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24044 Dalmine - Italy

parabosc@unibg.it

Pierangela Samarati
DTI - Università di Milano
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ABSTRACT
Database outsourcing is becoming increasingly popular in-
troducing a new paradigm, called database-as-a-service
(DAS), where an organization’s database is stored at an ex-
ternal service provider. In such a scenario, access control is
a very important issue, especially if the data owner wishes
to publish her data for external use.

In this paper, we first present our approach for the im-
plementation of access control through selective encryption.
The focus of the paper is then the presentation of the exper-
imental results, which demonstrate the applicability of our
proposal.

Categories and Subject Descriptors: H.2.1 [Database
Management]: Logical Design; H.2.7 [Database Manage-
ment]: Database Administration

General Terms: Security, Management, Experimentation.

Keywords: Encrypted/indexing databases, selective ac-
cess, hierarchical key derivation schema.

1. INTRODUCTION
The amount of sensitive information held by organiza-

tions’ databases is increasing very quickly and these data
have to be protected from unauthorized uses. The manage-
ment of large databases is quite expensive, as it needs not
only storage capacity, but also skilled personnel. An emerg-
ing solution to this problem is represented by database out-
sourcing, that is, delegating database management to a third
party. In such a solution, called database as a service (DAS),
an organization’s database is stored at an external service
provider that should provide mechanisms for clients to ac-
cess the outsourced databases. The main advantage of the
outsourcing solution is twofold. First, it provides significant
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cost savings and service benefits. Second, it promises higher
availability and more effective disaster protection than in-
house operations.

The main problem in outsourcing data to external ser-
vice providers is that sensitive data become stored on a site
that is not under the data owner’s direct control. Therefore,
data confidentiality and even integrity can be put at risk. In
many contexts, confidentiality and integrity are managed by
means of encryption [12]. By encrypting the data, the user
can be sure that nobody, except her, can read the data.
However, a trivial solution that asks the database to store
only encrypted information does not work, because it leaves
the external service unable to support selective access. Since
confidentiality demands that data decryption must be pos-
sible only at the client side, techniques are needed to enable
external servers to execute queries on encrypted data, oth-
erwise all the relations involved in a query would have to be
sent to the client for query execution.

Approaches towards the solution of this problem were pre-
sented in [8, 11, 14, 15, 17], where the authors proposed
storing, together with the encrypted database, additional
indexing information. Such indexes are used by the DBMS
to select the data to be returned in response to a query,
without need of decrypting the data themselves. Different
indexing methods have been proposed, each one suitable for
the remote execution of a particular kind of query. In [8, 11]
the authors propose a hash-based method for database en-
cryption suitable for selection queries. To execute interval-
based queries, the B+-tree structures typically used inside
DBMSs are adopted. Privacy homomorphism has also been
proposed for allowing the execution of aggregation queries
over encrypted data [16, 18]. In this case the server stores an
encrypted table with an index for each aggregation attribute
(i.e., an attribute on which the aggregate operator can be ap-
plied) and obtained from the original attribute with privacy
homomorphism. An operation on an aggregation attribute
can then be evaluated by computing the aggregation at the
server and by decrypting the result at the client side. Other
works on privacy homomorphism illustrate techniques for
performing arithmetic operations (+, -, ×, /) on encrypted
data and do not consider comparison operations [5]. In [1]
an order preserving encryption schema (OPES) is presented
to support equality and range queries over encrypted data.

Sara
Line



This approach operates only on integer values and the re-
sults of a query posed on an attribute encrypted with OPES
is complete and does not contain spurious tuples.

Even if the DAS scenario has been studied in-depth in the
last few years, there are new interesting research challenges
that have to be investigated. In particular, the problem of
guaranteeing an efficient mechanism for implementing selec-
tive access to the remote database is still an open issue. As
a matter of fact, all the existing proposals for designing and
querying encrypted/indexing outsourced databases assume
the client has complete access to the query result. How-
ever, this assumption does not fit real world applications,
where different users may have different access privileges. A
trivial solution for implementing access control in the DAS
scenario consists in the explicit definition of authorizations.
The main drawback of this method is that the data owner
has to intercept each reply message from the server to the
client, to filter out all the tuples that the final user cannot
access. In fact, this work cannot be delegated to the remote
server which is not trusted to know the access control policy
defined by the data owner. Such an approach may however
cause a bottleneck, because it increases the processing and
communication load at the data owner site. A promising
direction to avoid such a bottleneck is represented by selec-
tively encrypting data so that users (or groups thereof) can
decrypt only the data they are authorized to access.

