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Abstract

Despite advances in recent years in the area of manda-
tory access control in database systems, today’s information
repositories remain vulnerable to inference and data associ-
ation attacks that can result in serious information leak-
age. Such information leakage can be prevented by properly
classifying information according to constraints that express
relationships among the security levels of data objects. In
this paper we address the problem of classifying information
by enforcing explicit data classification as well as inference
and association constraints. We formulate the problem of
determining a classification that ensures satisfaction of the
constraints, while at the same time guaranteeing that infor-
mation will not be unnecessarily overclassified. We present
an approach to the solution of this problem and give an
algorithm implementing it which is linear in simple cases,
and low-order polynomial (n?) in the general case. We also
analyze a variant of the problem that is NP-hard.

1 Introduction

Mandatory policies control access to information on the ba-
sis of classifications, taken from a partially ordered set, as-
signed to data objects and subjects requesting access to
them. Classifications assigned to information reflect the sen-
sitivity of that information, while classifications assigned to
subjects reflect their trustworthiness not to disclose the in-
formation they access to subjects not cleared to see it. By
controlling read and write operations accordingly — allow-
ing subjects to read information whose classification is dom-
inated by their level and write information only at a level
that dominates theirs — mandatory policies provide a sim-
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ple and effective way to enforce information protection [2].
In particular, the use of classifications and the access re-
strictions enforced upon them ensure that information will
be released neither directly, through a read access, nor in-
directly, through an improper flow into objects accessible
by lower-level subjects. This provides an advantage with re-
spect to authorization-based control, which suffers from this
last vulnerability.

The relatively recent application of mandatory security
policies to database systems has resulted in a vast amount
of research and the proposal of several models for multilevel
database systems [8, 10, 14, 15, 20]. Despite this, the lack
of support for expressing and combating inference and data
association channels that improperly leak protected infor-
mation remains a major limitation [7, 9, 11]. Without such
a capability, the protection requirements of the information
are clearly open to compromise. Proper classification of data
is crucial for classification-based control to effectively pro-
tect information secrecy.

We address the problem of computing security classifi-
cations to be assigned to information in a database system,
while reflecting both explicit classification requirements and
necessary classification upgrading to prevent exploitation of
data associations and inference channels that leak sensitive
information to lower levels. One of the major challenges
in the determination of a data classification involving clas-
sification upgrading is the need to minimize the resulting
loss of information visibility. Previous proposals in this
direction are based on the application of optimality cost
measures, such as upgrading the minimum number of at-
tributes or executing the minimum number of upgrading
steps [16, 17], or explicit constraints allowing the specifica-
tion of different preference criteria [4]. Determining such
optimal classifications is often an NP-hard problem, and ex-
isting approaches typically perform exhaustive examination
of all possible solutions [4, 17]. Moreover, these propos-
als are limited to the consideration of totally ordered sets
of classifications [4, 16, 17] and intra-relation constraints
due to functional and multivalued dependencies [17]. While
these cost-based approaches afford a high degree of control
over how objects are classified, the computational cost of
computing optimal solutions may be prohibitive. Moreover,
it is generally far from obvious how to manipulate costs to
achieve the desired classification behavior, and optimality
measures based on it can be debated. For the similar prob-
lem of computing data classifications from classification con-
straints on views, Qian [13] provides a polynomial time al-
gorithm, but the approach does not guarantee minimality
and, in fact, tends to overclassify information unnecessarily.



We propose an efficient (low-order polynomial) approach
that, given a set of classification constraints, computes a
classification to be assigned to data objects that satisfies
the constraints while minimizing the loss of information vis-
ibility. The constraints we consider express lower bounds on
the classifications of single objects (explicit requirements) or
sets of objects (association constraints), as well as relation-
ships that must hold between the classifications of different
objects (inference constraints).

The contributions of this paper can be summarized as
follows. First, we introduce a notion of minimality that
captures the property of a classification satisfying the pro-
tection requirements without overclassifying data. Second,
we describe an efficient approach for computing minimal
classifications and present an algorithm implementing our
approach that executes in (low-order) polynomial time. We
further identify an important class of constraints, termed
acyclic constraints, for which the algorithm executes in time
linear in the size of the constraints. Third, we extend the
results to allow classification constraints that specify also
upper bounds on the levels that may be assigned to objects
(which explicitly require visibility of information) and show
that polynomial-time complexity is preserved. Fourth, we
show that the approach is applicable also to security lattices
that are not complete lattices (i.e., may be lacking top or
bottom elements), but that for nonlattices (arbitary partial
orders), the problem of computing a minimal classification
is NP-complete.

The technique we describe can form the basis of a prac-
tical tool for efficiently analyzing and enforcing classifica-
tion constraints. For concreteness we frame our work in the
context of relational database systems. We note, however,
that our approach does not depend in any way on this as-
sumption and can be generally applied in any context where
information may need to be classified, such as file systems,
object-oriented databases, or component-based system de-
signs.

2 Problem Definition

Mandatory policies are based on assignment of access classes
to objects and requesting subjects. Access classes L are
related by a partial order, called the dominance relation,
denoted >, that governs the visibility of information, where
a subject has access only to information classified at the
subject’s level or below!. The partially ordered set (L,>»)is
generally assumed to be a lattice, and often, access classes
are assumed to be pairs of the form (s,C), where s is a
classification level taken from a totally ordered set and C'is a
set of categories (or compartments) taken from an unordered
set. In this context, an access class dominates another iff
the classification level of the former is at least as high in the
total order as that of the latter, and the set of categories is
a superset of that of the latter. Figure 1(a) illustrates an
example with two levels and two categories. For generality,
we do not restrict our approach to specific forms of lattices,
but assume access classes, to which we refer alternately as
security levels or classifications, to be taken from a generic
lattice.

The security level A(A) to be assigned to an at-
tribute A may depend on several factors, which we cat-
egorize as basic classification constraints, inference and
association constraints, and integrity constraints. Ba-
sic constraints specify a minimum level to be assigned

«

!The expression a = b is read as “a dominates b”, and a > b as “a
strictly dominates b” (i.e., a = b and a # b).

to an attribute, for example, A(name)=Unclassified and
A(salary)=Confidential. Inference and association con-
straints are used to prevent bypassing of basic constraints
through data inference and to place stronger restrictions
on the combined visibility of different attributes. Exam-
ples of this type include lub{\(name), A(salary)} > Secret
and lub{\(rank), A\(department)} > A(salary), where lub
denotes the least upper bound of a set of security levels.
Integrity constraints are imposed by the security model it-
self and typically include primary key constraints and ref-
erential integrity constraints [20]. Primary key constraints
require that key attributes be uniformly classified and that
their classification be dominated by that of the correspond-
ing non-key attributes. Referential integrity constraints re-
quire that the classification of attributes representing a for-
eign key must dominate the classification of the attributes
for which it is foreign key. All these categories of classifi-
cation constraints are captured in a single general form as
follows.

Definition 2.1 (Classification Constraint) Let A be a
set of attributes and L = (L,>) be a security lattice. A
classification constraint over A and L is an expression of
the form lub{\(A41),...,A\(An)} = X, wheren >0, A; € A,
i=1,...,n, and X is either a security level |l € L or is of
the form A(A), with A € A. If n =1, the expression may be
abbreviated as A\(A1) = X.

