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Abstract—We address the problem of providing users with the ability to assess the integrity of join results produced by external

computational providers and computed over externally stored databases. Our approach relies on different mutually supporting

techniques offering strong integrity protection guarantees at a limited cost. The application of the approach is completely transparent to
the computational provider, against which data and query confidentiality are preserved. The paper introduces our techniques

analytically, examining their protection guarantees and performance. It also illustrates experimental results, which confirm the
effectiveness and efficiency of our solutions.
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1 INTRODUCTION

CLOUD technology has become the reference paradigm
for the realization of large-scale storage and computa-

tional services. The significant economies of scale that cloud
providers can enjoy in the procurement, configuration and
administration of storage, networking, and computing
infrastructures, allow them to offer the services at a price
that is normally a fraction of the cost that users would
otherwise face for building in-house the same level of
availability, scalability, and elasticity.

However, although extremely appealing in terms of
functionality and economic advantages, cloud technology
can see effective and widespread exploitation only if users
have guarantees on the correct and proper working of the
external services. The problem of providing integrity and
confidentiality guarantees in distributed settings has been
receiving considerable attention in recent years. Most
solutions have addressed the protection of data confidenti-
ality, typically against honest-but-curious servers and
assuming a single cloud provider [1], [2]. Work addressing
integrity protection has mainly considered the problem of
detecting possible misbehavior of the server storing the
data, often assuming prior knowledge of the user on the
data externally stored [3], [4], [5], [6].

Also, while research has focused on solutions assuming a
single provider of cloud services, the market shows today a
clear evolution toward the creation of a varied ecosystem,
with the availability of a multitude of services managed by

independent providers allowing selective adoption of
functional abilities (e.g., Amazon Web Services differenti-
ates between Amazon S3 dedicated to storage and Amazon
EC2 dedicated to computation). This evolution enables
distinguishing between: providers of storage services, which
offer continuous availability of stored data, with high
bandwidth and reliability guarantees; and providers of
computational services, which offer access to inexpensive
virtualized machines, with high elasticity and support for
efficient execution of computationally intensive services.
This separation and the increased use of cloud technology
can enable the development of applications that integrate
data and functions hosted by different service providers.

In this context, we consider a reference scenario
integrating relational database technology with novel cloud
infrastructures and address the execution of join queries
delegated to potentially unreliable computational services,
providing integrity guarantees on the result computed by
the computational server, as well as ensuring data
confidentiality. Our techniques rely on the cooperation of
the user issuing the query and of the storage servers
storing the data, which are assumed to be trusted, without
requiring the user to have any knowledge of the data
externally stored.

Providing protection guarantees, we enable users and
companies to enjoy the benefit of the cloud marked and
dynamically choose among available services the one that is
less expensive for running their queries over external data.
Our approach can also find application in a hybrid cloud
scenario [7], enabling the cost benefits of public cloud
providers and the level of trust that can be obtained from a
private infrastructure.

This work is in line with recent analyses that emphasize
how query optimization in cloud scenarios should move
from an analysis of computational costs to an analysis of
economic costs [8]. Detaching computation from storage,
while ensuring security and privacy, our solution supports
the realization of a flexible market in cloud computation
services, enabling users to acquire services from different
providers with a significant economic gain.
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The remainder of the paper is organized as follows.
Section 2 illustrates an overview of our approach. Section 3
describes the working of our protection techniques. Sec-
tion 4 presents an analysis of the guarantees of integrity of
query results ensured by our techniques. Section 5 evaluates
the performance impact of our techniques. Section 6 shows
experimental results. Section 7 discusses related work.
Section 8 presents our conclusions.

2 OVERVIEW OF OUR APPROACH

We consider a cloud scenario where storage and computa-
tional services are with different providers. Clients execute
queries over databases kept on storage servers by means of
computational servers. For concreteness, in the paper, we
assume two storage servers Sl and Sr each storing a relation
(Bl and Br, resp.), and a computational server Cs. For
simplicity, and without loss of generality, we assume Bl

and Br to be in cleartext, that is, the storage servers are fully
trusted and have visibility of the data they store. The
approach can, however, be applied in contexts where the
storage servers should not have visibility on the data they
store (honest-but-curious). In this case, the relations are
stored in encrypted form together with indexes that are
used for query execution [1], [2].

Clients can delegate to the computational server queries
of the form “SELECT A FROM Bl JOIN Br ON Bl.I ¼ Br.I
WHERE Cl AND Cr AND Clr,” where A is a subset of the
attributes in Bl [Br; I is the set of join attributes; and Cl, Cr,
and Clr are Boolean formulas of conditions over attributes
in Bl, Br, and Bl [Br, respectively. In absence of security
considerations, the query can be executed as usual by
pushing down selections and projections at the storage
servers and having the computational server compute the
join J of the subquery results (L and R) and evaluate
condition Clr on it, producing the result to be returned to
the client (see Fig. 1).

Such a classical execution plan does not allow the client
to assess potential misbehavior (data tampering or omis-
sions) of the computational server. Our approach allows the

client, with the cooperation of the storage servers, to assess
the integrity of the join performed by the computational
server. Intuitively, instead of communicating to the com-
putational server the results L and R of their subqueries, the
storage servers first inject into them additional tuples
(which will be used by the client to assess the integrity of
the query result), producing relations L" and R", which are
then encrypted (relations L"k and R"k) and sent to the
computational server (see Fig. 2). The computational server
performs the join of such relations, producing relation J"k
that is returned to the client, which can then retrieve the
original join J and produce the result. J"k is such that the
client can enjoy a certain degree of assurance of the integrity
of the computation performed by the computational server.
Also, operating on obfuscated versions of the data, the
computational server can neither know the actual data
values (confidentiality is protected) nor misbehave selec-
tively. Relations L"k and R"k are computed independently by
the storage servers without the need for them to commu-
nicate with each other, but simply according to a limited
amount of information provided by the client within the
subquery to be executed. Such subquery is transmitted
through the computational server in encrypted form, thus
remaining unintelligible to the computational server.

In the next section, we illustrate the different comple-
mentary techniques (also reported in Fig. 2) that we use for
producing L"k and R"k from L and R. Within L and R we
distinguish the common attributes I (on which the join has
to be performed) and the other attributes Attr, treating each
of them as a unit. Therefore, for simplicity, regardless of the
degree of the schema of the two relations and the number of
attributes involved in the join, we refer to L and R as
having schemas ðI, Attr). We use generic table B to refer to
L and R indistinguishably. Note that, we do not consider
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many-to-many joins as the use of classical database design
methodologies leads to relational schemas that directly
support only one-to-one and one-to-many joins. For the
same reason, we focus our analysis on the evaluation of
equi-join conditions, which characterize most join opera-
tions in real-life scenarios.

3 PROTECTION TECHNIQUES

We describe our protection techniques ensuring integrity
and confidentiality, and discuss how they complement each
other. Encryption offers elementary protection making data
unintelligible (see Section 3.1). The core of our protection
relies on the use of markers (see Section 3.2) and twins (see
Section 3.3) for signaling incompleteness of the query
results and working in a complementary way providing
effective protection in synergy. Salts and buckets (see
Section 3.4) complement them for addressing the case of
one-to-many joins.

3.1 Encryption on-the-Fly

The first basic protection technique we apply is encryption
on-the-fly, which is based on a symmetric encryption
schema. Encryption on-the-fly means that the storage
servers encrypt the data before sending them to the
computational server. In this way, the computational server
only deals with encrypted values. We use the term
encryption on-the-fly since symmetric encryption is per-
formed at run time on subquery results by the storage
servers and with encryption keys changing at every query.