Recently, some approaches have been proposed for search-
ing on encrypted data [3, 13, 25]. Basically, a secure index
data structure is associated with each document and it al-
lows a requestor with a trapdoor for a given keyword x to
verify whether the index contains x. The index is computed
using the public key of the requestor and the keyword x,
and the trapdoor is computed using the private key of the
requestor and the keyword x. An important feature of this
approach is that it allows the server to retrieve all docu-
ments containing the keyword x without revealing any other
information. In [3] the authors propose different construc-
tions for implementing this method and one is based on the
Identity Based Encryption (IBE) [4], which is a public key
cryptosystem where public keys can be arbitrary bitstrings,
from which a trusted entity can extract the corresponding
private keys.

In this paper, after a brief introduction of the structure
of the DAS scenario (Section 2), we describe an approach
for the implementation of access control through selective
encryption (Section 3). Our solution is based on a hierar-
chical structure, used for key derivation, reflecting the access
control policy defined by the data owner. The focus of the
paper is then in the presentation of the experimental results
which demonstrate the performance of the variants of our
approach in a system with a number of subjects and objects
hierarchically organized (Section 4).

2. BASIC CONCEPTS AND SCENARIO
The DAS scenario involves mainly four entities (see Fig-

ure 1):

• Data owner : an organization that produces data to be
made available for controlled external release;

• User : human entity that presents requests (queries) to
the system;

• Client : front-end that transforms the user queries into

Figure 1: DAS Scenario

TeamNews

IdTeam Name Foundation Year Budget League

01 team1 1970 15.000 Baseball
02 team2 1986 16.000 Basketball
03 team3 1974 15.000 Baseball
04 team4 1977 16.000 Football
05 team5 1972 18.000 Basketball
06 team6 1981 16.000 Baseball
07 team7 1979 18.000 Football

Figure 2: An example of plaintext relation

TeamNewsk

Counter Etuple IdKey I1 I2 I3 I4 I5

t1 r*tso/yui+ BC α γ µ π λ
t2 hai4de-0q1 BD β δ η ρ θ
t3 nag+q8*L ACD α γ µ π λ
t4 K/ehim*13- BCD β ε η ρ θ
t5 3gia*ni+aL C α δ µ π θ
t6 F0/rab1DW* ABC β γ η ρ λ
t7 Bid2*k1-l0 AB β ε η π θ

Figure 3: An example of encrypted relation

queries on the encrypted data stored on the server;

• Server : an organization that receives the encrypted
data from a data owner and makes them available for
distribution to clients.

Clients and data owners are assumed to trust the server to
faithfully maintain outsourced data. Specifically, the server
is relied upon for the availability of outsourced databases.
However, the server is assumed not to be trusted with the
confidentiality of the actual database content. That is, we
want to preserve the server from making unauthorized access
to the data stored in the database. To this purpose, the data
owner encrypts her data and gives the encrypted database
to the server. The end users, instead, are trusted to access
the database, according to the data owner’s policy.

Note that database encryption may be performed at differ-
ent levels of granularity: relation level, attribute level, tuple
level, and element level. To balance the client workload and
query execution efficiency, consistently with previous pro-
posals [11, 17], we assume that the database is encrypted at
tuple level.

The main effort of current research in this scenario is the
design of a mechanism that makes it possible to directly
query an encrypted database [14]. The existing proposals



are based on the use of indexing information associated with
each relation in the encrypted database [11, 17]. Such in-
dexes can be used by the server to select the data to be
returned in response to a query. More precisely, the server
stores an encrypted table with an index for each attribute
on which a query can include a condition. Different types of
indexes can be defined, depending on the supported queries.
For instance, hash-based methods are suitable for equality
queries [17, 20] and B+-tree based methods support range
queries [11]. For simplicity, we assume that there is an index
for each attribute in each relation. Formally, each relation ri
over schema Ri(Ai1, Ai2, . . ., Ain) in a plaintext database B is
mapped onto a relation rki over schema Rki(Counter, Etuple,
IdKey, I1, I2, . . ., In) in the encrypted database Bk where:
Counter is the primary key; Etuple is an attribute for the
encrypted tuple whose value is obtained using an encryption
function Ek (k is the key); Ii is the index associated with
the i-th attribute. For instance, given relation TeamNews

in Figure 2, the corresponding encrypted relation is repre-
sented in Figure 3. (Here, the result of the hash function
is represented as a Greek letter. Also, note attribute IdKey

does not belong to current proposals, but it is inserted for
our solution. Its management and semantics will be dis-
cussed in Section 3.) As it is visible from this table, the
encrypted table has the same number of rows as the origi-
nal one. The query processing is then performed as follows
(see Figure 1): (1) each query is mapped onto a query on
encrypted data and (2) it is then sent to the server. The
result of this query is a set of encrypted tuples (3) that are
then processed by the client front-end to decrypt data and
discard spurious tuples that may be part of the result. The
final result (4) is then presented to the user. Note that this
process is based on catalogs stored at the client side that
describe the structure of the remote database [9].

