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Abstract—Fragmentation has been recently proposed as a promising approach to protect the confidentiality of sensitive

associations whenever data need to undergo external release or storage. By splitting attributes among different fragments,

fragmentation guarantees confidentiality of the associations among these attributes under the assumption that such associations

cannot be reconstructed by re-combining the fragments. We note that the requirement that fragments do not have attributes in

common, imposed by previous proposals, is only a necessary, but not sufficient, condition to ensure that information in different

fragments cannot be recombined as dependencies may exist among data enabling some form of linkability. In this paper, we

identify the problem of improper information leakage due to data dependencies, provide a formulation of the problem based on a

natural graphical modeling, and present an approach to tackle it in an efficient and scalable way.

Index Terms—Data dependencies, data fragmentation, confidentiality, visibility requirements, CSP
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1 INTRODUCTION

Recent years have seen a tremendous explosion of
the amount of information shared, collected, pro-
cessed, and externally stored or published. Outsourc-
ing, cloud, big data have become common terms
with reference to recent and emerging scenarios. A
common aspect among them is the presence of data
(differently collected, stored, or accessed) which is
exposed to external parties, for storage, processing or
even release. Hence, the inevitable concerns by end
users, and the attention from the academic and in-
dustrial communities on possible improper exposure
of sensitive information (e.g., [1], [2]).

Several techniques and approaches have been pro-
posed for providing protection of sensitive informa-
tion, tackling different aspects of the problem with
varying assumptions and applicable to different sce-
narios. Among such proposals, data fragmentation
is a promising approach for withholding sensitive
attributes and breaking sensitive associations across
different data fragments so to ensure their protection
from unauthorized eyes (e.g., [3], [4], [5]). Fragmenta-
tion can find applicability in different scenarios, cov-
ering both cases where data are externally managed
for storage and processing (as in the cloud) and cases
where some views over data need to be published (as
in the case of public or semi-public release as well
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as data sharing among different parties). In scenarios
where data are externally stored or processed, frag-
mentation has the advantage of maintaining data in
the clear (in contrast to encrypted), thus supporting
a more efficient query execution and accommodating
a large variety of queries. In scenarios where data
are released to the public or to parties from which
specific sensitive associations need to be withheld, it
provides the needed data views while ensuring con-
fidentiality of sensitive associations. The guarantee of
confidentiality offered by fragmentation relies on the
requirement that fragments do not have attributes in
common and on the consequent assumption that this
prevents their linkability. In other words, there is an
implicit assumption that attributes are independent.
Clearly, such an assumption does not typically hold,
and often there are attributes whose values might
depend on the values of other attributes to which they
are related and on which therefore they can indirectly
leak information. For instance, the treatment given
to a patient typically depends on her disease, hence
visibility of the treatment given to a patient also leaks
information on her disease. The inference enabled
by data dependencies can put confidentiality at risk
improperly exposing sensitive attributes (as in the
case where disease is sensitive), sensitive associations
(as in the case where treatment appears with some
attributes whose association with disease is sensitive),
or actually enabling some form of linkability among
fragments (as in the case where disease appears in
other fragments). A successful approach to data frag-
mentation therefore has to take into consideration
dependencies that can exist among data.

In this paper, we address this problem and extend
fragmentation to the consideration of data depen-
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dencies. We build our approach on existing propos-
als accommodating both confidentiality constraints
(capturing sensitive information and associations) and
visibility constraints (capturing requirements of data
views) and enrich them with the consideration of data
dependencies, thus providing a comprehensive mod-
eling of the problem. As we will note, consideration of
data dependencies not only increases the expressive
power of the approach (enabling the specification
and consideration of inferences due to relationships
among data and therefore the protection against them
in the fragmentation), but also simplifies the specifica-
tion of confidentiality constraints (as constraints that
were due to some data dependencies do not need to
be determined and specified anymore).

The contribution of this paper is fourfold. First, we
characterize the limitation of existing proposals iden-
tifying the problem of improper information leakage
due to data dependencies. Second, we provide a nat-
ural and intuitive formulation of the problem based
on its representation in terms of graphs and their
coloring. Third, we identify an approach to tackle
the problem that translates the (otherwise naturally
recursive) control into a condition that can be veri-
fied simply on fragments without entailing recursive
evaluation. Fourth, we provide a representation of the
problem as a Constraint Satisfaction Problem, thus
enabling exploitation of existing off-the-shelf solvers
for its solution in a natural, efficient, and scalable way.

The remainder of this paper is organized as follows.
Section 2 summarizes the basic concepts of the data
fragmentation approach on which we build. Section 3
introduces data dependencies and illustrates the prob-
lem of improper information exposure due to them.
Section 4 provides a formulation of the fragmentation
problem based on an intuitive graphical representa-
tion and on graph coloring. Section 5 formally defines
improper exposures due to data dependencies and
the requirements that a fragmentation should satisfy
to ensure that data dependencies cannot be exploited
for violating the confidentiality protection offered by
fragmentation. Section 6 illustrates a translation of the
problem into a Constraint Satisfaction Problem and
presents our experimental results. Section 7 discusses
related work. Finally, Section 8 concludes the paper.

2 PRELIMINARY CONCEPTS

Consistently with other proposals (e.g., [3], [4], [5],
[6]), we consider a scenario where data undergoing
external release or storage are organized in a single
relation r, defined over relation schema R(a1, . . . , an).
In the following, when clear from the context, we use
R to denote either the relation schema R or the set
{a1, . . . , an} of attributes composing it. We assume
data in r to be subject to confidentiality and visibility
constraints.

Confidentiality constraints model sensitive at-
tributes or associations among attributes in R, and are
formally defined as follows [3].

Definition 2.1 (Confidentiality constraint): Let
R(a1, . . . , an) be a relation schema. A confidentiality
constraint c over R is a subset of {a1, . . . , an}.

This definition captures both singleton and associa-
tion constraints. A singleton constraint {a} states that
the values of attribute a are sensitive. A non-singleton
constraint {ai, . . . , aj} states that the association of
values of attributes ai, . . . , aj (i.e., their joint visibil-
ity) is sensitive. Figure 1(b) illustrates an example
of confidentiality constraints for relation PATIENTS in
Figure 1(a), which state that: Social Security Numbers
are sensitive (c1), the association between patients’
names and diseases is sensitive (c2), and the asso-
ciation between patients’ ZIP codes and insurance
premiums is sensitive (c3).

Visibility constraints are complementary to con-
fidentiality constraints and model data views that
should be made visible (for publication or plaintext
storage). Formally, visibility constraints are defined as
follows [5].

Definition 2.2 (Visibility constraint): Let
R(a1, . . . , an) be a relation schema. A visibility
constraint v over R is a monotonic Boolean formula
over attributes in R.

Visibility constraints are monotonic Boolean formulas
(i.e., they contain only AND and OR connectives)
since negations model requirements of non-visibility,
which are already captured by confidentiality con-
straints. For simplicity and without loss of generality,
in the following we assume visibility constraints to
be expressed in disjunctive normal form. Figure 1(c)
illustrates an example of visibility constraints for re-
lation PATIENTS in Figure 1(a). Intuitively, a visibility
constraint requires the inclusion or the joint inclusion
of attributes within a single fragment. More pre-
cisely, visibility constraint v=a is satisfied iff attribute
a belongs to a fragment (e.g., v4 requires attribute
Insurance to belong to a fragment). Visibility con-
straint v=ai∧ . . .∧aj is satisfied iff attributes ai, . . . , aj
belong to the same fragment (e.g., v3 requires at-
tributes Treatment and Premium to appear in the
same fragment). Visibility constraint v=vi∨ . . .∨vj is
satisfied iff at least one among vi, . . . , vj is satisfied
by a fragment (e.g., v1 requires the existence of a
fragment that contains either attribute Name or both
attributes Birth and ZIP).