For simplicity, we frequently denote classification con-
straints as pairs (lhs,rhs), where lhs is the set of attributes
appearing on the left-hand side of the constraint, and rhs
is the attribute or security level appearing on the right-
hand side of the constraint. We refer to classification con-
straints whose left-hand side is singleton as simple con-
straints, and to constraints with multiple elements in the
left-hand side as complexr constraints. Any set of classifi-
cation constraints can be viewed as a directed graph, not
necessarily connected, containing a node for each attribute
A € A and security level | € L. Each constraint (lhs,rhs),
with lhs={A1,...,An}, is represented by a directed edge
from node Ay, if n = 1, or hypernode containing A1, ..., Ap,
if n > 1, to node rhs. Figure 2(a) illustrates an exam-
ple of a classification constraint graph. Circle nodes repre-
sent attributes, square nodes represent security levels, and
dashed ellipses represent hypernodes. In the remainder of
the paper we refer to the constraints and to their graphical
representation interchangeably, and we often refer to a con-
straint (lhs,rhs) as the existence of an edge between lhs and
rhs. Constraints whose graph representation is acyclic (i.e.,
is a dag) are called acyclic constraints, while constraints
involved in a cycle, including cycles through hypernodes?,
are called cyclic constraints. A cycle involving only sim-
ple constraints is called a simple cycle. For example, in
Figure 2(a) constraints ({E, F}, M), (M,G), ({D,G},C),
(C,E), (C,F), {F,I},B), and (B,M) are cyclic; con-
straints (I, 0), (O, N), and (N, I) constitute a simple cycle;
and all other constraints are acyclic.

A classification A : A — L is an assignment of secu-
rity levels in L to objects (attributes) in A. A classification
A satisfies a set C' of constraints, denoted A\ = C, iff for
each constraint, the expression obtained by substituting ev-
ery A(A) with its corresponding level holds in the lattice. In
general, there may exist many classifications that satisfy a

2For the purpose of determining cycles, the attribute on the right-
hand side of a constraint is considered reachable from every attribute
on the left-hand side. Note that hypernodes never have incoming arcs,
but the attribute nodes they contain may.



(TS,{Army,Nuclear})

(TS,{Army}) (S,{Army,Nuclear}) (TS,{Nuclear})
(S,{Army}) (TS, { }) (S,{Nuclear})
(s,{ 1)

(a)

Le

Figure 1: Examples of security lattices.

set of constraints. However, not all classifications are equally
good. For instance, the mapping A : A — {T} classifying all
data at the highest possible level satisfies any set of classifi-
cation constraints. Such a strong classification is clearly un-
desirable unless required by the classification constraints, as
it results in unnecessary information loss (by preventing re-
lease of information that could be safely released). Although
the notion of information loss is difficult to make both suf-
ficiently general and precise, it is clear that a first require-
ment in minimizing information loss is to prevent overclas-
sification of data. That is, the set of attributes should not
be assigned security levels higher than necessary to satisfy
the classification constraints. A classification mapping that
meets this requirement is said to be minimal. To be more
precise, we first extend the notion of dominance to classifi-
cation assignments. For a given set A of attributes, security
lattice (L, >), and mappings A1 : A+— L and A2 : A +— L,
we say that A1 > A2 iff VA € A : A\1(A) > A2(A). The notion
of minimal classification can now be defined as follows.

Definition 2.2 (Minimal classification) Given a set A
of attributes, security lattice L = (L,>), and a set C of
classification constraints over A and L, a classification X :
A — L is minimal with respect to C iff (1) A = C; and (2)
for all X : A L such that X' | C, )\>)\':>)\—)\

In other words, a minimal classification is one that both
satisfies the constraints and is (pointwise) minimal in the
lattice.

The main problem now is to compute a minimal classifi-
cation from a given set of classification constraints.

Problem 2.1 (MIN-LATTICE-ASSIGNMENT) Given a set A
of attributes to be classified, a security lattice L = (L,>),
and a set C' of classification constraints over A and L, deter-
mine a classification assignment X\ : A — L that is minimal
with respect to C'.

In general, a set of constraints may have more than one min-
imal solution. The following sections describe an approach
for efficiently computing one such minimal solution and a
(low-order) polynomial-time algorithm that implements the
approach.

3 Sketch of the Approach

A basic requirement that must be satisfied to ensure the ex-
istence of a classification X is that the set of classification
constraints provided as input be complete and consistent.
A set of classification constraints is complete if it defines a
classification for each attribute in the database. It is consis-
tent if there exists an assignment of levels to the attributes,
that is, a definition of A, that simultaneously satisfies all
classification constraints. Completeness is easily guaranteed

by providing a default classification constraint of the form
A(A) = L for every attribute A € A. In addition, any set
of constraints of the form specified by Definition 2.1, which
use only the dominance relationship > and security levels
(constants) only on the right-hand side, is consistent, since
mapping every attribute to T trivially satisfies all such con-
straints. We assume then, without loss of generality, that
any input set of classification constraints is complete and
consistent. We further assume the left and right-hand sides
of each constraint to be disjoint, since constraints not satis-
fying this condition are trivially satisfied.

3.1 Acyclic Constraints

A straightforward approach to computing a minimal classifi-
cation involves performing a backward propagation of secu-
rity levels to the attributes. Consider an acyclic constraint
graph with no hypernodes (simple constraints only) and as-
sume all attributes are initially assigned level L. Starting
from the leaves, we traverse the graph backward (opposite
the direction of the edges) and propagate levels according
to the constraints. Intuitively, propagating a level to an at-
tribute node A according to a constraint edge (A, X) means
assigning to A the least upper bound of its current level,
A(A), and the level of X (I, if X is a security level I; A(X)
otherwise). As long as X has been assigned its final level,
propagating in this way ensures that A is assigned the low-
est level that satisfies all constraints on it. Thus, for acyclic
simple constraints the unique, minimal solution can be com-
puted simply by propagating levels back from the leaves,
visiting all the nodes in (reverse) topological order. This
process is clearly the most efficient one can apply, since each
edge is traversed exactly once. In terms of the constraints,
this corresponds to evaluating the constraints in a specific
order, evaluating each constraint only once, when the level of
its right-hand side becomes definitely known, and upgrading
the left-hand side accordingly.

In a set of acyclic constraints, the propagation method
described for simple constraints alone requires only minor
adaptation to handle complex constraints as well. The key
observation is that, if a complex constraint is not already
satisfied, it can be solved minimally by upgrading any one
of the attributes on the left-hand side, provided that nei-
ther the level of the right-hand side nor the levels of any
other attributes on the left-hand side are later altered. As
long as the constraints are acyclic, there exists an order of
constraint evaluation (security-level back-propagation) that
ensures that the security levels of all attributes involved in
a complex constraint are known prior to the selection of one
for upgrading, if necessary, to satisfy the constraint. For
example, referring to the lattice in Figure 1(b), the con-
straints lub{A(A),A(B)} = La, A(A) > L1, and A(B) > L
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Figure 2: A classification constraint graph (a) and the corresponding classification process (b).

can be solved by upgrading either A to L3z or B to Ls. Note
that either solution is minimal according to Definition 2.2,
and thus, minimal solutions for sets that include complex
constraints are generally not unique. The particular mini-
mal solution generated depends on the order of constraint
evaluation.

3.2 Cyclic Constraints

For cyclic constraints the simple back-propagation of se-
curity levels is not directly applicable, and it is not clear
whether the method can be adapted easily to deal with ar-
bitrary sets of cyclic constraints. Simple cycles are easily
handled, since they imply that all attributes in the cycle
must be assigned the same security level — we can simply
“replace” the cycle by a single node whose ultimate level is
then assigned to each of the original attributes in the cycle.
For example, we might imagine replacing the simple cycle
involving attributes I, N, and O in Figure 2(a) by a single
node labeled “I, N, O” and proceeding as before. However,
when complex constraints are involved in a cycle, the prob-
lem becomes more challenging. Recall that a complex con-
straint can be solved minimally by selecting any left-hand-
side attribute to be upgraded, provided that the level of no
other attribute in the constraint subsequently changes. For
cyclic complex constraints, it can be difficult to ensure that
this requirement is satisfied. We might upgrade the level
of one attribute A on the left-hand side of a complex con-
straint only to find that a higher level is propagated through
a cycle to another attribute A’ in the same constraint. The
constraint remains satisfied, but the resulting classification
may not be minimal, since the original upgrading of A may
have been unnecessary for satisfaction of the constraint.

