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Abstract. In today’s electronic society, data sharing and dissemination
are more and more increasing, leading to concerns about the proper pro-
tection of privacy. In this paper, we address a novel privacy problem
that arises when non sensitive information is incrementally released and
sensitive information can be inferred exploiting dependencies of sensitive
information on the released data. We propose a model capturing this
inference problem where sensitive information is characterized by pecu-
liar distributions of non sensitive released data. We also discuss possible
approaches for run time enforcement of safe releases.

1 Introduction

Sharing and dissemination of information play a central role in today’s infor-
mation society. Governmental, public, and private institutions are increasingly
required to make their data electronically available, as well as to offer services
and data access over the Internet. This implies disclosing to external parties or
sharing information once considered classified or accessible only internally, that
must now be made partially available to outside interests. Such information re-
lease, publication and dissemination are clearly selective. Data maintained by
any organization may in fact considerably differ with respect to the needs for
sharing with external parties as well as for their sensitivity. Data publication
and sharing must then ensure on one hand the satisfaction of possible needs
for data to be fed to external parties and on the other hand, proper protection
of sensitive data to preserve the confidentiality and/or the privacy of involved
individuals. The problem is notably complex, since the possible correlations and
dependencies existing among data can introduce inference channels causing leak-
age of sensitive information even if such information is not explicitly released.
The problem has been under the attention of researchers for decades and a
large body of research has addressed different facets of the problem with differ-
ent settings and assumptions. Such a large body of research includes: statistical
databases and statistical data publications (e.g., [1]); multilevel database sys-
tems with the problem of establishing proper classification of data, capturing



data relationship and corresponding inference channels (e.g., [6,15]); novel pri-
vacy problems introduced by the release of data referring to individuals whose
identities or whose associated sensitive information should be maintained pri-
vate (e.g., [4,5]); protection of associations among data due to possible mining
(e.g., [2]); protection of special type of sensitive information (e.g., [3,10,11]). Dif-
ferent approaches have then been proposed addressing all these aspects of the
complex privacy problem and offering solutions to block or limit the exposure
of possible sensitive or private information. Still new data publication scenarios
together with richness of published data and available data sources raise novel
problems that need to be addressed.

In this paper, we address a specific problem related to inferences arising from
the dependency of sensitive (not released) information referred to some entities,
which can be enabled by the observation of other properties regarding such en-
tities. In particular, we are concerned with the possible inferences that can be
withdrawn by observing the distribution of values of non sensitive information
associated with the entities. For instance, the distribution of soldiers’ age in a
military location can allow inferring the nature of the location itself, whether
it is a headquarter (hosting old officials) or a training campus (hosting young
privates). Intuitively, such a problem of sensitive information derivation becomes
more serious as the amount of released data increases. In fact, as the amount
of data released increases, the confidence in the external observations will in-
crease; also, external observations will tend to be more representative of the real
situations. Our problem resembles in some aspects the classical, and much com-
plex, problem of controlling horizontal aggregation of data but it differs from it
in several assumptions. In particular, we assume a scenario where an external
observer could gather the data released to legitimate users and inference is due
to peculiar data values distributions. Also, we are not only concerned with pro-
tecting sensitive information associated with specific entities, but also avoiding
possible false positives, where sensitive values may improperly be associated (by
the observers) with specific entities.

The remainder of this paper is organized as follows. First, we characterize a
novel scenario of inference in data publication raising from a real case study that
needed consideration (Section 2). Second, we provide a model for capturing when
inference can occur in such scenario, providing metrics for evaluating information
exposure (Sections 3 and 4). Third, we discuss possible approaches to control
data disclosure to ensure that releases are safe with respect to inference channels
improperly exposing sensitive information (Section 5).

