mem-
ber of G. User u belongs to G, written u ee G, iff there
exists a sequence of subjects ¢s;, ..., S,) , h > 1, such that s;
=u,s, =G, ands; € Sj;q, 1 <i<n-—1. Sequence (sy, ..., Sy
is called a membership path of u to G, written mp(u, G).

In the following, MP(u, G) indicates all the membership
paths between user u and group G.

The configuration of groups can be graphically illus-
trated with a graph whose nodes represent users and
groups. An arc labeled t directed from node s; to node s;
indicates that s; became a direct member of 5; at timet,i.e.,
tm(s;, ) = t. A membership path between a user and a
group is, therefore, a path connecting the user and the
group in the group configuration graph.

ExAaMPLE 8. Consider users A, B, C, D, and E. At time 25,
group G; is defined and its members are users A and
B. At time 40, group G, is defined and its members
are users C and D. At time 60, group G; is defined and
its members are groups G; and G,. At time 80, user C
is added to group G;. Finally, at time 100, user E is
added to group G,. The group configuration graph is
illustrated in Fig. 11.

Since a user can belong to a group indirectly, the mem-
bership time of a user to a group depends on the time on all
the arcs in the membership paths from the user to the
group. The following definition characterizes the member-
ship time through a path.

A
B
s
C
D
>l

Fig. 11. A group’s configuration graph.

DeriNITION 20. (Time of a Membership Path) Given a mem-
bership path mp(u, G) = (s, ..., S,), the time of the path,
written ts(mp(u, G)), is defined as the maximum time
along the path. Formally:

ts(mp(u, G)) = max({tm(s;, Sizy) [1 =1, ...,n=1}).

For instance, with reference to the group’s configuration
graph illustrated in Fig. 11, ts((C, G;, G5 )) = 80, and ts({(C, G,,
G;)) = 60.

The membership time of a user to a group can then be
defined as follows.

DeriNITION 21. (Membership Time) Given a user u and a
group G such that u e € G, the membership time of u to G,
denoted by ts(u, G), is the minimum time among those of
all the membership paths from u to G. Formally:

ts(u, G) = min({ts(mp) | mp € MP(u,G)}).

For instance, with reference to the group’s configuration
graph illustrated in Fig. 11, ts(C, G3) = min({ts({C, G;, G3)),
ts({C, G,, G3))}) = 60.

7.2 Authorizations of Users and Groups

A user is allowed to exercise, beside his own authoriza-
tions, all the authorizations of any group to which he be-
longs, regardless of whether they have been granted before
or after the membership time of the user to the group.
However, the user cannot use the authorizations of a group
before joining the group itself."! Therefore, the time at
which a user can actually use an authorization of a group is
the maximum between the membership time of the user to
the group and the time at which the authorization was
granted. This is formalized by the following definition.

DEFINITION 22. (Authorization Actual Time) Given a user u

11. Although this may seem a trivial observation it is important to keep it
in mind when considering revocation, where all the authorizations the
revokee may have, either personal or as a member of a group, have to be
considered to determine which of the authorizations he granted have to be
revoked.
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and an authorization a € AS, with u = subject(a) or u e e
subject(a), the actual time of the authorization for user u,
denoted by at(a,u) is defined as follows:

ts(a) if u = subject(a)
at(a, u) = {max(ts(a), ts(u, subject(a))) otherwise

For instance, consider the groups configuration graph
illustrated in Fig.10 and authorization a = (G, select, +, T,
70, E, yes). The actual times of the authorization for the us-
ers belonging to G, are as follows at(a, A) = at(a, B) = 70,
at(a, C) = 80.

If a group is authorized for a privilege on a table with
the grant option, any user in the group can grant other
subjects the privilege and the grant option on it. The gran-
tor of these authorizations is the user himself, not the
group. The reason for this is that it is important to know
which of the users of the group granted the authorization
so that that user only, and not any other users in the group,
can revoke it. Moreover, this allows revocation of the
authorization upon removal of the user from the group. In
terms of our formalism, the authorization granted by a user
can be supported by authorizations of the groups to which
the user belongs. To represent this, we extend the definition
of supporting relationship as follows.

DerFINITION 23. (Supporting Authorization) Given two
authorizations a;, a € AS, g supports authorization g
(written a; — @) iff (grantor(a;) = grantor(a;) or grantor(a;)
€€ grantor(a)), priv(a) = priv(a), table(a;) = table(a),
grant-opt(a;) = “yes,” at(a;, grantor(a))) < ts(a).

