
Efficient Key Management for Enforcing Access
Control in Outsourced Scenarios

C. Blundo and S. Cimato and S. De Capitani di Vimercati and A. De Santis and
S. Foresti and S. Paraboschi and P. Samarati

Abstract Data outsourcing is emerging today as a successful paradigm allowing in-
dividuals and organizations to exploit external servers for storing and distributing
data. While trusted to properly manage the data, external servers are often not au-
thorized to read them, therefore requiring data to be encrypted. In such a context,
the application of an access control policy requires different data to be encrypted
with different keys so to allow the external server to directly enforce access control
and support selective dissemination and access.
The problem therefore emerges of designing solutions for the efficient management
of the encryption policy enforcing access control, with the goal of minimizing the
number of keys to be maintained by the system and distributed to users. Since such
a problem is NP-hard, we propose a heuristic approach to its solution based on a key
derivation graph exploiting the relationships among user groups. We experimentally
evaluate the performance of our heuristic solution, comparing it with previous ap-
proaches.

1 Introduction

Data outsourcing has become increasingly popular in recent years. The main advan-
tage of data outsourcing is that it promises higher availability and more effective
disaster protection than in-house operations. However, since data owners physically
release their information to external servers that are not under their control, data

C. Blundo, A. De Santis
Università di Salerno, 84084 Fisciano - Italy, e-mail: {carblu,ads}@dia.unisa.it

S. Cimato, S. De Capitani di Vimercati, S. Foresti, P. Samarati
Università di Milano, 26013 Crema - Italy, e-mail: {cimato,decapita,foresti,samarati}@dti.unimi.it

S. Paraboschi
Università di Bergamo, 24044 Dalmine - Italy, e-mail: parabosc@unibg.it

1

Sara
Line

2 Blundo, Cimato, De Capitani di Vimercati, De Santis, Foresti, Paraboschi, Samarati

confidentiality and even integrity may be put at risk. As a matter of fact, sensi-
tive data (or data that can be exploited for linking with sensitive data) are stored
on external servers. Besides protecting such data from attackers and unauthorized
users, there is the need to protect the privacy of the data from the so called honest-
but-curious servers: the server to whom data are outsourced, while trustworthy to
properly manage the data, may not be trusted by the data owner to read their content.
The problem of protecting data when outsourcing them to an external honest-but-
curious server has emerged to the attention of researchers very recently. Existing
proposals (e.g., [4, 8, 13]) in the data outsourcing area typically resort to store the
data in encrypted form, while associating with the encrypted data additional index-
ing information that is used by the external DBMS to select the data to be returned
in response to a query. Also, existing works typically assume that the data owner is
a single organization that encrypts the data with a single key and that all users have
complete visibility of the whole database. Such approaches clearly are limiting in
today’s scenarios, where remotely stored data may need to be accessible in a selec-
tive way, that is, different users may be authorized to access different views of the
data.

There is therefore an increasing interest in the definition of security solutions that
allow the enforcement of access control policies on outsourced data. A promising
solution in this direction consists in integrating access control and encryption. Com-
bining cryptography with access control essentially requires that resources should
be encrypted differently depending on the access authorizations holding on them,
so to allow their decryption only to authorized users [5, 6]. The application of this
approach in data outsourcing scenarios allows owners: 1) to encrypt data, accord-
ing to an encryption policy regulated by authorizations, 2) outsource the data to the
external servers, and 3) distribute to users the proper encryption keys. Proper en-
cryption and key distribution automatically ensure obedience of the access control
policy, while not requiring the data owner to maintain control on the data storage
and on accesses to the data. In the literature, there are different proposals exploiting
encryption for access control [5, 6, 10]. In [5], the authors address the problem of
access control enforcement in the database outsourcing context, by exploiting selec-
tive encryption and hierarchical key assignment schemes on trees. Since a crucial
aspect for the success of such a solution is the efficacy, efficiency, and scalability
of the key management and distribution activities, the authors propose an algorithm
that minimizes the number of secret keys in users’ key rings. In [6], the authors
address the problem of policy updates. Here, two layers of encryption are imposed
on data: the inner layer is imposed by the owner for providing initial protection, the
outer layer is imposed by the server to reflect policy modifications (i.e., grant/revoke
of authorizations). In [10], the authors introduce a framework for enforcing access
control on published XML documents by using different cryptographic keys over
different portions of the XML tree and by introducing special metadata nodes in the
structure.