Confidentiality and visibility constraints are en-
forced by vertically fragmenting relation R (e.g., [3],
[4], [5], [6]). A fragment F of a relation R is a subset
of the attributes in R. Formally, a fragmentation is
defined as follows.

Definition 2.3 (Fragmentation): Let R(a1, . . . , an) be a
relation schema. A fragmentation F of R is a set
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PATIENTS

SSN Name Birth ZIP Job Insurance Premium Disease Treatment

123-45-6789 Andrew 56/12/07 94101 miner industry 100 silicosis bronchodilators
234-56-7654 Bob 79/03/01 94123 miner industry 100 silicosis bronchodilators
345-67-8123 Carol 51/11/11 95173 lawyer law 500 CVD collyrium
456-78-9876 David 67/05/09 96234 secretary law 100 CVD collyrium
567-89-0534 Erin 80/11/12 94143 doctor medical 500 ARS stem cell transplant
678-90-1234 Fred 60/07/11 94123 secretary medical 200 stroke nitroglycerin
789-01-2345 Greg 50/02/25 94145 carpenter industry 200 broken leg leg cast
890-12-3456 Hal 45/12/31 94178 nurse medical 200 fever paracetamol
901-23-4567 Irene 80/10/07 96234 trainee law 100 dyspepsia antacid

(a)

C
c1 = {SSN}
c2 = {Name, Disease}
c3 = {ZIP, Premium}

(b)

V
v1 = Name ∨ (Birth ∧ ZIP)
v2 = (Disease ∧ Birth) ∨ (Disease ∧ Treatment)
v3 = Treatment ∧ Premium

v4 = Insurance

(c)

Fig. 1. An example of relation (a), confidentiality (b) and visibility constraints (c)

F1

Birth ZIP Disease

56/12/07 94101 silicosis
79/03/01 94123 silicosis
51/11/11 95173 CVD
67/05/09 96234 CVD
80/11/12 94143 ARS
60/07/11 94123 stroke
50/02/25 94145 broken leg
45/12/31 94178 fever
80/10/07 96234 dyspepsia

F2

Insurance Premium Treatment

industry 100 bronchodilators
industry 100 bronchodilators
law 500 collyrium
law 100 collyrium
medical 500 stem cell transplant
medical 200 nitroglycerin
industry 200 leg cast
medical 200 paracetamol
law 100 antacid

Fig. 2. An example of correct fragmentation of relation
PATIENTS in Figure 1(a) w.r.t. the confidentiality and
visibility constraints in Figures 1(b)-(c)

{F1, . . . , Fl} of fragments, where each fragment Fi,
i = 1, . . . , l, is a subset of {a1, . . . , an}.

Given a fragment F in F , the corresponding frag-
ment instance is the set of tuples in the original rela-
tion r projected over the attributes in F, maintaining
possible duplicate tuples. In the following, we use the
term fragment to also refer to a fragment instance,
when clear from the context.

A fragmentation is correct iff: 1) no confidentiality
constraint is violated by its fragments, 2) every visi-
bility constraint is satisfied by at least one of its frag-
ments, and 3) fragments are disjoint (to avoid frag-
mentation to be “un-done” by joining fragments and
hence possibly violating confidentiality constraints).
These conditions are formally captured by the defini-
tion below.

Definition 2.4 (Correct fragmentation): Let
R(a1, . . . , an) be a relation schema, C and V be
a set of confidentiality constraints and visibility
constraints, respectively, over R. A fragmentation F
of R is correct with respect to C and V iff:

1) ∀c∈C, ∀F∈F : c %⊆F (confidentiality);
2) ∀v∈V, ∃F∈F : F satisfies v (visibility);
3) ∀Fi,Fj∈F , i %= j: Fi∩Fj=∅ (unlinkability).

Figure 2 illustrates an example of a correct frag-
mentation of relation PATIENTS in Figure 1(a) with
respect to the confidentiality and visibility constraints
in Figures 1(b)-(c).

Consistently with previous proposals, we consider
only fragmentations that are minimal. A fragmentation
is minimal iff merging any two of its fragments would
violate at least one confidentiality constraint. Mini-
mality ensures that data are not unnecessarily frag-

mented (as excessive fragmentation can decrease data
utility/performance). Also, we do not impose any
condition on the presence (or absence) of attributes
whose inclusion in the fragmentation is irrelevant
for the satisfaction of the visibility constraints (e.g.,
attribute Job in Figure 1), leaving our modeling as
general as the original proposals [5], [7]. We only
note that the presence of such attributes can be forced
by simply considering a default visibility constraint
v=a for each attribute a∈R that does not appear in a
singleton confidentiality constraint.

3 PROBLEM DEFINITION

Fragmentation enforces protection of sensitive at-
tributes and/or associations by ensuring that the in-
volved attributes do not appear together in a fragment
and that fragments do not have attributes in common
(so to ensure their unlinkability). However, such a
protection guarantee is based on an implicit assump-
tion that attributes are independent and therefore: i)
attributes not appearing in any fragment are assumed
to remain confidential, and ii) absence of common
attributes (i.e., satisfaction of the unlinkability condi-
tion in Definition 2.4) prevents the correlation among
tuples of different fragments.

Unfortunately, such assumptions do not always
hold, as in some cases there might be relationships
among attributes and the value of an attribute might
depend on the values of other attributes. In this case,
the values of the former might be inferrable (with
precision and full confidence or some uncertainty)
from the values of the latter. For instance, the treat-
ment given to a patient can convey information on the
disease being cured. In this case, we say that attribute
Disease “depends on” attribute Treatment. When
data dependencies are present, even if fragments do
not explicitly violate confidentiality constraints, they
might do so indirectly (as an attribute not belonging
to a fragment can be inferred from other attributes
in it, thus exposing the attribute or the associations
in which it is involved). Also, while fragments might
be apparently unlinkable, a correlation among their
tuples can be reconstructed based on attributes that
can be inferred.

Before illustrating the problem of information leak-
age they cause, we formally define data dependencies.
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D
d1 = {Birth, ZIP}!Name

d2 = {Treatment}!Disease

d3 = {Disease}!Job

d4 = {Insurance, Premium}!Job

Fig. 3. An example of data dependencies over relation
PATIENTS in Figure 1(a)

In line with what is assumed for confidentiality and
visibility constraints, while noting that in some cases
a dependency might hold only for specific values, we
consider dependencies at the schema level. Though
losing a little in expressiveness, this schema-level
treatment nicely fits with the modeling we build upon
(where all constraints are specified at the schema
level) and provides the great advantage of compact
representation and clear modeling for the data admin-
istrator. Data dependencies are defined as follows.

Definition 3.1 (Data dependency): Let R(a1, . . . , an)
be a relation schema. A data dependency d over R is
an expression of the form X!Y , with X,Y ⊂ R and
X ∩ Y = ∅.

A data dependency X!Y models the fact that the
values of attributes in Y depend on the values of
attributes in X . In other words, for each tuple t in
r, t[X ] conveys information on t[Y ] (determining its
exact value or reducing the uncertainty on it). Note
that a data dependency X!Y , with Y ={ai, . . . , aj},
can be written as a set {X!ai, . . . , X!aj} of data
dependencies. In the following, we then assume that
the right-hand side of a data dependency always con-
tains a single attribute. Also, given a data dependency
d=X!a, we use the terms premise and consequence of
d (denoted d.premise and d.consequence) respectively,
to refer to set X of attributes and to attribute a,
respectively. Figure 3 illustrates an example of data
dependencies over relation PATIENTS in Figure 1(a).
These dependencies state that: the date of birth and
the ZIP code of a patient can disclose her name (d1),
capturing the fact that pair (Birth,ZIP) can work as a
quasi-identifier [8]; the treatment with which a patient
is cured can leak information on her disease (d2); the
disease suffered by a patient can leak information
on her job (d3); and the combined knowledge of
the insurance and the corresponding premium of a
patient can leak information on her job (d4).