We apply encryption at tuple level (i.e., each tuple is
individually encrypted) and separately on the join attribute
and on the whole tuple. The encrypted version of a relation
B is a relation, denoted Bk, with two attributes: Ik contains
the encryption of the join attribute and B.Tuplek contains the
encryption of all attributes in B (including the join
attribute). Before encryption a padding scheme is adopted
to ensure that the plaintext data have the same length.

Definition 3.1 (Encrypted relation). Let B be a relation, I be
the join attribute, and k be a cryptographic key. The
encrypted version of B is a relation over schema
BkðIk; B.TuplekÞ such that 8t 2 B, 9 a distinct tuple
! 2 Bk, with ! ½Ik& ¼ Ekðt½I&Þ and ! ½B.Tuplek& ¼ EkðtÞ.

For instance, the encrypted version of relations L" and R"

in Fig. 3 is represented by encrypted relations L"k and R"k,
respectively. (Note that while in the encrypted tables of our
examples we preserve the order of tuples for readability, the
storage servers shuffle tuples sending them in random
order to the computational server). To simplify the notation,
we use Greek letters to denote encrypted data. For instance,
in Fig. 3, Ek (a) ¼ ", and Ek (l1) ¼ #1.

To ensure correctness of the join when operating on
encrypted values, the encryption key used to encrypt the
join attribute must be the same for the two storage servers.
Such a key changes at every query and is communicated by
the client to the storage servers together with their
subqueries. By contrast, the key used for encrypting the
whole tuple could be different for the two servers. This
being said, for simplicity, in the following, we assume

tuples to be encrypted with the same key (the one also used

for the join attribute) at the two storage servers.
Encryption protects confidentiality and offers integrity

guarantee of the individual tuples in the join result (see

Section 4).

3.2 Markers

Our second protection technique aims at ensuring query

completeness and consists in injecting into the query

computation artificial (but not recognizable as such by the
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Fig. 3. An example of query evaluation process with twins on a and c

and two markers.



computational server) tuples, called markers. The absence of
any of these tuples in the query result signals that the query
result is not complete.

To guarantee the presence of marker tuples in the query
result if the computational server behaves correctly, the
storage servers insert the same number of markers in the
relations obtained from their subqueries with the same
distinct values for the join attribute. Since we do not want
the storage servers to communicate with each other, the
information about the markers to be inserted is provided
directly by the client together with the subquery to be
executed. Note that the client does not need to explicitly
communicate the values of the join attribute for the markers
that should appear in the results of the subqueries, but just
ensure their presence. It is then sufficient for the client to
communicate to the storage servers the number m of
markers to be generated. The storage servers compute the
same set of distinct values for the join attribute by simply
using a progressive counter and a flag “Marker” that is set
to 1. This flag is instead set to 0 for the genuine tuples,
ensuring that the values of the join attribute for the markers
do not collide with the ones for the genuine tuples. Markers
can be formally defined as follows:

Definition 3.2 (Markers). Let B be a relation, I be the join
attribute, andDI be the domain of I. A setM of markers forB is
a set of tuples over schema B"ðI, Attr), where: 8hv, rnd i 2 M,
v 62 DI ; rnd is a random string; and 8hv, rndi,hv0, rnd 0i 2 M,
v 6¼ v0.

For instance, in Fig. 3 tables L" and R" include markers
m1 and m3, and m2 and m4, respectively, which have been
added assuming that the storage servers are requested to
insert two markers for which they generate values x and y.
Note that markers: 1) do not affect the correct execution of
the join operation since the values of the join attribute are
taken from a domain different from that of the original
relation (see Definition 3.2) and therefore, they cannot be
joined with original tuples (see Theorem 4.1); 2) are not
recognizable by the computational server (see Theorem 4.2)
and therefore the computational server cannot selectively
ensure the presence of all markers in the query result while
not returning some genuine tuples.

3.3 Twins

The effectiveness of markers tends to decrease as the size of
the query result increases (since the probability of the
computational server to omit a marker when returning an
incomplete join result decreases if markers are very few
with respect to original tuples). To avoid introducing a large
number of markers, we complement markers with an
additional technique for ensuring query completeness. This
technique consists in twinning (i.e., creating duplicates of)
original tuples in the query result. A tuple appearing “solo”
(i.e., without a twin) signals that the result is not complete.

Like for markers, our approach to inject twins in the
query result consists in having the storage servers twinning
tuples in their subquery results. The values of the join
attribute for twinned tuples are obtained by associating a
“Twin” flag set to 1 with the values of the join attribute of
the twinned tuples. The flag is instead set to 0 for the

original tuples and for markers. Note that twinned tuples:
1) do not affect the correct computation of the join
introducing spurious tuples (see Theorem 4.1); and 2) are
not recognizable as such and the computational server
cannot even distinguish what tuples are originals and what
tuples have been added due to the twinning operation (see
Theorem 4.2).

The degree of integrity protection offered by twinning
clearly depends on the number of tuples that are twinned
and appear in the result of the join operation. In principle,
all tuples in the subquery results can be twinned. This
strategy offers an extremely high degree of integrity
protection at the price of a considerable overhead in
communication, since the size of the relations communi-
cated from the storage servers to the computational server,
as well as the size of the join would be twice as much as the
original size. However, as we will see in Section 4, a limited
number of twins provide sufficient integrity guarantees.
Therefore, only a subset of the original tuples in the
subquery results needs to be twinned. We assume that the
client defines, and communicates to the storage servers, a
twinning condition Ctwin that determines the tuples in the
subquery results that have to be twinned. Note that if a
tuple is twinned at one storage server, also the tuple joining
it at the other storage server must be twinned. To this
purpose, Ctwin should depend only on the join attribute,
which is the attribute that the storage servers have in
common. The twin tuples added to the subquery results are
formally defined as follows:

Definition 3.3 (Twins). Let B be a relation, I be the join
attribute, and Ctwin be a twinning condition. A set of twins for
B is a set T of tuples over schema B"ðI, Attr) such that
8t 2 B where t½I& satisfies Ctwin, 9 a distinct tuple t0 2 T ,
with t0½I& ¼ t½I&, twin-flag ðt0Þ ¼ 1, and t0½Attr& ¼ t½Attr&.

For instance, tables L" and R" in Fig. 3 extend L and R,
respectively, by including twins for the tuples with join
attribute equal to a and c. We use the bar notation to denote
twins. For instance, !l is the tuple twin of l and !a is the join
attribute value twin of a.

A trivial approach for the twinning criteria can request all
actual values of the join attribute that satisfy some conditions
to be duplicated. However, the client might not have
information on the specific values occurring at the storage
servers, and operating on actual values it might be difficult to
control the amount of tuples eventually twinned (depending
on the specific occurrences of actual values in the relation
instances, a condition could result too selective, producing no
twins, or too inclusive, producing a large number of twins). A
better control on the twinning operation can be provided by
operating on the result of a secure keyed hash function over
the actual values of the join attribute. The common approach
for secure keyed hash-functions relies on HMAC; SHA-3
(http://keccak.noekeon.org) can be used in a direct way,
simply using the key as a prefix. Assuming such a keyed hash
function hk and assuming pt the percentage of tuples that the
client would like the storage servers to twin, the twinning
condition can then impose to twin all the tuples such that
Ctwin ¼ “hkðt½I&Þmodb 1

pt
c ¼ 0 ”. Since the hash function

(unlike plaintext values) can be assumed to produce a

4 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1, NO. X, XXXXXXX 2013



uniform distribution of values, the condition on the modulo
b 1
pt
c provides effective control on the percentage of twins

actually inserted by the storage servers.