In this paper we propose a novel heuristic approach minimizing the number of
keys to be maintained by the system and distributed to users. Consistently with other
proposals in the literature [5, 6], we base our solution on key derivation exploiting

Efficient Key Management for Enforcing Access Control in Outsourced Scenarios 3

r1 r2 r3 r4 r5 r6

A 1 1 1 1 1 0
B 1 0 0 1 1 1
C 0 1 0 1 0 1
D 0 0 1 0 1 1

(a)

v0 [/0]

v1 [A]

kkkkkkkkkkk
v2 [B]

wwwww
v3 [C]

GGGGG
v4 [D]

SSSSSSSSSSS

v5 [AB]

zzzzz

llllllllll
v6 [AC]

gggggggggggggggggg
v7 [AD]

FFFFF

gggggggggggggggggg
v8 [BC]

SSSSSSSSSSS
v9 [BD]

WWWWWWWWWWWWWWWWWW
v10 [CD]

EEEEE

RRRRRRRRRR

v11 [ABC]

ggggggggggggggggg

DDDDD
v12 [ABD]

ggggggggggggggggg

RRRRRRRRR
v13 [ACD]

lllllllll

WWWWWWWWWWWWWWWWW

SSSSSSSSSS
v14 [BCD]

FFFFF
yyyyy

v15 [ABCD]

SSSSSSSSS
GGGGG

kkkkkkkkk
wwwww

(b)

Fig. 1 An example of access matrix (a) and of user graph over U ={A,B,C,D} (b)

a key derivation graph that allows users to derive new keys by combining other
keys and public tokens. As we will show, compared with previous proposals, our
heuristics prove efficient and effective in the computation of a key derivation graph.

2 Basic concepts

We assume that the data owner defines a discretionary access control policy to regu-
late access to the distributed resources. Consistently with other approaches for data
outsourcing, we assume access by users to the outsourced resources to be read-only.
Given a set U of users and a set R of resources, an authorization policy over U
and R is a set of pairs 〈u,r〉, where u∈U and r∈R, meaning that user u can access
resource r. An authorization policy can be modeled via an access matrix A , with
a row for each user u∈U , a column for each resource r∈R, and A [u,r] set to 1
(0, resp.) if u has (does not have, resp.) authorization to access r. Given an access
matrix A , acl(r) denotes the access control list of r (i.e., the set of users that can
access r), and cap(u) denotes the capability list of u (i.e., the set of resources that
u can access). Figure 1(a) illustrates an example of access matrix with four users
(A, B, C, D) and six resources (r1, . . . , r6), where, for example, acl(r2)={A,C} and
cap(C)={r2,r4,r6}.

In the data outsourcing scenario, the enforcement of the authorization policy can-
not be delegated to the remote server, which is trusted neither for accessing data
content nor for enforcing the authorization policy. Consequently, the data owner has
to be involved in the access control enforcement. To avoid the owner’s involvement
in managing access and enforcing authorizations, recently selective encryption tech-
niques have been proposed [5,6,10]. Selective encryption means that the encryption
policy (i.e., which data are encrypted with which key) is dictated by the authoriza-
tions to be enforced on the data. The basic idea is to use different keys for encrypting
data and to release to each user the set of keys necessary to decrypt all and only the

4 Blundo, Cimato, De Capitani di Vimercati, De Santis, Foresti, Paraboschi, Samarati

resources the user is authorized to access. For efficiency reasons, selective encryp-
tion is realized through symmetric keys.

A straightforward solution for implementing selective encryption associates a
key with each resource r and communicates to each user u the keys used to encrypt
the resources in cap(u). It is easy to see that this solution, while correctly enforcing
the authorization policy, is too expensive to manage, due to the high number of keys
each user has to keep. Indeed, any user u∈U would need to hold as many keys as
the number of resources she is authorized to access.

To avoid users having to store and manage a huge number of (secret) keys, con-
sistently with other proposals in the literature [5, 6], we exploit a key derivation
method that allows the derivation of a key starting from another key and some pub-
lic information [1–3, 7, 9, 11]. In our scenario, the derivation relationship between
keys can be represented through a graph with a vertex v for each possible set of users
and an edge (vi,v j) for all pairs of vertices such that the set of users represented by
vi is a subset of the set of users represented by v j. In the following, we use v.acl to
denote the set of users represented by vertex v and v.key to denote the key associated
with v. Formally, a user graph is defined as follows.