2 Motivation and reference scenario

We consider a scenario (see Figure 1) where a data holder maintains a collection
of records stored in a trusted environment. Each record contains different at-
tributes and can be released to authorized parties requiring it. While the records
individually taken are not sensitive, their aggregation is considered sensitive since
it might enable inferring sensitive information not appearing in the records and
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Fig. 1: Reference scenario

not intended for release. We assume all requests for records to be genuine and
communication of responses to record release requests to be protected. However,
once records are released the data holder has no control on them and therefore
external observers can potentially gather all the records released. We then con-
sider the worst case assumption of an observer that could be able to retrieve the
complete collection of released records (which can happen, for example, if par-
ties to which records are released would make use of a third party provider for
storage). We assume that an observer is not aware of the requests submitted to
the data holder for retrieving records as well as of the number of records stored
at the data holder site.

Our problem is ensuring that the collection of records released to the exter-
nal world be safe with respect to potential inference of sensitive (not released)
information that could be possible by aggregating the released records. We con-
sider a specific case of horizontal aggregation and inference channel due to the
distribution of values of certain attributes with respect to other attributes. In
particular, inference is caused by a distribution of values that deviates from
expected distributions, which are considered as typical and are known to the
observers.

In the paper, we refer our examples to a real case scenario characterized as
follows. The data holder is a military organization which maintains records on



its personnel. Each record refers to a soldier and reports the attributes Name,
Age, and Location where the soldier is on duty. Some of the military locations
are headquarters of the army. The information that a location is a headquarter is
considered sensitive and neither appears in the soldiers’ records nor it is released
in other forms. Soldiers’ records can be released upon request of the soldiers
as well as of external parties (e.g., an external hospital). In addition, the data
holder, to be compliant with legal requirements, publicly makes available statis-
tics on the age of the soldiers. The age distribution publicly released, computed
on the overall population regardless of the specific locations where soldiers are
based, is a distribution that can be considered common and, in general, typi-
cally expected at each location. However, locations where headquarters are based
show a different age distribution, characterized by an unusual peak of soldiers
middle age or older. Such a distribution clearly differs from the expected age
distribution, where the majority of soldiers are in their twenties or thirties. The
problem is therefore that while single records are considered non sensitive, an
observer aggregating all the released records could retrieve the age distribution
of the soldiers in the different locations and determine possible deviations from
the expected age distribution for certain locations, thus inferring that a given
location hosts a headquarter. Our problem consists in ensuring that the release
of records to the external world be safe with respect to such inferences.

3 Data model and problem definition

In this section, we provide the notation and formalization of our problem. While
our approach is applicable to a generic data model with which the data stored
at the data holder site could be organized, for concreteness, we assume data to
be maintained as a relational database. The data collection is therefore a table
T characterized by a given set A of attributes, and each record is a tuple t in the
table. Among the attributes contained in the table, we distinguish a set Y ⊂ A

of attributes corresponding to entities that we call targets .

Example 1. With respect to our scenario, table T is defined on the set A={Name,
Age, Location} of attributes and Y ={Location}. In our examples, we assume
five different locations L1, L2, L3, L4, and L5 are represented in the table.

While the identity (values) of entities Y is non sensitive, such entities are
also characterized by sensitive properties , denoted s(Y ), which are not released.
In other words, for each y ∈ Y the associated sensitive information s(y) does
not appear in any released record. However, inference on it can be caused by the
distribution of the values of some other attributes X ⊆ A for the specific y. We
denote with P (X) the set of relative frequencies p(x) of the different x values in
the domain of X appearing in table T . Also, we denote with P (X |y) the relative
frequency of each value in the domain of X appearing in table T and restricted
to the tuples for which Y is equal to y. We call this latter the y-conditioned
distribution of X in T .



Number of tuples
Age L1 L2 L3 L4 L5 Total

<18 72 26 38 47 73 256
18-19 151 53 82 140 223 649
20-24 539 147 449 505 736 2376
25-29 452 114 370 418 613 1967
30-34 335 213 234 318 501 1601
35-39 321 238 277 332 538 1706
40-44 128 219 122 162 220 851
45-49 20 205 50 49 76 400
50-54 9 71 28 34 31 173
≥55 2 13 2 2 2 21

Total 2029 1299 1652 2007 3013 10000

(a)