Example 3.1. Fig. 3 illustrates an example of application of
our techniques. At the bottom of the figure, there are
tables L and R resulting from the evaluation of the
subqueries at Sl and Sr, respectively. Insertion of two
markers and twinning of tuples with join attribute equal
to a and c produce relations L" and R". Each storage
server encrypts its relation with the query key k received
from the client, producing encrypted relations L"k and R"k
(according to Definition 3.1). The computational server
executes the natural join between L"k and R"k and sends
the result J"k to the client. The client projects over
attributes L".Tuplek and R".Tuplek, decrypts the result of
projection, and checks if: the tuples in J" have been
correctly joined, (i.e., if L":I ¼ R".IÞ; the two expected
markers belong to the join result; there is a twin for all
the tuples with join attribute equal to a or c. Finally, the
client removes markers and twins from J" and projects
over the requested attributes, obtaining the join result J .

3.4 Salts and Buckets

In the case of one-to-many joins, encryption on-the-fly,
markers, and twins leave the number of occurrences of the
different values of the join attribute (although not disclosing
the specific values) visible to the computational server. The
information on the number of occurrences of the join
attribute could then be exploited by the computational
server to identify twins and markers. For instance, multiple
tuples with the same value for the join attribute will
certainly not represent markers (since markers are all
distinct). Also, uncertainty on twin tuples can be reduced
by observing sets of tuples with the same number of
occurrences for the join attribute. For instance, consider

relations L" and R" in Fig. 4a where b has been twinned and
one marker has been used. The encrypted view R"k of the
computational server will have two join attribute values
with two occurrences ($ and !$, from b and !b), one with three
occurrences (%, from c), and one with one occurrence (&,
from x). The server can then: 1) infer that the only possible
marker is & and 2) exclude the fact that tuples with join
attribute % correspond to twins and markers. Tuples with
encrypted join attribute equal to $ and !$ could either be
different genuine tuples with the same number of occur-
rences or twins.

Since frequency distribution of values can compromise
the indistinguishability property of twins and markers, we
need to destroy it. Two different approaches can be used,
either in alternative or in combination. We illustrate each of
them and then discuss how we apply them jointly. In the
following, we assume L to be the relation on the side “one”
and R to be the relation on the side “many” of the join.

Salts. The first approach applies salts in the encryption of
values in R" so that different occurrences of each join
attribute value map to different encrypted values, produ-
cing for the computational server a view where all the
values for the join attribute have one occurrence (i.e.,
reducing the view to be the same as in the case of one-to-
one joins). For instance, with reference to relation R" in
Fig. 4a, the two occurrences of b, their twins !b, and the three
occurrences of c will be made distinct by concatenating
them with a different salt before their encryption. The view
of the computational server (i.e., the encrypted version R"k
of table R" in Fig. 4b) will have eight tuples, all with distinct
values for the join attribute. Here and in the following,
given a join attribute value i, notations i0 and i00 denote
salted versions of value i, and notation ’ denotes that two
values differ for a salt (i.e., i ’ i0, and i ’ i00). Note that
(regardless of the value of the salt) ’ is reflexive,
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symmetric, and transitive. To preserve the correctness of the
join, also storage server Sl needs to modify its relation L". In
fact, occurrences of values that have been salted in R" will
have to find a corresponding salted value in L". Assuming
nmax to be the number of occurrences of the join attribute
value that appears more frequently in R, Sl creates, for each
original or twin tuple, nmax occurrences (one is the starting
tuple and nmax' 1 tuples are copies where different salts
have been concatenated with the corresponding join
attribute), to be potentially joined with tuples in R". Clearly,
the salts used by storage server Sl for creating nmax copies
of the tuples in L [ T are the same used by storage server Sr
for salting the different occurrences of the same value in
R [ T . For instance, assuming nmax ¼ 3, L" will need to
have three occurrences, differing from a salt, for each value
of the join attribute appearing in it, producing relation L" in
Fig. 4b.

Buckets. The second approach consists in flattening the
frequency distribution, making all values of the join
attribute in R" have the same frequency nmax (i.e., the
maximum possible frequency). We call bucket a set of tuples
with the same value for the join attribute. For values of the
join attribute with a number of occurrences smaller than
nmax, dummy tuples (i.e., tuples with the same value for the
join attribute, but with dummy tuple content) are inserted.
In this way, the encrypted view of the computational
server on relation R" will have all buckets with nmax
tuples. No change is needed for relation L". The insertion
of dummy tuples will cause the presence of dummy tuples
in the join (which the client can easily recognize and
discard). To illustrate, consider the relations in Fig. 4a,
assuming nmax ¼ 3, storage server Sr will have to produce
for table R" all buckets of three tuples. This requires
inserting some dummy tuples for values b, !b, and x of the
join attribute (see Fig. 4c).

Salts and buckets. Salts and buckets have each advantages
and disadvantages. The advantage of salts is that the size of
relation R" as well as of the join result J" are not affected.
The disadvantage is an increased size (nmax times the
original size) of relation L". The advantage of using buckets
is that the size of the buckets can actually be established by
the storage server storing relation R" and therefore can be
set to be exactly the actual nmax in R (i.e., after the
application of the selection condition), in contrast to
the potential value that can be estimated by the client.
The disadvantage is that the increased size of relation R"

affects also the size of the join J".
To enjoy the advantages of both techniques while

minimizing their disadvantages, we combine the use of
salts and buckets as follows: We assume that the client sets
a maximum number s of salts that can be used (as we will
discuss in Section 5, a good estimation for the number of
salts is

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nmax
p

). Storage server Sl managing relation L will
generate relation L" by producing s tuples for each tuple in
L [ T , as previously discussed, while leaving unchanged
the marker tuples. Storage server Sr managing relation R
will compute the maximum number nmax of occurrences
with which a value of join attribute appears. It will then
generate relation R" assuming buckets of size b ¼ dnmaxs e,
and using the same salt for all the tuples within a single

bucket. For each value with a number of occurrences
modulo b different from zero, the last bucket will be filled
with dummy tuples. Note that the salts used by storage
server Sl for creating s copies of the tuples in L [ T and the
salts used by storage server Sr for salting the at most s
buckets originating from the same value of the join attribute
must be the same.

To illustrate, consider relations L" and R" in Fig. 4a and
assume the client sets the number s of salts to two. At
storage server Sl, table L" is modified to have two
occurrences (one original and one salted) of each non
marker tuple, producing table L" in Fig. 4d. At storage
server Sr, the maximum number of occurrences of the
values of the join attribute is nmax ¼ 3 (value c), and the
size of the bucket is then b ¼ d32e ¼ 2. Enforcing buckets of
size 2 on relation R" in Fig. 4a produces the table in Fig. 4d.
For b and !b, each having two occurrences, and x having one
occurrence, only one bucket is needed. For c, the first two
occurrences fall in the first bucket while a second bucket is
needed for the third occurrence (which will be then salted).
Such a second bucket and the bucket of x are then
completed with a dummy tuple.

Relations L" and R" are formally defined as follows:

Definition 3.4 (L"). Let L be a relation, I be the join attribute,
M be a set of markers for L, T be a set of twins for L, and s be
the number of salts. Relation L"ðI; AttrÞ is such that
M ( L", and 8l 2 L [ T , 9 l1; . . . ; ls 2 L" where a tuple
corresponds to l and the other s' 1 tuples are obtained with
different salts in a way that: ljp ½I& ’ l½I& and ljp ½Attr& ¼
l½Attr&, p ¼ 1; . . . ; s' 1.

