
	
 1	

Cloud Security: Issues and Concerns

Authors
Pierangela Samarati*
Università degli Studi di Milano, Italy
pierangela.samarati@unimi.it

Sabrina De Capitani di Vimercati
Università degli Studi di Milano, Italy
sabrina.decapitani@unimi.it

Keywords
cloud security
confidentiality
integrity
availability
secure data storage and processing

Summary
The cloud has emerged as a successful computing paradigm allowing users and
organizations to rely on external providers for storing and processing their data and
making them available to others. An increasing important priority for the wide
adoption and acceptance of cloud computing is the ability of data owners and users to
have enforced and assess security guarantees. Guaranteeing security means ensuring
confidentiality and integrity of data, accesses, and computations on them as well as
ensuring availability of data and services to legitimate users and in compliance with
agreements with the providers. In this chapter, we present an overview of the main
security issues and concerns arising in the cloud scenario, in particular with respect to
the storage, management, and processing of data.

1. Introduction
The rapid advancements in Information and Communication Technology (ICT) have
enabled the emerging of the “cloud” as a successful paradigm for conveniently
storing, accessing, processing, and sharing information. With its significant benefits
of scalability and elasticity, the cloud paradigm has appealed companies as well as
individuals, which are more and more resorting to the multitude of available providers
for storing and processing data. Unfortunately, such a convenience comes at the price
of loss of control of the owners of the data, and consequent security threats, which can
limit the potential widespread adoption and acceptance of the cloud computing
paradigm. On one hand, cloud providers can be assumed to employ basic security
mechanisms for protecting data in storage, processing, and communication, devoting
resources to ensure security that many individuals and companies may not be able to
afford. On the other hand, data owners as well as users of the cloud lose control over
data and their processing. ENISA lists loss of control and governance as a top risk of
cloud computing (ENISA, 2009). The Cloud Security Alliance (CSA) lists data
breaches and data loss as two of the top nine threats in cloud computing (CSA, 2013).
Security threats can arise because of the new complexity of the cloud scenario (e.g.,
dynamic distribution, virtualization, and multi-tenancy), because data or computations

	
 2	

might be sensitive and should be protected even from the providers eyes, or because
providers might be not fully trustworthy and their - possibly lazy or malicious -
behavior should be controlled.
The term cloud encompasses a variety of distributed computing environments,
varying with respect to the architectural or trust assumptions and the services offered.
In particular, the US National Institute of Standards and Technology (NIST)
distinguishes four deployment models and three service models (NIST, 2011). The
deployment models range from a private cloud, where the infrastructure and services
are operated for a single organization and are maintained on a private network, to a
public cloud, where the infrastructure is made available to the public and is owned by
an organization offering cloud services. Ownerships and operation models between
these two extremes are also possible, such as in a community cloud, where different
companies with common objectives (e.g., business goals and security requirements)
share the cloud infrastructure, and a hybrid cloud, composed of multiple clouds,
which can be private, public, or community, under the control of one or more cloud
providers, and with more stringent security requirements than a public cloud.
Similarly, different service models, namely IaaS (Infrastructure as a Service), PaaS
(Platform as a Service), and SaaS (Software as a Service), entail different
responsibilities in enforcing security. The security and privacy issues to be addressed
and the challenges involved can vary in different deployment and service models. For
instance, a private cloud typically entails more control for the owner at the varying
levels (applications, platform, and infrastructure) among data owners and providers.
In this chapter, we highlight security issues that need to be considered when using the
cloud to offer or enjoy services, which are typically present, thought with possible
variations, in the different models above. The chapter discusses security aspects that
are more affected by the cloud paradigm, in particular in relationships to the data
security lifecycle, reported in Figure 1 (CSA, 2011). Of course, complete protection
requires also the use of others, perhaps more traditional, security techniques on which
we do not further elaborate.
The chapter is organized in two main sections. Section 2 discusses how the classical
confidentiality, integrity, and availability properties translate in the cloud. Section 3
presents an overview of the security issues and concerns to be addressed to ensure
confidentiality, integrity, and availability in such a complex scenario. For each
identified issue, we provide a description of the problem and challenges to be
addressed together with possible existing solutions or directions.