P(Age|Location)
Age L1 L2 L3 L4 L5 any

<18 3.55 2.00 2.31 2.34 2.42 2.56
18-19 7.44 4.08 4.96 6.98 7.40 6.49
20-24 26.56 11.32 27.18 25.16 24.44 23.76
25-29 22.28 8.78 22.40 20.83 20.35 19.67
30-34 16.51 16.40 14.16 15.84 16.63 16.01
35-39 15.82 18.32 16.77 16.54 17.86 17.06
40-44 6.31 16.86 7.38 8.07 7.30 8.51
45-49 0.99 15.78 3.03 2.44 2.52 4.00
50-54 0.44 5.46 1.69 1.69 1.03 1.73
≥55 0.10 1.00 0.12 0.11 0.05 0.21

(b)

Loc P(Loc)

L1 20.29
L2 12.99
L3 16.52
L4 20.07
L5 30.13

(c)

Fig. 2: Number of tuples in table T by Age and Location (a), loc-conditioned
distributions P(Age|Location) over table T (b), and location frequencies (c)

Example 2. In our scenario, s(Y ) is the type of the location (e.g., headquarter).
The sensitive information s(y) of whether a location y is a headquarter can be
inferred from the distribution of the soldier age given the location. Figure 2(a)
shows how tuples stored in table T are distributed with respect to the values
of attributes Age and Location. For instance, over the 10000 tuples, 2029 refer
to location L1, 72 of which are of soldiers with age lower than 18. Figure 2(b)
reports the corresponding relative frequency of age distributions. In particular,
each column loc, with loc ∈ {L1, . . . , L5} reports the loc-conditioned distribution
P (Age|loc) (for convenience expressed in percentage). For instance, it states that
3.55% of the tuples of location L1 refer to soldiers with age lower than 18. The
last column of the table reports the distribution of the age range regardless of
the specific location and then corresponds to P (Age) (expressed in percentage).
Figure 2(c) reports the distribution of soldiers in the different locations regardless
of their age (again expressed in percentage). For instance, 20.29% of the 10000
soldiers are based at L1.

The existence of a correlation between the distribution of values of attributes
X for a given target y and the sensitive information s(y) is captured by the
definition of dependency as follows.

Definition 1 (Dependency). Let T be a table over attributes A, let X and Y

be two disjoint subsets of A, and let s(Y ) be a sensitive property of Y . There is a
dependency between X and Y , denoted X;Y, if there is a relationship between
the conditional distribution P (X |y) and the sensitive information s(y).

The existence of a dependency between the y-conditioned distribution of X

and the sensitive information s(y) introduces an inference channel, since the
visibility on P (X |y) potentially enables an observer to infer the sensitive in-
formation s(y) even if not released. For instance, with respect to our running
example, Age;Location.

Definition 1 simply states the existence of a dependency and does not say
anything about when a given data distribution causes leakage of the sensitive
information. In this paper, we consider the specific case of leakage caused by
peculiar value distributions that differ from what is considered typical and ex-
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(b) P (Age|L1)

<
1
8

1
8
-1
9

2
0
-2
4

2
5
-2
9

3
0
-3
4

3
5
-3
9

4
0
-4
4

4
5
-4
9

5
0
-5
4

>
5
5

Age

0

0,05

0,1

0,15

0,2

0,25

0,3

P
(A

g
e
 |

 L
2
)

(c) P (Age|L2)
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(d) P (Age|L3)
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Fig. 3: Baseline distribution (a) and histogram representation of the loc-
conditioned distributions P(Age|Location) in Figure 2(b)

pected. We then start to characterize the expected distribution, formally defined
as baseline distribution as follows.

Definition 2 (Baseline distribution). Let A be a set of attributes, and let X

and Y be two disjoint subsets of A. The baseline distribution of X with respect
to Y , denoted BY (X) is the expected distribution of the different values (or range
thereof) of X with respect to Y .

The baseline distribution is the distribution publicly released by the data
holder and can correspond to the real distribution of the values of attributes X

in the table T or can be any distribution that the data holder decides to publicly
release. We assume the data holder to release truthful data and therefore assume
the baseline distribution to coincide with the distribution of the values of X in
T , that is, BY (X) = P (X). This being said, in the following we simply use P (X)
when referring to the baseline distribution.