In many cases it may be possible to determine a pri-
ori an order of constraint evaluation and a unique candi-
date for upgrading in each complex constraint that guaran-
tees a minimal classification using back-propagation of levels
through cycles. However, as the cycles become more compli-
cated, the criteria and analysis needed for determining the
attributes to be upgraded and a suitable evaluation order
become more complex. The problem becomes particularly
acute for cyclic complex constraints whose left-hand sides
are nondisjoint (for example, constraints ({E, F'}, M) and
({F, I}, B) in Figure 2(a)), since the choice of attribute to be
upgraded in one constraint may invalidate the choice made
for another. Moreover, it is not generally possible to choose
a single attribute in the intersection of two or more left-hand

sides to be upgraded for all intersecting constraints. As an
example, consider three constraints whose left-hand sides
are {A, B}, {B,C}, and {A, C}, respectively. If all three
constraints require an attribute to be upgraded, one of the
constraints will necessarily have both attributes upgraded.
The result in such a case can still be minimal. However, it
can be far from clear whether any two attributes will do, and
if not, which two should be chosen, when such intersecting
constraints are entangled in a complex cycle.

Since it is difficult, at best, to ensure that no upgrad-
ing operation performed during back-propagation of levels
through cycles involving complex constraints will ever be
invalidated, we appear to be left with essentially two alter-
natives: (1) augment the back-propagation approach with
backtracking capabilities for reconsidering and altering up-
grading decisions that result in nonminimal classifications,
or (2) develop a different approach for computing minimal
classifications from cyclic constraints. We would of course
prefer a method that is as close as possible in computa-
tional efficiency to the simple level propagation for acyclic
constraints. Thus, we reject alternative (1), since the worst-
case complexity of a backtracking approach is proportional
to the product of the sizes of the left-hand sides of all con-
straints in the cycle. Instead, we develop a new solution
approach to be applied to sets of cyclic constraints. This
new approach begins with all attributes involved in a cycle
at high security levels, and then attempts to lower each such
attribute incrementally (in the lattice) as long as all affected
constraints remain satisfied.

More specifically, assume that we are given a set of cyclic
constraints and that every attribute in the cycle is initially
assigned the highest classification T. For each attribute A
involved in the cycle, we attempt to lower the level of A, one
step at a time along an arbitrary path down the lattice. At
each step we check whether lowering the level of A would
violate any constraints, as follows. For each constraint on
A, we check whether the level of left-hand side would still
dominate that of the right-hand side if A were to be assigned
the lower level. If the constraint would still be satisfied, we
simply continue. Otherwise, we check whether the level of
the right-hand side can also be lowered so that the constraint
is again satisfied. If the right-hand side is a level constant,
the attempt fails. Otherwise, the right-hand side is another
attribute A’, and we then attempt (recursively) to lower the
level of A’. If, finally, the attempted lowering of A from
a level 11 to a level 2 fails, the lowering is attempted again
along a different path down the lattice from ;. The last level



for which lowering A succeeds is its final level. The result at
the end of the entire process is a minimal classification for
all attributes in the cycle.

Unlike the back-propagation method, which is applica-
ble only to acyclic constraints, the incremental, forward-
lowering approach is applicable to all constraints. However,
it is not generally as efficient, although its complexity re-
mains low-order polynomial. Thus, it is preferable to apply
the simple back-propagation method wherever possible and
reserve the forward-lowering approach for sets of cyclic con-
straints. The following section describes an algorithm that
elegantly combines the two approaches for greatest efficiency
on arbitrary sets of constraints.

4 Algorithm

At a high level, the algorithm implementing our approach
consists of three main parts. In the first part, we identify sets
of cyclic constraints to be evaluated with the forward low-
ering approach and determine the order in which attributes
(sets of attributes in the case of cyclic constraints) will be
considered for labeling. The second and third parts repre-
sent, respectively, the back-propagation method for acyclic
constraints and the forward lowering method for cyclic con-
straints. These two components operate alternately accord-
ing to whether or not the attribute under consideration is
involved in a cycle. The procedures embodying the different
parts of the approach are formally presented in Figure 3.
Here we describe them informally.

The task of Main is to determine an order among the at-
tributes that captures both cyclic relationships and reflects,
outside cycles, the order of evaluation for back-propagation.
If we interpret each edge leaving from a hypernode as a
set of edges each leaving from one of the attributes in the
hypernode®, attributes involved in cyclic constraints corre-
spond to those in strongly connected components (SCCs)
of the constraint graph. Constraint cycles can therefore be
identified by applying known methods for identification of
SCCs. Because of the back-propagation used outside cy-
cles, we need to identify not only the strongly connected
components, but also the order in which they should be
evaluated. This task is accomplished through a minor vari-
ation of known approaches to SCC computation involving
two passes of the graph with a depth first search (DFS)
traversal [3, 19]. The first pass (dfs_visit) executes a DFS
on the graph, recording attributes in a stack (Stack) as the
visit is concluded. The second pass (dfs_back_visit) con-
siders attributes in the order in which they appear in Stack,
assigning each a priority (maz_priority) and marking it as
visited. The counter maz_priority is incremented as each
such attribute is visited. For each new attribute A popped
from Stack, the process walks the graph backward with a
DF'S and assigns the same priority as A to all attributes it
finds still unvisited. Priorities are maintained in an array,
priority, where priority[i] contains the set of attributes that
have been assigned priority ¢. Priority assignments so com-
puted satisfy the following properties: (1) each attribute has
exactly one priority, (2) any two attributes have the same
priority if and only if they appear together in a cycle (i.e,
are mutually reachable), and (3) each attribute has a priority
no greater than that of all attributes reachable from it (i.e.,
on which it depends). This last property ensures that the
consideration of attributes in decreasing order of priorities

3Note that this correspondence can be assumed only for comput-
ing reachability and traversing the graph, not for actual constraint
enforcement.

reflects the backward traversal of the graph. As an exam-
ple, consider the constraints in Figure 2(a). The execution
of Main produces the following priority assignments:

priority[1] = {D}

priority[2] = {I,0, N}
priority[3] = {B,C,E, F,G, M}
priority[4] = {P}.

In the following we refer to each priority[i] as priority set.
In addition to computing priority assignments, Main ini-
tializes several variables that are used either during the DFS
visits or in the actual classification process, as follows. For
each complex constraint ¢, unlabeled|c], initialized to the
cardinality of its left-hand side, keeps track of the num-
ber of attributes in the left-hand side of ¢ that are not yet
definitively labeled. For each attribute A, Constr[A] is the
set of constraints whose left-hand side includes attribute A,
visit[A] is used in the graph traversal to denote if A has been
visited, and done[A] is set to TRUE when A becomes defini-
tively labeled. Finally, each attribute’s classification A\(A)
is initialized to T. The actual computation of classification
assignments is performed by Bigloop.

Procedure Bigloop considers attributes in decreasing or-
der of priority and determines the level to be assigned to
each attribute A in a priority set by considering all con-
straints in Constr[A] as follows. For each constraint with
the right-hand side definitively labeled (done[rhs]=TRUE),
the procedure determines whether the constraint must be
enforced upon A and, if so, the level that A must dominate
to satisfy the constraint. A constraint must be enforced
upon A if it is either a simple constraint (A is the only at-
tribute appearing in lhs) or if all other attributes appearing
in lhs are definitively labeled (unlabeled goes to zero once A
has been accounted for). The level that A must dominate
to satisfy the constraint is the level of the right-hand side
in the case of a simple constraint. It is a minimal level that
A can assume without violating the constraint (i.e., whose
lub with the level of other attributes appearing in lhs dom-
inates Ths) in the case of a complex constraint. Procedure
minlevel computes such a level by descending the lattice
along a path from A’s current level, one level at a time,
stopping at the lowest level found whose direct descendants
would all violate the constraint if assigned to A.* If all the
constraints in Constr[A] have the right-hand side done, A
is simply assigned the level [ so computed. Intuitively, this
corresponds to enforcing backward propagation. If there are
constraints with right-hand side not done, then, according
to the computation of priorities, we are in the presence of
a cycle, and level [ computed as described represents only
a lower bound for A. Cyclic constraints are enforced by
trying to lower A to a level I” directly below A’s current
level in the lattice and determine consequent lowering of
other attributes necessary to maintain satisfaction of the
constraints. This forward propagation of the lowering pro-
cess is performed by procedure Try, which is called with an
attribute and a level. It forward traverses the constraints in
a cycle, maintaining lowerings found to be necessary in set
Tocheck, moving them then to set Tolower for their later en-
forcement, if they do not cause any violation. In the event of

4In the generally assumed case of compartmented lattices (e.g.,
Figure 1(a)) the minimum level to be assigned to A can be computed
directly without the need of walking through the lattice. The entire
else branch of the minlevel procedure can in fact be substituted
with the simple computation, If (lubothers; < rhs;) then last :=
(rhsy, ths. — lubothers.) else last := (L, rhs. — lubothers.), where
rhs; (lubothers; resp.) is the classification level of rhs (lubothers
resp.) and rhs. (lubothers. resp.) the corresponding set of categories.