In general, data dependencies are not symmetric,
meaning that it might be that there is a data de-
pendency ai!aj , while the vice-versa (aj!ai) does
not hold. For instance, while the name of a patient
may determine her sex, the vice-versa is not true.
When dependencies are symmetric, both directions
(e.g., ai!aj and aj!ai) should be explicitly specified.

Let F be a (correct) fragmentation of relation R and
D be a set of data dependencies among the attributes
of the same relation. We can identify three basic
kinds of confidentiality violations that can be caused
by data dependencies, as illustrated in the following

(examples refer to the relation and constraints in
Figure 1, the data dependencies in Figure 3, and the
fragmentation in Figure 2, which is also reported in
Figure 4(a) for the reader’s convenience).

• A sensitive attribute or association is exposed by
the attributes in a fragment. Formally, ∃c∈C, d∈D,
F∈F : d.premise⊆F, c⊆F∪d.consequence. For in-
stance, as visible in Figure 4(b), sensitive as-
sociation c2={Name, Disease} is exposed by
fragment F1 because of dependency d1={Birth,
ZIP}!Name.

• An attribute appearing in a fragment is also deriv-
able from (as it depends on) some attributes in
another fragment, thus enabling linkability among
such fragments (which, being the fragmentation
minimal, brings to the violation of at least one
confidentiality constraint [5]). Formally, ∃d∈D,
Fi,Fj∈F , i %= j: d.premise⊆Fi, d.consequence∈Fj .
For instance, because of data dependency
d2=Treatment!Disease, fragment F2 conveys
information about attribute Disease, explic-
itly represented in F1 (see Figure 4(c)). Hence,
the tuples in the two fragments can be corre-
lated violating confidentiality constraint c3={ZIP,
Premium}.

• An attribute is derivable (independently) from at-
tributes appearing in different fragments, thus en-
abling linkability among these fragments. Formally,
∃di,dj∈D, i %= j, Fk,Fl∈F , k %= l: di.premise⊆Fk,
dj .premise⊆Fl, di.consequence=dj .consequence. For
instance, dependencies d3={Disease}!Job and
d4={Insurance, Premium}!Job cause the im-
plicit representation of attribute Job in both frag-
ments F1 and F2, thus enabling their linkability
(see Figure 4(d)).

Such cases are only simple examples and more
complex violations can be caused by the cascade effect
of the exploitation of data dependencies in chains. For
instance, dependency d2={Treatment}!Disease
causes the implicit representation of attribute
Disease in fragment F2. In turn, attribute Disease

permits to exploit d3={Disease}!Job, which
causes the implicit representation also of attribute
Job in the same fragment.

Our goal is to compute a fragmentation so that data
dependencies cannot be exploited for violating the
confidentiality constraints. This requires the design
of a new fragmentation approach that takes data
dependencies into account. One might think that the
problem could be easily tackled simply by extending
confidentiality constraints to consider possible infer-
ences caused by data dependencies and rewriting
constraints such that, for every dependency X!a
and every constraint c such that a∈c, a new con-
straint (c\{a}∪X) is added. For instance, constraint
{Name, Treatment} should be added to the set
of confidentiality constraints in Figure 1(b) to take
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56/12/07
79/03/01
51/11/11
67/05/09
80/11/12
60/07/11
50/02/25
45/12/31

94101
94123
95173
96234
94143
94123
94145
94178

silicosis
silicosis
CVD
CVD
ARS
stroke
broken leg
fever

industry
industry
law
law
medical
medical
industry
medical

100
100
500
100
500
200
200
200

bronchodilators
bronchodilators
collyrium
collyrium
stem cells transplant
nitroglycerin
leg cast
paracetamol

Birth ZIP Disease Insurance Premium Treatment

F2F1

80/10/07 96234 dyspepsia law 100 antacid

silicosis
silicosis
CVD
CVD
ARS
stroke
broken leg
fever

Disease

dyspepsia

F1 F2

56/12/07
79/03/01
51/11/11
67/05/09
80/11/12
60/07/11
50/02/25
45/12/31

94101
94123
95173
96234
94143
94123
94145
94178

silicosis
silicosis
CVD
CVD
ARS
stroke
broken leg
fever

industry
industry
law
law
medical
medical
industry
medical

100
100
500
100
500
200
200
200

bronchodilators
bronchodilators
collyrium
collyrium
stem cells transplant
nitroglycerin
leg cast
paracetamol

Birth ZIP Disease Insurance Premium Treatment

80/10/07 96234 dyspepsia law 100 antacid

Name

Andrew
Bob
Carol
David
Erin
Fred
Greg
Hal
Irene

Job

miner
miner
lawyer
secretary

carpenter
nurse
trainee

secretary
doctor

(a) (b)

silicosis
silicosis
CVD
CVD
ARS
stroke
broken leg
fever

Disease

F2F1

56/12/07
79/03/01
51/11/11
67/05/09
80/11/12
60/07/11
50/02/25
45/12/31

94101
94123
95173
96234
94143
94123
94145
94178

silicosis
silicosis
CVD
CVD
ARS
stroke
broken leg
fever

industry
industry
law
law
medical
medical
industry
medical

100
100
500
100
500
200
200
200

bronchodilators
bronchodilators
collyrium
collyrium
stem cells transplant
nitroglycerin
leg cast
paracetamol

Birth ZIP Disease Insurance Premium Treatment

80/10/07 96234 dyspepsia law 100 antacid dyspepsia

Job

miner
miner
lawyer
secretary
doctor
secretary
carpenter
nurse

Job

miner
miner
lawyer
secretary

carpenter
nurse

F1 F2

56/12/07
79/03/01
51/11/11
67/05/09
80/11/12
60/07/11
50/02/25
45/12/31

94101
94123
95173
96234
94143
94123
94145
94178

silicosis
silicosis
CVD
CVD
ARS
stroke
broken leg
fever

industry
industry
law
law
medical
medical
industry
medical

100
100
500
100
500
200
200
200

bronchodilators
bronchodilators
collyrium
collyrium
stem cells transplant
nitroglycerin
leg cast
paracetamol

Birth ZIP Disease Insurance Premium Treatment

80/10/07 96234 dyspepsia law 100 antacidtrainee trainee

secretary
doctor

(c) (d)

Fig. 4. Information exposure by data dependencies

into account risks of violation of constraint {Name,
Disease}, based on inferences that exploit depen-
dency {Treatment}!Disease. Unfortunately, the
problem is not so simple. As a matter of fact, such
a simple extension of the constraints would permit
only to capture violations due to exposure of confi-
dential attributes or associations but not of possible
linking due to attributes inferrable from one or more
fragments (Figures 4(c)-(d)).

Connected with this observation, we also note that
our consideration of data dependencies not only sim-
plifies the definition of the confidentiality constraints,
but also extends their expressive power, providing
stronger protection guarantees than the consideration
of constraints only. The simplification of the confiden-
tiality constraints comes from the fact that possible
derived confidentiality constraints do not need to be
explicitly stated but can be implicitly taken into ac-
count simply by defining dependencies. For instance,
in presence of possible quasi-identifiers and of asso-
ciation constraints between an individual’s identity
and some sensitive attributes, previous approaches
forced the specification of additional confidentiality
constraints involving the quasi-identifier and the sen-
sitive attributes. In our approach, such a burden is
removed, since it is sufficient to specify a dependency
between the quasi-identifier and the identity to au-
tomatically have the implicit additional constraints
taken into account. The stronger protection guarantees
come from the fact that data dependencies capture
possible leakages that could never be expressed with
confidentiality constraints alone (as it is the case of
improper information exposure in Figures 4(c)-(d)).

As a final remark, note that while data depen-
dencies may resemble functional dependencies, they
model a different concept. In fact, a functional depen-
dency of the form X → a states that the values of
the attributes in X uniquely determine the values of
attribute a. However, the knowledge of the values of
attributes in X does not necessarily imply that we can

infer the value of the corresponding attribute a. For
instance, a typical functional dependency is the one
existing between the primary key of a relation and
all the other attributes. The primary key can be, for
example, a tuple identifier from which no information
can be inferred. A data dependency X!a models
a more generic relationship between the values of
attributes in X and the values of attribute a stating
that the knowledge of the values of X can convey
information on the values of a. Of course, such a
relationship may hold with different precision and
confidence for different values.