Definition 1 (User Graph). Given a set U of users, a user graph over U , de-
noted GU , is a graph 〈VU ,EU 〉, where VU =P(U) is the power set of U , and
EU ={(vi,v j) | vi.acl⊂v j.acl}.

As an example, consider the set of users U ={A,B,C,D}. Figure 1(b) reports the
user graph, where, for each vertex vi, the users in the square brackets represent vi.acl
and, for clearness of the picture, edges that are implied by other edges (relationships
between sets differing for more than one user) are not reported.

By exploiting the user graph defined above, the authorization policy can be en-
forced: i) by encrypting each resource with the key of the vertex corresponding
to its access control list (e.g., resource r4 should be encrypted with v11.key since
acl(r4)=v11.acl={A,B,C}), and ii) by assigning to each user the key associated with
the vertex representing the user in the graph. Since edges represent the possible key
derivations, each user u, starting from her own key, can directly compute the keys of
all vertices v such that u∈v.acl. It is easy to see that this approach to design the en-
cryption policy correctly enforces the authorization policy represented by matrix A ,
meaning that each user u can only derive the keys for decrypting the resources she is
authorized to access. For instance, with reference to the user graph in Fig. 1(b), user
A knows the key associated with vertex v1 from which she can derive, following the
edges outgoing from v1, the set of keys of vertices v5, v6, v7, v11, v12, v13, and v15.

3 Problem formulation

The key derivation methods working on trees are in general more convenient and
simpler than those working on DAGs and require a lower amount of publicly avail-
able information. Indeed, given two keys ki and k j in K , where K is the set of

Efficient Key Management for Enforcing Access Control in Outsourced Scenarios 5

v0 [/0]

vvv
vvv

vvv
vv

ªª
ªª

ªª
ª

--
--

--
--

--
--

v1 [AB]

FF
FF

v2 [AC] v3 [AD]

v4 [ABC] v5 [ABD] v6 [BCD]

user key ring
A v1.key, v2.key, v3.key
B v1.key, v6.key
C v2.key, v4.key, v6.key
D v3.key, v5.key, v6.key

v0 [/0]

2

rrrrrrrrrrrr
2

¥¥
¥¥

¥¥
¥¥

2

3

00
00

00
00

00
00

v1 [AB]

1
1
JJJ

JJ
v2 [AC] v3 [AD]

v4 [ABC] v5 [ABD] v6 [BCD]

weight=11
(a) (b) (c)

Fig. 2 A user tree (a), the corresponding key rings (b), and its weighted version (c)

symmetric encryption keys in the system, such that k j can be directly derived from
ki, then k j=h(ki,l j), where l j is a publicly available label associated with k j and h
is a deterministic cryptographic function. We then transform, according with the
proposal in [5], the user graph GU in a user tree, denoted T , enforcing the autho-
rization policy in A . Since each resource r is encrypted with the key associated with
the vertex representing acl(r), the user tree must include the set, denoted M , of all
vertices, called material vertices, representing acl values and the empty set of users
(i.e., M = {v ∈ VU | v.acl=/0 ∨ ∃ r ∈ R with v.acl = acl(r)}), as formally defined
in the following.

Definition 2 (User tree). Let A be an access matrix over a set U of users and a set
R of resources, and GU = 〈VU ,EU 〉 be the user graph over U . A user tree, denoted
T , is a tree T = 〈V ,E〉, subgraph of GU , rooted at vertex v0, with v0.acl=/0, where
M⊆V⊆VU , and E⊆EU .

In other words, a user tree is a tree, rooted at the vertex representing the empty
user group /0, subgraph of GU , and spanning all vertices in M .

To grant the correct enforcement of the authorization policy, each user u has a
key ring, denoted key ringT (u), containing all the keys necessary to derive the keys
of all vertices v such that u∈v.acl. The key ring of each user u must then include
the keys associated with all vertices v such that u∈v.acl and u 6∈vp.acl, where vp is
the parent of v. If u∈vp.acl, u must already have access to the key in vp and must be
able to derive v.key through the key of vp, which she knows either by derivation or
by direct communication.

Clearly, given a set of users and an authorization policy A , more user trees may
exist. Among all possible user trees, we are interested in determining a minimum
user tree, correctly enforcing a given authorization policy and minimizing the num-
ber of keys in users’ key rings.