Algorithm 3.1 (Minimal Classification Generation)

MAIN

For A € Ado

Constr[A] := 0

done[A] := FALSE; visit[A] := 0
For | € L do done[l] := TRUE; visit[l] := 1
For c=(lhs,rhs) € C

If |lhs|> 1 then unlabeled[c] :=|lhs|

For A € lhs do

Constr[A] := Constr[A] U {c}

Stack := 0
For A € A do
If visit[A] = 0 then dfs_visit(A)
maz_priority := 0
For i =1,...,|A| do priority[i] := 0

For A € A do wisit[A] := 0
While NOTEMPTY(Stack) do
A := popP(Stack)
If visit[A] = O then
mazx_priority := max_priority + 1
priority[maz_priority] := {A}
dfs_back_visit(A)
For A € Ado A(A):=T;
bigloop

DFS_VISIT(A)
/* Executes DFS starting from A recording in Stack
attribute as it finishes its visit */
visit[A] :== 1
For (lhs,rhs) € Constr[A] do
If visit[rhs] = 0 then dfs_visit(rhs)
PUSH(A, Stack)

DFS_BACK_VISIT(A)
/* Traverses the constraints backward and inserts all
attributes found in the same priority set as A */
visit[A] =1
For (lhs, A) € C do
For A’ € lhs do
If visit[A’] = 0 then
priority[maz_priority] := priority[maz_priority] U {A’}
dfs_back_visit(A’)

MINLEVEL(A,lhs,rhs)

/* Returns a minimal level that A can assume without violating

constraint (lhs,rhs) */

last := A(A); lubothers := lub{A’|A’ € lhs, A’ # A}
If lubothers »= X(rhs) then last:= L
else Trylevels:={l | l is a maximal level s. t. last>[}
While Trylevels# () do
Choose [ in Trylevels
Trylevels := Trylevels - 1
if (I U lubothers) > A(rhs) then
last :=1
Trylevels:={l | | is a maximal level s. t. last>1}
return last

BIGLOOP
/* Considers components in decreasing order of priorities and
computes a minimal level for each attribute in them. A node
A is done (done[A]:= TRUE), when its assignment A(A) is
set and will not change. The set of immediate descendents in
a lattice is recorded in variable DSet. */
For p := maz_priority,...,1 do
For A € priority[p] do
done[A]:= TRUE
l:=1
For c=(lhs,rhs) € Constr[A] do
If |lhs|> 1 then unlabeled[c] := unlabeled[c] — 1
If done[rhs] then
case |lhs| of
1: 1:=1UX(rhs)
>1: If unlabeled[c] = 0 then
I:= | U minlevel(A,lhs,rhs)
else done[A]:= FALSE
If done[A] then A\(A) :=1
else DSet := {I' | I’ is a maximal level, A\(A)=1" = I}
While DSet # 0
Choose I"" in DSet
DSet := DSet — 1"
Lower := try(A,l")
If Lower # () then
For (A’,l') € Lower do A(A') :=1
DSet := {l' | I’ maximal level, A\(A)>=1" = 1}
done[A] := TRUE

TRY (A,1)
/* Returns a set of attribute-level pairs which together with the
current assignment A forms a (perhaps non-minimal) solution to
the constraints, unless there is no such set of pairs, in which case
Try returns (). That is, Try returns @ if A(A) = [ (transitively)
violates the constraints, given the current assignment A */
Tocheck := {(A, 1)}
Tolower := 0
Repeat
Choose (A’,l") € Tocheck
Tocheck := Tocheck — {(A’,1")}
Tolower := Tolower U {(A’,1")}
For (lhs,Ths) € Constr[A’] do
level :== L
For A" € lhs do
If 3(A”,1") € Tolower then
level := level LI 1"
else level := level LI \(A")
case done[rhs] of
TRUE: If —(level = \(rhs)) then return
FALSE: If —(level > A(rhs)) then
newlevel := A(rhs) M level
If 3(rhs, ") € (Tolower U Tocheck) then
If —(newlevel = ") then
newlevel := 1"’ M newlevel
If (rhs,l”) € Tolower then
Tolower := Tolower — {(rhs, ")}
else Tocheck := Tocheck — {(rhs,1”)}
Tocheck := Tocheck U {(rhs, newlevel)}
else Tocheck := Tocheck U {(rhs, newlevel)}
until Tocheck = 0
return Tolower

Figure 3: Algorithm for computing a minimal classification.



a constraint violation Try fails immediately, returning the
empty set. Otherwise, it returns the set Tolower containing
the lowerings found to be necessary. Hence, if the returned
set is not empty, Bigloop lowers the attributes as deter-
mined and restarts the process, trying to lower A to a level
just below the last level tried. If, instead, Try fails, another
level directly dominated by the last one that returned suc-
cess (or by A’s original level, if no lowering attempts have
succeeded) is tried. The process is repeated until all direct
descendants of the level to which A has been lowered in the
last pass return a failure.

Note that in the forward-lowering process, the level to
be pushed forward may change and become either higher or
lower because of complex constraints. The level can increase
when traversing a complex constraint, because in this case
we require only that the right-hand side is dominated by (i.e,
lowered to) the level of the lub of all the attributes in the
left-hand side. The level can also decrease when, traversing
a complex constraint, we would require rhs to be dominated
by (lowered to) a level incomparable to its current level or
the level recorded for it in either Tocheck or Tolower. In
this case, the process can succeed only if the attribute is
dominated by both levels, that is, if it can be lowered to
their greatest lower bound. We therefore lower the attribute
to this level and propagate it forward.

Example 4.1 Figure 2(b) illustrates the execution of the
approach on the constraints of Figure 2(a). The left column
lists attributes in the order in which they are considered
and illustrates how their levels (and those of attributes in
the same priority set) change. An F on the side of a Try
call indicates a failure. Traversing down a lattice is assumed
to be performed by considering direct descendants in left-
to-right order. Levels indicated in bold face are the levels of
attributes at the time they become done. The bottom line
reports the final (minimal) levels computed. Note that the
table in Figure 2(b) is only for illustration and does not cor-
respond to any data structure maintained by the algorithm.

5 Correctness and Complexity Analysis

In this section we state the correctness of our approach and
discuss its complexity. Proof sketches of the theorems ap-
pear in the Appendix.

Theorem 5.1 (Correctness) Algorithm 3.1 solves MIN-
LATTICE-ASSIGNMENT. That is, given a set C of classifica-
tion constraints over a set A of objects and a security lattice
L = (L, ), Algorithm 3.1 generates a minimal classification
mapping A : A — L that satisfies C.

Complexity In the complexity analysis we adopt the follow-
ing notational conventions with respect to a given instance
(A, L£,C) of MIN-LATTICE-ASSIGNMENT: N4 (= |A|) denotes
the number of attributes in A; Ni (= |L|) denotes the num-
ber of security levels in £; N¢ (= |C|) denotes the number
of constraints in C; S = Z(lhs,rhs)EC(lth| + 1) denotes the

total size of all constraints in C'; H denotes the height of L;
B denotes the maximum number of immediate predecessors
(“branching factor”) of any element in £; ¢ denotes the max-
imum cost of computing the lub or glb of any two elements
in £. Define M to be maximum, for all paths from the top
to the bottom of a lattice, of the sum of the branching factor
of each element of the path. M is no greater than BH, and
is also no greater than the size of £ (number of elements +
size of the immediate successor relation).

