
CAS++: an Open Source Single Sign-On
Solution for Secure e-Services

Claudio Agostino Ardagna, Ernesto Damiani,
Sabrina De Capitani di Vimercati, Fulvio Frati, and Pierangela Samarati

Dipartimento di Tecnologie dell’Informazione
Università degli Studi di Milano
Via Bramante 65 - Crema - Italy

{ardagna,damiani,decapita,frati,samarati}@dti.unimi.it

Abstract. Business and recreational activities on the global commu-
nication infrastructure are increasingly based on the use of remote re-
sources and services, and on the interaction between different, remotely
located parties. On corporate networks as well as on the open Web, the
huge number of resources and services often requires to multiple log-ons
leading to credential proliferation and, potentially, to security leaks. An
increasingly widespread approach to simplify and secure the log-on pro-
cess is Single Sign-On (SSO) that allows automatic access to secondary
domains through a single log-on operation to a primary domain. In this
paper, we describe the basic concepts of SSO architecture focusing on the
central role of open source implementations. We outline three major SSO
trust models and the different requirements to be addressed. We then il-
lustrate CAS++, our open source implementation of a Single Sign-On
service. Finally, we illustrate the application of CAS++ to a real case
study concerning the development of a multi-service network manage-
ment system. The motivation for our work has been raised in response
to the requirements of such case study within the Pitagora project.

1 Introduction

Applications running on the Global Information Infrastructure are increasingly
designed by composing individual e-services such as e-Government services, re-
mote banking, and airline reservation systems [12], providing various kind of
functionalities such as paying fines, renting a car, releasing authorizations, and
so on. From the architectural point of view, service-oriented distributed ap-
plications follow a layered software structure composed of three layers [16]: i)
e-Service components, software components implementing e-services; ii) Appli-
cation server, a middleware layer over which the components will be deployed
and that provides some additional functionalities such as management of secu-
rity and persistence; iii) Operating System platform, over which the application
will be distributed. While there is an increasing need for authenticating clients
of these applications before granting them access to services and resources, indi-
vidual e-services are rarely designed in such a way to handle the authentication



process. The reason e-services do not include functionalities for checking the
client’s credentials is that they assume a unified directory system to be present,
making suitable authentication interfaces available to client components of net-
work applications. On some corporate networks, all users have a single identity
across all services and all applications are directory enabled. As a result, users
only log in once to the network, and all applications across the network are able
to check their unified identities and credentials when granting access to their ser-
vices. However, on most Intranet and on the open network users have multiple
identities, and a solution is needed to give them the illusion of having a single
identity and a single set of credentials. Single Sign-On (SSO) systems are aimed
at providing this functionality, managing the multiple identities of each user and
presenting their credentials to network applications for authentication. In this
paper, we describe a fully functional open source Single Sign-On [7] solution,
that allows users to enter a single username and password to access systems
and resources, to be used in the framework of an open source e-service scenario.
Indeed, open specifications for inter-organizational SSO do exist; for example,
the Liberty Alliance (LA) project, started in 2001 and involving more than 130
organizations, is aimed at providing a framework for protecting business transac-
tion, and its scope clearly includes open standards for federated network identity.
However, here we shall focus on specific open source implementations of SSO sys-
tems, which may or may not fully comply to open specifications like LA. As a
matter of fact, in many application fields open source products are increasingly
being adopted as an alternative to proprietary solutions. In particular, our work
has been driven by the requirements for an open source Single Sign-On solution
raised within the Pitagora project, where we are collaborating with Siemens
Mobile for the development of a multi-service network management system.

2 Single Sign-On: Basic Concepts

The huge amount of services available on the Net is causing a proliferation of user
accounts. Users typically have to log-on to multiple systems, each of which may
require different usernames and authentication information. All these accounts
may be managed independently by local administrators within each individual
system [20].