Definition 3 (Minimum user tree). Let A be an access matrix and T be a user
tree correctly enforcing A . T is minimum with respect to A iff @T ′ such that T ′
correctly enforces A and ∑

u∈U

|key ringT ′(u) | < ∑
u∈U

|key ringT (u) |.

Figure 2(a) illustrates an example of user tree and Fig. 2(b) reports the corre-
sponding user key rings.

6 Blundo, Cimato, De Capitani di Vimercati, De Santis, Foresti, Paraboschi, Samarati

We observe that the keys in the key ring could be managed with the use of tokens,
public pieces of information that allow the reconstruction of a secret from another
one [2, 3]. The minimality of the user tree implies a minimization in the number of
tokens, making the approach presented in this paper applicable to scenarios using
tokens.

Given an access matrix A , different minimum user trees may exist and our goal
is to compute one of them, as stated by the following problem definition.

Problem 1. Let A be an access matrix. Determine a minimum user tree T .

Since Problem 1 is NP-hard, in [5] we proposed a heuristic algorithm working
as follows: 1) the algorithm initially computes the closure of M with respect to the
intersection operator; 2) the algorithm selects, for each vertex, a parent choosing
first the vertices representing larger sets of users, and then material vertices; finally
3) the algorithm prunes non necessary vertices.

4 Minimum spanning tree heuristics

Our solution is based on a reformulation of Problem 1 in terms of a weight mini-
mization problem. We start by introducing the concept of weight in association with
a user tree.

Definition 4 (Weight function). Let T =〈V ,E〉 be a user tree.

• w:E→ N is a weight function such that ∀(vi,v j) ∈ E, w(vi,v j) =|v j.acl\ vi.acl |
• weight(T) = ∑

(vi,v j)∈E
w(vi,v j).

According to this definition, the weight w(vi,v j) of edge (vi,v j) in E is the number
of users in v j.acl\ vi.acl. The weight weight(T) of user tree T is then defined as
the sum of the weights of its edges. Problem 1 can be reformulated as the problem
of finding a minimum weight user tree. In fact, the presence of an edge (vi,v j) ∈ E
implies that users in vi.acl should know both keys vi.key and v j.key while users in
v j.acl\ vi.acl need only to know v j.key. It is then sufficient to include key vi.key in
the key rings of all users in vi.acl, since v j.key can be derived from vi.key, and to
include key v j.key in the key rings of users in v j.acl\vi.acl. This is equivalent to
say that w(vi,v j) corresponds to the number of users whose key ring must include
key v j.key. Generalizing, it is immediate to conclude that weight(T) is equal to
the sum of the total number of keys stored in users’ key rings (i.e., weight(T) =
∑

u∈U

|key ringT (u) |).
The problem of computing a user tree with minimum weight is NP-hard since the

Vertex Cover problem can be reduced to it (for space reason, we do not report the
proof of this reduction). We therefore propose a heuristic algorithm for solving such
a problem that consists first in computing a minimum spanning tree (MST) over a

Efficient Key Management for Enforcing Access Control in Outsourced Scenarios 7

Case (vk.acl=vi.acl∩v j .acl) Initial configuration Final configuration weight red(v,vi,v j)

1 vk.acl=vi.acl

v

­­­ 444

vi v j

vk

v

vi

v j

|vi.acl | − |v.acl |

vk.acl=v j .acl

v

­­­ 444

vi v j

vk

v

v j

vi

|v j.acl | − |v.acl |

2 vk ∈V and vk 6=vi and vk 6=v j

v

®®® 444
vk

vi v j

v vk

ªªª 666

vi v j

2(|vk.acl | − |v.acl |)

3 vk 6∈V

v

­­­ 444

vi v j

vk

v

vk

ªªª 666

vi v j

|vk.acl | − |v.acl |

Fig. 3 Possible updates to the user tree

graph G = 〈V,E ′,w〉, with V = M , E ′ = {(vi,v j) | vi,v j ∈ V∧vi.acl ⊂ v j.acl}, and
w the weight function defined in Definition 4, rooted at v0. It is immediate to see
that the MST over G is a user tree whose weight can be further reduced with the
addition of vertices obtained from the intersection of at least two vertices already in
the MST. The insertion of a new vertex v as a parent of at least two vertices, say vi
and v j, can reduce the weight of the tree since the key ring of users in v.acl should
only include v.key instead of both vi.key and v j.key.