2. Confidentiality, Integrity, and Availability in the Cloud
Security problems can be classified with the classical CIA (confidentiality, integrity,
and availability) paradigm, which in the cloud can be interpreted as follows.
Confidentiality requires guaranteeing proper protection to confidential or sensitive
information stored or processed in the cloud. Depending on the requirements of the
considered scenario, this can relate to any or all of: the data externally stored, the
identity/properties of the users accessing the data, or the actions that users perform
over the data. Integrity requires guaranteeing the authenticity of: the parties (users and
providers) interacting in the cloud, the data stored at external providers, and of the
response returned from queries and computations. Availability requires providing the
ability to define and verify that providers satisfy requirements expressed in Service
Level Agreements (SLAs) established between data owners/users and providers. The
issues to be tackled, the challenges to be addressed, and the specific guarantees to be

	
 3	

Figure	
 1:	
 Data	
 security	
 lifecycle.	

provided for ensuring satisfaction of the security properties above depend on the
characteristics of the different scenarios. For instance, in a simple scenario, where an
individual or a company uses the cloud simply for archival/storage purposes,
problems to be addressed concern protecting confidentiality or integrity of data in
storage and assessing satisfaction of Service Level Agreements, also ensuring correct
enforcement of create and destroy operations. In a more complex scenario requiring
execution of queries over data (use), the problem arises of executing queries as well
as guaranteeing confidentiality and integrity of the dynamically computed results. The
case where not only the owner (or a restricted set of trusted users) accesses the data
(share) entails further complications such as the need to enforce access control
restrictions over the data, ensure data integrity in presence of concurrent independent
operations, and even ensure confidentiality of a user’s actions with respect to other
users. A further aspect that affects the issues to be addressed and possible applicable
techniques are the trust assumptions – and consequent potential threats – on the
providers involved in the storage and processing of the data, which could be fully
trusted, curious, lazy, or malicious. Fully trusted providers can be assumed in cases of
private clouds (or portions thereof) under complete and full control of the data owner.
Curious providers refer to scenarios where the storage or processing involves
sensitive information (data or actions on them) that should be maintained confidential
to the providers themselves. Lazy providers refer to scenarios where the storing or
processing providers might not be considered fully trustworthy for ensuring data or
computation integrity or for providing the availability promised in the service level
agreements. Finally, malicious (or byzantine) providers refer to cases where providers
may intentionally behave improperly in the management, storage, and processing of
the data, possibly compromising their confidentiality, integrity, or availability (this
case accounts also for insider threats at the provider’s side).

3. Issues and Challenges
The discussion in the previous section makes it clear that there is not a one-size-fits-
all solution (not even a one-size-fits-all problem definition). There are instead
different aspects, with related issues, challenges, and security controls that need to be
considered and that can find application in different scenarios. In this section, we
illustrate these issues and challenges, summarized in Figure 2.

	
 4	

Issue Description
Protection of data at rest Guarantee confidentiality, integrity, and availability of data
Fine-grained access Enable fine-grained retrieval and query execution on protected data
Selective access Enable owner-regulated access control and authorization enforcement
User privacy Support privacy of users accessing data and performing computations
Query privacy Support privacy of users’ actions in the cloud
Query and computation
integrity

Enable assessment of correctness, completeness, and freshness of
queries and computations

Collaborative query
execution with multiple
providers

Enable controlled data sharing for collaborative queries and
computations involving multiple providers

SLA and Auditing Specification and assessment of security requirements to be satisfied by
providers

Multi-tenancy and
virtualization

Provide confinement of different users data and activities in the shared
cloud environment

Figure	
 2:	
 Summary	
 of	
 cloud	
 security	
 issues.	