In a multiservice domain, each system acts as an independent domain. The
user first interacts with a primary domain to establish a session with that do-
main. This transaction requires the user to provide a set of credentials applicable
to the primary domain. The primary domain session is usually represented by
an operating system shell executed on the user’s workstation. From this primary
domain session shell, the user can require services from other secondary domains.
For each of such requests the user has to provide another set of credentials ap-
plicable to the interested secondary domain.

From the account management point of view, this approach requires indepen-
dent management of accounts in each domain and use of different authentication
mechanisms. In the course of time, several usability and security concerns have



been raised leading to a rethinking of the log-on process aimed at co-ordinating
and, where possible, integrating user log-on mechanisms of the different domains.

A service/architecture that provides such a co-ordination and integration is
called Single Sign-On [13]. In the SSO approach the primary domain is responsi-
ble for collecting and managing all user credentials and information used during
the authentication process, both to the primary domain and to each of the sec-
ondary domains that the user may potentially require to interact with. This
information is then used by Single Sign-On services within the primary domain
to support the transparent authentication by each of the secondary domains
with which the user requests to interact. The advantages of the SSO approach
include [11, 20]:

– reduction of i) the time spent by the users during log-on operations to indi-
vidual domains, ii) failed log-on transactions, iii) the time used to log-on to
secondary domains, iv) costs and time used for users profiles administration;

– improvement to users security since the number of username/password each
user has to manage is reduced;1

– secure and simplified administration because with a centralized administra-
tion point, system administrators reduce the time spent to add and remove
users or modify their rights;

– improved system security through the enhanced ability of system adminis-
trators to maintain the integrity of user account configuration including the
ability to change an individual user’s access to all system resources in a
co-ordinated and consistent manner;

– improvement to services usability because the user has to interact with the
same login interface.

SSO provides a uniform interface to user accounts management thus enabling
a coordinated and synchronized management of the component domains.

3 Trust Models and Requirements of Single Sign-On
Solutions

The definition of different trust models is important for the evaluation of different
SSO solutions, which could slightly differ in their purposes depending on the
business and trust scenario in which they act. For the goal of our analysis, we
define three trust models over which the requirements, defined in Section 3.2,
will be categorized.

3.1 Trust Models

A trust model describes a system through the definition of the underlying envi-
ronment and of its behaviors, components, and rules. In particular, the model
1 It is important to note that, while improving security since the user has less accounts

to manage, SSO solutions imply also a greater exposure from attacks; an attacker
getting hold of a single credential can in principle compromise the whole system.



defines the entities involved in the system, the rules that regulate the inter-
actions between the entities and the peculiarities of the overall system. Trust
models are the basis for interoperability. For our goals, we focus on the defi-
nition of trust models in SSO environments based on the services that these
environments support. We have identified three models.

Authentication and Authorization Model (AAM). This model represents
one of the traditional security/trust models describing all the frameworks
that provide authentication and authorization features [10]. It represents the
basic mechanism in which a user requires an access to a service that checks
the users’ credentials to decide whether access should be granted or denied.
This model identifies two major entities: users, which request accesses to re-
sources, and services, potentially composed by a set of intra-domain services,
which share these resources. This model is based on the classic client-server
architecture and provides a generic protocol for authentication and autho-
rization processes.

Federated Model (FM). This model represents one of the emergent secu-
rity/trust models in which several homogeneous entities interact to provide
security services, such as identity privacy and authentication. This model
identifies two major entities: users, which request accesses to resources, and
services, which share these resources. The major difference with the pre-
vious model resides in the service definition and composition: in federated
systems the services are distributed on different domains and they are built
on the same level allowing mutual trust and providing functionalities as
cross-authentication [17].

Full Identity Management Model (FIMM). This model represents one of
the most challenging security and privacy/trust models that, potentially,
could merge the previous two models. In addition, it provides mechanisms for
identity and account management and privacy protection [3, 18]. This model
identifies three major entities: users, which request accesses to resources,
services, which share these resources, and identity manager, which gives
functionalities to manage users identities. The major difference with the
previous models is that FIMM tries also to fulfill the needs of privacy that
arise in emerging scenarios.