The basic idea behind our approach is that for each internal vertex v of the min-
imum spanning tree (i.e., for each vertex with at least one child) and for each pair
〈vi,v j〉 of children of v, we first compute the set U of users in vi.acl and v j.acl, that
is, U = vi.acl∩v j.acl. If U 6= v.acl, we then evaluate if the insertion in T of vertex vk
representing U can reduce weight(T). Among all possible pairs of children of v,
we then choose the pair 〈vi,v j〉 such that, when vk is possibly inserted in the tree (or
it becomes the parent of at least one of two vertices vi and v j), we obtain the highest
reduction in the weight of the tree. Such a weight reduction, formally defined by
function weight red:V×V×V→ N, depends on whether vk exists in T or it needs to
be inserted. The following three cases, represented in Fig. 3, may occur.

Case 1 vk=vi (or vk=v j), that is, one of the two children represents a subset of the
users represented by the other child. The user tree can be updated by removing the
edge connecting vertex v with v j (vi, resp.) and by inserting the edge connecting vi
with v j (v j with vi, resp.). As a consequence, the weight of the tree is reduced by
w(v,v j)−w(vi,v j), which is equal to |vi.acl | − |v.acl |.

8 Blundo, Cimato, De Capitani di Vimercati, De Santis, Foresti, Paraboschi, Samarati

INPUT
set U of users
set R of resources
access matrix A
criterion (Imax, Imin, or Irnd) to adopt

OUTPUT
user tree T = 〈V ,E〉
MAIN
V := /0
E := /0
/* Phase 1: select material vertices */
AclM := {acl(r)|r∈R} ∪ { /0}
for each acl∈AclM do

create vertex v
v.acl := acl
V := V ∪ {v}

/* Phase 2: compute a minimum spanning tree */
E′ := {(vi,v j) | vi,v j∈V ∧ vi.acl⊂v j .acl}
let w be a weight function such that
∀(vi,v j) ∈ E′, w(vi,v j) = |v j .acl\ vi.acl |
G := (V ,E′,w)
let v0 be the vertex in V with v0.acl=/0
T := Minimum Spanning Tree(G,v0)
/* Phase 3: insert non-material vertices */
T := Factorize Internal Vertices(T , criterion)
return(T)

FACTORIZE INTERNAL VERTICES(ST ,criterion)
let ST be 〈V ,E〉
for each v∈{vi | vi∈V ∧ ∃(vi,v j)∈E} do
CCv := {〈vi,v j〉 | (v,vi), (v,v j) ∈ E ∧ vi.acl ∩ v j .acl 6= v.acl}
max red := max{weight red(v,vi,v j) | 〈vi,v j〉 ∈ CCv}
while CCv 6= /0 do

MCv := {〈vi,v j〉 | 〈vi,v j〉 ∈CCv ∧ weight red(v,vi,v j)=max red}
case criterion of
Irnd: choose 〈vi,v j〉∈MCv randomly
Imax: choose 〈vi,v j〉∈MCv : |vi.acl|+|v j .acl| is maximum
Imin: choose 〈vi,v j〉∈MCv : |vi.acl|+|v j .acl| is minimum

U := vi.acl∩v j .acl
find vk∈V : vk .acl=U
case vk of
/* case 1 */
=vi: E := E \ {(v,v j)} ∪ {(vi,v j)}
=v j : E := E \ {(v,vi)} ∪ {(v j ,vi)}
/* case 2 */
6=vi ∧ 6=v j : E := E \ {(v,vi),(v,v j)} ∪ {(vk ,vi),(vk ,v j)}
/* case 3 */
UNDEF: create a vertex vk

vk .acl := U
V := V ∪ {vk}
E := E \ {(v,vi),(v,v j)} ∪ {(v,vk),(vk ,vi),(vk ,v j)}

CCv := {〈vi,v j〉 | (v,vi), (v,v j) ∈ E ∧ vi.acl ∩ v j .acl 6= v.acl}
max red := max{weight red(v,vi,v j) | 〈vi,v j〉 ∈ CCv}

return(ST)

Fig. 4 Heuristic algorithm for computing a minimal user tree

Case 2 vk ∈ V and vk 6=vi and vk 6=v j, that is, there is a vertex in the tree repre-
senting U . The user tree can be updated by removing the edges connecting ver-
tex v with both vi and v j, and by inserting two new edges, connecting vk with
vi and v j, respectively. As a consequence, the weight of the tree is reduced by
w(v,vi)+w(v,v j)− (w(vk,vi)+w(vk,v j)), which is equal to 2(|vk.acl| − |v.acl|).
Case 3 vk 6∈ V , that is, there is no vertex representing U in the tree.1 The user tree
can be updated by: creating a new vertex vk with vk.acl=U ; removing the edges con-
necting v with both vi and v j; and inserting three new edges connecting respectively:
1) v with vk, 2) vk with vi, and 3) vk with v j. As a consequence, the weight of the tree
is reduced by w(v,vi)+ w(v,v j)− (w(v,vk)+ w(vk,vi)+ w(vk,v j)), which is equal
to |vk.acl | − |v.acl |.