3.1 Protection of data at rest
A first basic problem that needs to be addressed when relying on the cloud for storing
data is to guarantee protection (i.e., confidentiality, integrity, and availability) to the
stored data themselves. With current solutions, users typically need to completely
trust the cloud providers. In fact, although cloud providers apply security measures to
the services they offer, such measures allow them to have full access to the data. For
instance, Google Docs or Salesforce support encryption of the data both in transit and
in storage but they also manage the encryption keys, and therefore users do not have
direct control on who can access their data. Whenever data confidentiality needs to be
guaranteed even to the provider’s eyes, other solutions have to be considered.
Solutions for protecting confidentiality in this, honest-but-curious, scenario typically
require encrypting data before releasing them to the cloud providers (Figure 3(a)). For
instance, services like Boxcryptor allow a user to encrypt her files locally before
releasing them to a cloud provider such as Dropbox, Google Drive, and Microsoft
SkyDrive. Encryption guarantees both confidentiality as well as integrity (as data
tampering can be easily detected). For performance reasons, symmetric encryption is
usually adopted. While encryption can be effective in many environments, it brings in
several complications in scenarios where fine-grained retrieval of data needs to be
supported (see Section 3.2). For this reason, recent approaches have put forward the
idea of using fragmentation, instead of encryption, when what need to be maintained
confidential are the associations among data values, in contrast to the values
themselves (Ciriani et al., 2010). Fragmentation protects sensitive associations by
splitting the concerned pieces of information and storing them in separate un-linkable
fragments.	
 Fragmentation can be applied in conjunction with encryption or by itself,
resulting in different approaches (Figure 3(b-d)). In the “two can keep a secret”
approach (Figure 3(b)), the data owner relies on two independent non-communicating
providers, each of which stores a portion of the data, as much as possible in plaintext
form, with encryption applied only to data values that either are sensitive by
themselves or cannot be stored in the clear at any of the two providers without
disclosing some sensitive associations. In the “multiple un-linkable fragments”
approach (Figure 3(c)), only attributes with sensitive values are encrypted, while all
other attributes are stored in the clear in as many fragments as needed, trying to avoid
excessive fragmentation. In the “keep a few” approach (Figure 3(d)), nothing is
encrypted and there is instead the involvement of a trusted party (typically the data
owner) for storing and processing a limited amount of data that are sensitive by
themselves or whose visibility would disclose some sensitive associations.

	
 5	

	

Figure	
 3:	
 Protection	
 of	
 data	
 at	
 rest	
 with:	
 encryption	
 (a),	
 fragmentation	
 over	
 two	
 independent	

providers	
 (b),	
 fragmentation	
 with	
 un-­‐linkable	
 fragments	
 (c),	
 and	
 fragmentation	
 with	
 the	
 owner	

storing	
 some	
 of	
 the	
 data	

Ensuring integrity and availability of data in storage requires providing the data
owners/users with the ability to verify that data have not been improperly modified or
tampered with, and that their management at the provider side complies with the
service level agreements. Integrity of data can be verified by employing signature
schemes, where data are digitally signed so to make improper modifications on them
detectable. Signatures provide a deterministic guarantee of data integrity. Probabilistic
guarantees can be provided by the use of checks, such as sentinels used in Proof Of
Retrievability (POR) solutions, which apply to encrypted data, or homomorphic
verifiable tags used in Provable Data Possession (PDP) solutions, which apply to
generic datasets. Availability of data in spite of failures or non compliance of
providers can be guaranteed by employing classical replication techniques distributing
data at different providers.
Protection of data entails also ensuring correct destruction of the data at the owner
demand. The use of encryption under control of the owner can provide such a
guarantee since possible remaining data copies would be intelligible without the
proper key (Cachin et al., 2013).

3.2 Fine-grained access to data in the cloud
Maintaining confidentiality of the data even with respect to the providers storing or
processing them implies, when data are protected with encryption, that the providers
cannot decrypt the data for query execution. In applications where fine-grained

