
An Open Digest-based Technique for Spam Detection∗

E. Damiani1, S. De Capitani di Vimercati1, S. Paraboschi2, P. Samarati1

(1) DTI - Università di Milano - 26013 Crema, Italy

(2) DIGI - Università di Bergamo - 24044 Dalmine, Italy

{damiani, decapita, samarati}@dti.unimi.it, parabosc@unibg.it

Abstract

A promising anti-spam technique consists in collect-
ing users opinions that given email messages are spam
and using this collective judgment to block message
propagation to other users. To be effective, this strat-
egy requires a way to identify similarity among email
messages, even if the program used by the spammer
to generate the messages may try to obfuscate their
common origin.
In this paper, we investigate the issues arising in the
design of a digest-based spam detection mechanism,
which has to satisfy many conflicting requirements:
protect message confidentiality, be public, and prove
difficult or expensive to fool by obfuscation techniques
that automatically introduce differences into the same
base spam message. We show that an open digest
function is able to satisfy the above requirements and
contribute to the fight against spam.

1 Introduction

The problem of spam or Unsolicited Bulk Email
(UBE) is becoming a pressing issue [1, 3]. In spite
of the development of many anti-spam techniques, the
war against spam is far from being successful. This
is partly due to several characteristics of spam that
make it a difficult problem:

• spam heterogeneity: the CAUCE (Coalition
Against Unsolicited Commercial Email) organi-
zation lists the following examples of spam: chain
letters; pyramid schemes (including multilevel
marketing), make-money-fast schemes, phone sex
lines and ads for pornographic web sites, and so
on;

• spam definition: one of the problems of design-
ing a system against spam is defining what a

∗This work was supported in part by the EU within the
PRIME Project under contract IST-2002-507591 and by the
Italian MIUR within the KIWI and MAPS projects.

spam message is. There are many borderline cases
where what is spam for a user could be useful in-
formation for another (e.g., an opening for a job
position or a mail from a vendor notifying thou-
sands of customers of a defect in its products)

• spam evolution: spam evolves as rapidly as anti-
spam techniques improve.

While no drastic solution to the spam problem
is currently available, and none is likely to appear
soon1, several moderately successful anti-spam tech-
niques have been proposed, each operating along a dif-
ferent line. Here, we briefly describe three main fam-
ilies of techniques. The first technique fights against
the mail servers that are responsible for the generation
of spam messages. This technique has a good potential
and is typically realized using blacklists of misbehaving
servers that are collected by several sites. The main
drawback of black lists is that they are prone to mis-
configurations that have often led to denial of service,
with legitimate servers unable to exit from a list where
they had been incorrectly inserted. White lists are
complementary to black lists, and contain addresses of
servers which are trusted not to propagate spam. A
major drawback of white lists and, generally speaking,
of restrictions to SMTP traffic is that they contradict
the main original design goal of SMTP, namely the
open paradigm of the Internet’s global email system.
A second family of solutions considers the content of
messages and exploits the fact that spam typically falls
within predefined categories and it is possible to dis-
tinguish spam based on its content. Depending on
how email messages are filtered, these methods can be
classified as rule-based filters and Bayesian word dis-
tribution filters . Rule-based filters, like SpamAssas-
sin, assign a spam “score” to each message based on
whether the message contains features typical of spam,

1See http://www.rhyolite.com/anti-spam/you-might-be.

html for a humorous view of self-proclaimed anti-spam “silver
bullets”.



such as keywords, URLs or, in the case of HTML mes-
sages, background colors.