As an example, consider the weighted user tree in Fig. 2(c) and suppose to com-
pute the intersection between the pairs of children of the root vertex v0. In this case,
all possible intersections correspond to singleton sets of users that are not already
represented in the tree and therefore each intersection requires the addition of a new
vertex in the tree as child of v0 and parent of the considered pair of children.

Formally, for each internal vertex v of the minimum spanning tree ST = 〈V ,E〉, we
first compute the set CCv of pairs of candidate children as follows: CCv = {〈vi,v j〉
| (v,vi), (v,v j) ∈ E ∧ vi.acl ∩ v j.acl 6= v.acl}. Among all possible pairs in CCv , we
then choose a pair 〈vi,v j〉 that maximizes weight red. Note that different pairs of

1 Note that this is the only case that can occur if both vi and v j belong to M , since T is initially
obtained as a minimum spanning tree over G.

Efficient Key Management for Enforcing Access Control in Outsourced Scenarios 9

Irnd Imax Imin

v0 [/0]

1

¢¢
¢¢ 1

==
==

º¹ ¸·³´ µ¶v8[A]

1

¡¡
¡¡ 1

º¹ ¸·³´ µ¶v7[D]

1

¢¢
¢¢

2v1 [AB]

1
>>

>>
1

v2 [AC] v3 [AD]

v4 [ABC] v5 [ABD] v6 [BCD]

v0 [/0]

1

££
££ 1

>>
>>

º¹ ¸·³´ µ¶v8[A]

1

¥¥
¥¥ 1

º¹ ¸·³´ µ¶v7[B]

1

¡¡
¡¡

2

//
//

//
//

/

v2 [AC] v3 [AD] v1 [AB]

1
>>

>>
1

v4 [ABC] v5 [ABD] v6 [BCD]

v0 [/0]

1

¢¢
¢¢

3

))
))

))
))

))
))

))

º¹ ¸·³´ µ¶v7[A]

1

¡¡
¡¡1 1

==
==

v1 [AB]

1
>>

>>
1

v2 [AC] v3 [AD]

v4 [ABC] v5 [ABD] v6 [BCD]

weight=9 weight=9 weight=9

user key ring
A v3.key, v8.key
B v1.key, v6.key
C v2.key, v4.key, v6.key
D v5.key, v7.key

user key ring
A v1.key, v8.key
B v7.key
C v2.key, v4.key, v6.key
D v3.key, v5.key, v6.key

user key ring
A v7.key
B v1.key, v6.key
C v2.key, v4.key, v6.key
D v3.key, v5.key, v6.key

Fig. 5 User trees and key rings computed by our heuristics over the MST of Fig. 2(c)

vertices in CCv may provide the same maximum weight reduction. In this case, dif-
ferent preference criteria may be applied for choosing a pair, thus obtaining different
heuristics. In particular, we propose the following three criteria:

• Irnd: at random;
• Imax: in such a way that |vi.acl |+ |v j.acl | is maximum, ties are broken randomly;
• Imin: in such a way that |vi.acl |+ |v j.acl | is minimum, ties are broken randomly.

Any of these three preference criteria can be used to compute an approximation
of the minimum user tree.

Figure 4 illustrates our algorithm that, given an authorization policy represented
through an access matrix A , creates a user tree correctly enforcing the policy. The
algorithm creates the set V of material vertices and builds a graph G, where the
set of vertices coincides with the set V of material vertices and the set E ′ of edges
includes an edge (vi,v j) for each pair of vertices vi,v j∈V such that vi.acl⊂v j.acl.
The algorithm then calls function Minimum Spanning Tree2 on G and vertex v0,
with v0.acl = /0, and returns a minimum spanning tree of G rooted at v0. On such a
minimum spanning tree, the algorithm calls function Factorize Internal Vertices.
Function Factorize Internal Vertices takes a minimum spanning tree ST and a
selection criterion as input and returns a minimal user tree. For each internal vertex
v in ST (first for loop in the function), the function first computes the set CCv of
pairs of candidate children of v and determines the maximum reduction max red
of the weight of the tree that any of these pairs can cause. At each iteration of the
while loop, the function selects, according to the given criterion, a pair 〈vi,v j〉 in
CCv such that weight red(v,vi,v j) is equal to max red. The tree is then updated as
illustrated in Fig. 3. Then, both CCv and max red are re-evaluated on the basis of