	
 6	

access, typically query execution, needs to be supported, queries should then be
evaluated on the encrypted data themselves. There are two lines of approaches for
providing this ability. The first approach consists in performing queries directly on
the encrypted data, where such a capability is made possible by specific
cryptographic techniques (e.g., homomorphic encryption). The main drawbacks of
these approaches, applicable typically for keyword searches or very basic operations,
remain the limited kinds of accesses supported and the computational complexity of
the execution, which make them not applicable in many real life scenarios. Other
solutions enabling execution of SQL queries directly on encrypted data while
guaranteeing more support for operations and efficiency rely on different layers of
encryption, each supporting specific operations. An example is CryptDB (Popa et al.,
2011), where each relation is encrypted at the column level with different onion layers
of encryption, each supporting the execution of a specific SQL operation. Whenever
the CryptDB proxy server receives an SQL query, it determines the onion layer
needed for its execution. If the encrypted data are not already at the required onion
layer, the proxy sends to the provider the key of the onion layer enabling the provider
to strip off the other layers and execute the query. The second approach consists in
attaching to the encrypted data some metadata (indexes) that are then used for fine-
grained information retrieval and query execution. For instance, in a relational table
where tuples are encrypted, different indexes can be specified for the different
attributes on which conditions might need to be evaluated. Indexes should be well
related to the data behind them, so to be precise and effective for query execution, but
at the same time should not leak information on such data. Such a protection should
be guaranteed from static observations (observation of the encrypted and indexed data
in storage) as well as dynamic observations (observation of the queries in execution
on such data). Different kinds of indexes have been investigated, including direct
indexing (providing a one-to-one correspondence between plaintext and index
values), bucket- or hash-based indexing (providing a many-to-one correspondence
between plaintext and index values), and flat indexing (providing a one-to-many
correspondence between plaintext and index values). Other types of indexes have
been investigated in relation to tree-based data structures, and order-preserving or
homomorphic encryption solutions, for providing support of range queries or
aggregate functions. Different approaches to indexes provide different protection
guarantees as well as different support for, and performance in, query execution. For
instance, the many-to-one correspondence in bucket and hash-based approaches,
where multiple plaintext values collide to the same index, and the flat indexing, where
all different index values have the same number of occurrences, provide better
protection of the confidentiality of the indexing with respect to direct indexing, at the
price however of a more complex query process. Also, indexing approaches based on
order preserving encryption provide support for range queries, but are exposed to
some information leakage.
Query execution over encrypted and indexed data typically involves a trusted client
application translating the plaintext query Q in a query Qp to be sent to the provider
and query Qc performing some post-processing for decrypting data and removing
possible tuples originated by collisions in the index function and not belonging to the
result (Figure 4).

3.3 Selective access to data in the cloud
In many scenarios access to data is selective, meaning different users (or groups
thereof) should enjoy different views and accesses over the data. When data are stored

	
 7	

	

Figure	
 4:	
 Query	
 evaluation	
 over	
 outsourced	
 (encrypted/indexed)	
 data:	
 the	
 user	
 query	
 Q	
 is	

translated	
 by	
 a	
 trusted	
 client	
 in	
 a	
 query	
 Qp	
 to	
 be	
 executed	
 by	
 the	
 provider	
 and	
 a	
 query	
 Qc	
 to	
 be	

executed	
 at	
 the	
 client	
 side	
 over	
 Qp’s	
 result	
 once	
 decrypted.	

in the cloud, the problem arises of how to enforce such access control restrictions on
them. For instance some cloud storage services (e.g., Amazon S3 and Google Cloud
Storage) support the definition of access control lists for regulating access to data.
The enforcement of such access control policy is however delegated to the cloud
provider. In many scenarios this solution is not possible since the access control
policy, just like the data, might be confidential and therefore should not be disclosed
to the provider (note also that even authorizations to access data could leak
information on the data themselves, therefore potentially compromising the protection
enforced by encryption). Also, outsourcing access control to the cloud requires
complete trust in the enforcing providers, as data protection would be completely in
their hands (and providers could collude with users to acquire – and improperly grant
– unauthorized access to data). On the other hand, having the data owner mediate
every access request, to ensure only authorized accesses are granted, is clearly
impractical and inapplicable. A promising approach to delegate access control to the
cloud while not requiring complete trust in the providers relies on combining access
control and encryption, that is, encrypt data with different keys, depending on the
authorizations holding on them. Enforcing access control policies via encryption
entails some challenges: users should not be required to hold many keys for the
different resources they can access; at the same time every resource should be
maintained only once (different replicas encrypted with different keys should be
avoided as their management would clearly be impractical). This problem can be
solved by employing key derivation methods, by which users can derive keys from a
single key assigned to them and public tokens. Access control can then be enforced by
properly organizing the keys in a hierarchy reflecting authorizations, or better the
access control lists (ACLs) of resources, where the key corresponding to an ACL
allows deriving – via one or more tokens – the keys associated with all ACLs that are
superset of it. This way a user is able to derive, from her key and public tokens, all
(and only) the keys that are needed to access resources that she is authorized to access
(see Figure 5).
Updates to the access control policy can require changing the key with which
resources have been encrypted, and therefore the need to download the resources from
the cloud and release a newly encrypted version of them. Such a burden can be

	
 8	

	