Theorem 5.2 (Complexity) Algorithm 3.1 solves any in-
stance (A, L,C) of the problem MIN-LATTICE-ASSIGNMENT
in O(NaASHMec) time, and, if the set of constraints C is

acyclic, in O(SMc) time. Therefore, MIN-LATTICE-ASSIGNMENT

is solvable in polynomial time.

Note, in particular, that the time taken by Algorithm 3.1 is
linear in the size of the constraints for acyclic constraints,
and no worse than quadratic for cyclic constraints. Whether
the complexity for the cyclic case can be improved to linear
in the size of the constraints remains an open question. How-
ever, the complexity for the cyclic case is truly worst case
— it assumes that the entire constraint set forms a single
SCC, which should not occur in practice. For any instance
of the problem, the acyclic complexity analysis applies to
all acyclic portions of the constraint set. The higher price is
paid only for cyclic constraints, which will typically include
only a small portion of the input constraint set.

The cost of lattice operations An important practical con-
sideration is the efficiency of lattice computations. Recent
work [18] has shown that constant-time testing of partial or-
ders can be accomplished through a data structure requiring
O(n+y/n) space and O(n?) time to construct, where n is the
number of elements in the poset. Encoding techniques [6, 1]
are known that enable near constant-time computation of
lubs/glbs, so that ¢ in the above analysis can be taken as
constant, at the expense of additional preprocessing time. In
practice, one would expect to use the same security lattice
over many different instances of MIN-LATTICE-ASSIGNMENT,
so that the additional preprocessing cost for lattice encod-
ing is less of a concern. Finally, we note that the generally
considered security lattices with access classes represented
by pairs classification and a set of categories can be effi-
ciently encoded as bit vectors that enable fast testing of the
dominance relation and lub and glb computations. The lim-
ited number of levels (16) and categories (64) required by
the standard [5] allows the encoding of any security level
in a small number of machine words, effectively yielding
constant-time lattice operations.

6 Upper-Bound Constraints and Arbitrary Partial Orders

The results presented thus far are based on the consideration
of lower-bound constraints and the assumption of classifica-
tion levels forming a lattice. Here we show how the results
can be extended to include upper-bound constraints and in-
complete lattices. We then show that relaxing the assump-
tion to allow arbitrary partial orders leads to intractability.

Upper-bound constraints The form of classification con-
straints allowed by Definition 2.1 permits specification only
of lower bounds on the classifications of attributes or collec-
tions of attributes, and thus, are geared toward restricting
the visibility of information. It may also be desirable to
specify upper bounds as well, to guarantee visibility of some
information to certain classes of users. Thus, we extend the
definition of classification constraint to allow constraints of
the form [ = A(A), where [ is a security level (constant) and
A is an attribute.

The most obvious effect of allowing upper-bound con-
straints is that they introduce the potential for inconsis-
tency in the constraint set, the most trivial example being
{A = T,L » A} (assuming that T and L are distinct).
Such inconsistencies can be detected easily by “pushing”
upper bounds through the constraint graph until a violation



of the partial order relation is found. If no such violation is
discovered, we can, through this same process, determine a
firm upper bound on every attribute in the constraint set,
which can serve as a starting point for a slightly modified
version of Algorithm 3.1. Here we briefly outline both this
new preprocessing phase and the algorithm modification.

Let C be a set of classification constraints containing
possibly both upper- and lower-bound constraints. (Observe
that, in the graph of C, security-level nodes are no longer
necessarily leaves.) Initially, each attribute is assigned level
T as before. Then, for each security level involved in an
upper-bound constraint, we propagate the level through the
graph. Where multiple upper bounds arrive at a node, their
glb is taken. When propagating upper bounds through a
node involved in a complex constraint, the lub of the lhs of
the constraint is propagated. Inconsistencies are detected
upon arriving at security level nodes. If the level of the in-
coming upper bound does not dominate the level of such
a node, there is an inconsistency. If no inconsistencies are
found, each attribute will be labeled at its maximum al-
lowed level. This preprocessing phase can be accomplished
in O(Sc) time, where ¢ now represents the cost of one lub
or glb operation.

Now, if no inconsistencies are discovered, we can com-
pute a correct and minimal solution for the (lower-bound)
constraints starting from the upper bounds derived in the
preprocessing phase. However, this computation requires a
modification to BigLoop. In the absence of upper-bound
constraints, we are able to delay the solving of complex con-
straints (via Minlevel), since, as long as at least one at-
tribute on the lhs is known to be labeled at T, any other
attribute in the lhs could assume any level without violat-
ing that constraint. But when upper-bound constraints are
processed, the initial level of any attribute may be lower
than T, and therefore the satisfaction of complex constraints
cannot be assumed. The solution to this problem is to in-
voke Minlevel for each attribute in each of its complex
constraints. For acyclic constraints, this has the effect of in-
creasing the time complexity to O(SH Bc), but for the more
general (cyclic) case, the complexity remains O(N.4SH?Bc).

Semi-lattices It can happen in practice that the partial
order of security levels does not form a complete lattice.
There may be no top element when it is intended that no
user or class of users can have visibility over all information.
Similarly, there may be no bottom element in environments
where no information is truly unclassified. Such semi- or
partial-lattices pose no particular problem for our approach.
If a semi-lattice has no top element, we simply add a dummy
T, and proceed with the algorithm as before. When the
algorithm has completed, if any attribute remains at T, it
is an indication that there is no solution to the constraints
(or, more precisely, that the constraints require that any
such attribute be visible to no one). If a semi-lattice has
no bottom element, we can add a dummy L and run the
algorithm as before. When the algorithm has completed, if
any attribute is labeled at L, it is simply an indication that
there was no effective constraint on the attribute (which
might be flagged as an error to indicate incompleteness in
the input constraint set).

Arbitrary partial orders Although lattices need not be com-
plete for our approach to work, it appears to be crucial that
the partial order of security levels be at least a partial lat-
tice, where any two levels that have an upper bound must
have a least upper bound. If the set of security levels may

be an arbitrary poset, the problem of determining a minimal
classification that satisfies all constraints appears to become
intractable. We define the problem MIN-POSET similarly to
MIN-LATTICE-ASSIGNMENT, except that the partial order is
not restricted to be a lattice. The following theorem, whose
proof is reported in Appendix A, states the intractability of
the MIN-POSET problem.

Theorem 6.1 MIN-POSET %s NP-complete.

7 Conclusions

We have examined the problem of computing an assignment
of security levels to database attributes from a set of clas-
sification constraints. The constraints we consider permit
specification of relationships between the security levels of
a set of one or more attributes and the level of another at-
tribute or an explicit level. In contrast to previous proposals
investigating the NP-hard problem of determining optimal
solutions (with respect to some cost measure), we provide an
efficient algorithm for computing one solution with (point-
wise) minimal information loss. Our approach efficiently
handles complex cyclic constraints and guarantees a mini-
mal solution in all cases in quadratic time, but also provides
linear time performance for the common case of acyclic con-
straints.

References

[1] H. Ait-Kaci, R. Boyer, P. Lincoln, and R. Nasr. Ef-
ficient implementation of lattice operations. ACM
Transactions on Programming Languages and Systems,
11(1):115-146, January 1989.

[2] S. Castano, M.G. Fugini, G. Martella, and P. Samarati.
Database Security. Addison-Wesley, 1995.

[3] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Intro-
duction to Algorithms. McGraw-Hill, 1990.

[4] S. Dawson, S. De Capitani di Vimercati, and P. Sama-
rati. Specification and enforcement of classification and
inference constraints. In Proc. of the 20th IEEE Sym-
posium on Security and Privacy, Oakland, May 1999.