Example 3. With reference to our example, the baseline distribution P (Age)
corresponds to the values (expressed in percentage) in the last column of Fig-
ure 2(b), which is also graphically reported as a histogram in Figure 3(a). Fig-
ures 3(b)-3(f) report the histogram representations of the loc-conditioned distri-
butions for the different locations. As clearly visible from the histograms loca-
tions, while locations L1, L3, L4, and L5 enjoy a value distribution that resembles
the expected baseline, location L2 (the headquarter) shows a distribution con-
siderably different.

Inference of sensitive information in our context is therefore caused by un-
usual distribution of values of X that the observer can learn from viewing re-
leased tuples. In the following section, we characterize unusual distributions and



propose an approach to ensure released tuples be protected against such infer-
ence. In particular, our goal consists in providing the data holder with a means
for assessing whether the release of a tuple (in conjunction with those already
released) is safe with to respect to inference or should be denied.3

4 Assessing exposure

The first step for determining whether the release of a tuple t concerning a
target y (i.e., y = t[Y ]) is safe consists in characterizing when the y-conditioned
distribution of X (i.e., P (X |y)) is peculiar . In our framing of the problem, this
happens when the difference, denoted ∆(X, y), between P (X |y) and the baseline
distribution P (X) characterizes y as an outlier , that is, an entity that has a
distribution of values of X different from what expected (and from the majority
of the other targets). The problem is then how to define such a difference ∆(X, y).
To this purpose, we adopt the classical notion of Kullback-Leibler distance DKL

and define ∆(X, y) as follows.

∆(X, y) = DKL(P (X |y), P (X)) =
∑

x∈X

p(x|y) log2

p(x|y)

p(x)
(1)

Example 4. Consider the distributions of the Age values for the different loca-
tions and P (Age) in Figure 2(b). We have:

∆(Age, L1) = p(< 18|L1) log2

p(< 18|L1)

p(< 18)
+ . . . + p(≥ 55|L1) log2

p(≥ 55|L1)

p(≥ 55)
=

0.0355 log2

0.0355

0.0256
+ . . . + 0.0010 log2

0.0010

0.0021
= 0.12.

Similarly, we obtain: ∆(Age, L2) = 0.42, ∆(Age, L3) = 0.07, ∆(Age, L4) = 0.06,
and ∆(Age, L5) = 0.06.

Translating the concept above to the whole table T , we aim at determining
the average among the distances of the different y’s, each weighted by y’s fre-
quency in the table. Such a formula nicely corresponds to the statistical concept
of mutual information, for which DKL represents a possible decomposition [8].
Intuitively, the mutual information between X and Y characterizes the average
amount of knowledge about X an observer can have observing Y , or vice versa.
The mutual information captures the weighted average of the Kullback-Leibler
distance for the different targets as follows.

I(X, Y ) =
∑

x∈X,y∈Y

p(y)p(x|y) log2

p(x|y)

p(x)
=

∑

y∈Y

p(y)∆(X, y) (2)

3 Remember that the party requesting the release of the tuple is trusted and the
communication is protected. Hence, denying a release does not cause any inference.



Example 5. With respect to our running example, consider the values p(loc), and
∆(Age, loc), with loc = L1, . . . , L5, reported in Figure 2(c) and in Example 4,
respectively. We have:
I(Age, Location) = p(L1)∆(Age, L1) + p(L2)∆(Age, L2) + p(L3)∆(Age, L3) +
p(L4)∆(Age, L4) + p(L5)∆(Age, L5) = 0.2029 · 0.12 + 0.1299 · 0.42 + 0.1652 ·
0.07 + 0.2007 · 0.06 + 0.3013 · 0.06 = 0.12

The sensitive information s(y) associated with a target y ∈ Y is considered
exposed if ∆(X, y) deviates from its average I(X, Y ) more than a standard
deviation σ∆. In such a case we say that y is an X-outlier, as defined by the
following definition.