Figure	
 5:	
 An	
 example	
 of	
 access	
 control	
 policy	
 (1	
 represents	
 authorized	
 accesses)	
 with	
 four	
 users	
 and	

five	
 resources	
 (a)	
 and	
 of	
 key	
 derivation	
 hierarchy	
 enforcing	
 it:	
 solid	
 lines	
 represent	
 public	
 tokens,	

dotted	
 lines	
 represent	
 the	
 keys	
 associated	
 with	
 users	
 and	
 resources	
 (b).	

avoided by assuming some collaboration from the external providers in enforcing
policy changes, having the providers apply a further level of encryption, called over-
encryption (De Capitani di Vimercati et al., 2010) in addition to – and on top of – the
one applied by the owner. To access a resource r (see Figure 6), a user needs to pass
both the encryption imposed by the provider (SEL, Surface Encryption Layer) and the
encryption imposed by the owner (BEL, Base Encryption Layer).
Alternative solutions to enforce access control in the cloud use attribute-based
encryption (ABE) techniques, possibly combined with other cryptographic techniques
such as proxy and lazy re-encryption (Yu, Lou, and Ren, 2012). ABE is a public-key
encryption that regulates access to data according to descriptive attributes associated
with the data themselves and/or users, and to policies defined over these attributes.
ABE can be implemented either as Ciphertext-Policy ABE (CP-ABE) or as Key-
Policy ABE (KP-ABE), depending on how attributes and policies are associated with
data and/or users.

3.4 User privacy
In a cloud scenario there might be need to grant access to data to users not registered
in the system without requiring such users to declare their identity.
In these scenarios, access control authorizations and enforcement should be based on
properties of users (in contrast to their identity), typically provided by means of
attributes within digitally signed certificates. Access control solutions supporting this
new paradigm are referred to as attribute-based, credential-based, or certificate-
based access control, to stress the departure from identity to consider instead certified
properties in the access decisions, or privacy-enhanced access control, to stress the
privacy offered by departing from user authentication. Several proposals have
investigated different issues to be addressed in this context, including: the language
for expressing authorizations, the access control engine for evaluating users’ requests,
the possible dialog and negotiation to be supported between providers and users, the
support for users’ preferences with respect to properties to be released for acquiring
services, and possible secondary use restrictions. As for languages, early proposals
typically investigated the use of logic-based approaches, while later approaches aimed
at balancing the trade-off between expressiveness of the language and simplicity of
(and hence ability to maintain control on) the specifications. Different strategies for
the dialog between users and providers have been investigated, including multi-step
negotiations. Even in this case, later proposals aimed at balancing the need to
exchange information to establish trust between users and providers, and the
simplicity of the dialog to make it suitable for practical applications. As for user
preferences, while earlier approaches assumed users to regulate release of their

	
 9	

	

Figure	
 6:	
 Protection	
 of	
 resources	
 with	
 over-­‐encryption.	
 Every	
 resource	
 is	
 encrypted	
 first	
 by	
 the	

owner	
 (BEL,	
 Base	
 Encryption	
 Layer)	
 then	
 by	
 the	
 provider	
 	
 (SEL,	
 Surface	
 Encryption	
 Layer).	
 A	

resource	
 is	
 accessible	
 (open)	
 to	
 a	
 user	
 only	
 if	
 she	
 can	
 pass	
 both	
 levels	
 of	
 encryption.	
 	

credentials and properties with an access control approach similar to one adopted by
the providers, more recent proposals have been investigating solutions specifically
targeted to users and their natural way of thinking about preferences (Foresti and
Samarati, 2012). Standards, such as XACML, have also being developed in these
contexts supporting interoperation of access control policies.