Relation L" is obtained inserting a setM of markers and
a set T of twins into the original relation L, and by possibly
generating s' 1 salted copies of each tuple in L and T .

Definition 3.5 (R"). Let R be a relation, I be the join attribute,
M be a set of markers for R, T be a set of twins for R, s be the
number of salts, and nmax be the maximum number of
occurrences of a value of I in R. Relation R"ðI; AttrÞ is
such that:

1. 8v 2 'IðR [ T [MÞ, 9Bu1; . . . ; Bup 2 R" buckets of
tuples of size dnmaxs e, with p ¼ dfreqðvÞs e, such that
8r; r0 2 Buj; r½I& ¼ r0½I& and r½I& ’ v, j ¼ 1; . . . ; p;

2. there exists a bijective function between the set of
tuples in R [ T [M and the set of non-dummy tuples
in R";

3. 8r; r0 2 R" such that r and r0 are dummy tuples and
r½I& ’ r0½I&, then r½I& ¼ r0½I&.

Condition 1 states that, the original tuples of R, twin
tuples in T , and marker tuples in M are partitioned in the
minimum number of buckets, such that for each bucket and
each tuple in the bucket, the value for the join attribute has
been salted with the same random value. Condition 2 states
that, for each tuple in R, T , and M there exists a
corresponding non-dummy tuple in R". Condition 3 states
that, for each value v of the join attribute of the tuples in R,
T , and M, there is at most one bucket for v in R" with
dummy tuples.

With the adoption of our protection techniques, a client,
which shares a key with the storage servers, sends to the
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computational server a request to execute a join operation
between the relations produced by storage servers Sl and
Sr. To this purpose, the client sends two strings encrypted
with the key shared with the storage servers. Each string
includes the subquery that the storage server should
evaluate, the query key k, the number m of markers, the
percentage pt of twins, and the number s of salts. The query
execution process then proceeds as already discussed and
sketched in Fig. 2.

The pseudo-code of the algorithms executed by the
storage servers, the computational server, and the client for
the evaluation of a query is illustrated in Fig. 5.

4 CORRECTNESS AND ANALYSIS

We analyze the guarantees provided by our approach on
the correctness and completeness of join results. We first
note that, since encryption on-the-fly changes the encryp-
tion key at each query, the computational server cannot
infer information by monitoring a sequence of queries. We
then focus our analysis on a single query. (Proofs of
theorems and lemmas are provided in the Appendix, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TCC.2013.18)

Before starting the analysis, we observe that the
computational server is not able to recognize twins and
markers from original tuples since all tuples in the
encrypted relations received from the storage servers are

indistinguishable (i.e., there is no information that
the computational server can exploit to infer the nature of
the encrypted tuples).

Proposition 4.1 (Encryption procedure). Let B" be a relation,
I be the join attribute in B", and k be a cryptographic key. The
encryption function Ek used for producing the encrypted
version B"k of B" satisfies the following two conditions:

1. 8t; t0 2 B", Ekðt½I&Þ ¼ Ekðt0½I&Þ iff t½I& ¼ t0½I&;
2. 8t; t0 2 B", EkðtÞ 6¼ Ekðt0Þ.

We guarantee satisfaction of this proposition by using
CBC with different bit configurations.

The correctness of the join result is guaranteed by the
adoption of encryption on-the-fly. Intuitively, since the
computational server does not know the encryption key, it
cannot go undetected if it inserts fake tuples in the join result,
modifies the tuples received from the storage servers, or
badly combines tuples returning combinations that do not
satisfy the join condition. Indeed the client, when decrypting
the join result, would discover the misbehavior. Formally, the
join result J"k is correct if it contains, in encrypted form, all the
tuples in J" and does not include spurious tuples. To prove
the correctness, we first need to show that two plaintext
tuples satisfy the equi-join condition on I iff their encrypted
versions satisfy the equi-join condition on Ik, as stated by the
following lemma.
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Lemma 4.1. Let L" and R" be two relations, I be the join
attribute, L"k and R"k be the encrypted versions of L" and R",
respectively, l 2 L" and r 2 R" be a pair of tuples, and # 2 L"k
and ( 2 R"k be the encrypted versions of l and r, respectively.
We have that l½I& ¼ r½I& iff #½Ik& ¼ (½Ik&.

Thanks to Lemma 4.1, we can prove that J"k is the
encrypted representation of J", as formally stated by the
following lemma.

Lemma 4.2. Let L" and R" be two relations, L"k and R"k be their
encrypted versions, J" be the join L" ffl R", and J"k be the join
L"k ffl R"k. Tuple hl,ri 2 J" iff tuple h#,(i 2 J"k , where # is the
encrypted version of l, and ( is the encrypted version of r.

Since J"k is the encrypted version of J", the correctness of
J"k can be formulated on J". In the following theorem, we
show that the join result does not include spurious tuples.

Theorem 4.1 (Correctness). Let L" andR" be two relations,Ml

andMr be two sets ofmmarkers for L andR, and T l and T r be
two sets of twins for L and R. Relation J" is equal to L" ffl
R" ¼ ðL ffl RÞ [ ðMl fflMrÞ [ ðT l ffl T rÞ [ ðL" ffl DÞ,
where D ¼ ft 2 R" : t½R.Attr] is dummy}, and Ml fflMr

contains m markers.

The completeness of the join result is guaranteed by the
adoption of markers and twins. We first observe that, for
the computational server, all the values of the join attribute
in an encrypted relation have the same number of
occurrences. This observation is formally stated by the
following lemma.

Lemma 4.3. Let B"kðIk, B".Tuplek) be an encrypted version of
relation B". The frequency distribution of values in B"k½Ik&
is flat.

The following theorem states that, as a consequence of
Lemma 4.3 and of the encryption procedure adopted, tuples
appearing in L"k (and R"k) received by the computational
server are indistinguishable from each other.

Theorem 4.2 (Indistinguishability). Let B"kðIk, B".Tuplek) be
an encrypted version of relation B". No inference can be drawn
from the tuples in B"k about the corresponding tuples in B" and
therefore tuples in B"k are indistinguishable.

The theorem above implies that the computational server
cannot draw any inference about the correspondence

between encrypted tuples and plaintext tuples and there-
fore cannot distinguish original tuples from markers and
twins. Furthermore, if the computational server behaves
correctly, the join result should include, without spurious
tuples, all the m markers injected by the storage servers in
their encrypted relations, and a twin for all the tuples whose
join attribute satisfies the twinning condition (see Theo-
rem 4.1). The guarantee of completeness offered by a join
result with m markers and t twin pairs can then be
measured as the probability } that the computational server
omits a given number o of tuples without being detected.
Before proceeding with the analysis, we note that in the case
of one-to-many joins, if the computational server omits only
some of the tuples in a bucket, it will always be detected
(since the result will have some incomplete buckets). Hence,
when buckets are used, it is in the interest of the
computational server to either preserve or omit buckets of
tuples in their entirety. We can then consider all the tuples
in a bucket as a single tuple, reducing the analysis to one-to-
one joins.

The following theorem states the probability of the
computational server to be undetected when omitting some
tuples from the result.

Theorem 4.3. Let J"k be a relation with cardinality f that
includes m markers and t twin pairs. The probability that
the computational server can omit o tuples (or equivalently
a fraction o

f of J"k Þ without being detected is } <
ð1' o

fÞ
m * ð1' 2 o

f þ 2ðofÞ
2Þt.