4 PROBLEM FORMULATION AND MODELING

Data dependencies can cause exposure of informa-
tion not explicitly released but that can be inferred
exploiting dependencies directly (from the attributes
in one fragment) or indirectly (correlating apparently
unlinkable fragments). To reason about, and represent,
fragments and their satisfaction of the constraints,
even in presence of data dependencies, we adopt
a graphical representation of the problem. We first
model the problem without data dependencies and
then inject data dependencies in it, capturing infor-
mation leakage.

4.1 Constraint and fragmentation graph

We define a constraint and fragmentation graph as a
colored directed hypergraph where:

• every attribute in the original relation and ev-
ery (confidentiality or visibility) constraint cor-
responds to a node; to graphically distinguish
attribute nodes from constraint nodes, we denote
attribute nodes with circles and constraint nodes
with ovals;

• every confidentiality constraint c = {a1, . . . , an}
is translated into a hyperarc connecting nodes
a1, . . . , an to node c;
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(a) Constraint and fragmentation graph

(b) Colored fragments in the graph

(c) Propagation of the colors to the constraints

Fig. 5. A constraint and fragmentation graph

• every visibility constraint of the form v = a1 ∧
. . . ∧ an is translated into a hyperarc connecting
nodes a1, . . . , an to node v;

• every visibility constraint of the form v = v1∨. . .∨
vn (where each vj is a conjunction of attributes as
above) is translated into different hyperarcs, one
for each vj , j = 1, . . . , n, connecting nodes that
represent attributes in vj to node v.

Figure 5(a) illustrates such a graph for the prob-
lem in Figure 1, where, for simplicity, attributes are
denoted with their initial.

A fragmentation can be easily represented on our
graph by coloring its nodes. Each fragment is asso-
ciated with a color, which is then associated with
all the attributes belonging to the fragment (we use
a dotted line for attributes that remain “neutral”,
that is, with no color associated since they do not
belong to any fragment). Figure 5(b) represents the
fragmentation in Figure 2, where F1 is green (lighter
color in b/w printouts) and F2 is blue (darker color
in b/w printouts).

With the graph and the coloring above, satisfaction
of the constraints can be easily checked by propa-
gating colors through hyperarcs, where a color prop-
agates along a hyperarc if all its sources have it.
Figure 5(c) illustrates such a propagation: v1 is green
from B and Z, v2 is green from B and D, v3 is blue from
T and P, and v4 is blue from I. No color propagates
to confidentiality constraints.

Since fragments should satisfy constraints by en-
suring the visibility of attributes as demanded by
visibility constraints and the protection of sensitive
attributes/associations as demanded by confidential-
ity constraints, a fragmentation (meaning a coloring
of the attributes in the graph) is correct iff: 1) no node
representing a confidentiality constraint is colored, 2)
all the nodes representing visibility constraints have
at least one color, and 3) nodes representing attributes
have only one color. Note how they correspond to
the three conditions in Definition 2.4. It is easy to
see (Figure 5(c)) that the fragmentation in Figure 2
is correct.

4.2 Considering data dependencies

Data dependencies enable inference of some attributes
based on other attributes made visible by the frag-
ments (or themselves indirectly exposed via inference
from the fragments). Data dependencies can be easily
captured in our graphical representation as hyperarcs
connecting the attributes in the premise with the
attribute in the consequence: each data dependency
d={ai, . . . , aj}!a is translated into a dependency hy-
perarc connecting ai, . . . , aj to a. Figure 6(a) extends
the graph in Figure 5(b) with hyperarcs representing
the data dependencies in Figure 3.

Information leakage caused by data dependencies
can then be captured by the color propagation en-
abled by dependency hyperarcs similarly to what
done above for checking constraints. In this color
propagation, we need to take into account the fact that
visibility constraints require explicit presence of the
attributes in fragments, hence only colors originally
assigned to the attributes (not those propagated via
dependencies) should flow through hyperarcs corre-
sponding to visibility constraints. We then maintain
the original color assigned to a node (i.e., its fragment)
distinguishable from the colors propagated to it via
dependencies and represent propagated colors only
in the bottom semi-half of attribute nodes. The differ-
ent behavior of hyperarcs corresponding to visibility
constraints is nicely visible by having such hyperarcs
leaving from the top of the nodes (which maintain
only the original color). A further important aspect
to take into consideration is that, unlike propagation
of colors through hyperarcs to constraints (which do
not have any outgoing arc), propagation of colors to
attributes has a cascade effect, and the propagation of
a color to an attribute can fire further propagation.
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(a) Colored fragments in the graph with dependencies

(b) Color-coded inferences due to dependencies

(c) Propagation of the colors to the constraints

Fig. 6. A constraint and fragmentation graph with
dependencies

This recursive propagation reflects the fact that in-
ferred attributes can in turn enable further inferences.

Figure 6(b) illustrates the propagation of colors to
attributes enabled by dependency hyperarcs: N has a
derived green (from B and Z), D has a derived blu
from T, J has both a derived green from D and a
derived blue from P and I as well as from D (derived
from T through an indirect propagation). As said,
derived colors are represented in the bottom half of
attribute nodes. When more than one color (original
or derived) is associated with a node, we represent
the different colors with stripes.

Like before, propagation of colors from attributes to
constraints via the hyperarcs allows us to easily check
the satisfaction of the constraints. Clearly, injection of
dependencies cannot cause problems to visibility con-
straints (since data visibility can only be augmented
- indirectly - by dependencies). Dependencies can
instead cause information exposure compromising
confidentiality of sensitive attributes or associations.
Improper exposure caused by dependencies translates

into an indirect violation of the confidentiality or
of the unlinkability conditions in Definition 2.4. Of
course not all inferences due to dependencies create
problems. For instance, a dependency disclosing an
attribute that was not included in any fragment (as
not needed to satisfy visibility constraints) but that
is not involved in any confidentiality constraint does
not create any violation. Our colored graph allows us
to easily detect when dependencies compromise sen-
sitive information: a confidentiality constraint becom-
ing of a given color signals that the fragment with that
color indirectly violates the constraint (i.e., exposes
the attribute or association defined as sensitive by the
constraint); an attribute becoming multi-colored sig-
nals the fact that the attribute can be inferred from the
fragments of those colors hence enabling a correlation
between the tuples of the fragments, thus indirectly
violating the unlinkability condition. As an example,
Figure 6(c) shows that the fragmentation in Figure 2
indirectly: i) violates constraint c2, which becomes
green from N and D; and ii) violates unlinkability
enabling the correlation between the tuples of the
fragments via D, which is present in F1 (green) and
inferable from F2 (blue), and also via J, which is
inferable from both fragments.

5 CAPTURING EXPOSURE FROM DATA DE-
PENDENCIES

The propagation of colors described in the previous
section models the fact that attributes can be inferred,
that is, that they are indirectly exposed by fragments.
Intuitively, every time the premise of a dependency
is present in a fragment, the consequence is also
indirectly present in the fragment. The inference effect
on attributes from dependencies is captured by the
following definition.