3. ACCESS CONTROL IN THE DAS SCE-
NARIO

The existing proposals for designing and querying en-
crypted/indexing outsourced databases focus on the chal-
lenges posed by protecting data at the server side, and as-
sume the client has complete access to the query result [6,
7, 17, 23]. Therefore, tuples are encrypted using a single
key and the knowledge of the key grants complete access to
the whole database. Clearly, such an assumption does not
fit real world applications, where the data owner often re-
quires to enforce access restrictions to different users, sets
of users, or applications. We then propose to exploit data
encryption by including authorizations in the encrypted
data themselves. While it is in principle advisable to leave
authorization-based access control and cryptographic pro-
tection separate, in the DAS scenario such a combination
can prove successful. The idea is to use different encryption
keys for different data. To access such encrypted data, users
have to decrypt them, which requires knowledge of the en-
cryption algorithm and of the specific decryption key being
used. If the access to the decryption keys is differentiated on
the users’ identity, different users are given different access
rights. In classical terms, the access rights defined by the
data owner can be represented by using an access matrix A,
where rows correspond to subjects, columns correspond to
objects, and entry A[s, o] is set to 1 if s has permission to

t1 t2 t3 t4 t5 t6 t7
Alice 0 0 1 0 0 1 1
Bob 1 1 0 1 0 1 1

Carol 1 0 1 1 1 0 0
David 0 1 1 1 0 1 0

Figure 4: An example of access matrix

access o; 0 otherwise.1

Given an access matrix A, ACLi denotes the vector cor-
responding to the i-th column (i.e., the access control list
indicating the subjects that can read tuple ti), and CAP j

denotes the vector corresponding to the j-th row (i.e., the
capability list indicating the objects that user uj can read).
Let us consider a situation with four users, namely Alice,
Bob, Carol, and David (which in the following we abbrevi-
ate as A, B, C, and D, respectively); they are supporters
of different teams and need to read the tuples of relation
TeamNews. Figure 4 illustrates an example of access matrix.
With a slight abuse of notation, in the following we will use
ACLi (CAP j , respectively) to denote either the bit vector
corresponding to a column (a row, respectively) or the set
of users (tuples, respectively) whose entry in the access ma-
trix is 1. With reference to the matrix in Figure 4, ACL1

denotes both the bit vector [0110] and the set of users {Bob,
Carol}; while CAPC denotes both the bit vector [1011100]
and the set of tuples t1, t3, t4, and t5.

A straightforward solution for implementing access con-
trol through cryptography consists in encrypting each tuple
in the outsourced database with a different key and assign-
ing to each user the set of keys associated with the tuples
she can access. However, this simple solution is not effi-
cient and requires the management of too many keys. For
instance, with respect to the access matrix in Figure 4, user
Carol should receive the keys used for encrypting tuples t1,
t3, t4, and t5. We propose a different method that con-
sists in grouping users with the same access privileges and
in encrypting each tuple (or group) with the key associated
with the set of users that can access it. To this purpose,
we consider a user hierarchy whose elements are all the pos-
sible sets of users in the system together with the partial
order naturally induced on it by the subset containment re-
lationship. More precisely, the user hierarchy is defined as
follows.

Definition 1. (User Hierarchy) Given a set U of users,
a user hierarchy, denoted UH, is a pair (P(U), ¹), where
P(U) is the power set of U and ¹ is a partial order on P(U)
such that ∀X, Y ∈ P(U), X¹ Y iff Y ⊆ X.

We consider each user group has associated the tuples
whose ACL, defined in the access matrix, corresponds to
the group itself. With respect to our example in Figure 4,
tuple {t4} is associated with group BCD (corresponding to
the set of users Bob, Carol, and David), while the set {t1, t4}
of tuples are associated with group BC . It is then straight-
forward to see how the partial order relationship between
user groups implies a partial order relationship between the
access rights associated with the set of users corresponding
to the groups. With respect to the above example, users Bob

1Generally speaking, the entry should be the list of privi-
leges that s has on o. Since we are only interested in read
operations, we assume a boolean value indicates the pres-
ence or absence of the permission.
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Figure 5: An example of user hierarchy

and Carol can read tuples t1 and t4 and users Bob, Carol,
and David can read tuple t4.

The user hierarchy can be graphically represented via a
directed acyclic graph (DAG) with a node for each set of
users, and an edge from node Y to node X if X ¹ Y . Fig-
ure 5 illustrates the graphical representation of the user hi-
erarchy constructed on the set {Alice, Bob, Carol, David}
of users. The nodes of the hierarchy are labeled with the
tuple whose ACL coincides with the node, as specified in
the access matrix in Figure 4.