Proof. The computational server can omit a fraction o
f of J"k

without being detected only if: 1) no marker is omitted,
and 2) 8ti,tj of twin tuples, either ti and tj are both
omitted or ti and tj are both preserved. The probability
of omitting a given tuple ti from J"k is o

f , while the
probability of preserving it is ð1' o

fÞ. Hence, the
probability }m that no marker is omitted is (1' o

f )m.
Given a pair ti,tj of twin tuples, the probability that
ti and tj are both omitted is ðofÞ

2, while the probability
that ti and tj are both preserved is ð1' o

fÞ
2. The

probability }t of either omitting or preserving every
pair of twins without detection by the client is ðð1'
o
fÞ

2 þ ðofÞ
2Þt ¼ ð1' 2 o

f þ 2ðofÞ
2Þt. The probability of the

omission being undetected by both markers and twins is
then } ¼ }m * }t ¼ ð1' o

fÞ
m * ð1' 2 o

f þ 2ðofÞ
2Þt. tu

Figs. 6a and 6b report the value of }m (probability that no
marker is omitted) and }t (probability that every pair of
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twins is either omitted or preserved) depending on the
fraction o

f of tuples omitted from the result for different
values of m and t. It is interesting to note how just a few
markers can provide effective protection when the join
result is relatively small. However, when the fraction of
omitted tuples is significantly small compared with the
cardinality of the result, the detection ability of a fixed
number of markers is limited. For twins, the probability of
the server to be undetected is maximum when the fraction
of omitted tuples is either zero or one (i.e., no tuple is
omitted or all tuples are). The reason for the probability of
being undetected to increase when o

f is large is that clearly
the greater the number of tuples the server omits, the more
likely it is for the server to omit twins in pair (and therefore
have the omission go undetected). In the extreme case, if
only twins are used, the server could simply return an
empty result and the omission will go undetected (since
there would be no twin left “solo”). This observation
strengthens our argument for the combined use of twins
and markers. As a matter of fact, omitting a large fraction of
the result, while increasing the probability of being
undetected with respect to twin control, the server
decreases the probability of being undetected with respect
to marker control (since the greater the number of
omissions, the greater the probability of omitting a marker).
As a simple case, a single marker is sufficient to signal the
fact that an empty result is incorrect. Fig. 6c reports the
value of } for different combinations of m and t, clearly
showing that the best configuration is the one combining
markers and twins (the configuration using only markers
offers lower detection for low values of o

f ; the configuration
using only twins is not able to detect extreme omissions of
tuples). A limited number of markers (independent from
the cardinality f of the result, which the client cannot know
a priori) together with a limited percentage of twins
(adapting the number of twin pairs to the size of f) is
sufficient for providing strong protection guarantees.

Note how for large values of f (i.e., for small fractions o
f

of omitted tuples) }t ¼ ð1' 2 o
f þ 2ðofÞ

2Þt , ð1' 2 o
fÞ
t, show-

ing how twins are twice as effective as markers (recall that
}m ¼ ð1' o

fÞ
m). Also, }t , ð1' 2 o

fÞ
t ¼ ð1' 2 o

fÞ
t
f*f , e'2*tf*o,

with the crucial property that if we select twins as a
percentage pt (¼ t

f ) of the tuples as illustrated in Section 3.3,
the formula is independent from the size of the join result.
In other words, the probability of the computational server
to be undetected when omitting o tuples decreases
exponentially with the percentage of twins inserted in the

result and with the number of omitted tuples (see Fig. 7).
We note that a very limited percentage of twins suffices for
achieving strong guarantees. For instance, with just 5 per-
cent of twins, the probability of the server to be undetected
when omitting 50 tuples is 0.007, be they 50 tuples out of
10,000 or 50 out of 10,000,000.

5 PERFORMANCE ANALYSIS

We are interested in estimating the overhead produced by
our techniques on the response time seen by the client. Such
a response time depends on two main components, the
computational time and the time taken by the transfer of
data on the network. The computational overhead at the
client as well as at the storage servers is limited. The client
only needs to decrypt tuples and check the presence of
markers and twins. The storage servers need to introduce
markers, twins, and dummy tuples and encrypt tuples
before sending them, in randomly shuffled order, to the
computational server. The major computational time is with
the computational server, where the join is executed. The
computational server, however, can rely on a considerable
amount of computational power and can apply traditional
join optimization techniques ensuring efficiency of the
computation. As testified by the experiments (see Section
6), the computational time is dominated by the data transfer
time. We then focus our analysis on the communication
overhead, due to the additional data communicated from
the storage servers to the computational server and from the
computational server to the client. Such an overhead " can
be expressed as: " ¼ "L * sizeLCapL

þ"R * sizeRCapR
þ"J * sizeJCapC

,
where: "L, "R, and "J are the increased number of tuples
in L"k, R

"
k, and J"k with respect to L, R, and J ; sizeL, sizeR,

and sizeJ ¼ ðsizeL þ sizeRÞ are the sizes of the tuples in L"k,
R"k, and J"k , respectively; and CapL; CapR, and CapC are the
capacities of the network channels between the computa-
tional server and storage server Sl, storage server Sr, and
client C, respectively.

The additional tuples communicated from Sl are: one
tuple for each marker, s tuples for each twin (one for the
twinning and s' 1 for their salting) and s' 1 copies of each
of the original tuples in L. Hence, "L ¼ jMjþ s * jT lj þ
ðs' 1Þ * jLj, whereM is the set of markers and T l is the set
of twins.

The additional tuples communicated from Sr are the
dummy tuples potentially inserted for making all buckets of
equal cardinality. In average, we can assume buckets with
dummy tuples to contain b'1

2 dummy tuples. Every value
occurring in the relation will have at most one bucket with
dummy tuples. Assuming uniform distribution of values,
the number of distinct values in R[I] is 2*jRj

nmax and the
number of distinct twins is 2*jT rj

nmax . Hence, the additional
tuples communicated from Sr are: b tuples for each marker
(i.e., one marker and b' 1 dummy tuples), one tuple plus
possibly b'1

nmax dummy tuples for each twin, and possibly
b'1
nmax dummy tuples for each tuple in the original relation.
Therefore, "R ¼ b * jMjþ ðjT rjþ jT rj * b'1

nmaxÞ þ jRj *
b'1
nmax ,

where M is the set of markers and T r is the set of twins.
The additional tuples communicated from the computa-

tional server to the client are: b for each marker, and a
percentage (depending on the selectivity ) of the join
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condition) of the additional tuples in the right-hand side of
the join. Hence, "J ¼ b * jMjþ ) * ðjT rjþ jT rj * b'1

nmaxÞ þ )*
jRj * b'1

nmax .
As we can see from the formulas, the overhead due to

markers and twins is very limited while the potential
explosion in the amount of data transmitted is due to salts
and buckets (to be paid for one-to-many joins), which then
need to be set with care. Luckily, the formulas above
provide also a possible good estimate for the number of
salts and buckets able to minimize the communication
overhead. In fact, the formula expressing the network
overhead " due to the adoption of our techniques can be
reformulated as a function of s and b as cs * sþ cb * bþ c,
with the constraint that s * b - nmax. To provide a good
estimate for s and b, it is worth considering two possible
scenarios depending on whether: 1) all communication
channels have uniform bandwidth, or 2) the channel
reaching the client has limited bandwidth. The first scenario
is the typical scenario for distributed systems, while the
second scenario covers applications where the client
connects from mobile devices.