Bayesian tools, like SpamProbe
(http://spamprobe.sourceforge.net), assign a
frequency-based probability to tokenized words
(or pairs/triples) as spam indicators based on previ-
ous experiences. The Bayesian approach has been
rather successful, but its success strictly depends on
the fact that spam typically aims at a limited variety
of messages. A creative use of spam would not find
an obstacle on spam filters trained on the basis of
previous experience. A third approach is focused on
the fact that the same information is sent to many
users, though spammers try to disguise it by creating
a specific version of the message for each user.
Collaborative spam filters collect information about
what is spam throughout the network [2, 4]. In such a
context, each mail server queries the community (or a
central repository working as a collector) about every
suspicious message. An important requirement in
collaborative spam filtering is not disclosing neither
spam messages’ content. A widespread solution is
digest-based hashing , where content of the electronic
mail messages is hashed in order to identify content
previously found in known spam. Recently, concerns
have been raised about patents covering digest-based
antispam systems.2

Our work is aimed at demonstrating that the re-
quirement of avoiding message disclosure can be bet-
ter satisfied by using an open digest function designed
with special consideration of countering attacks that
spammers can enact. We consider digests at the gran-
ularity of whole messages, but the approach could also
be adapted to finer levels of granularities.

The contributions of this paper can be summarized
as follows. First, we illustrate the different require-
ments that a digest for spam detection should satisfy
(Section 2). Second, we present an open digest tech-
nique, that we have adapted to take into account dis-
guising attacks and illustrate its resiliency with some
experiments (Sections 3 and 4). Third, we propose
the use of a multi-hash approach to maximize the cost
of attacks to the filter on the part of the spammers
(Section 5).

2 Requirements

As noted before, if a generic hash function like MD5
(or SHA-1) is used to produce the digest of a message,

2For instance, Network Associates Inc. (NAI) has been
granted a broad U.S. patent covering digest-based anti-spam
techniques.

the spammer can easily fool this protection measure
by inserting into each message, in an arbitrary posi-
tion, a few random characters (called hash busters)
that will immediately make the message unique, with
practically no impact on the user perception of the
message. This observation originates a first functional
requirement:

• Requirement 1: the digest identifying each mes-
sage should not vary significantly for changes that
can be produced automatically .

What is needed is a localized hashing function
such as those applied in information retrieval systems.
However, the techniques designed for information re-
trieval have to be carefully adapted since they were not
designed to tolerate malicious behavior which must in-
stead be considered in our environment. For instance,
MIME encoding is often used by spammers to disguise
message content while it is in transit, thereby allowing
it to sneak past content-based spam filtering.3 Less of-
ten, spammers will use HTML character entity codes
(in the form “&#nnn;”, where “nnn” is the decimal
code of the character being escaped) to disguise se-
lected characters in an HTML message body. This
originates our second requirement:

• Requirement 2: the encoding must be robust
against intentional attacks.

A solution to the spam problem must assume that
spammers are technically competent and after an anal-
ysis of the characteristics of the filtering solutions they
may spend resources to design tools that are able to
automatically produce spam that bypasses the checks
put in place.

Finally an encoding suitable for use in the frame-
work of an anti-spam filter should not put the user
at risk of accidental deletion of important messages.
Therefore, we have a third requirement:

• Requirement 3: the encoding should support an
extremely low risk of false positives.

Note that the risk of classifying a legitimate email as
spam (false positive), is far more costly than the risk
of missing one spam (false negative).

The following section presents an open-source di-
gest technique aimed at satisfying the three require-
ments above.

3A related technique, URI encoding, is often used by spam-
mers in HTML message bodies to disguise selected characters in
website URLs (indeed, any type of URL); it works in the same
way as MIME.



Figure 1: Nilsimsa working

3 A spam-identifier digest

Our proposal is a variation of the
open source Nilsimsa digest technique
(http://lexx.shinn.net/cmeclax/nilsimsa.html),
adapted to provide undisguisability of spam messages.
For simplicity, while presenting our solution we will
continue to use the term Nilsimsa, pointing out the
differences from the original version when needed.
Nilsimsa satisfies our first requirement inasmuch it is
a simple local sensitive hash function4 that takes a
document or a text string as input and provides as
output a 32-byte code representing the distribution of
the trigrams in the text.