By assuming that each node of the hierarchy is associated
with a key, the access control problem could be solved by
encrypting each tuple with the key of the node correspond-
ing to its ACL (e.g., tuple t1 should be encrypted with key
KBC) and by assigning to each user the set of keys of the
nodes to which she belongs. Attribute IdKey in the en-
crypted table contains the label of the node whose key is
used to encrypt the specific tuple (e.g., t1 is associated with
BC). The advantage of this solution, with respect to the
trivial one above-mentioned, is that potentially a key can
be used to encrypt more than one tuple. The disadvan-
tage is that this solution involves the assignment of many
keys to each user. For instance, according to the access ma-
trix in Figure 4, user Carol needs to know keys KC , KBC ,
KACD, and KBCD. We therefore propose an alternative so-
lution that exploits the key derivation methods operating on
DAGs [2, 19, 21, 22]. Basically, these methods operate on
the hierarchy computing the keys of lower-level nodes based
on the keys of their predecessors. In our context, these meth-
ods allow us to reduce the number of keys that need to be
directly communicated to each user. For instance, by ap-
plying one of these derivation methods, user Carol needs to
know only key KC , from which she can derive KBC , KACD,
and KBCD (these keys are needed to decrypt the tuples in
CAPC). However, the key derivation schemes working on
DAGs are complex and require a lot of key storage (whose
size grows exponentially with the nodes of the hierarchy). To
avoid these problems, we transform the DAG into an equiva-
lent tree structure and adopt simpler key management tech-
niques that work on trees. The method described in [24] is
based on a family of one-way functions usually implemented
through an encryption function (i.e., fp(x) = Ex(p)). This
method assumes that each node ni in the tree has a name,
name(ni), and a key Ki. The value of each Ki is computed
as Ki = fname(ni)(Kj), where nj is the unique parent of ni.

Algorithm 1 (DAG to tree transformation).

Transformation(A)

Step 1: Identification of candidate nodes
M = FindMaterialNodes(A)
NM = FindNonMaterialNodes(M)

Step 2: Identification of edges
A = SetParent(M ∪NM) /* Select a parent for each node */
T = (M ∪NM , A)

Step 3: Tree pruning
T = PruneTree(T )
return (T )

Figure 6: DAG to tree transformation algorithm

As the root node has no parent, its key is randomly chosen.
Note that with this key derivation method two siblings can-
not have the same name because otherwise they would have
the same key. A user that knows a key Ki can compute
only the keys in the subtree rooted at node ni. The number
of steps necessary to derive a key is therefore equal to the
length of the path connecting the node of which the key is
known to the node of which the key needs to be computed.

The DAG to tree transformation process implies the as-
signment of more than one key to each user: the tree is
obtained by removing some paths of the DAG and therefore
some keys that the user could derive on the DAG are no
more derivable on the tree. For instance, consider the node
ABD in the UH in Figure 5, which is connected with AB ,
AD , and BD . Suppose that after the DAG to tree trans-
formation process node ABD is only connected with AB . In
this case, David cannot derive key KABD that is necessary to
access tuple t6 and keys KD and KABD have to be directly
communicated to David.

On the one hand, the DAG to tree process allows us to
work with a more simple key derivation method. On the
other hand, more information have to be stored at the client
side and the data owner has to spend much more time in
communicating and managing the keys. Therefore, the the
main objective of the transformation process is the mini-
mization of the number of keys that have to be produced.
Unfortunately, transforming a DAG into a tree in such a way
to minimize the number of keys to be produced is an NP-
hard problem [10]. This result forces us to design a heuristic
algorithm. The goal of this paper is to show the design of the
heuristic algorithm and investigate its behavior, in terms of
the quality of its solution and the time required for its ex-
ecution. To this end, we define a scenario that allows us
to test the amount of resources required to assign keys to
every user and the time required to compute the solution.
The results of the experiments in Section 4 show that the
heuristic algorithm can be applied even in scenarios with a
considerable number of users.

3.1 DAG to Tree Transformation Algorithm
As discussed in the previous Section, our algorithm is built

with the aim to minimize the number of keys to be commu-
nicated to each user. More precisely, the metric we want
to minimize is the average number of keys that users have
to know to access the tuples for which they have an access
right.

At a high level, the algorithm implementing our transfor-
mation consists of three main steps (see Figure 6). We now
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ure 5 before the pruning step

discuss the different steps.

Step 1: Identification of candidate nodes
We select a subset of the DAG’s nodes, called mate-
rial (M) and non material (NM) nodes. The material
nodes correspond to actual ACLs and must belong to
the tree because their keys are used to encrypt the as-
sociated tuples. For instance, with respect to the user
hierarchy in Figure 5, the set M of material nodes is
{C, AB, BC, BD, ABD, ACD, BCD}. The non material
nodes are the nodes that can be used to reduce the number
of keys assigned to users. In our example, the set NM of
non material nodes is {A, B, D, AD, CD}. As shown in [10],
non material nodes can be computed recursively by consid-
ering the fix-point of the computation of the parents of two
material or non material nodes. Note that the final set of
material and non material nodes is closed under the inter-
section operation.