2 This function may correspond to any algorithm commonly used for computing a minimum span-
ning tree. Our implementation is based on Prim’s algorithm.

10 Blundo, Cimato, De Capitani di Vimercati, De Santis, Foresti, Paraboschi, Samarati

Number of 5 users 6 users 10 users
resources Itot Imin Imax Irnd Itot Imin Imax Irnd Itot Imin Imax Irnd

5 937 932 924 927 865 863 830 834 828 802 692 709
10 879 872 849 849 778 693 648 657 709 633 219 269
15 947 946 936 936 735 720 637 634 729 685 168 205
20 987 983 979 982 780 751 671 685 717 626 118 120
25 1000 998 998 998 781 763 705 714 694 598 90 131
30 1000 1000 1000 1000 846 835 808 815 626 543 77 131
35 891 886 853 858 554 484 64 104
40 943 940 924 928 570 538 59 85
45 981 978 966 973 501 488 57 68
50 993 992 989 991 501 478 55 67

Fig. 6 Number of times that our heuristics are better than the heuristic in [5]

the new topology of the tree. Note that CCv does not need to be recomputed at each
iteration of the while loop, since it can be simply updated by removing the pairs
involving vi and/or v j and possibly adding the pairs resulting from the new vertex
vk. The process is repeated until CCv becomes empty. The function terminates when
all internal vertices have been evaluated (i.e., when the for loop has iterated on all
internal vertices). As an example, consider the authorization policy A in Fig. 1(a).
The table in Fig. 5 is composed of three columns, one for each of the preference
criteria defined for our heuristic (i.e., Irnd, Imax, and Imin). Each column represents the
user tree and the user key rings computed by our heuristic, following one of the
three preference criteria. Note that the vertices inserted by the algorithm are circled
in Fig. 5, to distinguish material from non-material vertices.

5 Experimental results

A correct evaluation of the performance of the proposed heuristics is requested to
provide the system designer with a valid set of tools she can use for the selection
of the right strategy to implement a given authorization policy. In large scale access
control systems, where the number of users and resources is large, the time needed
to set the right key assignment scheme can be considerably large. So, the analysis
we provide can help the designer to select the right trade-off between the quality
of the solution returned by the selected heuristic and the amount of time invested
on obtaining such a result. The heuristics have then been implemented by using
Scilab [12] Version 4-1 on Windows XP operating system on a computer equipped
with Centrino 1,7 Mhz CPU. We ran the experiments on randomly generated access
matrices, considering different numbers of users and resources in the system.

A first set of experiments, whose results are reported in Fig. 6, has been devoted
to compare the quality of the solutions returned by the different heuristics. For a
fixed number of users and resources, we generated 1000 access matrices for each
trial and applied to the resulting access matrix the heuristic proposed in [5] and our
heuristics, considering all the possible choices (i.e., Imin, Imax, or Irnd) for the selection
of a candidate pair among the pairs maximizing the weight red function. Columns

Efficient Key Management for Enforcing Access Control in Outsourced Scenarios 11

10 15 20 25 30 35 40 45 50 55 60
0

1000

2000

3000

4000

5000

6000
[5]
I_min
I_max
I_rnd
I_tot

Fig. 7 Execution time (in seconds) for the heuristics for 10 users (1000 runs)

Imin, Imax, and Irnd list the number of times the selected heuristic computes a user tree
better than the user tree obtained by running the heuristic in [5], meaning that the
total number of keys, in the key rings of the users, computed by our heuristic is less
than or equal to the total number of keys in the key rings of the users obtained with
the heuristic in [5]. Column Itot lists the number of times that any of our heuristics
returns a better solution than one returned by the heuristic in [5]. Note that while
the Imin heuristic returns a better solution in most of the cases, there are cases where
Imax or Irnd perform better. On the basis of the data reported in Fig. 6, it is possible to
observe the good behavior of our heuristics in the sense that they compute a solution
that, in many cases, is better than the one returned by the heuristic in [5].