[5] Dep. Defense, National Computer Security Center,
Standard DOD 5200.28-STD, 1985. Department of De-
fense Trusted Computer System Evaluation Criteria.

[6] D.D. Ganguly, C.K. Mohan, and S. Ranka. A space-
and-time-efficient coding algorithm for lattice compu-
tations. IEFEE Transactions on Knowledge and Data
Engineering, 6(5):819-829, October 1994.

[7] S. Jajodia and C. Meadows. Inference problems in mul-
tilevel secure database management systems. In Mar-
shall D. Abrams, Sushil Jajodia, and Harold J. Podell,
editors, Information Security - An Integrated Collec-
tion of Essays, pages 570-584. IEEE Computer Society
Press, 1995.

[8] S. Jajodia and R. Sandhu. Toward a multilevel secure
relational data model. In Proc. of the 1991 ACM SIG-
MOD Conference, pages 50-59, May 1991.

[9] T.F. Lunt. Aggregation and inference: Facts and falla-
cies. In Proc. of the IEEE Symposium on Security and
Privacy, pages 102-109, Oakland, May 1989.



[10] T.F. Lunt, D.E. Denning, R.R. Schell, M. Heckman,
and W.R. Shockley. The SeaView security model. IEEE
Transactions on Software Engineering, 16(6):593-607,
June 1990.

[11] M. Morgenstern. Security and inference in multilevel
database and knowledge-base systems. In Proc. of the
1987 ACM SIGMOD Conference, pages 357-373, San
Francisco, CA, May 1987.

[12] V.R. Pratt and J. Tiuryn. Satisfiability of inequalities
in a poset. Fundamenta Informaticae, 28(1-2):165-182,
November 1996.

[13] X. Qian. View-based access control with high assur-
ance. In Proc. of the 1996 IEEE Symposium on Security
and Privacy, pages 85-93, May 1996.

[14] X. Qian and T.F. Lunt. A MAC policy framework for
multilevel relational databases. IEEFE Transactions on
Knowledge and Data Engineering, 8(1):1-14, February
1996.

[15] R. Sandhu and F. Chen. The multilevel relational
(MLR) data model. ACM Transactions on Informa-
tion and System Security, 1(1), November 1998.

[16] M.E. Stickel. Elimination of inference channels by opti-
mal upgrading. In Proc. of the 1994 IEEE Symposium
on Research in Security and Privacy, pages 168-174,
Oakland, CA, May 1994.

[17] T.A. Su and G. Ozsoyoglu. Controlling FD and MVD
inferences in multilevel relational database systems.
IEEE Transactions on Knowledge and Data Engineer-
ing, 3(4):474-485, December 1991.

[18] M. Talamo and P. Vocca. A data structure for lat-
tice representation.  Theoretical Computer Science,
175(2):373-392, April 1997.

[19] R. Tarjan. Depth-first search and linear graph algo-
rithms. SIAM J. Comput., 1(2):146-160, June 1972.

[20] M. Winslett, K. Smith, and X. Qian. Formal query
languages for secure relational databases. ACM Trans-
actions on Database Systems, 19(4):626-662, December
1994.

A Proof Sketches

Correctness of Algorithm 3.1 We first establish several
lemmas used in the proof of the main theorem. Lemma A.1
uses the priority ordering of strongly connected components
(SCCs) to show that arguments about the satisfaction of
generated level assignments can be made locally. That is, it
establishes that, if any changes to a solution mapping that
are limited to the attributes in an SCC result in satisfaction
of the immediate constraints on those attributes, then the
modified mapping remains a solution for all constraints.

Lemma A.1 For a given set C of constraints and priority
p, let X be an assignment of levels to attributes that satisfies
C and X' be an assignment such that X\ = X' and that differs
from X only on attributes in priority[p]. Let C, denote the
set of direct constraints on attributes of priority p, that is,
Cp = {(lhs,Ths) € C | lhs N priority[p] # 0}. Then, X
satisfies C if and only if ' satisfies Cjp.

Proof: (sketch)
(If): Assume that )\ satisfies Cp. Let ¢ = (lhs,rhs)

be an arbitrary constraint in C. If ¢ € Cp,
then by assumption, )\ satisfies c. Otherwise,
¢ ¢ Cp, so lhs N prioritylp] = @, and thus,

lub{\'(lhs)} = lub{A\(lhs)}. Now, A(rhs) = X'(rhs)
and lub{\'(Ihs)} = lub{\(lhs)} = A(rhs) = X (rhs),
and hence, ) satisfies c.

(Only if): If X satisfies C, )" satisfies any subset of C.

[

The following lemma shows that any change to a solu-
tion A resulting from the output of procedure Try in Algo-
rithm 3.1 preserves A as a solution.

Lemma A.2 Let AS be the set of pairs of the form (A’ 1)
returned by Try(A,l). If X satisfies C just before Try(A,l)
is called, then the assignment obtained by replacing M\(A’)
with A\(A") = 1" for all (A’,l') € AS also satisfies C.

Proof: (sketch) If Try returns ) the lemma is trivially sat-
isfied. Otherwise, consider an arbitrary pair (A’,1’) in the
set Tolower returned by Try. Since any pair is added to
Tolower only upon removal from Tocheck, it must be that
one iteration of the repeat-loop is run with (A’;1’). During
that run, every constraint on A’ is checked. Furthermore,
each check must succeed, since otherwise Try fails, return-
ing @. Note that every attribute in every pair in Tolower
(and Tocheck) has the same priority, since any attribute of
higher priority is already marked done (and thus, cannot be
added to the set Tocheck), and because of priority order-
ing, no attribute of lower priority is reachable. Now, every
constraint on an attribute with the same priority as A’ is
either explicitly checked (using the levels specified for those
attributes in Tolower and X for every other), or is known
to be satisfied (by transitivity from a constraint successfully
checked). Hence, every constraint on attributes of the pri-
ority of A’ is satisfied when \(A') is replaced by A(A’) =1’
for every (A’,l') € Tolower, and by Lemma A.1, C is also
satisfied. u



Theorem 5.1 (Correctness) Algorithm 3.1 solves MIN-
LATTICE-ASSIGNMENT. That is, given a set C' of classifi-
cation constraints over a set A of attributes and a security
lattice £ = (L, ), Algorithm 3.1 generates a minimal clas-
sification mapping X : A — L that satisfies C.

Proof: (sketch)

Satisfaction: To show that BigLoop always produces an
assignment A that satisfies C, we use an inductive ar-
gument on the outermost loop of BigLoop. For the
basis, note that A initially assigns T to every attribute,
which trivially satisfies all constraints of the allowed
form (Definition 2.1). For the induction step we need
to show that, if A is a solution at the start of an itera-
tion of the outermost loop, then A is also a solution at
the end of that iteration. By Lemma A.1 it suffices to
show that (1) A at the end of any iteration differs from
A at the start only on attributes of a given priority p,
(2) the level assigned by A to any attribute is never
raised, and (3) all direct constraints on attributes of
priority p are satisfied at the end of any iteration.

Let p be the priority in the outermost loop of BigLoop
and S be the set priority[p]. There are two cases:

e |S| = 1: Let A be the sole attribute in S, and
let ¢ = (lhs,rhs) be an arbitrary constraint in
Constr[A]. Note that I, which is initially 1, will
eventually hold the level to be assigned to A.
Now, rhs is either a security level or is an at-
tribute of higher priority than A. In either case,
done[rhs] = TRUE, and so there are two cases
to consider based on |lhs|. If |lhs| = 1, [ is as-
signed the lub of its current value and A(rhs), so
that [ = A(rhs), which, if assigned to A, will sat-
isfy c. Otherwise, |lhs| > 1, and we consider the
value of unlabeled|c]. If unlabeled[c] > 0, there is
at least one attribute A’(# A) € lhs such that
done[A'] = FALSE, A\(A’) = T, and thus, for any
value of [ assigned to A, c is trivially satisfied. If
unlabeled[c] = 0, Minlevel computes a minimal
level I’ for A such that c is satisfied, [ is assigned
the lub of its current value and I’, and thus, c is
satisfied if [ is assigned to A. Note that, since
L is a lattice, the (unique) lub of any two levels
always exists.