Uniform channels. Since all communication channels have
the same bandwidth, we can minimize the network
overhead " by simply minimizing function " * Cap
¼ "L * sizeL þ"R * sizeR þ"J * sizeJ , where Cap ¼ CapL ¼
CapR ¼ CapC . To this aim, we can consider a common
configuration where markers and twins represent a small
fraction of L" and R" and their contribution can be
disregarded, thus obtaining " * Cap = ðs' 1Þ * jLj * sizeL þ
jRj * b'1

nmax * sizeR þ ) * jRj *
b'1
nmax * sizeJ . Since the only para-

meter that the client can set is s, we substitute b with dnmaxs e
in " * Cap and compute the value for s that minimizes it,
which is equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjRj=jLjÞ * ððsizeR þ )ðsizeR þ sizeLÞÞ=sizeLÞ

p
:

If the client has all the information required in the formula
(nmax can be estimated using classical tools of query
optimization), it will be able to identify the value for s that
maximizes efficiency in query evaluation. For instance, in a
join where the ratio jRjjLj is equal to nmax, ) is close to zero
and the tuples in R and L have identical size, the optimal
value of s will be

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nmax
p

.
Slow client-channel. Since in this scenario the bottleneck is

represented by the communication with the client, we only
consider overhead "J . This overhead is minimized when
b ¼ 1, and therefore when s - nmax. The optimal strategy is

then to use a high number of salts, potentially equal to the
maximum cardinality nmax of the join attribute in table R.
This choice multiplies by s times the size of table L"k sent to
the computational server, but it also does not require the
introduction of any dummy tuple in R"k.

6 EXPERIMENTAL RESULTS

To assess the integrity and performance guaranteed by our
techniques, we run experiments: evaluating the ability of
the techniques to detect omissions by the computational
server, evaluating the performance impact due to the use of
the techniques considering several parameters, and finally
analyzing the economic benefits.

Integrity protection. We performed a set of experiments
where the computational server returned to the client the
result of the join without a set of randomly chosen tuples.
We recorded, among a series of 100 experiments, the
number of times that the client was able to detect the
integrity violation. Fig. 8 considers the use of 15 percent of
twins and 50 markers ( tf ¼ 0:15, m ¼ 50). The graph shows
the percentage of times the omission was undetected, for a
number of missing tuples in the range from 1 to 30, over a
result of the join containing 1,000 tuples. The graph
presents the observed detection probability and 95 per-
cent-confidence error bars. The observed behavior confirms
the probabilistic analysis described in Section 4, repre-
sented by the dotted line.

Performance. In the second set of experiments, we
evaluated the performance impact of markers, twins, salts
and buckets. We used for the computational server a
machine with 2 Intel Xeon Quad 2.0 GHz, 12-GB RAM.
The client machine was a standard PC running an Intel
Core 2 Duo CPU at 2.4 GHz, with 4-GB RAM, connected
to the computational server through a WAN connection
with a 4 Mbps throughput. For the scenario with uniform
channels, the storage servers were machines with the
same characteristics as the client machine. For the
scenario with slow client-channel, the storage servers
were machines with Intel i7 CPU, 8-GB RAM, connected
to the computational server through a 100-Mbps LAN.
The values reported have been obtained as the average
over six runs.

The first series of experiments was used to evaluate the
overall response time due to the use of markers and twins.
The experiments considered a one-to-one join over a
synthetic database containing 1,000 tuples in both join
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Fig. 8. Frequency of successful checks by the client after the removal by
the computational server of tuples from the join result: comparison
between the model in Theorem 4.3 and the average over 100 runs.

Fig. 9. Response time form ¼ 50 andm ¼ 100 with a varying percentage

of twins.



operands and in the result. Fig. 9 shows the response time
observed when executing the query without using our
techniques (base) and when using 50 (m ¼ 50) and 100
(m ¼ 100) markers, varying the percentage t

f of twins. The
experiments show that the increase in response time due to
markers is proportional to their number, and that the
increase in response time due to the use of t twin pairs is, as
expected, a fraction t

f of the overall response time. A
detailed analysis of the source of the response time shows
that the computational time represents less than 10 percent
of the overall time, for all the tested configurations. The
computational time is mainly due to the execution at the
computational server side of the join operation, which
represents more than 50 percent of the computational time.
Encryption, decryption, and integrity check operations
represent altogether less than 15 percent of the computa-
tional time.

We then focused the analysis on the use of salts and
buckets. We first considered the uniform channels scenario
and tested configurations with nmax equal to 50 and used a
number of salts s varying between 1 and 100. Fig. 10a shows
the overall client response time, the contribution to the
overall client response time deriving from the transfer to the
computational server of L"k and R"k, and the time observed
when executing the same query without using our
techniques (base). The graph clearly shows that the best
performance is obtained close to values for s equal to 7
(b

ffiffiffiffiffi
50
p
c). It also confirms that low values of s increase the

size of R" and high values of s increase the size of L". We
executed the same queries in the slow client-channel
scenario, where the storage servers were using a fast
channel to communicate with the computational server.
The experiments in Fig. 10b confirm the results described in
Section 5 for the slow client-channel scenario, where the
minimal network overhead is achieved with small values of
b and high values of s.

To obtain a further verification of the behavior of our
techniques, we performed experiments over the well-
known TPC-H database [10]. Fig. 10c shows the overall
response time observed by the client when executing a
join between relations CUSTOMERS and ORDERS. We
considered 9,000 customers and the maximum number of
orders per customer (nmax) is 41. The experiments used
50 markers, 15 percent of twins, and considered a variety
of values for s. The graph shows the overall client
response time, the contribution to the client response time
deriving from the transfer of L"k and R"k from the storage

servers to the computational server, and the time
observed when executing the same query without using
our techniques (base). For the configurations with values
close to

ffiffiffiffiffi
41
p

, the overhead due to markers, twins, salts,
and buckets is 30 percent. Considering the inevitable 15
percent time increase due to twins, the response time
appears reasonable.

Another set of experiments was dedicated to evaluate the
performance of the approach for large databases (up to 2 GB
in each table) and the possible impact of latency on the
computation, comparing the response times for queries
over local networks (local client configuration) with those
obtained with a client residing on a PC at a distance of
1,000 Km connected through a shared channel that in tests
demonstrated to offer a sustained throughput near to
80 Mbps (remote client configuration). The experiments
used a synthetic database with two tables each with a
number of tuples between 104 and 106 and tuples with size
equal to 100 bytes. Each data point is the average of six runs
of the experiments, which compute one-to-one joins using
10 percent of twins. The results of these experiments are
reported in Fig. 11. The results demonstrate that our
techniques can be applied over large tables with millions
of tuples without a significant overhead. Also, the impact of
latency is shown to be modest, as the comparison between
local client and remote client configurations of the response
times for the same query shows a limited advantage for the
local client scenario, consistent with the limited difference
in available bandwidth.

Economic analysis. We focused on evaluating the
economic advantage of our solution when executing
queries [8]. In fact, while implying a slight performance
overhead, our solution in the majority of cases can be less
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Fig. 11. Response time with large databases and variable latency.



expensive, since it enables the use of available low-cost
computational servers.