Figure 7 illustrates the set M ∪ NM of material and non
material nodes corresponding to the DAG in Figure 5. To
distinguish between the two kinds of nodes, material nodes
are circled.

Step 2: Identification of edges
The second step of the algorithm consists in selecting, for
each node in M ∪NM , one parent, in order to obtain a tree.
This step is performed by noting that each node in the DAG
appears at a certain level and that an edge connects nodes of
adjacent levels. A level contains all nodes corresponding to
the sets of users with the same cardinality. That is, level 0
contains the empty set, level 1 contains nodes corresponding
to single users, level 2 contains nodes corresponding to pairs
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Figure 9: Tree corresponding to the DAG in Fig-
ure 5 after the pruning step

of users, and so on. For instance, the user hierarchy in Fig-
ure 5 has five levels (0 . . . 4) and level 3 contains nodes ABC,
ABD, ACD, and BCD. The selection of the parent nodes
is performed level-by-level (left to right), starting from the
highest level to level 2 (by definition the parent of nodes at
level 1 is the empty set). The selection of the parent node
can be performed according to different criteria. We will use
the experiments to evaluate the contribution that each crite-
rion gives to the quality of the solution, compared with the
increase in the execution time required for its application.
The criteria are the following.

C1. Choose randomly a candidate parent node located in
the lowest level above the node that presents a material
or non material ancestor of the node.

C2. Choose a candidate parent node located in the lowest
level above the node that presents a material or non
material ancestor of the node, giving priority to ma-
terial nodes. That is, if there are material and non
material candidate ancestors, choose randomly among
the material nodes, otherwise choose randomly among
the non material nodes.

C3. Choose a candidate parent node located in the lowest
level above the node that presents a material or non
material ancestor of the node, giving priority to ma-
terial nodes and giving priority, among non material
nodes, on the nodes with exactly one child and then
on the nodes with the greatest number of children.
That is, if there are material and non material candi-
date ancestors, choose randomly among the material
nodes, otherwise choose randomly among the non ma-
terial nodes with one child and, if such nodes do not
exist, choose randomly among the non material nodes
with the greatest number of children.

For instance, node BCD in Figure 7 has the following set
of candidate parent nodes: {B, C, D, BC, BD, CD}. The
candidate parent node in the lowest level is BC and it is
easy to see that this material node is preferable to other
material nodes. For instance, if the material node C is se-
lected as parent of node BCD, Bob should directly know
keys KBC and KBCD. If node BC is then selected, Bob

should directly know only key KBC . As another example,
consider node AD for which the candidate parent nodes are
the non material nodes A and D. Node A has one child and
therefore, according to Criterion 3, it is selected as parent of
node AD. Intuitively, the rationale behind the preference of



Criterion 3 to non material nodes with children is that a non
material node is useful only if it allows to “factorize” keys,
that is, if it allows to assign to a user a higher level key that
can permit to derive more than one lower level key, saving
on the number of keys that the user needs to receive. In
our example, Alice with the knowledge of key KA is able to
derive the pair of keys KAB and KAD. Figure 8 illustrates
the tree obtained at the end of this second step.

Step 3: Tree pruning
The third step consists in a tree pruning, where (1) non
material tree nodes with only one child and (2) non material
tree leaves are removed from the tree. In the first case, an
alternative parent node needs to be chosen for the child.
This selection is performed by applying the following two
criteria.

P1. Choose in the level of the removed node a non material
node with at least one child.

P2. If there is no alternative candidate parent node in the
level of the removed node, connect the child with the
parent of the removed node.

For instance, consider the tree in Figure 8. Node AD
is removed and node A is selected as parent of node ACD
because there are no candidate parent nodes in level 2.

It is important to note that the pruning is performed first
by removing the non material nodes with only one child
and then by removing any leaf non material node. Figure 9
illustrates the tree obtained after the pruning.

The resulting tree is then used to enforce the access con-
trol policy specified in the original access matrix. More
precisely, each tuple is encrypted with the key associated
with the node in the tree that corresponds to its ACL. The
data owner communicates to each user u the key associated
with node V in the tree such that user u ∈ V and u /∈ W ,
where W is the parent of V in the tree. For instance, with
respect to the tree in Figure 9, Carol should know keys
{KC , KBC , KACD, KBCD}. However, the keys that must
be directly communicated to Carol are only {KC , KACD}
because key KC can be used to derive KBC , which in turn
can be used to derive KBCD.