Definition 3 (X-outlier). Let T be a table over attributes A and let X and Y

be two subsets of A such that X;Y. We say that y ∈ Y is an X-outlier if and
only if ∆(X, y) > I(X, Y ) + σ∆, where σ∆ is the standard deviation of ∆(X, y).

Example 6. With respect to our running example, suppose that σ∆ = 0.02
and consider the values of ∆(Age, L1), . . . , ∆(Age, L5) in Example 4 and of
I(Age, Location) in Example 5. L2 is the unique location that is an Age-outlier
since ∆(Age, L2) = 0.42 is greater than I(Age, Location) + σ∆ = 0.14.

Definition 3 characterizes the actual outliers in the original table T . However,
external observers can only see and learn the distribution of values computed on
tuples that have been released. By denoting with Tr the set of released tuples
and with Pr the value distributions observable on Tr (in contrast to the P

observable on T ), the knowledge of an external observer can be expressed as the
different observations Pr(X |y) she can learn by collecting all the tuples released
and the baseline distribution P (X) publicly released by the data holder. We
therefore need to characterize the exposure of a target y in terms of how much
the observable y-conditioned distribution of X differ from the one expected.

A first term to characterize such exposure is the distance ∆r(X, y) of the
y-conditioned distribution of X over the released tuples Tr (i.e., Pr(X |y)) and
the expected baseline distribution (i.e., P (X)). A second term that comes into
play is the frequency of the specific y in the released dataset Tr. The rational
is that since external observers do not have any information about the content
of the original table T , they also do not know the number of tuples related to
a given y in T ; the only information observers can have about a target y is the
one observable in Tr. Targets having small frequencies in Tr are then intrinsi-
cally more protected than ones having greater frequencies. In fact, if a target y

appears with only few occurrences in Tr, an observer is likely not to put great
confidence on its distribution, observed over few tuples. For instance, consider a
released dataset Tr of 1000 tuples, where 10 tuples refer to y1 and 990 to y2, with
P (X |y1) = P (X |y2). While ∆r(X, y1) will be the same as ∆r(X, y2), an observer
might not grant much confidence on the observations on y1 since they result a
limited number of tuples compared to the size of Tr. This aspect is captured by
considering the frequency pr(y) of y in Tr as a weight for the Kullback-Leibler
distance when computing the exposure of y. We therefore evaluate the exposure
for a target y given a set of released tuples Tr as follows.



Definition 4 (Exposure). Let Tr be a set of released tuples over attributes A,
let X and Y be two subsets of A such that X;Y, and let y ∈ Y be a target. The
exposure for y over Tr due to the dependency on X is Er(X, y) = pr(y)∆r(X, y).

Example 7. With reference to our running example, consider the evaluation of
the exposure for target L2, and suppose that ∆r(Age, L2) = 0.22. If Tr is com-
posed by 10 tuples on L2 and 90 tuples of different locations, then pr(L2) = 0.1,
and the exposure for L2 is Er(Age, L2) = pr(L2)∆r(Age, L2) = 0.1 · 0.22 = 0.02.
If, otherwise, Tr is composed by 10 L2 tuples and 10 tuples of different locations,
then pr(L2) = 0.5, and the exposure for L2 is Er(Age, L2) = pr(L2)∆r(Age, L2) =
0.5 · 0.22 = 0.11.

Having characterized the exposure for y over a given release Tr, we now need
to characterize when the release of a tuple t is safe or when the corresponding
target y = t[Y ] is considered too exposed and the privacy of its associated
sensitive information s(y) at risk. Adapting Definition 4, we consider the release
of a given target y safe if its exposure is not above the average exposure plus

one standard deviation, σE . The average exposure is Ir(X,Y )
|Yr|

, with Ir(X, Y ) the

mutual information between attributes X and Y computed on Tr, and |Yr| the
different values of Y in Tr. The average exposure is computed on Tr instead of
T since the original table T is not known to external observers, who can only
see and learn distributions from the released dataset Tr. Note that, clearly, the
average exposure differs from the average of ∆(X, y) of Definition 3.