In our analysis, we assumed economic costs varying in
line with available solutions (e.g., Amazon S3 and EC2,
Windows Azure, GoGrid), number of tuples to reflect
realistic query plans, and twin and markers varying like for
the performance analysis. In particular, we considered the
following parameters:

1. cost of transferring data out of each storage server
(from 0.00 to 0.30 USD per GB) and of the
computational server (from 0.00 to 0.10 USD per
GB);

2. cost of transferring data to the client (from 0.00 to
2.00 USD per GB; we did not consider the cost of
input data for the storage and computational servers
since all the price lists we accessed let in-bound
traffic be free);

3. cost of CPU usage for each storage server (from 0.05
to 2.50 USD per hour) and for the computational
server (from 0.00 to 0.85 USD per hour);

4. bandwidth of the channel reaching the client (from 4
to 80 Mbps);

5. size of the join attribute sizeI (from 1 to 50 bytes);
6. number of tuples in L (from 10 to 1,000) and the size

of the other attributes sizeL ' sizeI (from 1 to 2,000
bytes);

7. number of tuples in R (from 10 to 10,000,000) and the
size of the other attributes sizeR ' sizeI (from 1 to
2,000 bytes);

8. number m of markers (from 0 to 50);
9. percentage pt of twins (from 0 to 0.30);
10. number s of salts (from 1 to 100);
11. maximum number nmax of occurrences of a value in

R:I (from 1 to 60);
12. selectivity ) of the join operation (from 0.01 to 1.00).

We used a Monte Carlo method to generate 2,000
simulations varying the parameters above. For each
simulation, we evaluated the cost of executing a join
operation at one of the storage servers without adopting
our protection techniques (considering the cheaper alter-
native obtained relying on each of the storage servers for
join execution), and at the computational server adopting
our protection techniques. The query optimizer can assess
the best strategy to use for performing a query, adopting
the approach that provides the best economic advantage.
Fig. 12 illustrates the total costs for executing a query with

(and without respectively) the availability of our techni-
ques, assuming their adoption whenever economically
convenient. As visible in the figure, without availability
of our techniques the total cost (continuous line) reaches
26,922 USD, while with the availability of our techniques
(dotted line) it remains at 16,559 USD, corresponding to a
total saving of 38.49 percent.

7 RELATED WORK

Previous work is related to the data outsourcing scenario,
where data are assumed to be stored at an external honest-
but-curious server that correctly manages the data and
guarantees their availability, but that is not trusted to
access the data content (e.g., [3], [4], [5], [10], [11], [12], [13],
[14], [15], [16], [17]). To protect data confidentiality, data are
encrypted before outsourcing and indexing information,
stored together with the encrypted data, are used for the
evaluation of conditions (e.g., [18], [19]) and of join
operations (e.g., [10]) at the server side. In many real world
scenarios, the assumption that the external server is honest-
but-curious is not applicable. Different techniques have
then been proposed to provide data integrity, in terms of:
1) correctness, 2) completeness, and 3) freshness of query
results. Correctness is traditionally provided by means of
signature techniques, adequately revised to permit efficient
signature composition (e.g., [14], [20]). Completeness can
instead be provided either by means of authenticated data
structures (e.g., [15], [21], [22]) or probabilistic approaches
(e.g., [3], [4], [5]). Freshness is obtained by including a
periodically updated timestamp in authenticated data
structures or by periodically changing the function that
generates the data used for integrity verification [22].

The approach in [3] stores at the external server a copy of
the tuples that satisfy a predefined condition, encrypted
using a different secret key. The completeness of the query
result is guaranteed by the presence in the query result of two
instances for all the tuples that satisfy the query selection
condition and the selection condition used to define the
additional tuples. The solution in [4] defines a deterministic
function that generates a set of fake tuples that are inserted
into the data set stored at the external server at initialization
time. While our proposal and the approaches in [3], [4] share
the idea of replicating tuples or including fake tuples, there
are many crucial differences. First, our work does not assume
that the client has knowledge of the data externally stored.
Also, our work accommodates the dynamic generation of
markers and twins: the computational server cannot accu-
mulate information from the analysis of a sequence of queries
(two executions of the same query are associated with two
indistinguishable structures for integrity verification); also,
the number of markers and twin pairs can change at each
query. The combined use of markers and twins grants us, for
the same number of additional tuples, a higher probabilistic
guarantee of completeness and a more efficient adaptation to
the desired protection requirements. Also, in [3] joins are not
considered. In [4] the authors extend their solution to join
operations by inserting fake tuples in both the relations
participating in the join, but their solution may produce
spurious tuples and may cause a high network overhead. An
interesting technique designed to guarantee the complete-
ness of a join result has been illustrated in [5]. This technique
builds a Merkle hash tree on the join attributes of at least one
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Fig. 12. Total economic cost of executing 2,000 join queries without

(continuous line) or with (dotted line) availability of our techniques.



of the two relations involved in the join and uses this data
structure to provide a completeness guarantee of the result.
The approach is quite different from the one proposed by us,
as it is deterministic whereas our technique adopts a
probabilistic approach.

A different, though related, line of works considered the
design of mechanisms providing integrity guarantees on
the results of large computation tasks outsourced to the
cloud (e.g., [23], [24], [25], [26]), and the enforcement of
restrictions in task provisioning (e.g., [27]) or data out-
sourcing (e.g., [28], [29], [30]).

8 CONCLUSIONS AND FUTURE DIRECTIONS

Cloud technology is evolving today at a quick pace, and we
see many applications where a client may ask a computa-
tional service to support the evaluation of a join over
collections of data kept in separate storage servers. In such
scenarios, it is important to provide the client with the
ability to assess the integrity of the result returned by the
computational server. Our proposal responds to this need,
providing complementary techniques that operate in
synergy effectively and efficiently. The extensive experi-
mental results performed make us confident that our
techniques can be applied in real scenarios, offering clear
protection guarantees at a limited configurable overhead
and providing economic benefit. There are several interest-
ing directions in which our work can be extended. A first
direction concerns the consideration of joins involving not
only equality conditions; for instance approximate joins
could be enforced with our proposal via domain discretiza-
tion and postprocessing. Another direction relates to the
diversification of trust assumptions over the storage servers
which, for instance, could be considered not fully trust-
worthy for performing their portion of the query. Our
techniques can be extended to operate in this context by
assuming encrypted tables and generating separate twins
and markers for controlling the storage servers. A further
interesting direction is the involvement in the query of
multiple computational and/or storage servers and the
consideration of MapReduce scenarios. In these contexts,
our techniques can be applied to parallel joins or chains of
joins also investigating different strategies for the join
executions and parallelization of the tasks.
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Supplemental material

PROOFS OF LEMMAS AND THEOREMS

We first establish the proposition used in the proofs of the correctness theorem (Theorem 4.1) and of the
indistinguishability theorem (Theorem 4.2).

Proposition 4.1 (Encryption procedure): Let B∗ be a relation, I be the join attribute in B∗, and k be a
cryptographic key. The encryption function Ek used for producing the encrypted version B∗

k of B∗ satisfies
the following two conditions:

1) ∀t, t′ ∈ B∗, Ek(t[I]) = Ek(t′[I]) iff t[I] = t′[I];
2) ∀t, t′ ∈ B∗, Ek(t) #= Ek(t′).