The cost of our transformation algorithm is O(|NM ∪
M |2), where NM is the set of non material nodes initially
inserted into the graph and M is the set of material nodes.
The cost is therefore at most quadratic in the number of
nodes computed in the first step of our algorithm. Since the
tree-minimization problem is NP-hard [10], the algorithm
that guarantees to identify the optimal tree has an expo-
nential complexity (as usual, if P 6= NP ).

4. PERFORMANCE EVALUATION
We describe the results of the experiments that we have

conducted to evaluate the performance of the DAG to tree
transformation algorithm. We consider as parameters of the
experiments the number U of users in the system, the num-
ber T of resources, and a set of authorizations specified in
an access matrix A. In particular, we consider a network
accessible sport news database, with t teams of pt players
and s subscribers (i.e., team supporters). The championship
is also followed by a number of writers, each working with
tw teams. The writers are grouped into sets of wm elements

and one manager is assigned to each set. More precisely, the
set U of users is partitioned into the following categories:

• Players: P1 . . . Pp, where p = t · pt;

• Team Managers: TM1 . . . TMt, where t is the number
of teams in the system;

• Writers: W1 . . . Ww, where w = dt/twe;
• Managers of writers : WM1 . . . WMm, where m =
dw/wme;

• Subscribers: S1 . . . Ss.

The system is then composed of |U| = p + t + w + m + s
users. Analogously, the set T of tuples in the database is
partitioned into two subsets:

• Player News: PN1 . . . PNp (tuples describing players);

• Team News: TN1 . . . TNt (tuples describing teams).

The system is then composed of |T | = p + t resources.
Finally, the authorizations defined in the system are the
following.

• A[Pi, PNi] = 1, i = 1 . . . p: each player can access her
player news;

• A[TMi, TNi] = 1, i = 1 . . . t: each team manager can
access the team news of her team;

• A[TMi, PNj ] = 1, i = 1 . . . t, j = ((i−1) ·pt+1) . . . (i ·
pt): each team manager can access the player news of
all the players of her team;

• A[TM2i, TNj ] = 1, i = 1 . . . t/2, j = 1 . . . t: t/2 team
managers can access all the team news of the champi-
onship;

• A[Wi, TNj ] = 1, i = 1 . . . w, j = ((i− 1) · tw + 1) . . . (i ·
tw): each writer can access the team news for the
teams she follows;

• A[Wi, PNl] = 1, i = 1 . . . w, j = ((i− 1) · tw + 1) . . . (i ·
tw), l = ((j − 1) · pt + 1) . . . (j · pt): each writer can
access the player news for the teams she follows;

• A[WMi, TNl] = 1, i = 1 . . . m, j = ((i − 1) · wm +
1) . . . (i · wm), l = ((j − 1) · tw + 1) . . . (j · tw): each
manager of writers can access the team news accessible
by the writers she follows;

• A[WMi, PNh] = 1, i = 1 . . . m, j = ((i − 1) · wm +
1) . . . (i · wm), l = ((j − 1) · tw + 1) . . . (j · tw), h =
((l− 1) · pt +1) . . . (l · pt): each manager of writers can
access the player news accessible by the writers she
follows;

• subscribers can access team news and the distribution
of the authorizations associated with subscribers follow
a Zipf distribution, which is shown by a considerable
amount of experience to represent well the behavior of
many real systems.

The access matrix A has |U| rows, one for each user, and
|T | columns, one for each resource. The resulting user hier-

archy has |U| levels and 2|U | nodes.



4.1 Parameter Setting
In our experiments we considered two different scenar-

ios. The first scenario (S1) has been described in the pre-
vious section and is characterized by two sets of resources
(i.e., Team News and Player News) and five categories of
users (i.e., Players, Team Managers, Writers, Managers of
writers, and Subscribers). In the second scenario (S2), we
consider one set of resources (i.e., Team News) and four cat-
egories of users (i.e., Team Managers, Writers, Manager of
writers, and Subscribers). Note that in S2 Players are not
considered because they do not have any access right on
Team News.

With respect to the DAG to tree transformation algo-
rithm, we implemented three different versions, one for each
criterion (C1, C2, and C3) defined for the selection of an
appropriate parent node (see Section 3.1). An additional
variation that has been considered is related to the tree
pruning phase. As described in the previous Section, when
a non material node is removed from the tree, a new parent
node needs to be chosen for the child of the removed node.
This selection has been implemented in two different ways.

Pr1. The new parent coincides with the parent of the re-
moved node;

Pr2. A candidate parent is chosen from the non material
nodes with at least one child and at the same level
of the removed node; if such a node does not exist,
criterion Pr1 is applied.

The combination of the above-mentioned criteria produces
six different configurations for each of the two scenarios S1
and S2. We then ran experiments for the following different
cases: 30, 50, 70 number t of teams; 100, 500, 1000, 1500
number s of subscribers; 20 (pt) players; 5 (wm) writers per
manager; and 3 (tw) teams followed by each writer.