Definition 5 (Safe release). Let Tr be a set of released tuples over attributes
A, let X and Y be two subsets of A such that X;Y, let t be a tuple to be
released, with y = t[Y ]. The release of t is safe if Er′(X, y) = pr′(y) · ∆r′(X, y)

over Tr′ = Tr∪t is less than Ir′ (X,Y )
|Yr′ |

+σE , where | Yr′ | is the number of different

values of Y in Tr′ .

According to Definition 5, a tuple t, with y = t[Y ], can be released if the
exposure Er′(X, y) for y = t[Y ] over Tr′ = Tr ∪ t (Definition 4) is less than the

threshold Ir′ (X,Y )
|Yr′ |

+ σE .

5 Controlling exposure and regulating release

In the previous section we have characterized when a release is safe with respect
to inference, which is when the distribution of values observable in the external
world does not define the involved target as an X-outlier. The remaining aspect
to consider is when to start enforcing such control. As a matter of fact, we are
considering a scenario of incremental releases where the control needs to operate
at run time and tuples can be requested one by one. We can clearly imagine that
the release of the first few tuples will produce random distribution of values that
will usually not resemble the actual distribution existing in the database, thus
corresponding to an exposure of the different targets that can considerably differ
from their real exposures. Typically, such a random exposure will characterize



the targets as X-outliers, thus blocking any release. Enforcing the control on
the safe release at the start time of the system can therefore cause a denial
of service in the system raising many false alarms (since also targets that are
not X-outliers will have a random initial distribution that will differ from the
baseline). In addition we note that clearly no observer could put confidence on
statistics computed over a few releases as they cannot be considered accurate
and their distribution can be completely random. There is therefore a starting
time at which the data holder should allow the release of tuples regardless of
whether the safety condition (Definition 5) is satisfied. After a sufficient amount
of information has been released for a given target, subsequent releases should
be controlled and allowed only if the release is safe. There is not a unique way to
specify when the amount of information released should be considered sufficient.
In the following, we discuss some possible approaches, which we are further
investigating, performing experiments to evaluate their pros and cons in different
settings.

– Exposure accuracy. A first approach consists in evaluating the accuracy of
the exposure known to the observer with respect to the real exposure, which
corresponds to the release of all the tuples of the target. Once the exposure
approximates for the first time the real exposure (i.e., when the amount of
released data is such that the corresponding exposure approximates the real
exposure), the external knowledge can be considered accurate enough and a
control can be triggered. Exposure accuracy is particular intuitive as a con-
trol on real X-outliers. In fact, exposure accuracy would trigger the control
when the external observations would essentially leak the information that
the target is close to its real distribution (which is a distribution correspond-
ing to an X-outlier). Also, for targets which are not X-outliers it intuitively
captures the fact that the external knowledge is not accurate.

– Number of releases. Another possible alternative solution is based on the
number of tuples released for each given target. Intuitively this approach
captures the fact that a limited number of tuples offers little knowledge to
the observer since the distributions of values on them can be completely
random and rarely correspond to the distribution actually existing in the
database. The threshold on the number of tuples to be applied could be
the same for the different targets or specific for each of them (e.g., targets
with smaller occurrences could have a smaller threshold). The consideration
of the number of released tuples naturally captures the confidence that the
observer can put on the distributions based on the amount of data released:
the more the data, the more the confident in the statistics.

– Number of releases for different values of X. While starting the control after
a given number of tuples has been released for a given target can perform
usually well, especially for targets that are not X-outliers, in few cases (and
in particular for outliers) it may not suffice. For instance, with reference
to our example, the first few tuples could all be referred to the same range
value for Age, then exposing a peak for that range. To illustrate, consider our
running example in Figure 2 and Figure 3. For our outlier location L2, the
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Fig. 4: Fitting the baseline distribution within the L2-conditioned distribution

release of tuples in such a way that the distribution resembles the baseline
distribution forces a maximum number of tuples that could be released for
each age range. For instance, in the baseline distribution almost 19.67%
of the soldiers are in the range [25-29], while in L2 only 8.78% of tuples
(140 tuples) fall in such range. Respecting the baseline distribution requires,
even in the case where all tuples in the range [25-29] of L2 are released to
not release tuples in other ranges (so that the 140 tuples above actually
correspond to 19.67%). Figure 4 graphically depicts this reasoning fitting
the baseline distribution (in black) within the L2-conditioned distribution
(gray going over the black). For each value range, no more than the number
reached by the baseline distribution should be released.