3.2 Requirements

The requirements that a Single Sign-On solution should satisfy are more or less
well known within the security community, and several SSO projects published
partial lists.2 However, to the best of our knowledge no complete discussion
of high-level functional requirements for SSO has been published yet. A first
step before implementing an open source innovative SSO system consists in

2 For an early attempt at a SSO requirements list, see
middleware.internet2.edu/webiso/docs/draft-internet2-webiso-requirements

-07.html



Requirement AAM Model FM Model FIMM Model

Authentication X X X

Strong Authentication X X X

Authorization X X

Provisioning X X

Federation X X

C.I.M. (Centralized Identity Management) X X

Client Status Info X X X

Single Point of Control X

Standard Compliance X X X

Cross-Language availability X X X

Password Proliferation Prevention X X X

Scalability X X X

Table 1. Requirements categorization basing on the specific trust model.

spelling out these requirements, taking lessons learned from previous projects
into account. Our analysis brought us to formulating the following requirements
(for each requirement we report the trust model (AMM, FM, FIMM) to which
it refers).3

Authentication (AAM,FM,FIMM). The main feature of a SSO system is
to provide an authentication mechanism. Usually the authentication is per-
formed through the classic username/password log-in, whereby a user can
be unambiguously identified. Authentication mechanisms should usually be
coupled with a logging and auditing process to prevent and, eventually, find
out malicious attacks and unexpected behaviors. From a software engineering
point of view, authentication is the only “necessary and sufficient” functional
requisite for a SSO architecture.

Strong Authentication (AAM,FM,FIMM). For high security environments,
the traditional username/password authentication mechanism is not enough.
Malicious users can steal a password and act in place of the user. New
approaches are therefore required to better protect services against unau-
thorized accesses. A good solution to this problem could integrate user-
name/password with strong authentication mechanism based on two-factor
authentication such as a smartcard and biometric properties of the user (fin-
gerprints, retina scan, and so on).

Authorization (AAM,FIMM). After the authentication process, the system
can determine the level of information/services the requestor can see/use.
While application based on domain specific authorizations can be defined
and managed locally at each system, the SSO system can provide support

3 Note that, different models fulfill a different set of requirements (see Table 1). SSO
solution should be evaluated therefore by taking into consideration only the require-
ments supported by the corresponding trust model.



for managing authorizations (e.g. role or profile acquisitions) that apply to
multiple domains.

Provisioning (AAM,FIMM). Provisions are those conditions that need to
be satisfied or actions that must be performed before a decision is taken [6].
A provision is as a pre-condition; it is responsibility of the user to ensure
that a request is sent in an environment satisfying all the pre-conditions.
The non-satisfaction of a provision implies a request to the user to perform
some actions.

Federation (FM,FIMM). The concept of federation is strictly related to the
concept of trust. A user should be able to select the services that she wants
to federate and de-federate to protect her privacy and to select the services
to which she will disclose her own authorization assertions.

C.I.M. (Centralized Identity Management) (AAM,FIMM). The central-
ization of authentication and authorization mechanisms and, more generally,
the centralization of identity management implies a simplification of the user
profile management task. User profiles should be maintained within the SSO
server thus removing such a burden from local administrators. This allows a
reduction of user-profile administration cost and time and improves admin-
istrators’ control on user profiles and authorization policies.

Client Status Info (AAM,FM,FIMM). The SSO system architecture im-
plies the exchange of user information between SSO server and services to
fulfill authentication and authorization processes. In particular, when the
two entities communicate, they have to be synchronized on what concern
the user identity; privacy and security issues need to be addressed. Different
solutions of this problem could be adopted involving either the transport
(e.g. communication can be encrypted) or the application layer.

Single Point of Control (AAM). The main objectives of a SSO implemen-
tation are to provide a unique access control point for users who want to
request a service, and, for applications, to delegate some features from busi-
ness components to an authentication server. This point of control should
be unique to clearly separate the authentication point from business imple-
mentations, avoiding the replication and the ad-hoc implementation of au-
thentication mechanisms for each domain. Note that every service provider
will eventually develop its own authentication mechanism.