3.5 Query privacy
In some scenarios what is confidential is not (or not only) data, or users’
identities/properties, but also the accesses that users make on such data. In particular,
confidentiality should be guaranteed, even from the provider’s eyes, with respect to
the fact that an access aims at a specific data (access confidentiality) or the fact that
two accesses aim at the same data (pattern confidentiality). Traditional approaches for
protecting access and pattern confidentiality are based on Private Information
Retrieval (PIR) techniques that, assuming a database modeled as an N-bit string,
provide protocols for users to retrieve the i-th bit in the string without disclosing to
the server the specific bit accessed. In addition to the limitation of such a modeling
and of the fact that they do not consider data confidentiality, PIR solutions suffer from
high computational complexity and communication costs. Recent efforts, trying to
make PIR more practical, have investigated the application of the Oblivious RAM, in
particular with recent practical ORAM and Path ORAM solutions (Stefanov et al.,
2013), and of a key-based hierarchical and dynamic data structure, called Shuffle
index (De Capitani di Vimercati et al., 2011b). These proposals protect data
confidentiality with encryption and protect access and pattern confidentiality by
dynamically changing (shuffling), at every access, the physical location of the data,
thus destroying the otherwise static correspondence between data and the physical
blocks where they are stored. These approaches also employ a cache to maintain
some data at the client side. Besides caching and dynamic allocation, Path ORAM
assumes a tree-shaped data structure where nodes can contain, in addition to actual
blocks, dummy blocks to guarantee that nodes have always the same size. The Shuffle
index assumes that, at every access, additional fake searches, called cover searches,
are executed together with the actual target search. Cover searches provide confusion
to the provider with respect to the targeted block. At every access, the content of the
blocks accessed (target/cover) and in cache is shuffled and rewritten. This changes
dynamically the allocation of nodes, and the provider can only observe that some
blocks have been read and written (Figure 7). By assuming a hierarchical value-based
organization of the data (B+-tree with encrypted node content and with no pointer
between leaves), the Shuffle Index is also able to support range-based queries.

	
 10	

	

Figure	
 7:	
 Shuffle	
 index:	
 original	
 structure	
 with	
 cache/target/cover	
 and	
 shuffling	
 operations	
 due	
 to	

an	
 access	
 (a);	
 resulting	
 structure	
 at	
 the	
 end	
 of	
 an	
 access	
 (b);	
 server’s	
 view:	
 blocks	
 written	
 (gray)	
 or	

read	
 and	
 written	
 (black)	
 in	
 the	
 access	
 execution	
 (c).	

3.6 Query and computation integrity
In scenarios where queries/computations are performed by providers that are not fully
trustworthy, the problem arises of providing data owners and/or users with the ability
to assess that the result returned from a query/computation is correct, complete, and
fresh. Correctness means that the result has been computed over the original data and
the query/computation performed correctly. Completeness means that no data is
missing from the result. Freshness means that the query/computation has been
performed on the most recent version of the data. Most of the current approaches
focus on providing guarantees of completeness and correctness, with some proposals
complementing them with timestamps or periodical refreshing to provide freshness
guarantees. Current solutions can be roughly classified in two categories:
deterministic and probabilistic. Deterministic approaches are provided by
authenticated data structures that, similarly to signature schemes for static data, permit
to detect integrity violations with certainty. Examples of deterministic approaches for
correctness/completeness are signature chaining schemas and Merkle hash trees.
Signature chaining schemas allow the verification of the ordering among tuples and
can then be used to verify the integrity of range queries where the selection condition
is based on the attribute on which the signature schema has been applied. Merkle trees

	
 11	

and their variations organize data within a tree-based structure over a given attribute
(e.g., a search key). The result of a query with selection conditions on the attribute
includes, in addition to the tuples belonging to the	
 result, a verification object that
allows the assessment of the integrity of the query (Figure 8). These authenticated
data structures provide deterministic integrity guarantees but only for queries over the
specific attribute/s on which the data structure has been organized. Techniques that
have been applied, individually or in combination, for providing probabilistic
guarantees include: insertion of fake tuples in the data, which if not retrieved in the
query result signals an integrity compromise; replication of a portion of the data with
replicas not recognizable as such, so that the presence of a duplicated data where the
replica is missing signals an integrity compromise; and pre-computation of tokens
associated with chosen query results, which allow the verification of the integrity of
such queries. Probabilistic approaches, as their name says, provide only probabilistic
guarantees: while the absence of an expected fake tuple or replica signals an integrity
problem, its presence does not imply the integrity of the result since the providers
might have just been lucky in not missing any of the checks inserted by the data
owner. The probability of detecting an integrity compromise typically depends on the
amount of controls (e.g., fake tuples, replicas inserted, or pre-computed tokens)
enforced, where the more the control the	
 higher the guarantees, but also the higher the
performance overhead imposed for the verification. The involvement of multiple
providers in the storage or computation complicates the scenario and requires
devising additional controls. A possible solution to assess integrity of joins computed
by an untrusted provider over data stored at two trusted storage servers assumes the
cooperation of the storage servers to insert control information consisting of fake
control tuples (markers) and duplicate tuples (twins) that if not present in the join
result signals its incompleteness (De Capitani di Vimercati et al., 2014).