The different approaches above have all an intuitive nature, providing dif-
ferent kinds of controls that perform well in different scenarios. They could
therefore be applied individually or in conjunction to control releases of data in
different settings. We have conducted some experiments to assess the impact and
guarantees of the different types of controls. We have considered a table T as
described in Example 1, where the 10000 tuples in the table have been randomly
generated to respect the baseline distribution illustrated in Figure 3(a), which
corresponds to the age distribution of the UK Regular Forces as at 1 March 2006.
The distribution of the age ranges for each location are illustrated in Figure 2,
characterizing location L2 as the only Age-outlier. We performed five simula-
tions, where each simulation consists in randomly releasing all the tuples in T .
Before each simulation, the content of table T has been shuffled, so to produce
different orders of release (and therefore different incremental observations over
time). Figures 5(a)-(e) show for the five simulations how the exposure Er(Age, Li)
varies with the number of released tuples for the five locations L1, . . . , L5. The
horizontal dashed lines represent the actual exposure E(Age, Li) and the contin-
uous lines represent the final value of the threshold (i.e., the threshold computed
in correspondence of the last tuple released) introduced in Definition 5, which
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Fig. 5: Exposure variation for each location and simulation (a)-(e), and average
on the five simulations of the exposure and threshold for each location (f)

varies as a new tuple is released. We report the final threshold value since in
our experiments, after the release of a relatively small number of tuples (200
tuples on average), the released global distribution resembles the genuine distri-
bution over table T , thus producing a threshold that quickly converges to the
final value. Figure 5(f) illustrates, for each location, the average of the exposures
Er(Age, Li) and of the threshold evaluated in the five simulations. In the graphs,
we use a logarithmic scale for the ordinate axis to make the plot easier to view.



All the graphs in Figure 5 show that, for all locations and simulations, in
the first releases there is a high exposure with fluctuations. The exposure then
decreases and becomes stable (apart again small fluctuations) as the number of
tuples released increases until the actual exposure is reached. The graphs con-
firm the intuition that the false positives happen mainly at the beginning of the
releases (since distributions over a few tuples cannot be considered reliable). In
fact, after a certain number of releases, for all locations but L2 the exposure
Er(Age, Li) computed by an observer typically is less than the threshold rep-
resented by the continuous horizontal lines, meaning that the tuples related to
such locations can be safely released.

The different thresholds discussed above, when individually applied, have
different impact on the control. In particular, the accuracy of the exposure with
respect to actual exposure would start the control the first time the lines of the
exposure of the releases come close to the actual exposure. While performing
usually well and being intuitive, such a threshold has the side effect of not
triggering the control for releases that show an anomalous distribution for targets
that in fact are not X-outlier, that is, for false positives that remain such for
a considerable number of releases. This is, for example, the case of the fifth
simulated release for location L1, where the exposure remains for a very long
time above the threshold but the release is allowed since the exposure does
not correctly reflect the actual exposure (in other words, it is a false positive).
Whether such situation is legitimate or not depends on the kind of controls
one wants to apply and whether releases of false positives should be considered
as harmful. In such case, another threshold should be applied in alternative or
in conjunction with the accuracy metrics. The threshold based on the number
of tuples released would start the control after a given number of tuples are
released, blocking any release considered unsafe according to our definition. In
such case, in the specific case of the fifth simulation of location L4, the release of
tuples would be blocked after the threshold number of tuples has been reached.