Standard Compliance (AAM,FM,FIMM). It is important for a wide range
of applications to support well-known and reliable protocols to make pos-
sible communication and integration between different environments. In a
SSO scenario, there are protocols for exchanging messages between authen-
tication servers and service providers, and between technologies, within the
same system, that can be different. Hence, every entity can use standard
technologies (e.g. X.509, SAML for expressing and exchanging authentica-
tion information and SOAP for data transmission) to interoperate with dif-
ferent environments.

Cross-Language availability (AAM,FM,FIMM). The widespread adoption
of the global Internet as an infrastructure for accessing services has conse-
quently influenced the definition of different languages/technologies used to



develop these applications. In this scenario, a requisite of paramount im-
portance is the development of SSO solutions that permit the integration
of service implementations based on different languages, without substantial
changes to service code. The first step in this direction is the adoption of
standard communication protocols based on XML.

Password Proliferation Prevention (AAM,FM,FIMM). A well-known mo-
tivation for the adoption of SSO systems is the prevention of password pro-
liferation so to improve security and simplify user log-on actions and system
profile management.

Scalability (AAM,FM,FIMM). An important requirement for SSO systems
is to support and correctly manage a continuous growth of users and subdo-
mains that rely on them, without substantial changes to system architecture.

4 Our Solution: CAS++

We have developed our open source SSO system with the goal of addressing the
AAM requirements identified in the previous section by properly extending an
existing open source SSO implementation, named Central Authentication Ser-
vice (CAS) [5, 8]. In this section, we briefly describe CAS and then illustrate our
solution, called CAS++, developed as an extension to CAS. Note that, CAS++
is not the only implementation available on the Net. In particular, SourceID [21],
an Open Source implementation of the SSO Liberty Alliance, Java Open Sin-
gle Sign-On (JOSSO) [15], and Shibboleth [19] stand out as the most complete
available SSO solutions.

4.1 Central Authentication Service (CAS)

Central Authentication Service (CAS) [5, 8] is an open source framework devel-
oped by Yale University and implements a SSO mechanism to provide a Cen-
tralized Authentication to a single server and HTTP redirections. CAS authen-
tication model is loosely based on classic Kerberos-style authentication. When
an unauthenticated user sends a service request, this request is redirected from
the application to the authentication server (CAS Server), and then back to the
application after the user has been authenticated. The CAS Server is therefore
the only entity that manages passwords to authenticate users and transmits
and certifies their identities. The information is forwarded by the authentication
server to the application during redirections by using session cookies (see data
flow in Figure 2).

CAS is composed of pure-Java servlets running over any servlet engine and
provides a very basic web-based authentication service. In particular, its major
security features are:

1. passwords travel from browsers to the authentication server via an encrypted
channel;



2. re-authentications are transparent to users if they accept a single cookie,
called Ticket Granting Cookie (TGC). This cookie is opaque (i.e., TGC con-
tains no personal information), protected (it uses SSL) and private (it is only
presented to the CAS server);

3. applications know the user’s identity through an opaque one-time Service
Ticket (ST) created and authenticated by the CAS Server, which contains
the result of a hash function applied to a randomly generated value.

Also, CAS credentials are proxiable. At start-up, distributed applications get a
Proxy-Granting Ticket (PGT) from CAS When the application needs access to
a resource, it uses the PGT to get a proxy ticket (PT). Then, the application
sends the PT to a back-end application. The back-end application confirms the
PT with CAS, and also gains information about who proxied the authentication.
This mechanism allows “proxy” authentication for Web portals, letting users to
authenticate securely to untrusted sites (e.g., student-run sites and third-party
vendors) without supplying a password. CAS works seamlessly with existing
Kerberos authentication infrastructures and can be used by nearly any Web-
application development environment (JSP, Servlets, ASP, Perl, mod perl, PHP,
Python, PL/SQL, and so forth) or as a server-wide Apache module. Also, it is
freely available from Yale University (with source code).