Figure 7 reports the sum of the execution times for all the considered instances.
Note that the lines representing the Imax, Imin, and Irnd heuristics are overlapping. For
each instance (i.e., each randomly generated access matrix), the execution time is
composed of the time for the construction of the graph G (see Sect. 4), the time for
the construction of the minimum spanning tree on G, and the time for the execution
of the selected heuristic. As shown in the figure, our heuristics are very efficient
compared with the heuristic in [5]. Considering that in many cases, such heuristics
return a better solution than the one computed by the heuristic in [5], we can con-
clude that they represent a good trade-off between quality and execution time. Also,
since our heuristics are fast to execute, after graph G and the corresponding mini-
mum spanning tree have been generated, it should be also possible to execute all our
heuristics to select the best of the three returned results (without need of generating
the graph and the MST again).

12 Blundo, Cimato, De Capitani di Vimercati, De Santis, Foresti, Paraboschi, Samarati

6 Conclusions

There is an emerging trend towards scenarios where resource management is out-
sourced to an external service providing storage capabilities and high-bandwidth
distribution channels. In this context, selective dissemination of data requires en-
forcing measures to protect the resource confidentiality from both unauthorized
users as well as honest-but-curious servers. Current solutions provide protection
by exploiting encryption in conjunction with proper indexing capabilities, and by
exploiting selective encryption for access control enforcement. In this paper we
proposed a heuristic algorithm for building a key derivation graph that minimizes
the total number of keys to be distributed to users in the system. The experimental
results obtained by the implementation of the algorithm prove its efficiency with
respect to previous solutions.

Acknowledgements This work was supported in part by the EU, within the 7FP project, under
grant agreement 216483 “PrimeLife” and by the Italian MIUR, within PRIN 2006, under project
2006099978 “Basi di dati crittografate”.

References

1. Akl S, Taylor P (1983) Cryptographic solution to a problem of access control in a hierarchy.
ACM Transactions on Computer System, 1(3):239–248

2. Atallah MJ, Frikken KB, Blanton M (2005) Dynamic and efficient key management for access
hierarchies. In Proc. of the ACM CCS05, Alexandria, VA

3. Ateniese G, De Santis A, Ferrara AL, Masucci B (2006) Provably-secure time-bound hierar-
chical key assignment schemes. In Proc. of ACM CCS06, Alexandria, VA

4. Ceselli A, Damiani E, De Capitani di Vimercati S, Jajodia S, Paraboschi S, Samarati P (2005)
Modeling and assessing inference exposure in encrypted databases. ACM TISSEC, 8(1):119–
152

5. Damiani E, De Capitani di Vimercati S, Foresti S, Jajodia S, Paraboschi S, Samarati P (2006)
Selective data encryption in outsourced dynamic environments. In Proc. of VODCA 2006,
Bertinoro, Italy

6. De Capitani di Vimercati S, Foresti S, Jajodia S, Paraboschi S, Samarati P (2007) Over-
encryption: Management of access control evolution on outsourced data. In Proc. of VLDB
2007, Vienna, Austria

7. De Santis A, Ferrara AL, Masucci B (2004) Cryptographic key assignment schemes for any
access control policy. Information Processing Letters, 92(4):199–205

8. Hacigümüs H, Iyer B, Mehrotra S, Li C (2002) Executing SQL over encrypted data in the
database-service-provider model. In Proc. of SIGMOD 2002, Madison, WI

9. MacKinnon S, Taylor P, Meijer H, Akl S (1985) An optimal algorithm for assigning crypto-
graphic keys to control access in a hierarchy. IEEE TC, 34(9):797–802

10. Miklau G, Suciu D (2003) Controlling access to published data using cryptography. In Proc.
of VLDB 2003, Berlin, Germany

11. Sandhu RS (1988) Cryptographic implementation of a tree hierarchy for access control. In-
formation Processing Letters, 27(2):95–98

12. Scilab Consortium Scilab, the open source platform for numerical computation.
http://www.scilab.org, V. 4-1

13. Wang H, Lakshmanan LVS (2006) Efficient secure query evaluation over encrypted XML
databases. In Proc. of VLDB 2006, Seoul, Korea

	copyright: © Springer Boston, IFIP International Federation for Information Processing (2009)
http://www.springerlink.com/content/jgkw4x02q3507421/fulltext.pdf?page=1