6 Related work

Several research efforts have been recently dedicated to the problem of protecting
privacy in data publication (e.g., [4,9,17,23]). In particular, considerable atten-
tion has been devoted to the problem of protecting the respondents’ identities
and the sensitive information associated with the respondents to whom the pub-
lished data refer. Such proposals use the notion of k-anonymity [23] as a starting
point or adopt some extensions of k-anonymity (e.g., [9,16,17,19]), and others
are based on the idea of fragmenting data and publishing associations at the
group level (e.g., [7,28]). Among them, t-closeness [17] and (αi, βi)-closeness [9]
present some similarities with our work. t-closeness protects attribute disclosure
by imposing that the distribution of sensitive values in the equivalence classes of
the released table (i.e., in the groups of tuples with the same value for the quasi-
identifying attributes) must be similar to the distribution in the private table.
To this purpose, the t-closeness approach applies the Earth Mover’s Distance



(EMD) for measuring the distance between the global distribution computed on
the private table and the distributions computed within each equivalence classes.
The distance between these distributions should be no more than t. In [9], the
authors present an extension of t-closeness that overcomes some of its limita-
tions (e.g., the difficulty in choosing a correct value for t and the impossibility to
specify that there are some attribute values more sensitive than others). With
this approach, the data publisher defines a different range [αi, βi] associated with
each value vi of a sensitive attribute. A released table is then acceptable when
for each equivalence class the proportion of tuples in the class with a given sensi-
tive value vi falls in the corresponding range [αi, βi]. Although our proposal and
these two approaches have in common the fact that they consider inference issues
caused by anomalous value distributions, our work addresses a different and more
complex scenario characterized by incremental releases of detailed data. Also, in
our scenario the sensitive information is not released but can be inferred due
to a value distribution dependency between a set of attributes appearing in the
released data and the sensitive property itself.

Inference problems have been studied extensively in the context of multilevel
database systems (e.g., [15,18,20]). Most inference research addresses detection
of inference channels within a database or at query processing time. In the first
case, inference channels are removed by upgrading selected schema components
or redesigning the schema (e.g., [22]). In the second case, database transactions
are evaluated to determine whether they lead to illegal inferences and, if so,
deny the query (e.g., [12,14,21,25]). Neither approach is however applicable to
the problem under consideration. As a matter of fact, the inference problem we
address is due to a dependency existing between the value distribution observable
aggregating all the released tuples and the sensitive information that we want to
protect. Previous work on inference focuses instead on locating inference channels
based on semantic relationships between attributes or on queries submitted to
the systems.

Our problem also has common aspects with the aggregation problem that
arises when the aggregation of two or more data items is considered more sensi-
tive than the single data items. A well-known example is the Secret Government
Agency (SGA) Phonebook [24]: the entire phonebook is classified as confiden-
tial and it is accessible only by users with the appropriate clearance but single
entries are unclassified and available to any requester. Although our problem
is conceptually similar, the classical solutions developed for addressing the ag-
gregation problem (e.g., [13,15,27]) are not directly applicable in our context.
These approaches define a threshold on the amount of data that can be released
to each user and focus on maintaining history and establishing how to control
collusion among users.

Other related proposals are those used to assess the interestingness of asso-
ciation rules in knowledge discovery problems. In [26], the authors introduced
the J-measure to assess the relevance of an association rule. In some sense, these
proposals are complementary to ours, as they can be used for assessing depen-
dencies among the attributes characterizing a data collection. The information



they produce can then be used as input to our approach for the definition of
appropriate dependencies.

7 Conclusions

We considered the problem of protecting sensitive information in an incremen-
tal data release scenario, where the data holder releases non sensitive data on
demand. As more and more data are released, an external observer can aggre-
gate such data and infer the sensitive information by exploiting a dependency
between the distribution of the non sensitive released data and the sensitive in-
formation itself. In this paper, we presented an approach for characterizing when
data can be released without incurring to such inference. To this purpose, we de-
fined when a distribution can be considered unusual and exploited for inference,
and introduced the concept of safe release. Our work represents only a first step
in the investigation of the problem and leaves space for further investigations,
including: the experimental evaluations of the different approaches outlined in
this paper for enforcing information release at run-time, the extension of the
model to the consideration of inferences arising from information other than
value distributions differing from a given pre-defined one, and the consideration
of different types of knowledge that observers can exploit for inference.
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