Nilsimsa operates by using a window of 5 characters
that slides along the text of the message one character
at a time (see Figure 1). When a new character en-
ters the window, the algorithm generates the trigrams
associated with the window and passes each of them
to a hash function h(). The hash function h() com-
putes a value i = h(trigram) between 0 and 255 that
corresponds to the i-th counter in an array of integers
of size 255, called accumulator, and whose value is in-
creased by 1. After the text analysis, the accumulator
will present in the i-th cell the number of trigrams that
have been found in the text producing i by the appli-
cation of the hash function. The relative frequency
of each bucket is compared with the average bucket
frequency observed for a large collection of messages
(typically, all the messages received by the user) and
the value representing this ratio is associated with the
bucket. Then, the ratio of each bucket is considered
and if the i-th ratio is greater than the median, the
i-th bit of the Nilsimsa code is set to 1; it is set to
0, otherwise. In this way a 32-byte code is produced.

4A local sensitive hash function is a function producing sim-
ilar digests for similar documents.

The original version of Nilsimsa used a simple method
to compute the bits in the digest, comparing the cardi-
nality of the trigrams of each bucket with the average
for all the buckets. This technique however, is not
robust enough against aimed addition (Section 4.4);
therefore, to increase robustness, we introduced the
usage of the median as the term of comparison.

To determine if two messages present the same
textual content, their Nilsimsa digests are compared,
checking the number of bits in the same position that
have the same value. The Nilsimsa Compare Value is
the number of bits that are equal in two digests minus
128. For two randomly chosen 256-bit sequences, we
expect an average of 128 equal bits, that is, a Nilsimsa
Compare Value equal to zero. The maximum value of
the Nilsimsa Compare Value is 128, for two identical
digests. The original designer of Nilsimsa proposes to
use a threshold of 24 for the Nilsimsa Compare Value,
above which the two digests are considered as referring
to the same message. The original threshold, equal to
24, does not satisfy our third requirement (low proba-
bility of false positives), since it corresponds to a prob-
ability of conflict between two random messages equal
to p = 1.35 · 10−4. With the hypothesis that the sys-
tem knows 106 distinct digests of spam messages, if we
want a probability at most equal to 10−5 that a non-
spam message produces a digest which corresponds to
that of a spam, we propose to use a Nilsimsa Compare
Value equal to 54, which, under the assumption of a
uniform distribution of Nilsimsa codes, corresponds to
a probability of conflict between the digests of two ran-
dom messages equal to p = 7.39 · 10−12, that fully sat-
isfies our third requirement. As a partial confirmation
of the above analysis, we applied the Nilsimsa digest
to a large collection of both legitimate messages and
spam messages, 2500 messages of each kind5 and with
a threshold equal to 54 we observed no false positives.

4 Digest evaluation

We now evaluate the robustness of our technique
against disguising attacks that spammers can enact to
fool anti-spam filters based on the digest. For each at-
tack we provide some considerations on why our tech-
nique is resilient to it and report the results of our
experiments which confirm them. We have identified
the following four kinds of attacks:

5We have taken the legitimate messages from comp.risks
(www.usenet.org) and the spam ones from SpamArchive
(www.spamarchive.org).



0 50 100 150 200 250 300
0

20

40

60

80

100

120

Random Characters Attack

Random text added (% of file size)

N
ils

im
sa

 C
om

pa
re

 V
al

ue

Compare Limit
Nilsimsa

Figure 2: Random addition

• Random addition: random characters are added
at the end of the original text;

• Thesaurus substitution: words of the original text
are substituted by synonyms defined in a the-
saurus;

• Perceptive substitution: characters of the origi-
nal text are substituted without changing the text
perception;

• Aimed addition: sequences of characters are
added at the end of the original text to modify
the trigram distribution of some specific buckets.

4.1 Random addition

This is the simplest and common attack that spam-
mers use to overcome anti-spam filters. It is easy
to see that the attack effectiveness against our digest
will be limited, since the random text added generates
a uniform trigram distribution that equally increases
each bucket in the same way. The Nilsimsa Compared
Value will then decrease slowly.

In our simulations, we considered the addition at
the end, since it is certainly a position where it gener-
ates the least impact on user perception and, for how
Nilsimsa computes the digest, the position within the
text is essentially irrelevant. We added a random se-
quence of characters whose length ranged from 0 to
250% of the original text length. The latter figure
is much higher than the percentage of noise normally
added by spam generators. Figure 2 shows Nilsimsa’s
high robustness against this attack.