Note that this definition reduces to Definition 3 if users
are considered as the only subjects.

To represent this concept, we extend our graphical nota-
tion as follows. Every time a user, belonging to a group
owning the authorization for a privilege on a table with the
grant option, grants an authorization for the privilege on the
table, a node (use, table, privilege)12 and an arc into this node
from node {(group, table, privilege) are added. The time on the
label of the arc is the actual time of the authorization of the
group for the user.”® To distinguish these nodes and arcs
from nodes and arcs corresponding to real authorizations, we
represent them with thick lines. Note that we use them only
for the sake of clarity in the explanation; they do not corre-
spond to any authorization in the authorization state.

ExAMPLE 9. Consider authorization state AS consisting of
the following authorizations:
a; = {C, select, +, T, 10, *, yes)
a, = (B, select, +, T, 20, C, yes)
ag = (G, select, +, T, 30, C, yes)
a, = (D, select, +, T, 40, B, yes)
as = (E, select, +, T, 50, A, yes)

where the groups are as illustrated in Fig. 11. In par-
ticular, A and B have been members of group G; since
time 25. The authorization state is illustrated in Fig. 12.

12. If such a node already exists, only the arc is added.
13. If more than one authorization exists, several arcs are added, one for
each authorization.

Note that arcs labeled 30g between node (G;, T) and
nodes (B, T) and (A, T) do not correspond to any
authorization. The authorization chains are as follows:

C(AS) = {(ay, 2, ay), @y, a3, ay), (ay, a3, as)}-

Beside the authorizations for privileges, a user also in-
herits all the negative authorizations of the groups to which
he belongs. Thus, possible negative authorizations of a
group to which a user belongs may block other authoriza-
tions the user may have either personally or as a member of
some group.

To represent this, we extend the definition of blocked
authorizations as follows.

DEerINITION 24. (Blocked Authorization) An authorization a; €
AS with grantor(g) # “*”, with priv-type(a;) = “+”, is said
to be blocked for user u, with u = subject(a;) or u €€ sub-
ject(ay), iff there exists an authorization a € AS such that
(u = subject(a;) or u ee subject(a;)), priv(a) = priv(g),
priv-type(a)) = -, (table(a) = table(s) or
table(a;) —» table(a;)). Authorization g; is called a blocking

authorization for a; for user u, written a; ;.

Note that an authorization given to a group may be
blocked only for some of its members. The time at which an
authorization becomes blocked for a user depends on both
the actual time of the authorization and the actual time of
all the authorizations blocking it. If either the blocked
authorization or any of the blocking authorizations have a
group as subject, the blocking time depends on the mem-
bership time of the user to the group. To represent this, we
extend the definition of blocking time as follows.

DEerFINITION 25. (Blocking Time) Given an authorization g; €
AS, blocked for user u, such that u = s(g;) or u € € s(g;), the
blocking time of a; for u is defined as the maximum between
the actual time of the authorization and the minimum
among the actual times of all authorizations blocking a; for
user u. Formally:

bt(a;, u) = max(at(a;, u), min({at(a,, u) |ak—|u a}).

7.3 Group’s Authorizations and Views
The fact that a user belongs to a group may give him more
authorizations (authorizations derived from the authoriza-
tions of the group) or fewer authorizations (in case the
group has some negative authorizations). To express the
fact that the authorizations of the owner of a view on the
view can be derived from authorizations of groups to
which the user belong, we extend the definition of derived
authorization as follows.

DerINITION 26. (Derived Authorization) Given two authoriza-
tions a;, 3 € AS, g; is directly derived from authorization g
(written & > a;) iff:

subject(a;) = subject(a;) or subject(a;) € € subject(a;), subject(a;)
= grantor(ay), priv(a;)
= priv(g), table(a;) — table(a;), grant-opt(a;)
> grant-opt(a;), at(a;, subject(a;)) < ts(a;)
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Fig. 12. An authorization state consisting of users and groups (users A and B have been in group G; since time 25).

and grantor(g) is the definer of table(a;); a; is derived from
g (written & 1> a;) iff 3 > a; or Jay, ... a, such that a;
—y ... Paa

Definition 26 groups differs from Definition 14 in that
condition “subject(a)) €€ subject(a;)” has been added and the
actual time of g for subject(a;) has been substituted for the
timestamp of a;.