4.2 Results and Considerations
There are different indicators that may be evaluated in

the algorithm testing phase. The most important one is
the average number of keys assigned to each user, as this
indicates the quality of the tree construction criteria imple-
mented: the lower is the average number of keys each user
has to manage, the better is the solution obtained.

Another element that should be considered in evaluating
and comparing the different versions of the algorithm pro-
posed is the number of nodes in the final tree. In particular,
it is relevant the ratio between material and non material
nodes in the structure.

Finally, the last measure evaluated with our experiments
is the computational time of the algorithm which is an im-
portant parameter for the evaluation of its usability. More
precisely, our experiments evaluated the trade-off between
computational costs and quality of the solution found. In-
tuitively, a better solution is obtained when a more refined
criterion is adopted and this certainly require a higher com-
putational time.

In the following, we analyze the results of our experiments
carried out on a 1500 MHz Pentium IV with 256 Mb of
RAM. Note that for clarity and readability of the graphs,
we report the results of only four configurations, that is,
t=30 and s=100, t=70 and s=100, t=30 and s=1500, and
t=70 and s=1500.

Evaluation of the average number of keys.
As the results of our experiments show (Figure 10), the aver-
age number of keys decreases if the criterion adopted for the
choice of the parent improves (from C1 to C3), as we would
expect. In particular, the improvement is greater between
Criterion C2 and Criterion C3. In the same way, adopting
a more refined procedure for tree pruning, the final result is
better than adopting the traditional method. On the basis
of these considerations, we can observe that the best so-
lution, using the same parameter setting, is obtained with
the most refined Criterion C3 and adopting the improved
pruning method Pr2. On the contrary, the worst solution
is the one obtained adopting the basic strategies both for
tree construction and pruning. Also, it is easy to see that
the average number of keys increases with the number of
subscribers because it is more difficult to obtain a good so-
lution if the number of users and authorizations increases.
By contrast, if the number of teams increases, the average
number of keys decreases because we add to the system a
set of resources (Team News) characterized by similar ACLs
and a set of users (Team Manager) that receive the same set
of keys. Comparing the results obtained in the two scenarios
S1 and S2 (Figure 10(a) and Figure 10(b)), we observe that
the average number of keys is lower in scenario S1 than in
scenario S2. The reason is that in S1 each Player has exactly
one authorization on her news and exactly one key. Players
therefore contribute to bring down the average number of
keys.

Evaluation of the number of nodes.
By definition, each resource in the system has a different
ACL and therefore the number of material nodes is equal
to the number of resources and, in each scenario, it does
not change as the other parameters vary. Also, the number
of non material nodes initially inserted in the tree depends
only on the set of material nodes. Consequently, after Step
1 of the DAG to tree transformation algorithm, the number
of non material nodes is always the same. However, the ap-
plication of the different criteria (C1, C2, C3, Pr1, Pr2)
may produce a different tree with a different number of non
material nodes. Our experiments show that better solutions
(i.e., solutions with a low average number of keys) have more
non material nodes (see Figure 11). The rationale behind
this observation is that, as discussed in Section 3.1, non ma-
terial nodes allow us to reduce the number of keys assigned
to each user. Therefore, in the pruning step the useful non
material nodes are not deleted and their number increases.
Also, it is easy to see that the ratio between the number
of non material and material nodes is higher in scenario S2
than scenario S1 (see Figure 11(a) and Figure 11(b)). The
reason is that in scenario S2 there is a low number of mate-
rial nodes and therefore to construct a tree a large number
of non material nodes need to be considered. By contrast, in
scenario S1 there are many material nodes and therefore a
small number of non material nodes need to be considered.

Evaluation of the performance.
The results obtained demonstrate that the time taken by
the DAG to tree transformation algorithm increases with the
number of subscribers and/or teams (Figure 12) and is obvi-
ously higher in scenario S1 (Figure 12(a) and Figure 12(b)).
It is also important to note that the time taken by the al-
gorithm is higher when the choice criterion is more refined
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Figure 10: Average number of keys in scenario S1 (a) and scenario S2 (b)
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Figure 12: Time in seconds (logarithmic scale) taken by the DAG to Tree transformation algorithm in scenario
S1 (a) and scenario S2 (b)

and if the pruning procedure is better, as we expected from
the algorithm definition.

4.3 Scalability of the System
To evaluate the scalability of our proposal with respect to

increasing access rights, we added the following access rights
to the one previously described:

• A[Pi, TNdi/pte] = 1, i = 1 . . . p: each player can access
her team news;

• A[Pi, PNj ] = 1, i = 1 . . . p, j = (di/pte − 1) · pt +
1 . . . di/pte · pt: each player can access the player news
of people playing in her team;

• A[TM2i−1, TNj ] = 1, i = 1 . . . t/2, j is randomly cho-
sen among 1, . . . , t: half team managers (the ones that

cannot access all team news) can access the team news
of another team of the championship;

• A[TM2i−1, PNl] = 1, i = 1 . . . t/2, l = (j − 1) · pt +
1 . . . j ·pt: these team managers have also access to the
player news of the same team;

• as before, the distribution of the authorizations asso-
ciated with subscribers follow a Zipf distribution but
now each subscriber can access both the team and
player news for her team.