Definition 5.1 (Fragment and dependency composition):
Let R(a1, . . . , an) be a relation schema, F be a
fragment of R, and d be a data dependency among
attributes in R. The composition of F with d is a set of
attributes

F⊗d =

{

F ∪ d.consequence, d.premise ⊆ F
F, otherwise

For instance, with reference to our example:
{B,Z,D} ⊗ {B,Z}!N = {B,Z,D,N},
{B,Z,D} ⊗ {D}!J = {B,Z,D,J},
{T,P,I} ⊗ {T}!D = {T,P,I,D},
{T,P,I} ⊗ {P,I}!J = {T,P,I,J}.
As already observed, indirect exposure of attributes
can clearly have a cascade effect as it can enable
new inferences (new color propagation in terms of
our graph). For instance, in our example, indirect
inclusion of D in the blue fragment (F2) causes also
exposure of J in the same fragment (i.e., propagation
of the blue color to it). (Note that J is exposed via
two inference paths, as it is already exposed in the
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blue fragment by the combination of P and I). Con-
sideration of such a cascade effect implies the need to
enable a further color derivation due to dependencies
every time a dependency has some effect (i.e, some
color is propagated), until a fixpoint is reached. In
other words, the consideration of all possible effects
of dependencies requires closing fragments with re-
spect to the fragment and dependency composition in
Definition 5.1, as captured by the following definition.

Definition 5.2 (Closure): Let R(a1, . . . , an) be a rela-
tion schema, F={F1, . . . , Fm} be a fragmentation of
R, and D be a set of data dependencies over R. The
closure of a fragment F∈F w.r.t. D, denoted F ∗, is a set
of attributes such that F⊆F ∗⊆R and ∀d∈D, F ∗⊗d=F ∗.
The closure of fragmentation F w.r.t. D, denoted F∗,
is the set {F ∗

1 , . . . , F
∗
m} of the closure of its fragments.

In terms of our graphical representation, the closure of
a fragment includes all the nodes that - after perform-
ing all possible direct and indirect color propagations
- include the color of the fragment. For instance, with
reference to our running example, F ∗

1 = {B, Z, D, N, J}
and F ∗

2 = {T, P, I, D, J}, as visible from Figure 6(b).
The closure of a fragmentation, by including all

information derivable from its fragments via de-
pendencies, permits to identify fragmentations that,
though correct according to the original definition
(Definition 2.4) cause improper information exposure
due to indirect violation of the confidentiality and/or
unlinkability conditions. In fact, such fragmentations
are trivially all those whose closure violate the con-
fidentiality and/or unlinkability conditions in Defi-
nition 2.4. We then extend the definition of correct
fragmentation as follows.

Definition 5.3 (Correct fragmentation – Extended):
Let R(a1, . . . , an) be a relation schema, C, V, and
D be a set of confidentiality constraints, visibility
constraints, and data dependencies, respectively, over
R. A fragmentation F of R is correct with respect to
C, V, and D iff:

1) ∀c∈C, ∀F∈F : c %⊆F ∗ (confidentiality);
2) ∀v∈V, ∃F∈F : F satisfies v (visibility);
3) ∀Fi,Fj∈F , i %= j: F ∗

i ∩F
∗
j =∅ (unlinkability);

where F ∗ is the closure of F w.r.t. D, for each F in F
(Definition 5.2)

Figure 7 illustrates an example of fragmentation that
satisfies Definition 5.3 and Figure 8 illustrates the cor-
responding constraint and fragmentation graph after
the color propagation due to data dependencies.

While natural and intuitive, the extended definition
of correctness implies the need of controlling the
satisfaction of conditions on the fragments’ closure
(instead of the fragments themselves) hence requiring
the recursive computation of such a closure.

Our approach to avoid paying such a recursive
computation is based on the consideration of frag-
ments that are already closed with respect to the

F1

Name Insurance

Andrew industry
Bob industry
Carol law
David law
Erin medical
Fred medical
Greg industry
Hal medical
Irene law

F2

Premium Disease Treatment

100 silicosis bronchodilators
100 silicosis bronchodilators
500 CVD collyrium
100 CVD collyrium
500 ARS stem cell transplant
200 stroke nitroglycerin
200 broken leg leg cast
200 fever paracetamol
100 dyspepsia antacid

Fig. 7. An example of (extended) correct fragmentation
of relation PATIENTS in Figure 1(a) w.r.t. the confiden-
tiality constraints in Figure 1(b), the visibility constraints
in Figure 1(c), and the data dependencies in Figure 3

Fig. 8. Constraint and fragmentation graph with depen-
dencies of the fragmentation in Figure 7

composition with dependencies, and on a result that
allows us to check whether a fragmentation is closed
simply looking at its fragments and the dependencies,
without actually computing such a closure.

We start then by introducing closed fragmentations
and proving that such a property can be verified sim-
ply on the fragmentation and the data dependencies.

Definition 5.4 (Closed fragmentation): Let
R(a1, . . . , an) be a relation schema and D be a
set of data dependencies over R. A fragmentation F
of R is closed with respect to D iff F=F∗.

A straightforward approach for computing a closed
fragmentation consists in starting from an arbitrary
fragmentation and computing its closure, considering
then the latter as a solution. Clearly, this would imply
the execution of the recursive dependency composi-
tion (i.e., color propagation) illustrated above, which
we actually aim at avoiding. Our approach to avoid
such a computation is based on the observation that
the composition (i.e., color propagation) of a depen-
dency d with a fragment F has some effects on the
fragment iff the following two conditions hold: 1)
the fragment contains the premise of the dependency
(i.e., all nodes in d.premise have color F); and 2) the
fragment does not contain the consequence of the
dependency (i.e., d.consequence does not have color
F, since otherwise it is ineffective). This observation
allows us to translate the control on the fact that a
fragmentation is closed into a condition that does not
require recursive evaluation, as stated by the follow-
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F1

Name Insurance

Andrewindustry
Bob industry
Carol law
David law
Erin medical
Fred medical
Greg industry
Hal medical
Irene law

F2

Job Premium Disease Treatment

miner 100 silicosis bronchodilators
miner 100 silicosis bronchodilators
lawyer 500 CVD collyrium
secretary 100 CVD collyrium
doctor 500 ARS stem cell transplant
secretary 200 stroke nitroglycerin
carpenter 200 broken leg leg cast
nurse 200 fever paracetamol
trainee 100 dyspepsia antacid

Fig. 9. An example of closed and correct fragmentation
of relation PATIENTS in Figure 1(a) w.r.t. the confiden-
tiality constraints in Figure 1(b), the visibility constraints
in Figure 1(c), and the data dependencies in Figure 3

ing theorem. (The proof of the theorem is provided as
supplemental material.)

Theorem 5.5: Given a relation schema R(a1, . . . , an),
a fragment F of R, and a set D of data dependencies
over R, the following implication holds:
F=F ∗ ⇐⇒ ∀d∈D: d.premise%⊆F or d.premise ∪
d.consequence ⊆ F.

According to this theorem, the recursive process
of computing the closure of a fragmentation F to
check its correctness (which is necessary to take into
consideration the cascade effect caused by data de-
pendencies) can be translated into an equivalent static
set of conditions that a closed and correct fragmen-
tation must satisfy. It is straightforward to see that
a closed fragmentation F that satisfies Definition 2.4
also satisfies Definition 5.3. In fact, when F=F∗ the
two definitions are equivalent.

The only tricky question that remains open is
whether our consideration of closed fragmentations
might prevent us from finding a solution to the
problem (i.e., a fragmentation that satisfies Defini-
tion 5.3) when such a solution would instead exist
simply because there is no solution which is closed.
Luckily, such a case cannot exist and while indeed
some fragmentations satisfying Definition 5.3 might
be not closed, their closure must be also a solution,
as formalized by the following theorem. (The proof
of the theorem is provided as supplemental material.)

Theorem 5.6: Given a relation schema R(a1, . . . , an),
and sets C, V, and D of confidentiality constraints, visi-
bility constraints, and data dependencies, respectively,
over R the following implication holds:
∃F satisfying Definition 5.3 ⇐⇒ ∃F ′ satisfying Defi-
nitions 2.4 and 5.4.

As a last remark, we note that our consideration
of closed fragmentations may cause the inclusion in
the solution of attributes whose presence or absence
is irrelevant for the satisfaction of the visibility con-
straints. For instance, with reference to our running
example, a closed fragmentation would include at-
tribute Job (Figure 9), while the same fragmentation
without such an attribute would also be a (non closed)
solution to the problem (Figure 7). While noting that

such a presence is indeed not a problem (the original
proposal did not put specific requirements in this
respect and treated solutions with or without such
attributes as equally good), we also note that they
could be removed from the solution with a post-
processing scanning data dependencies and checking
if their consequence can be removed from the frag-
ment in which it appears (if any) without affecting
the satisfaction of the visibility constraints.