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

Thesaurus Attack

Character Changed (% of file size)

N
ils

im
sa

 C
om

pa
re

 V
al

ue

Compare Limit
Nilsimsa

Figure 3: Thesaurus substitutions

4.2 Thesaurus substitution

With this attack, words are replaced with synonyms
defined in a Thesaurus. As an example, the word
“disappear” could be substituted by “vanish”. The
thesaurus substitution will change the trigram distri-
bution by: i) erasing some trigrams and also ii) adding
new trigrams due to synonym substitution. The de-
fense against this attack relies on the fact that syn-
onymy is never perfect and therefore only a small per-
centage of text can be changed without modifying the
semantics of the message.

In our simulation, the percentage of replaced text
ranges from 0 to 20%. The reason for limiting the re-
placement to 20% of text is that it is not simple to
identify a rich set of synonyms and therefore changing
more than 20% of the text would eventually alter the
meaning of a sentence. As Figure 3 shows, the The-
saurus attack is more effective than the Random one,
but Nilsimsa is however able to resist this attack.

4.3 Perceptive substitution

This attack is realized through the substitution of
characters with other ones preserving text perception
on the part of the human reader. As an example, the
word “security” could become “s3cur1ty”.

We expect that this attack will be more effective
than the previous one because a sparse substitution
changes more trigrams than a word substitution. An
analysis of the Nilsimsa code shows that a single char
substitution will change exactly 24 trigrams. So, 120
trigrams are altered by a substitution of 5 charac-
ters, whereas a substitution of a 5-character word will
change only 66 trigrams.



0 5 10 15 20 25 30
0

20

40

60

80

100

120

Optical Perception Characters Attack

Characters changed (% of file size)

N
ils

im
sa

 C
om

pa
re

 V
al

ue

Compare Limit
Nilsimsa

Figure 4: Perceptive substitution

As the experiment in Figure 4 shows, the digest is
robust against this attack until the percentage reaches
a value around 20%. This is completely safisfactory,
since HCI research shows that the impact on text read-
ability of this strategy is considerable even with a low
percentage of character substitutions; an excessive use
of it makes messages virtually unreadable and there-
fore ineffective from the spammer’s point of view. We
can therefore conclude that our digest is robust as long
as the readability of the message must be preserved.

4.4 Aimed addition

In the previous subsections, we evaluated the
strength of attacks that are already used by spammers.
All these attacks are relatively easy to implement and
may be effective against several anti-spam solutions.
An aimed attack is instead an attack directed specifi-
cally against the digest function. This attack requires
a higher computational cost and a greater technical so-
phistication, but the reward may be a compact mod-
ification to each email message able to make the di-
gest of an email message distinct from that of another
perceptually-identical message. The main idea is to
increase the cardinality of a chosen bucket set. This
goal is attained with the generation of strings of char-
acters that will be splitted into trigrams increasing the
buckets under attack.

The aimed addition attack operates in two steps.
The first step requires to find the buckets associated
in the message with a low trigram cardinality; they
will become the target buckets. The second step builds
text strings to add at the end of the message, one char-
acter at a time, choosing at each iteration the charac-
ter that produces the greatest number of trigrams that

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

Aimed Attack

Text Added (% of file size)

N
ils

im
sa

 C
om

pa
re

 V
al

ue

Compare Limit
Nilsimsa

Figure 5: Aimed attack’s to median defense

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

Aimed Attack

Text Added (% of file size)

N
ils

im
sa

 C
om

pa
re

 V
al

ue

Compare Limit
Tran53
MD5

Figure 6: Aimed attack’s to multihash-median defense

are mapped by the hash function into the target buck-
ets that have yet to reach a value above the threshold.
This way the cardinality of each of the target buckets
increases and the bit in the digest changes from 0 to 1.
Figure 5 shows a graphic representation of the effect of
an aimed attack. We can observe that even a modest
addition of a 10% prologue can make the digest dis-
tinct from that of the original message. Therefore an
aimed attack is 20 times more efficient than a random
addition. To contrast this attack, we propose the use
of multiple hash functions.