After processing each constraint on A, [ is such
that A(A) = [ satisfies all constraints processed
so far, since [ is assigned an upper bound of its
current value and the value needed to satisfy the
constraint just processed. After all constraints
on A are processed, A(A) is set to [, and thus all
constraints on A are satisfied (3). Note that (at
most) the level of A is modified (1), and since
A(A) was initially T, if its assignment changed,
it could only have been lowered (2). Thus, by
induction hypothesis, \ satisfies C.

e |S| > 1: We extend the inductive argument to the
second-level loop (For A € priority[p]), and show
that A satisfies C' at the end of each iteration of
this inner loop. Let A be an arbitrary attribute
in S. Consider Constr[A]. If every (lhs,rhs) €
Constr[A] is such that done[rhs] = TRUE, the
argument for case |S| = 1 applies. Otherwise,
there is at least one (lhs,rhs) € Constr[A] such
that done[rhs] = FALSE. So, after processing each

¢ € Constr[A], done[A] = FALSE, and we proceed
from the initialization of DSet. Now, by an ar-
gument similar to that of case |S| = 1, [ holds
a lower bound on the level that may be assigned
to A, and DSet is initialized to the set of lev-
els immediately below A(A) and that dominate .
We again extend the inductive argument to the
while-loop to show that A satisfies C' at the end
of any iteration of the while-loop. Observe that,
before entering the while-loop, \ satisfies C' be-
cause no assignments have been modified up to
this point in the enclosing for-loop. In the while-
loop, either Try fails for every I” € DSet, or it
succeeds for one of them. If it fails for all, no
assignments in A are modified, and thus, C re-
mains satisfied. Otherwise, by Lemma A.2, Try
returns a set of pairs of the form (A’,1'), where
A’ € priority[p], A(A") = I, and such that replac-
ing A(A") by A(A’) = I’ for all such A’ satisfies
all constraints on attributes in priority[p]. The
while-loop concludes by making this replacement
and resetting DSet to levels immediately below
A(A). Hence, X satisfies C' at the end of the cur-
rent iteration of the while-loop, and by the ex-
tended inductive arguments, A\ also satisfies C' at
the end of the enclosing for-loop and at the end
of the outermost loop.

Minimality: To prove minimality of the generated assign-

ments we use a similar inductive argument to show
that, at the end of any iteration of the outermost loop,
any attribute A for which done[A] = TRUE has been
assigned a minimal level that satisfies its constraints.
For the basis, observe that for every | € L, A\(I) =1
and done[l] = TRUE at the start of the outermost loop.
For the induction step we need to show that, if any
attribute marked done at the start of any iteration of
the outermost loop has been assigned its minimal sat-
isfying level, then any attribute marked done at the
end of that iteration has as well.

As before, let p be the priority in the outermost loop
of BigLoop and S be the set priority[p]. We consider
two cases:

e |S| = 1: Let A be the sole attribute in S. From
the satisfaction argument, we know that [ is a sat-
isfying assignment for A. To see that A(A) =lisa
minimal satisfying assignment, first observe that,
for any ¢ = (lhs,rhs) € Constr[A], done[rhs] =
TRUE, so by induction hypothesis, A(rhs) is min-
imal. Second, | was computed as the least up-
per bound of only those minimal levels needed
to make lub{\(lhs)} > A(rhs) true for all con-
straints on A. By definition of least upper bound,
[ is the lowest level that does so. At the end of
the iteration A(A) =, and done[A] = TRUE.

e |S| > 1: Let A be an arbitrary attribute in S.
As discussed in the satisfaction argument, if all
constraints on A are such that done[rhs] = TRUE,
then the argument for case |S| = 1 applies, so we
assume that there is at least one constraint on A
for which done[rhs] = FALSE. Using an inductive
argument similar to that of case |S| = 1 we know
that [ is a lower bound on any minimal assignment
for A; that is, A must dominate [ in any minimal
solution. Now, let I’ be the level assigned to A



when processing of A is completed (marked done
after the while-loop in BigLoop). Suppose that
A(A) = I’ is not minimal for A, that is, there
exists a solution A’ for C' such that A = X\ and
N(A) = 1" where ' > 1I". Consider the set DSet
of levels immediately below I’ in the lattice. Try
must have failed on each of these, resulting in the
assignment of I’ to A. At least one of these levels
must dominate I”, so let [ be an arbitrary one of
these levels such that [ > . Consider the run of
Try that failed when trying to lower A to {. Since
Try fails only when a constraint is violated, it
follows that there exists some constraint ¢ (on an
attribute of the same priority as A) that requires

A(A) =~ I. Since we are dealing with a lattice, and
A = X (where X is the set of assignments at the

time Try failed on (A,!)), the same constraint ¢
must also require ' (A) = [. Thus, \'(A) = 1" is
not a solution for A, so \’ is not a solution for C.

Termination: There are two aspects to termination that
are not obvious. First, the while-loop at the end of
BigLoop terminates because DSet is finite, and in
each iteration every level in DSet is strictly dominated
by any level in the preceding iteration. Thus, as long as
Try terminates, the while-loop will terminate, because
either the bottom of the lattice is reached or because
every level tried in one iteration fails.

Second, it is not immediately obvious that the repeat-
loop in Try terminates. Note that it continues as
long as the set Tocheck is not empty. In each itera-
tion of the loop one pair is removed from Tocheck and
added to Tolower. However, for any attribute, there
can be at most one pair involving that attribute in ei-
ther Tocheck or Tolower. It is possible that, for some
pair (A,1) € Tolower, a pair (A,l') will be added to
Tocheck. If so, I must strictly dominate I, so the num-
ber of times a pair involving the same attribute may
be entered into Tocheck is bounded by the height of

the lattice.
=

Complexity analysis In the complexity analysis we adopt
the following notational conventions with respect to a given
instance (A, £, C) of MIN-LATTICE-ASSIGNMENT: N4 (= |A|)
denotes the number of attributes in A; Ny (= |L|) denotes
the number of security levels in £; N¢ (= |C|) denotes the
number of constraints in C; S = (lhs,r'hs)EC(“h's' +1)

denotes the total size of all constraints in C'; H denotes the
height of £; B denotes the maximum number of immediate
predecessors (“branching factor”) of any element in £; ¢
denotes the maximum cost of computing the lub or glb of
any two elements in £. Note that, for any lattice £, BH is
no greater than the size of £ (number of elements + size of
the immediate successor relation).

Theorem 5.2 (Complexity) Algorithm 3.1 solves any in-
stance (A, L,C) of the problem MIN-LATTICE-ASSIGNMENT
in O(NASH?Bc) time, and, if the set of constraints C is
acyclic, in O((S+ NcHB)c) time. Therefore, MIN-LATTICE-
ASSIGNMENT s solvable in polynomial time.

Proof:  For the analysis, we consider two cases: (1)
C is acyclic, and (2) C is cyclic. We begin by noting
that the preprocessing steps (common to both cases) in

Main, apart from DFS_Visit and DFS_Back_Visit, re-
quire (in total) time proportional to S + Ni. DFS_Visit
and DFS_Back_Visit themselves are simply a minor adap-
tation of Tarjan’s linear-time SCC computing algorithm [19],
and require time proportional to S. Thus, the time complex-
ity of the preprocessing phase is O(S 4+ Nr). It remains to
determine the complexity of BigLoop. For BigLoop note
that the effect of the three nested for-loops is to consider
every attribute in each of its constraints, which requires no
more than S iterations of the innermost loop, while the con-
taining loop iterates N4 times.