7.4 Revocation of Authorizations from Groups

In this section, we illustrate the revocation of privileges
with consideration of authorizations of groups. Given the
extensions to the definitions of supporting and derived
authorizations, the revoke functions presented in Sections 4
and 6 do not need to be extended further.

When groups are considered, if a user x revokes a privi-
lege on a table from a subject y, besides y’s authorizations,
also the authorizations of the groups to which y belongs
must be considered in determining the authorizations to be
deleted (respecified with x as grantor). Indeed, authoriza-
tions of groups to which y belongs may support authoriza-
tions that y granted which therefore should not be deleted.
Moreover, if y is a group, all the authorizations that users
belonging to the group may have granted or may have ac-
quired on views may also need to be revoked (respecified
with x as grantor).

ExamMPLE 10. Consider the authorization state of Fig. 12 and
suppose that user C revokes the select privilege on ta-
ble T from group G;.

Consider first the revocation with cascade. The authorization
to be revoked is g, i.e., REV = {a3}. Authorization as, which,
after deletion of a; would not belong anymore to any
authorization chain must also be deleted, i.e., CREV = {as}.
The resulting authorization state is as illustrated in Fig. 13.

: 10 / \
*_m_g__@ az : 209 \B’T/ a4 . 40g D,T

Fig. 13. Authorization state after az is revoked with cascade from Fig. 12.

Consider now the revocation without cascade. The
authorization to be revoked is as, i.e., REV = {ag}. Authori-
zations a, and as, granted by B and A, respectively, after
they joined group G;, must be specified with C as the
grantor. Thus, SUP = {a;,a;} where a; and a; are equal to

a, and as, respectively, but with C as grantor. No authoriza-
tion was derived from the authorization being revoked,
thus POT-DER = DER = SDER = 0 . Finally, authorizations
in SUP are added to the authorization state and recursive
revocation is called. Recursive revocation deletes a; (REV)
and a; (CREV). The resulting authorization state is as illus-
trated in Fig. 14.

8 CONCLUSIONS AND FUTURE WORK

In this paper we have proposed two extensions to the
authorization model proposed by Griffiths and Wade [14],
and subsequently extended by Wilms and Lindsay [25]. The
effects of these extensions on the execution of operations such
as grant and revoke, creation of new tables, and modification
of groups configuration have been formally specified.

The proposed authorization model has been imple-
mented. In the implementation, the actual authorization
catalogs of a commercial RDBMS have been simulated. To
support the advanced features of our authorization model,
the structure of these catalogs required only marginal ex-
tensions, namely the introduction of two additional column
to record the type (positive or negative) of the authorization
and whether the authorization is blocked. The goals of the
implementation are twofold. On one side, we want to as-
sess the performance of the authorization model and to
investigate efficient authorization checking strategies. In
the implementation, every time a negative authorization is
inserted, all authorization blocked by it are marked. Thus,
the control of a request to access a table is performed sim-
ply by looking for positive nonblocked authorizations on
the table. The configuration of groups is represented by a
table maintaining the transitive closure of group member-
ship as proposed by Gagliardi, Lapis, and Linsday [13]. On
the other side, we are developing an environment that sup-
ports tools for authorization management. We believe that
the increased complexity of authorization models, which
are required by advanced applications, require in turn such
environments. We refer the interested reader to [5] for ad-
ditional details.

Our model leaves space for further work. In particular,
there are more complex authorization management policies
that are worth investigating. In our model, negative
authorizations always override positive authorizations. The
reason is that this is the safest solution whenever there are

al : 50g E,T
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Fig. 14. Authorization state after az is revoked without cascade from Fig. 12.
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conflicting authorizations. However, other more sophisti-
cated policies can be considered. We are currently investi-
gating authorization conflict resolution methods based on
the users who granted the authorizations, on information
explicitly provided by the users, and on the subjects of the
authorizations (groups or single users). Another research
direction that we are investigating concerns the use of an
authorization log mechanism for tracking the history of all
authorization commands issued by the users. This log
mechanism is particularly useful for noncascading revoke
operations since the original grantor of an authorization is
replaced by the user performing the noncascading revoke
operation and, therefore, the original grantor of the
authorization is deleted from the authorization catalog. The
log mechanism would be a way to preserve this informa-
tion. The information in the log can also be used in the
framework of temporal authorization mechanisms, which
we are currently investigating [4].
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