We assume to use a block encryption algorithm, with a block size able to store the values of the join
attribute together with the flags used to denote whether a tuple is a marker or a twin, and the salt values.
More specifically, our implementation (Section 6 uses the 16-byte blocks offered by AES, where 14 bytes of
the first 16-byte block of every tuple represent the join attribute, 1 bit represents the “Marker” flag, 1 bit
represents the “Twin” flag, and 14 bits represent the salt value. The remaining blocks are used to store the
other attributes of the tuple. The encryption function uses a Cipher Block Chain (CBC) encryption mode with
a null Initialization Vector. Note that if the join attribute requires more than 14 bytes, a hash function applied
over the original values can be used, truncated to 112 bits with risk of a collision that remains negligible even
for extremely large tables. We also assume that at most 214 salt values are required for the bucketization. The
generation of markers will produce new tuples that will have a progressive counter into the 14 bytes dedicated
to the join attribute, the “Marker” flag set to 1, the “Twin” flag and the salt both set to 0. For each tuple in
B satisfying the twin condition Ctwin, a new tuple will be created identical to the original tuple, except that
the “Twin” flag will be set to 1. It is easy to see that Condition 1 in Proposition 4.1 is satisfied. Two tuples
t, t′ ∈ B∗ with the same value for the join attribute (i.e., t[I] = t′[I]) are tuples where the first 16-byte block
of t and t′ are identical and their encryption produces identical ciphertexts, that is, Ek(t[I]) = Ek(t′[I]). The
vice versa, that is, if Ek(t[I]) = Ek(t′[I]), then t[I] = t′[I] is clearly true.

The remaining blocks used to store the other attributes of relation B∗ are organized in such a way that a
progressive counter (increased by one at every tuple) is added to the first block. Due to the behavior of the
CBC mode, a difference in this counter is sufficient to completely hide any regularity in the remaining blocks.
We can then conclude that Condition 2 in Proposition 4.1 is satisfied since all tuples in B∗, possibly having the
same first 16-byte block (i.e., the same value for the join attribute) have a unique second block and therefore
their encryption always produces different ciphertexts.

Lemma 4.1: Let L∗ and R∗ be two relations, I be the join attribute, L∗
k and R∗

k be the encrypted versions
of L∗ and R∗, respectively, l ∈ L∗ and r ∈ R∗ be a pair of tuples, and λ ∈ L∗

k and ρ ∈ R∗
k be the encrypted

versions of l and r, respectively. We have that l[I] = r[I] iff λ[Ik] = ρ[Ik].

Proof: This lemma follows immediately from the fact that Sl and Sr adopt the same encryption function
and the same encryption key to encrypt the values of the join attribute, which satisfies Proposition 4.1.

Lemma 4.2: Let L∗ and R∗ be two relations, L∗
k and R∗

k be their encrypted versions, J∗ be the join L∗#$R∗,
and J∗

k be the join L∗
k#$R

∗
k. Tuple 〈l,r〉 ∈ J∗ iff tuple 〈λ,ρ〉 ∈ J∗

k , where λ is the encrypted version of l, and ρ
is the encrypted version of r.

Proof: This lemma follows from Proposition 4.1 and Lemma 4.1.
Theorem 4.1 (Correctness): Let L∗ and R∗ be two relations, Ml and Mr be two sets of m markers for L and

R, and Tl and Tr be two sets of twins for L and R. Relation J∗ is equal to L∗#$R∗ = (L#$R) ∪ (Ml#$Mr) ∪
(Tl#$Tr) ∪ (L∗#$D), where D = {t ∈ R∗ : t[R.Attr] is dummy}, and Ml#$Mr contains m markers.

Proof: If the join between L and R is a one-to-one join, L∗ = L ∪ Ml ∪ Tl and R∗ = R ∪ Mr ∪ Tr. By
Definition 3.2 ∀ti ∈ L, ∀tj ∈ Ml, ti[I] #= tj [I]. By Definition 3.3, the tuples in Tl are obtained by concatenating
a flag set to 1 with the value of join attribute of (a subset of the) tuples in L. As a consequence, ∀ti ∈ L,
∀tj ∈ Tl, ti[I] #= tj [I]. We also note that by Definition 3.2 the values of the join attribute of marker tuples
cannot correspond to values of the join attribute of the twin tuples, that is, ∀ti ∈ Tl, ∀tj ∈ Ml, ti[I] #= tj [I].
The same properties hold also for R∗. As a consequence, tuples in L can be joined only with tuples in R,
tuples in Ml can be joined only with tuples in Mr, and tuples in Tl can be joined only with tuples in Tr. Also,
markers in Ml and Mr have the same values for the join attribute since Sl and Sr generate them applying
the same procedure (progressive counter from 1 to the number m of markers that have to be created) and,
by Definition 3.2, all marker tuples have a different value for the join attribute I . We can then conclude that
when Sl and Sr generate m marker tuples each, the join operation applied on these marker tuples produces
m tuples resulting from the correct join of the m markers in L∗ with the m markers in R∗.
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If the join between L and R is a one-to-many join, the observations above still hold, however we need
to prove that the use of salts and buckets does not compromise the completeness of the join result. By
Definition 3.4 each tuple l in L translates to s tuples in L∗, with s distinct values i, i1, . . . , is−1 for I , obtained
by concatenating s − 1 different salts with t[I]. By Definition 3.5 each tuple in R with r[I] = i translates to
a tuple r′ in R∗ with r′[I] ∈ {i, i1, . . . , is−1}, obtained by concatenating one of the s − 1 different salts with
i. Since S l and Sr agree on the salts to be used, no tuple in L#$R is missing from L∗#$R∗. We note that,
although at most b tuples can share the same value for I in R∗, Sr does not need more than s− 1 salts, since
b is determined as (nmax

s ). By Definitions 3.4 and 3.5 the same process applies to twin tuples, therefore no
tuple in Tl#$Tr is missing from L∗#$R∗. The value of the join attribute in Ml and Mr is instead not affected
by the adoption of salts and buckets, as a consequence no tuple in Ml#$Mr is missing from L∗#$R∗.

Lemma 4.3: Let B∗
k(Ik, B∗.Tuplek) be an encrypted version of relation B∗. The frequency distribution of

values in B∗
k[Ik] is flat.

Proof: Since the frequency distribution of values in B∗
k[Ik] is not affected by encryption (see Proposition 4.1),

such a frequency distribution is flat iff the frequency distribution of values in B∗[I] is flat. Two cases may
occur.

1) B∗ coincides with L∗. By assumption and by Definitions 3.2 and 3.3, all tuples in L, T , and M have
different values for I . Furthermore, L∗ includes s copies of each tuple t in L ∪ T obtained using a
different salt for each copy. We can then conclude that each value in L∗[I] has exactly one occurrence
by construction (Definition 3.4).

2) B∗ coincides with R∗. Each value in R∗[I] has exactly b occurrences by construction (Definition 3.5),
independently from the number of occurrences of the values in R ∪M ∪ T .

Theorem 4.2 (Indistinguishability): Let B∗
k(Ik, B∗.Tuplek) be an encrypted version of relation B∗. No inference

can be drawn from the tuples in B∗
k about the corresponding tuples in B∗ and therefore tuples in B∗

k are
indistinguishable.

Proof: By Lemma 4.3 all the values of the join attribute Ik appear with exactly one occurrence (if B∗
k

corresponds to L∗
k) or with b occurrences (if B∗

k corresponds to R∗
k). This implies that the encrypted values of

the join attribute do not reproduce the plaintext values distribution and therefore that nothing can be inferred
about the correspondence between plaintext values and encrypted values. Furthermore, by Proposition 4.1,
for each pair of tuples t, t′ ∈ B∗

k , t[B∗.Tuplek ] #= t′[B∗.Tuplek ], and therefore also the encrypted value of
attribute B∗.Tuplek is different and cannot be used to draw inferences on the corresponding plaintext tuple in
B∗. We can then conclude that from the tuples in B∗

k no inference can be drawn and that all the tuples are
indistinguishable.