5 Multihashing

An increased protection against the addition of a
sequence of characters aimed at corrupting the digest



can be obtained by using, instead of a single digest,
of a family of digests, each characterized by a dis-
tinct hash function mapping trigrams into buckets.
The hash functions that we have used for our experi-
ments are the standard Nilsimsa hash function, called
Tran53 , and the well-known MD5 hash function. Fig-
ure 6 shows the impact that an aimed trailer has on the
aimed Nilsimsa function and the impact on another di-
gest of the same message using MD5. As we can see,
the attack aimed at a particular hash is not effective
against the other, even if the size of the added text
is more than doubled with respect to the minimum
required by the aimed attack.

We can identify a continuum of solutions exploit-
ing this strategy. The two extremes are represented
respectively: i) by the solution where a single hash
function is used, and ii) by a system where the hash
function receives as parameter a nonce that makes the
mapping between trigrams and buckets unpredictable.
Both these extreme solutions have some drawbacks:
the first one is weak against aimed addition attacks,
while the second reduces system efficiency, as the eval-
uation of the digest can only occur when the nonce is
specified, creating a serious obstacle to the efficient
storage of digests. To produce a solution that is at
the same time robust against attacks and efficient, we
propose to use a definite number of distinct hash func-
tions known in advance by all the participants in the
cooperative spam detection network.

We assume that each mail server has a catalog,
called Spam catalog , which is a matrix with n columns
(one for each hash function) and num spam rows (one
for each spam message). Entry Spam catalog [i][j]
stores the digest of the i-th spam message computed
with the hash function hj(). Upon reception of a mes-
sage m, a user uj can report the fact that m is spam to
its own mailer msk. The mail server, at email checking
time, generates two random numbers r1 and r2 that
are used to index the required hash function. This
way we reduce the spammer’s likelihood to predict the
hash that will be used in a given exchange. The mail
server then computes the digests d1 = hr1

(m) and
d2 = hr2

(m) and compares them with the correspond-
ing digests stored in Spam catalog. If the comparison
produces a value greater than a specified threshold
Threshold, the mail server considers the message m

as spam, and tags it as spam. Note that to increase
the mechanism’s security more than two random hash
comparisons could be used. Of course there is a trade-
off between security and computational cost.

Each time mail server msk receives from a user a
spam report about a message m, it updates the cat-

alog Spam Catalog by adding a row and storing the
corresponding digests computed by applying the hash
functions h1(m) . . . hn(m). The cost of the antispam
system increases, in terms of both storage and network
bandwidth, as it has to manage many digests. On the
other hand, if the attacker now wants to automatically
create instances of the same message that appear as
distinct in their digest, she will have to attack all the
different hash functions and our experiments indicate
that this imposes a significant increase in the size of
the message.

6 Conclusions

The use of digests for identifying spam messages in
a privacy-preserving way is a fundamental technique
for collaborative filtering. It is worth noticing that
while for the sake of simplicity we considered digests
at the level of whole messages, our approach can be
readily adapted to finer levels of granularity such as
paragraphs, short sentences or even words. This is
particularly promising toward the use of open source
hashing in the framework of hybrid approaches inte-
grating digest-based and Bayesian techniques.

Acknowledgments

We thank Andrea Tironi and Luca Zaniboni for
their contribution to the development of the experi-
ments demonstrating the validity of the digest tech-
nique.

References

[1] L.F. Cranor and B.A. LaMacchia. Spam! Commu-
nications of the ACM, 41(8):74–83, August 1998.

[2] E. Damiani, S. De Capitani di Vimercati, S. Para-
boschi, and P. Samarati. P2P-based collaborative
spam detection and filtering. In Proc. 4th IEEE
Conf. on P2P, Zurich, Switzerland, August 2004.

[3] J. Graham-Cumming. The spammer’s com-
pendium. In Proc. of the 2003 Spam Conference,
Cambridge, January 2003.

[4] F. Zhou, L. Zhuang, B.Y. Zhao, L. Huang, A.D.
Joseph, and J. Kubiatowicz. Approximate object-
location and spam filtering on P2P systems. In
Proc.USENIX Middleware Conf., June 2003.