The observations and results above, and the intu-
ition of considering closed fragmentations, simplify
our problem removing the need for a recursive eval-
uation. Our goal is then to compute a closed fragmen-
tation that satisfies Definition 2.4 (equivalently, Defini-
tion 5.3). Also, to avoid excessive fragmentation, such
solution should be minimal (as already commented in
Section 2). We note that the minimality requirement
(i.e., merging any pair of fragments violates at least
one constraint) was imposed in previous approaches
as an approximation of a minimum requirement (i.e.,
minimum number of fragments) to simplify the prob-
lem and to approach it heuristically. Tackling the
problem with a tool that efficiently solves the well
known constraint satisfaction problem (to which our
problem easily reduces, as illustrated in the following
section), we avoid imposing such a simplification to
the problem and require our solution to be minimum
(i.e., be composed of the smallest number of frag-
ments). It is trivial to see that a minimum solution
is also minimal, while the vice-versa is not true [4].
In fact, a minimum fragmentation F is also minimal,
since any fragmentation F ′ obtained by merging two
fragments in F has a smaller number of fragments
than F and therefore violates at least one constraint,
else F would not be minimum. By contrast, given a
minimal fragmentation F composed of n fragments,
while we are guaranteed that no fragmentation F ′

obtained by F combining any two fragments satisfies
the constraints, it could be that there is a fragmenta-
tion F ′′ satisfying the constraints with a smaller num-
ber of fragments. Consider, as an example, relation
PATIENTS in Figure 1(a), the confidentiality constraints
in Figure 1(b) and an additional constraint c4={N,Z},
the visibility constraints in Figure 1(c), and the data
dependencies in Figure 3. Fragmentation F={{N},
{J,P,D,T}, {Z,I}} is minimal, but it is not minimum. In
fact, fragmentation F ′={{N,I}, {J,P,D,T}} in Figure 9
is correct and composed of less fragments (2) than F .

Our problem of finding a Minimum Closed and
Correct Fragmentation (MCCF) is then formally de-
fined as follows.

Problem 5.7 (MCCF): Let R(a1, . . . , an) be a relation
schema, C, V, and D be a set of confidentiality con-
straints, visibility constraints, and data dependencies,
respectively, over R. Determine a closed fragmentation
(Definition 5.4) F over R that satisfies Definition 2.4
such that !F ′ satisfying the same definition and such



10

that |F ′| < |F |.

For instance, with reference to our running exam-
ple, Figure 9 represents a minimum closed and correct
fragmentation of relation PATIENTS with respect to the
constraints in Figure 1 and the data dependencies in
Figure 3.

In the statement of the problem we do not impose
requirements on the closure of F ′, since it is irrelevant
w.r.t. the problem (a fragmentation and its closure
always have the same number of fragments).

The MCCF problem is NP-hard since the MIN-
FRAG problem introduced in [4] (i.e., the problem of
computing a minimum fragmentation with respect to
Definition 2.4) is NP-hard and it can be reduced to
the MCCF problem in polynomial time by simply
assuming D=∅. In the next section, we describe how
to solve the MCCF problem.

6 COMPUTING A MINIMUM FRAGMENTATION

To solve the MCCF problem we represent it as a Con-
straint Satisfaction Problem (CSP), which can then be
conveniently solved with off-the-shelf CSP solvers [9],
providing efficiency and scalability.

The CSP is formulated as follows: given a triple
〈X,D,C〉, with X a set of variables, D the domain
of variables in X , and C a set of constraints over X ,
find an assignment w : X → D that satisfies all the
constraints in C. A solution of the CSP is a function
w : X → D that assigns a value in D to each variable
in X , in such a way that all the constraints in C are
satisfied. Our translation naturally interprets:

• the attributes {a1, . . . , an} in the schema of the
original relation R as the set X of variables;

• the set {0, . . . ,m} of integers, with m the number
of fragments in a fragmentation F of R, as the
domain D of the variables in X ;

• the conditions that a closed and correct fragmen-
tation must satisfy (Definitions 2.4 and 5.4) as the
set C of constraints.

A solution to the problem so defined corresponds
to an allocation of attributes to fragments, where a∈Fi

iff w(a) = i and i %= 0. Value 0 is assigned to attributes
that do not belong to any fragment. In terms of
our graphical modeling, w corresponds to a coloring
function over our constraint and fragmentation graph,
where D is the domain of colors (with 0 representing
the neutral color) that can be associated with the
nodes representing attributes in R. An assignment
function is a minimum fragmentation iff it employs
the minimum possible number of colors.

We now show how the confidentiality, visibility, and
unlinkability conditions (Definition 2.4), as well as
our additional requirement of considering as solutions
only fragmentations that are closed (Definition 5.4) are
translated into equivalent CSP constraints that the as-
signment function w must satisfy. In the following, we
refer our examples to relation PATIENTS in Figure 1(a)

and, for clarity, the name of the variables representing
attributes corresponds to the attributes’ initials.

• Confidentiality (Definition 2.4). A confidentiality
constraint c={ai, . . . , aj} is satisfied if it is not the
case that all the attributes in it are assigned to a
same fragment. In terms of the CSP assignment
function, we express this condition by requiring
that either there exists at least a pair of attributes
with different values or (if they are all equal) that
their value is 0. In this latter case, being all the
attributes equal, it is sufficient to evaluate that
only one attribute (the first one for simplicity) is
equal to 0. Formally, each c∈C is translated into
the following constraint:

∨

al,ak∈c,l &=k

(al %= ak) ∨ (ai = 0)

• Visibility (Definition 2.4). A visibility constraint
v=ai∧ . . .∧aj is satisfied if all the attributes in v
are released (i.e., ∀a∈v, a %=0) and stored in the
same fragment (i.e., ∀al,ak∈v, al = ak). Formally,
v is translated into condition (ai=. . . =aj∧ai %=0).
Note that it is sufficient to require that one (any)
attribute in v (the first one for simplicity) is
different from 0 to guarantee the release of all
the attributes in v as they must all have the same
value.
A visibility constraint v=v1∨ . . .∨vn (where
each vi in v is a conjunction of attributes as
above) is satisfied if at least one vi in v is
satisfied. Formally, each v∈V is translated into
the following constraint:

∨

vk∈v

(ai = . . . = aj ∧ ai %= 0)

with vk=ai∧ . . .∧aj .
• Unlinkability (Definition 2.4). The unlinkability

condition is automatically guaranteed by the fact
that each variable can be assigned one value
only in D, meaning that an attribute cannot be
included in more than one fragment. Hence no
further condition needs to be imposed.