4.2 CAS++

We developed an open source SSO system, called CAS++, based on the use of
identity certificates and fully integrated with the JBoss security layer. Our solu-
tion integrates the CAS system with the authentication mechanism implemented
by a Public Key Infrastructure (PKI). CAS++ implements a fully multi-domain
stand-alone server that provides a simple, efficient, and reliable SSO mechanism
through HTTP redirections, focused on user privacy (opaque cookies) and secu-
rity protection. CAS++ permits a centralized management of user profiles grant-
ing access to all services in the system with a unique pair username/password.
The profiles repository is stored inside the SSO server application and is the
only point where users credentials/profiles are accessed, thus reducing informa-
tion scattering. In our implementation, services do not need an authentication
layer because this feature is managed by CAS++ itself.

CAS++ relies on standard protocols such as SSL, for secure communications
between the parties, and X.509 digital certificates for credentials exchange. Be-
sides being a “pure-Java” module like its predecessor, CAS++ is a fully J2EE
compliant application integrable with services coded with every web-based im-
plementation language. It enriches the traditional CAS authentication process
through the integration of biometric identification (by fingerprints readers) and
smart card technologies in addition to traditional username/password mecha-
nism, enabling two authentication levels. Our strong authentication process flow
is composed of the following steps (see Figure 1):4

4 Note that, the first two actions are performed only once when the user requests the
smart card along with an identity certificate.



Fig. 1. CAS++ certificate-based authentication flow

1. the user requests an identity certificate to the CA (Certification Authority);
2. the user receives from the CA a smart card that contains a X.509 identity cer-

tificate, signed with the private key of the CA, that certifies the user identity.
The corresponding user private key is encrypted with a symmetric algorithm
(e.g., 3DES) and the key contained inside the smart card can be decrypted
only with a key represented by user fingerprint (KFingerprintUser)[14];

3. to access a service the public key certificate, along with the pair user-
name/password, is encrypted with the CAS++ public key (KPuCAS++)
and sent to CAS++;

4. CAS++ decrypts the certificate with its private key, verifies the signature
on the certificate with the CA public key, and verifies the validity of this
certificate by interacting with the CA;

5. CAS++ retrieves from the CA information about the validity of the user
certificate encrypted with KPuCAS++;

6. if the certificate is valid, CAS++ extracts the information related to the
user, creates the ticket (TGC, Ticket Granting Cookie) and returns it to the
user encrypted with the public key of the user (KPuUser). At this point, to
decrypts the TGC, the user must retrieve the private key stored inside the
smart card by mean of her fingerprint. As soon as the card is unlocked, the
private key is extracted and the TGC decrypted. This ticket will be used for
every further access, in the same session, to any application managed by the
CAS++ Single Sign-On server.

At this point, for every further access in the session, the user can be authen-
ticated by the service providing only the received TGC without any additional
authentication action.5

The service access flow, that takes place over secure channels and is similar
to the one in CAS, is composed of the following steps (see Figure 2):
5 Note that the TGC lifetime should be relatively short to avoid conflicts with the

CA’s certificate revocation process, which could cause unauthorized accesses.



Fig. 2. CAS++ information flow for service request evaluation

1. the user, via a web browser, requests access to the service provider;
2. the service provider requests authentication information through a HTTP

redirection to the CAS++ Server;
3. the CAS++ Server retrieves the user TGC and the service requested URL. If

the user has been previously authenticated by CAS++ and has the privilege
to access the service a Service Ticket is created;

4. the CAS++ Server redirects the user browser to the requested service along
with the ST;

5. service receives the ST and check its validity sending it to the CAS++ Server;
6. if the ST is valid the CAS++ Server sends to the Service an XML file with

User’s credentials;
7. the user gains the access.