In the acyclic case, note that every attribute is its own
SCC. When considering any attribute A in BigLoop, then,
the computation of the level of any attribute appearing on
the rhs of any constraint on A will have been completed
(done[rhs] is always true), and the DSet computation and
while-loop are never performed. Thus, apart from constant-
time initializations in the second for-loop, the only cost to
consider for the acyclic case is that of the innermost for-loop.
For each constraint, either a lub operation is performed, or
possibly a lub operation and a call to Minlevel. Note, how-
ever, that Minlevel is called only once for each complex
constraint (when its unlabeled count reaches zero). Overall,
no more than S iterations of the innermost for-loop com-
pute a lub, and no more than N¢ iterations involve Min-
level. The naive algorithm given for Minlevel first per-
forms a number of lub operations proportional to the size
of the lhs of the given constraint. The remainder of Min-
level considers overall at most H B security levels, each in-
volving a lub operation. The time complexity of Minlevel,
then, is O((|lhs| + HB)c). For the N¢ iterations involving
Minlevel, the total cost is O((S + HBNc¢)c). The total
cost of the remaining iterations is O(Sc), and hence, the
overall time complexity of BigLoop in the acyclic case is
O((S+ HBNc¢)c).

For cyclic constraints we take the worst case, where all
attributes are in the same SCC. The cost due to the inner-
most for-loop of BigLoop cannot be greater than that of
the acyclic case. In the containing loop (the loop over at-
tributes), the while-loop may execute for every attribute in
the SCC. Like Minlevel, the while-loop considers at most
H B security levels, each involving the Try computation.
In the worst case, Try processes the constraints for all at-
tributes in the SCC. More precisely, it processes the con-
straints of every attribute in the SCC not marked done. The
number of such attributes decreases by one after each invo-
cation of Try, but on average, Try may process as many
as half the constraints involved in the SCC. Now, it can
happen that, for some pair (A,l) € Tolower and level I,
(A, 1) is removed from Tolower and (A,1’) added to Tocheck,
implying the preprocessing of constraints on A. For any at-
tribute, this reintroduction into Tocheck can happen at most
H times®, since I’ must be strictly lower than I. For each
constraint considered, the lub of all attributes in the lhs is
computed, requiring time proportional to |lhs|-c. Assuming
suitable data structures for constant-time operations involv-
ing Tolower and Tocheck, the only remaining nonconstant
cost comes from at most two glb operations. The time com-
plexity of Try, then, is O(H Sc), and that of the while-loop
in BigLoop is O(H2BSc). Over all attributes in the SCC,
the time complexity of BigLoop due to the while-loop is
O(N4H?BSc), which dominates the cost due to the inner-
most for-loop of BigLoop. [

5More precisely, it can happen at most min(H, R) times, where R
is the maximum number of constraints with a common attribute on
the rhs.



Figure 4: Poset for (P V Q) A (Q V —R) (a), and four-element poset (b).

Minimal assignment in a POset The following result mo-
tivates the restriction in the rest of this paper to partial lat-
tices, where any two levels that have an upper bound must
have a least upper bound. If the set of security levels may
be an arbitrary poset, the problem of determining a minimal
classification that satisfies all constraints is intractable.

We define the problem MIN-POSET similarly to MIN-
LATTICE-ASSIGNMENT, except that the partial order is not
restricted to be a lattice and it is stated as a decision prob-
lem. Given a partial order (P, >) and a set of constraints C,
each constraint taking one of three forms: A > A’, A > I,
lub{A1, ---, A} > A, where the As are attributes, and [ is
a constant drawn from P, is there an assignment from at-
tributes to members of P that satisfies all the constraints
C, and which is minimal?

Theorem 6.1 [MIN-POSET is NP-complete.]

It is easy to see that this problem is in NP, since one may
simply guess an assignment of levels (poset elements) to at-
tributes, and check that every constraint is satisfied.

Informally, to see why MIN-POSET is a hard problem, con-
sider a poset of security levels with four elements with two
upper elements each dominating the two lower elements, as
depicted in Figure 4(b). If an attribute is known to dominate
the second two elements, in the final analysis that attribute
must be assigned to one of the first two elements, and thus
a choice must be made. Multiple such choices may result in
an exponential number of possibilities. Below we sketch a
proof using this kind of choice to encode propositional truth
or falsity in satisfiability problems.

We give a reduction from 3-SAT, demonstrating NP-
hardness. We first define a partial order (the security lev-
els), beginning with the empty set C, and for each clause
Clause; = Pi1 V P;a V Pis, we add the element named C; to
C, and further add seven more elements to C, one for each
truth assignment which satisfies the clause. For convenience,
we name these seven elements by simply concatenating the
names of the clauses with the names of the variables they
contain, using overbars to denote negation: “C;Pi1 Pi2Pis”,
“CiPi1 Pio Pis”, “Cy Pin PiaPis”, etc. For each propositional
variable P;, we add three elements to C', named “P;”, “Pf”7

and “ij”. Intuitively, these stand for the j-th proposition
being undecided, true, and false, respectively.

With the above set of constants, we define a partial order
relation > on them as follows. We define the relation Rprop
to include, for each proposition P;, Pf > Py and P > P;.
We define the relation Rcjquse to include, for each clause
Clause; = P;1 V Pi2 V Pis occurring in the 3-SAT problem,
and each truth assignment which satisfies the clause, C; >

C; P;1 P2 P;3s. We also define the relation Rirye to include, for
each clause Clause; = P;1V P2V Pis, and each proposition in
that clause P;;, a relation P;]f > (C; P;1 Pio Pi3 for each of the
three or four clause elements which correspond to P;; being
true. Similarly, we define the relation Rjfq.se to include, for
each clause Clause; = P;1 V P2 V P;3, and each proposition
in that clause P;;, a relation Pi; > (C; P;1 P2 P;3 for each of
the three or four clause types which correspond to P;; being
false. The final partial order of interest will be made up of
elements of C, related by Rprop U Reiause U Rirue U Ryalse.
The partial order has height one, and contains eight (= 23)
elements for each 3-SAT clause, plus three elements for each
proposition. Figure 4(a) displays the partial order produced
for the SAT problem (P V Q) A (Q V —R). Clauses of length
two were used in the figure to improve readability.

We use a set of attributes, one wp; and one wu; for
each proposition Pj, and one wc; for each clause Clause;.
We define a set of inequations Cgiquse to include, for each
clause Clause; = Pi1 V P2 V P;3, the constraint C1 > wc;,
and for each proposition P;; in that clause, wp;; > we;.
We also define a set of inequations Cprop to include, for
each proposition P;, wu; > wp; and wu; > P;. Thus
there are four constraints in Ceause per 3-SAT clause, and
two constraints in Cprop for each proposition. Continuing
with our simple example, (P V Q) A (Q V —R), the inequa-
tions Cejguse = {C1 > wer, wpp > wer, wpg > wey, Ca >
wea, wpg > wez,wpr > wea), and Cprop = {wup >
WPp, Wlq > WPq, Wy > WPy, WUy > Pywug > Q,wu, > R}.

We claim that the MIN-POSET problem given by the par-
tial order (C, Rprop U Reiquse U Rirue U Rfaise), with the
constraints Cprop U Ceiause has a minimal solution if and
only if the original 3-SAT problem has one. This may be ob-
served by noting that every attribute wec; must be assigned
some C; P;1 P2 P;3, since we; must be lower than C; and some
propositions. Also, the only C;Pi1 Pi2P;3 which exist in C
correspond to assignments of propositions which satisfy the
clause. Further, wu; must be assigned P;, and wp; must
be assigned either Pj7L or P;7. We claim there is a corre-
spondence between a proposition P; being assigned true (or
false, resp.) in the 3-SAT problem, and w; being assigned Pj7L
(P;", resp.) in the MIN-POSET problem. Thus one may see
that a solution to the 3-SAT problem may be derived from
any solution to the constructed MIN-POSET problem and vice
versa.

Using results of Pratt and Tiuryn [12], this NP-hardness
result can be improved to apply to small fixed partial orders,
including the four-element partial order of security levels
with two upper elements each dominating the two lower el-
ements (Figure 4(b)).