• Closure (Definition 5.4). A data dependency
d cannot be exploited for inference when
either d.premise is broken by fragmentation, or
d.premise and d.consequence are stored in the same
fragment. The premise of a dependency d is
broken if, similarly to confidentiality constraints,
it is not the case that all the attributes in it are
assigned to a same fragment. In terms of the
CSP, the premise is broken if either there are at
least two attributes with different values or, if
they are all equal, their value is 0 (i.e., at least
one of them is 0). Analogously, d.premise and
d.consequence are stored in the same fragment if
all the attributes in d.premise and d.consequence
have the same value. Formally, each d∈D, with
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Input CSP translation

CONFIDENTIALITY

c1 = {SSN} S=0
c2 = {Name, Disease} (N !=D) ∨ (N=0)
c3 = {ZIP, Premium} (Z !=P) ∨ (Z=0)

VISIBILITY

v1 = Name ∨ (Birth ∧ ZIP) (N !=0) ∨ ((B=Z) ∧ (B !=0))
v2 = (Disease ∧ Birth) ∨ (Disease ∧ Treatment) ((D=B) ∧ (D !=0)) ∨ ((D=T) ∧ (D !=0))
v3 = Treatment ∧ Premium (T=P) ∧ (T !=0)
v4 = Insurance I !=0
d1 = (Birth, ZIP) ! Name (B !=Z) ∨ (B=0) ∨ ((B=Z) ∧ (Z=N))

DATA d2 = Treatment ! Disease (T=0) ∨ (T=D)
DEPENDENCIES d3 = Disease ! Job (D=0) ∨ (D=J)

d4 = (Insurance, Premium) ! Job (I !=P) ∨ (I=0) ∨ ((I=P) ∧ (P=J))

Fig. 10. Constraints and data dependencies (Input) and their CSP formulation (CSP translation) that a closed
and correct fragmentation of relation PATIENTS must satisfy

d.premise={ai, . . . , aj} and d.consequence=ax , is
translated into the following constraint:

∨

al,ak∈d.premise,l &=k

((al %= ak) ∨ (ai = 0))∨

(ai = . . . = aj = ax)

Figure 10 illustrates the CSP constraints modeling
our running example, reporting the CSP translation
of the constraints in Figure 1 and the dependencies in
Figure 3 over relation PATIENTS.

To compute a minimum solution to the problem,
we formulate the CSP instance corresponding to our
fragmentation problem illustrated above in terms of
a Constraint Logic Program (CLP) [10], and use the
well-known SWI Prolog interpreter enriched with
the CLP(fd) Prolog library [11]. We first check if
a solution to the problem does exist. Such a check
is based simply on the following observation. Let
M be the minimum among: i) the number of at-
tributes in R that appear in a visibility constraint; ii)
the number of confidentiality constraints in C; and
iii) the number of visibility constraints in V. Any
fragmentation composed of more than M fragments
cannot be a minimum solution [5]. Hence, if there is
no correct fragmentation with at most M fragments
(Definition 5.3), there is no solution to the problem.
We run the CLP solver with domain D={0, 1, . . . ,M}.
If no solution is found, the process is stopped since
the constraints are in conflict. Otherwise, we proceed
to compute a minimum fragmentation by iteratively
evaluating the CLP solver over different instances of
the problem, with domain D={0, 1, . . . ,m}, starting
with m = 1 (i.e., a fragmentation with one fragment)
and, if no solution is found, increase m by 1 at each
iteration. We terminate the process when a solution
- clearly one composed of the minimum number of
fragments - is found (when m = M in the worst
case). For instance, with reference to our running
example, M=min{7, 3, 4}=3, since 7 attributes appear
in visibility constraints, C includes 3 confidentiality
constraints, and V includes 4 visibility constraints.
The CLP solver is first invoked with m = M and
returns an assignment, showing that a solution exists.
Hence, the iterative process is started invoking the

CLP solver with m=1, which returns false. Then, the
solver is called with m=2 and returns assignment
S=B=Z=0, N=I=1, and D=T=J=P=2, corresponding to
the minimum fragmentation in Figure 9. Note that,
since the translation into CSP constraints of the con-
ditions that should be satisfied by a closed and correct
fragmentation is independent from the number of
fragments in a fragmentation, constraints in C and
variables in X do not need to be updated in any way
when m changes.

We implemented a prototype written in Java and
run several experiments on a server with two CPU
Intel(R) Xeon(R) E5504 2.00GHz, 12GB RAM, one
240GB SSD disk, and Ubuntu 12.04 64bit operating
system with Unity interface, Linux Kernel 3.2.0-56-
generic. Our prototype operates in three steps. The
first step randomly generates an instance of the Min-
imum Closed and Correct Fragmentation problem
(Problem 5.7). Given a relational schema composed
of n attributes, it randomly generates a set of non-
singleton (i.e., non-trivial) confidentiality constraints,
a set of visibility constraints, and a set of data depen-
dencies. The second step realizes the translation of
the MCCF instance generated by the first step into an
equivalent instance of the CLP, according to the syntax
of SWI Prolog interpreter and the CLP(fd) Prolog
library, as illustrated above. The third step invokes
the services of the CLP solver to compute a solution
to the instance of the CLP automatically built by the
second step, if such a solution exists.

To evaluate the performance and scalability of
our proposal, and the impact of confidentiality con-
straints, visibility constraints, and data dependencies
in the evaluation, we have tested our prototype in
different configurations. We considered a large variety
of configurations, randomly generated varying the
number n of attributes in the schema of relation
R from 10 to 2000. For a relation schema with n
attributes, we considered: n/4, n/8, n/16 confidential-
ity constraints; n/8, n/16, n/32 visibility constraints;
and n/10, n/20, n/40, 0 data dependencies. Each
confidentiality constraint is composed of a number
of attributes ranging between 2 and 10, while each
visibility constraint involves between 1 and 5 at-
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Fig. 11. Computational time varying the number of confidentiality constraints (a), visibility constraints (b), and
data dependencies (c)

tributes in R. Data dependencies are characterized
by premises including between 1 and 8 attributes,
and consequences including one attribute (as noted in
Section 3, consequences with more than one attribute
can be simply expressed as different dependencies).

In Figure 11, we report the results (obtained as
the average over 10 runs) of different configurations
produced considering a base of n/4 confidentiality
constraints, n/8 visibility constraints, and n/10 data
dependencies, and then keeping two of the dimen-
sions fixed at the base while varying the third one.
In particular, we have: i) fixed visibility constraints at
n/8 and data dependencies at n/10, varied confiden-
tiality constraints at n/4, n/8, and n/16 (Figure 11(a));
ii) fixed confidentiality constraints at n/4 and data
dependencies at n/10, varied visibility constraints at
n/8, n/16, and n/32 (Figure 11(b)); and iii) fixed confi-
dentiality constraints at n/4 and visibility constraints
at n/8, varied data dependencies at n/10, n/20, n/40,
and 0 (Figure 11(c)). As visible from the figure, the
computational time linearly grows with the number of
attributes in the relation but it remains negligible for
small configurations (less than one second for configu-
rations with up to 400 attributes independently from
the number of constraints and dependencies). Even
considering larger configurations, the time necessary
to our prototype to compute a solution to our frag-
mentation problem (or detect that no solution exists)
remains in the order of a few seconds: less than 5
seconds for configurations with 2000 attributes, 500
confidentiality constraints, 250 visibility constraints,
and 200 data dependencies, which are probably hard
to find in real-world scenarios. Figure 11 also shows
that the time necessary to compute a minimum frag-
mentation (if such a fragmentation exists) grows with
the number of confidentiality constraints, visibility
constraints, and data dependencies. Data dependen-
cies, however, have a limited impact on the com-
putational time with respect to confidentiality and
visibility constraints (see Figure 11(c) reporting also
the computational time of configurations with no
data dependencies). In summary, the computational
time obtained in our experiments, which consider

configurations much more complex than those that
can be expected to be found in practice, clearly proves
the efficiency and scalability of our approach.