4.3 Evaluating CAS++ Against the AAM Requirements

CAS++ is based on the Authentication and Authorization Model. Table 2 re-
ports the results of the evaluation of CAS++. As it is visible from this table,
CAS++ fulfills most of AAM requirements; it provides a central point of con-
trol to manage authentication, authorization, and user profiles.6 Furthermore,
CAS++ enriches the traditional CAS authentication process with the integration
of biometric identification (via fingerprints readers) and smart card technologies
and it is planned to include provisioning features in future releases. Note that,
the lower level of CAS++ system is language independent and relies on tradi-
tional established standards, such as HTTP, SSL and X.509, without adopting
emerging ones, such as SOAP and SAML. Finally, focusing on client status info,

6 The centralization of users profiles affects system scalability. A solution that provides
a balance between centralization and scalability needs is under study.



Requirement CAS++

Authentication yes

Strong Authentication yes

Authorization yes

Provisioning planned

C.I.M. (Centralized Identity Management) yes

Client Status Info yes (opaque)

Single Point of Control yes

Standard Compliance partial (HTTP, SSL, X.509)

Cross-Language Availability yes

Password Proliferation Prevention yes

Scalability planned

Table 2. Evaluation of CAS++ with respect to the requirements of the AAM model

all communications between user browser, services providers and authentication
server in CAS++ scenario are managed by the exchange of opaque cookies and
by the use of encrypted channels.

5 A Case Study: the Pitagora Project

The increasing usage of GSM mobile phones and the upcoming of a new gen-
eration of mobile system (called third-generation or 3G) have lead to the de-
velopment of applications that manage the mobile network and provide new
services to users. In this scenario, every network technician that has to use mul-
tiple parallel services must manage several pairs username/password, raising all
the problems discussed in the previous sections of this paper. In particular, the
adoption of SSO, with strong authentication mechanisms through smart card and
fingerprint readers, allows also the restriction of simultaneous multi-accesses for
security reasons; in our scenario, in fact, we manage very sensitive data and, in
some cases, we want to avoid any kind of data correlation.

Focusing on this scenario, we show a case study example that involved
our SSO implementation integrated with the research and development project
“Pitagora”, carried out by our group in cooperation with Siemens Mobile. Cur-
rently, the Pitagora Project is composed of the following applications:

Web-based MultiProtocol User Interface (IMW): is the application tool
that provides and controls the access to OMC (Operation and Maintenance
Center) system requested by users/ technicians. In particular, users are
able to manage, configure, and check OMC mobile network using differ-
ent technologies and devices, such as traditional PCs/laptops, PDAs, mo-
bile phones. Hence, IMW manages all the communication process between
users and OMC system, through different technologies as web browser and
HTTP/HTTPS protocol, WAP browser, SMS. IMW keeps network techni-
cians up-to-date on the network state, notifying alarms and warnings, at



which the users are previously registered, happened on the supervised net-
work.

Geo-location Applications (i-Geo): is the application involved in the geo-
location of the customers mobile [2]. In particular, our solution locates mobile
phones taking into account real and estimated path-loss with all information
that can be extracted from a GIS map of the interested area rather than
compute the mobile position only through real and estimated path-loss as
in classical approaches.

Geographical Electromagnetic Field Information System (GEMFIS):
is an open source application used to monitor the network usage focusing on
maximizing performance and checking electric pollution levels, in accordance
with the current legislation. GEMFIS includes functionalities for storing, dis-
playing and managing environmental data.

In the scenario depicted above, without a SSO solution, the technicians that
wished to access Pitagora’s tools had to manage several username/password
pairs and log-on separately to each service. The adoption of CAS++ solution
has brought several advantages. In current Pitagora’s architecture, individual
services are not stand-alone modules, each with its own access control layer;
rather, they are fully integrated in a single security domain. Technicians needing
to use multiple applications can perform a single log-on operation and all profile
information requested by the application is transparently provided by CAS++.
The adoption of CAS++ also improved user profile management, since our pro-
files repository and administration point are fully integrated within CAS++.
Another important requirement fulfilled by CAS++ is strong authentication, a
fundamental aspect in our scenario. Finally, CAS++ allowed Siemens develop-
ers to freely choose the programming language used to implement individual
services.