We thus obtain an enhanced scenario S1 and an enhanced
scenario S2 where there are more access rights than the ac-
cess rights defined in the corresponding base scenario S1
and base scenario S2. As before, we evaluated the average
number of keys assigned to each user (Figure 13), the ratio
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Figure 13: Average number of keys in enhanced scenario S1 (a) and enhanced scenario S2 (b)
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Figure 14: Ratio between non material and material nodes in enhanced scenario S1 (a) and enhanced scenario
S2 (b)
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Figure 15: Time in seconds (logarithmic scale) taken by the DAG to Tree transformation algorithm in
enhanced scenario S1 (a) and enhanced scenario S2 (b)

between the non material and material nodes (Figure 14),
and the time taken by the algorithm (Figure 15).

Figure 13 shows that, as before, the average number of
keys decreases with increasing the quality of the criteria
adopted. However, by comparing Figure 10 and Figure 13,
we can note that the average number of keys assigned to
each user in the enhanced scenario is higher than the aver-
age number of keys assigned to each user in the base sce-
nario. The reason is that now each player has more access
rights and probably more keys. Also, in the base scenario
S2 players are not considered because they do not have any
access right. By contrast, in the enhanced S2 scenario each
player has one access right (the one on her team news) ans
consequently the average number of keys in the enhanced
scenario S2 is lower than the average number of keys in the

base scenario.
With respect to the ratio between the non material and

material nodes, it is easy to see that in the enhanced sce-
nario this ratio increases significantly (see Figure 11 and
Figure 14). The rationale behind this observation is that
in the enhanced scenario, the material node are located in
lower levels than the material nodes in the base scenario.
Consequently, more non material nodes need to be added in
the tree to obtain a set of nodes closed under the intersection
operation.

Finally, Figure 15 shows that, as expected, the time taken
by the algorithm in the enhanced scenario increases signifi-
cantly with respect to the time in the base scenario. Also,
the considerations formulated for the base scenario are still
valid in the enhanced scenario.



5. CONCLUSIONS
Access control is a very important issue in the DAS sce-

nario, especially if the data owner wishes to publish her data
for external use. In this paper we investigated a solution for
implementing through cryptography a selective access pol-
icy. We introduced a method to exploit a tree hierarchy for
key management and we performed some experiments for
evaluating its efficiency, with respect to both the average
number of keys assigned to each user in the system and the
computational time. Issues to be investigated will include
an analysis of the proposed approach in dynamic scenarios,
where authorizations, users, and objects can dynamically
change [10]. In these case, it may be necessary to re-encrypt
data and to update the set of keys kept by each user involved
in the changes.
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[18] H. Hacigümüs and S. Mehrotra.
Performance-conscious key management in encrypted
databases. In DBSec, pages 95–109, 2004.

[19] L. Harn and H. Lin. A cryptographic key generation
scheme for multilevel data security. Computers and
Security, 9(6):539–546, October 1990.

[20] B. Hore, S. Mehrotra, and G. Tsudik. A
privacy-preserving index for range queries. In Proc. of
the 30th VLDB Conference, Toronto, Canada, 2004.

[21] M. Hwang and W. Yang. Controlling access in large
partially ordered hierarchies using cryptographic keys.
The Journal of Systems and Software, 67(2):99–107,
July 2003.

[22] S. MacKinnon, P.Taylor, H. Meijer, and S.Akl. An
optimal algorithm for assigning cryptographic keys to
control access in a hierarchy. IEEE Transactions on
Computers, 34(9):797–802, September 1985.

[23] E. Mykletun, M. Narasimha, and G. Tsudik.
Authentication and integrity in outsourced database.
In Proc. of the 11th Annual Network and Distributed
System Security Symposium, San Diego, CA, USA,
February 2004.

[24] R. Sandhu. Cryptographic implementation of a tree
hierarchy for access control. Information Processing
Letters, 27(2):95–98, April 1988.

[25] B. R. Waters, D. Balfanz, G. Durfee, and D. K.
Smetters. Building an encrypted and searchable audit
log. In Proc. of the 11th Annual Network and
Distributed System Security Symposium, San Diego,
CA, February 2004.


	copyright: © ACM, (2005). This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 2005 ACM Workshop on Storage Security and Survivability, Alexandria, Virginia, USA, November 11, 2005 http://doi.acm.org/10.1145/1103780.1103792