7 RELATED WORK

The growing interest of the research community on
the emerging data outsourcing and cloud comput-
ing paradigms is testified by the huge amount of
work addressing different security and privacy con-
cerns including access control, data protection, and
techniques for efficiently querying encrypted data
(e.g., [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28]). With re-
spect to the problem of protecting data confidential-
ity, which is the main goal of our work, the first
proposals were based on the implicit assumption
that all outsourced data are equally sensitive and
therefore are protected through an encryption layer
(e.g., [29], [30]). Since confidentiality demands that
data decryption can be possible only at the user
side, solutions have been also developed to enable
external servers to execute queries on encrypted data
(e.g., [16], [17]). Such solutions consist in defining
indexes that the server storing the data can use to
respond to specific queries. The main problem of
these indexes is that they make query execution more
expensive. To improve query execution efficiency, the
research community has then proposed the use of
fragmentation (possibly combined with encryption)
as an alternative technique to protect sensitive data
and associations among them (e.g., [3], [4], [6], [31]).
In these approaches, the sensitive associations that
need to be protected are modeled through a set
of confidentiality constraints representing sets of at-
tributes that cannot be jointly released. The sensitive
associations are then protected by storing the data
in different fragments that cannot be joined and by
possibly encrypting some attributes. Following the
fragmentation approach, some proposals put forward
the idea of protecting sensitive associations while
ensuring the visibility of specific data views (e.g., [5],
[32]). These fragmentation-based proposals, although
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interesting and effective, assume that no dependencies
exist among data, thus being vulnerable to possible
indirect information leakage. Recent solutions have
considered the inference problem in a fragmenta-
tion scenario characterized by the presence of data
dependencies (e.g., [33], [34]). However, these pro-
posals consider fragmentations with two fragments
only (stored at two non-communicating servers or
one at the data owner side and the other one at an
external server), and rely on a purely logical model
for the representation of confidentiality constraints
and inferences. Our proposal assumes an arbitrary
number of fragments (which could even be stored at
the same server), considers also visibility constraints,
and provides a simple and natural characterization
of exposures due to inferences as well as an efficient
approach to compute a minimum fragmentation. A
further line of work aims at studying the correlations
that can be established among fragments through the
exploitation of different kinds of information (e.g., the
presence of indexes in the fragments [35] or the com-
bination of indexes with the techniques supporting
the selective access to the outsourced data [36]).

A similar (but not equal) problem of information
leakage caused by data dependencies has been also
investigated in the data publishing scenario (e.g., [37],
[38]). The proposal in [37] is aimed at destroying
the correlation between two disjoint and pre-defined
subsets of attributes before their publication, while we
are interested in computing a data fragmentation that
does not suffer from confidentiality violations caused
by data dependencies. The solution in [38] aims at
guaranteeing k-anonymity [8] when publicly releas-
ing a microdata table, assuming that the adversarial
knowledge includes functional dependencies among
attributes. Other works consider the inferences that
can be drawn from the knowledge of the disclosure
algorithm adopted (e.g., [39]).

Further related proposals are the classical studies on
inferences in multilevel database systems, where most
inference research addresses detection of inference
channels within a database or at query processing
time (e.g., [40], [41]). Although the problem addressed
by these proposals presents some similarities with
the problem considered in this paper, these solutions
work in a different context and are not applicable to
our fragmentation scenario.

8 CONCLUSIONS

Starting from the observation that a successful ap-
proach to data fragmentation for protecting privacy of
sensitive associations must take into account possible
indirect information exposure due to dependencies
among data, in this paper we have extended the
fragmentation approach to the consideration of data
dependencies. Our approach aims then at providing
a comprehensive and natural solution to protect sen-
sitive information whenever data need to be shared,

published, externally stored or processed. We believe
that the availability of a simple and at the same time
powerful and expressive model like the one presented
in this paper can lead to an improvement in the
management of large data collections, offering the op-
portunity to realize natural, convenient, and effective
data protection solutions for emerging scenarios.
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Supplemental material
The proof of the theorems in Section 5 have been omitted from the paper for space constraints. We provide

them as supplemental material.

Theorem 5.5: Given a relation schema R(a1, . . . , an), a fragment F of R, and a set D of data dependencies
over R, the following implication holds:
F=F ∗ ⇐⇒ ∀d∈D: d.premise%⊆F or d.premise ∪ d.consequence ⊆ F.

Proof: By Definition 5.2, if F=F ∗ then ∀d∈D, F ∗⊗d=F ∗ or equivalently F⊗d=F. We then need to prove
that, ∀d∈D, F⊗d=F if condition d.premise%⊆F or condition d.premise ∪ d.consequence ⊆ F hold, and vice-versa.

Let us first assume that d.premise%⊆F. By Definition 5.1, F⊗d=F (second case). Let us now assume that
d.premise∪d.consequence⊆F. By Definition 5.1, F⊗d=F∪d.consequence since d.premise⊆F (first case). However,
d.consequence⊆F by hypothesis and therefore F⊗d=F∪d.consequence=F.

Let us now assume that F⊗d=F. This hypothesis holds in two cases: i) d.premise⊆F and F∪d.consequence=F
(first case in Definition 5.1), meaning that d.premise∪d.consequence⊆F, or ii) d does not apply to F, that is,
d.premise%⊆F (second case in Definition 5.1).

Theorem 5.6: Given a relation schema R(a1, . . . , an), and sets C, V, and D of confidentiality constraints,
visibility constraints, and data dependencies, respectively, over R the following implication holds:
∃F satisfying Definition 5.3 ⇐⇒ ∃F ′ satisfying Definitions 2.4 and 5.4.

Proof: We separately prove the two implications.

∃F satisfying Definition 5.3 =⇒ ∃F ′ satisfying Definitions 2.4 and 5.4.
We prove the implication by contradiction. Let us assume that ∃F satisfying Definition 5.3, but that !F ′

satisfying Definitions 2.4 and 5.4. Let F∗ = {F ∗ : F∈F}, that is, the closure of fragmentation F w.r.t. D
(Definition 5.2). By assumption, F∗ violates Definitions 2.4 and 5.4. We now consider each of the conditions
in Definition 2.4, and the condition in Definition 5.4 separately.

1) Confidentiality: F∗ violates confidentiality iff ∃c={ai, . . . , aj}∈C and ∃F′∈F ∗ such that c⊆F′. Since F′ is
the closure F ∗ of a fragment F in F , then F ∗ violates c, contradicting the hypothesis that F satisfies
Definition 5.3 (Condition 1 would be violated).

2) Visibility: F∗ violates visibility iff ∃v∈V such that ∀F′∈F∗, F′ does not satisfy v. Since visibility constraints
are monotonic Boolean formulas and for each fragment F in F there is a fragment F′ in F∗ such that F′

is the closure F ∗ of F, this contradicts the hypothesis that F satisfies Definition 5.3 (Condition 2 would
be violated). In fact, F⊆F ∗ by Definition 5.2 and then if F satisfies v also F ∗ satisfies it.

3) Unlinkability: F∗ violates unlinkability iff ∃Fi,Fj∈F∗ such that Fi∩Fj %=∅. Since Fi=F ∗
k and Fj=F ∗

l

with Fk ,Fl∈F , this is equivalent to say that F ∗
k∩F

∗
l %=∅, contradicting the hypothesis that F satisfies

Definition 5.3 (Condition 3 would be violated).
4) Closure: F∗ violates this condition iff ∃d∈D and ∃F′∈F∗ such that !F∈F such that F′=F ∗. Since F′ is, by

hypothesis, the closure of a fragment F in F , by Theorem 5.5, either d.premise%⊆F′ or d.consequence⊆F′.
This contradicts the hypothesis that F∗ is the closure of F .

∃F ′ satisfying Definitions 2.4 and 5.4 =⇒ ∃F satisfying Definition 5.3.
Let us assume, by contradiction, that ∃F ′ satisfying Definitions 2.4 and 5.4, but that !F satisfying Definition 5.3.
Before analyzing each condition separately, we recall that for each F∈F ′, F=F ∗ by Definition 5.4.

1) Confidentiality: F ′ violates confidentiality iff ∃c={ai, . . . , aj}∈C and ∃F∈F ′ such that c⊆F ∗. Since F=F ∗

this implies that c⊆F contradicting the hypothesis that F ′ satisfies Definition 2.4 (Condition 1 would be
violated).

2) Visibility: F ′ violates confidentiality iff ∃v∈V such that ∀F∈F ′, F does not satisfy v. This contradicts the
hypothesis that F ′ satisfies Definition 2.4 (Condition 2 would be violated).

3) Unlinkability: F ′ violates unlinkability iff ∃Fi,Fj∈F ′, i %= j, such that F ∗
i ∩F

∗
j %=∅. Since F ∗

i =Fi and
F ∗
j =Fj , then Fi∩Fj %=∅, contradicting the hypothesis that F ′ satisfies Definition 2.4 (Condition 3 would

be violated).