6 Conclusions

We described some trust models representing different systems behaviors and
goals for Single Sign-On services, and identified the requirements that an open
source Single Sign-On solution should satisfy. We then illustrated our open source
SSO system, called CAS++ and its application to a real case study. Issues to be
investigated include an extension of CAS++ to fully support the requirements
of a full identity management model.

Acknowledgments

We thank you the anonymous reviewers and Tuomas Aura for comments and
suggestions which considerably improved the paper. This work was supported
in part by the European Union within the PRIME Project in the FP6/IST
Programme under contract IST-2002-507591 and by the Italian MIUR within
the KIWI and MAPS projects.



References

1. M. Anisetti, V. Bellandi, E. Damiani, M. Montel, and S. Reale. Open Source Elec-
tromagnetic Field Monitoring as e-Government Service. Proc. of the International
Symposium on Telecommunications, Shiraz, Iran, September 2005.

2. M. Anisetti, V. Bellandi, E. Damiani, and S. Reale. Localize and tracking of
mobile antenna in urban environment. Proc. of the International Symposium on
Telecommunications, Shiraz, Iran, September 2005.

3. C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, and P. Samarati. To-
wards Privacy-Enhanced Authorization Policies and Languages. Proc. of the 19th
IFIP WG11.3 Working Conference on Data and Application Security , Nathan
Hale Inn, University of Connecticut, Storrs, USA, August 2005.

4. C.A. Ardagna, E. Damiani, F. Frati, and M. Montel. Using Open Source Middle-
ware for Securing e-Gov Applications. Proc. of the First International Conference
on Open Source Systems (OSS 2005), Genova, Italy.

5. P. Aubry, V. Mathieu, and J. Marchal. ESUP-Portal: open source Single Sign-On
with CAS (Central Authentication Service). Proc. of EUNIS04 - IT Innovation
in a Changing World, Bled (Slovenia), July 2004

6. C. Bettini, S. Jajodia, X. Sean Wang, and D. Wijesekera. Provisions and obliga-
tions in Policy Management and Security Applications. Proc. of the 28th VLDB
Conference, Honk Kong, China, 2002.

7. D.A. Buell, and R. Sandhu. Identity Management. IEEE Internet Computing,
November-December 2003.

8. Central Authentication Service, http://jasigch.princeton.edu:9000/

display/CAS

9. A. Corallo, M. Cremonini, E. Damiani, S. De Capitani di Vimercati, G. Elia, and
P. Samarati. Security, Privacy, and Trust in Mobile Systems. Mobile and Wireless
Systems Beyond 3G: Managing New Business Opportunities, Idea Group Inc.,
(2005).

10. S. De Capitani di Vimercati, and P. Samarati. Access control: Policies, models,
and mechanisms, Foundations of Security Analysis and Design, 2001.

11. J. De Clercq. Single sign-on architectures. International Conference on Infras-
tructure Security (InfraSec 2002), Bristol, UK, October 2002.

12. S. Feldman. The Changing Face of e-Commerce. IEEE Internet Computing,
4(3):82–84, May/June (2000).

13. B. Galbraith et al. Professional Web Services Security. Wrox Press, 2002.
14. F. Hao, R. Anderson, and J. Daugman. Combining cryptography with biomet-

rics effectively. Technical report, Cambridge University - Computer Laboratory
Technical Report UCAM-CL-TR-640.

15. Java Open Single Sign-On (JOSSO), http://www.josso.org/.
16. R. Khosla, E. Damiani, and W. Grosky. Human-Centered E-Business. Kluwer

Academic Publishers, Massachusetts, USA, 315 pages, April 2003.
17. Liberty Alliance Project, http://www.projectliberty.org/
18. PRIME (Privacy and Identity Management for Europe), http://www.

prime-project.eu.org.
19. Shibboleth Project, http://shibboleth.internet2.edu/.
20. Single Sign-On, The Open Group, http://www.opengroup.org/security/sso/.
21. SourceID Open Source Federated Identity Management, http://www.sourceid.

org/index.html