3.7 Collaborative query execution with multiple providers
Data stored and managed by different cloud providers may need to be selectively
shared and accessed in a cooperative way. This scenario may see the presence of
different providers as well as of different data owners. Exchange of data and
collaborative computations should be controlled to ensure that information is not
improperly accessed, released, or leaked. For instance, data stored at one provider
might be released selectively only to specific providers and within specific contexts.
Some solutions have addressed the specific problem of private and secure multi-party
computation, which provide the ability of different parties to perform a collaborative
computation learning only the query results and nothing on the inputs. Along the
same line are solutions for computing sovereign joins over data, retrieving the result
of a join operation over different tables, while guaranteeing confidentiality of the
information not belonging to the join result. Recent approaches have also addressed a
more general scenario where different parties (data owners or cloud providers) need
to collaborate and share information for performing a distributed query computation
with selective disclosure of data. Work has then investigated the problem of
determining an efficient and safe execution plan for the query computation in which
different providers collaborate releasing to others the information authorized and
needed to compute the query result (De Capitani di Vimercati et al., 2011a).

3.8 Service Level Agreement and Auditing
A Service Level Agreement (SLA) is a contractual agreement that specifies the
performance and availability guarantees that a cloud provider promises to deliver as

	
 12	

	

	

Figure	
 8:	
 A	
 Merkle	
 tree:	
 every	
 leave	
 node	
 is	
 a	
 hash	
 of	
 a	
 tuple,	
 internal	
 nodes	
 are	
 hashed	
 over	
 the	

concatenation	
 of	
 their	
 children.	
 	
 Colored	
 node	
 represent	
 the	
 integrity	
 check	
 assuming	
 a	
 query	
 with	

result	
 tuple	
 t3:	
 in	
 gray	
 the	
 verification	
 objects	
 returned	
 by	
 the	
 provider	
 together	
 with	
 tuple	
 t3,	
 in	

black	
 the	
 hash	
 computed	
 for	
 verification.	
 	

well as penalties in the case of violations of the SLA. Due to the shared and dynamic
nature of the cloud, cloud providers have to address several issues related to offering
and managing SLAs, with different requirements coming from different users. Also,
while in the past SLAs mainly focused on aspects related to the quality of the services
offered (e.g., availability, response time, and fault resolution time), today they may
also include the specification of the security guarantees, such as proofs on: the
integrity of the stored data, their possession, their handling, or the application of
specific security mechanisms (e.g., encryption or perimeter protection). In this
contest, auditability of cloud providers, refers to the ability of users to verify full
respect of the security guarantees declared in a SLA. Some proposals have presented
solutions for verifying, for example, whether cloud providers are correctly storing
data or correctly executing computation-intensive tasks on behalf of the users. In fact,
lazy providers could delete some rarely accessed data or omit some computations to
save resources. Some approaches apply Proof of Retrieval solutions as building
blocks to allow users to verify that their data are: properly secured via encryption,
intact, and retrievable. The correctness of the result of outsourced computations can
be verified by applying the techniques for assessing integrity we have discussed
previously.

3.9 Multi-tenancy and virtualization
Multi-tenancy refers to the ability to provide computing services to different users by
using a common cloud infrastructure. Each user or company (i.e., a tenant of the
cloud infrastructure) shares computation, memory, network, and storage resources,
thus reducing the costs and improving the utilization of resources as well as the
scalability and reliability. A basic mechanism enabling multi-tenancy in the cloud is
virtualization, which creates a virtual version of, for example, an operating system, a
storage device, or network resources, within a single physical system. Although
virtualization brings great flexibility, it also introduces several security concerns that
may have the hypervisor and/or the resident virtual machines as the main target. The
hypervisor is a software component whose goal is to create and run the virtual
machines. A compromised hypervisor can put at risk the confidentiality and integrity
of the data managed by the virtual machines. Other security concerns can be related to
the allocation and de-allocation of resources associated with virtual machines. In fact,
improper leakages can result if the memory allocated to a virtual machine is not

	
 13	

properly wiped before being reallocated to another virtual machine. Also, the
communication, monitoring, modification, and migration of virtual machines can be a
source of security concerns. In fact, due to the multi-tenant nature of cloud
environments, there is the risk of improperly leaking information if the virtual
resources allocated to different users are not perfectly isolated. Other aspects can be
related to placement of virtual machine instances in the cloud, also supporting
security constraints imposed by users, such as the request to not allocate given virtual
machine instances to the same server (Jhawar, Piuri and Samarati, 2012).

4. Conclusions
With the rapid growth of cloud computing platforms and services, cloud security is
becoming a key priority for all players (i.e., individuals, companies, and cloud
providers). In this chapter, we presented an overview of security issues and concerns
in cloud scenarios, illustrating their impact on the confidentiality, integrity, and
availability properties and describing current solutions and possible challenges and
directions.

5. References
Cachin, C and Haralambiev, K and Hsiao, HC and Sorniotti, A (2013). Policy-based
Secure Deletion. Proc. of the ACM Conference on Computer and Communications
Security (CCS 2013), Berlin, Germany.

Ciriani, V and De Capitani di Vimercati, S and Foresti, S and Jajodia, S and
Paraboschi, S and Samarati, P (2010). Combining Fragmentation and Encryption to
Protect Privacy in Data Storage. ACM Transactions on Information and System
Security (TISSEC). 13(3):22:1-22:33.

Cloud Security Alliance – CSA, Top Threats Working Group (2013). The Notorious
Nine - Cloud Computing Top Threats in 2013.
http://www.cloudsecurityalliance.org/topthreats.

Cloud Security Alliance – CSA (2011). Security Guidance for Critical Areas of Focus
in Cloud Computing V3.0. http://www.cloudsecurityalliance.org/guidance/

De Capitani di Vimercati, S and Foresti, S and Jajodia, S and Paraboschi, S and
Samarati, P (2011a). Authorization Enforcement in Distributed Query Evaluation.
Journal of Computer Security (JCS), 19(4):751-794.

De Capitani di Vimercati, S and Foresti, S and Paraboschi, S and Pelosi, G and
Samarati, P (2011b). Efficient and Private Access to Outsourced Data. Proc. of the
31st International Conference on Distributed Computing Systems (ICDCS),
Minneapolis, Minnesota, USA.

De Capitani di Vimercati, S and Foresti, S and Jajodia, S and Paraboschi, S and
Samarati, P (2014). Integrity for Join Queries in the Cloud. IEEE Transactions on
Cloud Computing (TCC), 1(2):187-200.

De Capitani di Vimercati, S and Foresti, S and Jajodia, S and Paraboschi, S and
Samarati, P (2010). Encryption Policies for Regulating Access to Outsourced Data.
ACM Transactions on Database Systems (TODS), 35(2):12:1-12:46.

	
 14	

European Network and Information Security Agency – ENISA (2009). Cloud
Computing: Benefits, Risks and Recommendations for Information Security.
http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-
computing-risk-assessment/at_download/fullReport

Foresti, S and Samarati, P (2012). Supporting User Privacy Preferences in Digital
Interactions. Computer and Information Security Handbook, Vacca, JR (ed.), Morgan
Kaufmann (2nd Edition).

Jhawar, R and Piuri, V and Samarati, P (2012). Supporting Security Requirements for
Resource Management in Cloud Computing. Proc. of the 15th IEEE International
Conference on Computational Science and Engineering (CSE 2012), Paphos, Cyprus.

National Institute of Standards and Technology (2011). The NIST Definition of Cloud
Computing. Special publication 800-145.
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

Popa, RA and Redfield, CMS and Zeldovich, N and Balakrishnan, H (2011).
CryptDB: Protecting Confidentiality with Encrypted Query Processing. Proc. of the
23rd ACM Symposium on Operating Systems Principles (SOSP 2011), Cascais,
Portugal.

Stefanov, E and van Dijk, M and Shi, E and Fletcher, C and Ren, L and Yu, X and
Devadas, S (2013). Path ORAM: An Extremely Simple Oblivious RAM Protocol.
Proc. of the 20th ACM Conference on Computer and Communications Security (CCS
2013), Berlin, Germany.

Yu, S and Lou, W and Ren, K (2012). Data Security in Cloud Computing. Handbook
on Securing Cyber-Physical Critical Infrastructure. Das, SK and Kant, K and Zhang,
N (eds.), Morgan Kaufmann.

