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Abstract. The use of biometrics such as fingerprints, voices, and images
are becoming increasingly more ubiquitous through people’s daily lives,
in applications ranging from authentication, identification, to much more
sophisticated analytics, thanks to the recent rapid advances in both the
sensing hardware technologies and machine learning techniques. While
providing improved user experiences and better business insights, the use
of biometrics has raised serious privacy concerns, due to their intrinsic
sensitive nature and the accompanying high risk of leaking personally
identifiable and private information.
In this paper, we propose a novel utility-preserving biometric anonymiza-
tion framework, which provides a method to anonymize a biometric
dataset without introducing artificial or external noise, with a process
that retains features relevant for downstream machine learning-based
analyses to extract interesting attributes that are valuable to relevant
services, businesses, and research organizations. We carried out a thor-
ough experimental evaluation using publicly available visual and vocal
datasets. Results show that our proposed framework can achieve a high
level of anonymization, while at the same time retain underlying data
utility such that subsequent analyses on the anonymized biometric data
could still be carried out to yield satisfactory accuracy.

1 Introduction

As sensing technologies get increasingly adopted into commodity electronic de-
vices that people use in their daily lives, biometrics have become more accessible
and appealing as an information source, for example to enable seamless authen-
tication without manual password input [1]. What’s more, the latest sensing
technologies have gone way beyond just targeting more traditional biometrics
such as fingerprints, whose sole usage is arguably authentication only. Today’s
sensing devices can collect rich biometrics such as facial imagery, voice, and even
posture/gait, iris, and neural signal data. With the help of the recent rapid ad-
vances in machine learning techniques, a wide range of interesting analytics can
then be performed on the rich biometric data [2], for example, to infer or extract
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information such as age, gender, dialect, sentiment, emotion, focus level, medical
condition, etc., which could then enable vast opportunities in various relevant
services and business interests.

Despite the high potential value of biometric information, one major con-
cern preventing its universal collection and utilization is its linkage to personal
identity and potential privacy violation [3–5]. For example, a user might enjoy
the convenience of Face Unlock on their personal electronic devices, but likely
would not appreciate having their facial features and identity information col-
lected and used for targeted advertisements. Similarly, businesses have deployed
Voice ID authentication in their automated phone system to streamline their
customer service call experience. It would be deeply problematic if a business
extracts information such as age, gender, and race from the voice data and uses
it to profile each of their individual customers for preferential treatments.

It is therefore our goal to devise a data transformation mechanism to resolve
this conflict between the value of biometric data and the potential identity disclo-
sure. The problem of de-identification has been studied for the past decades [6].
Ideally for our particular case of biometrics, a successful anonymization should
transform the data such that no identity information could be recovered, but
at the same time other interesting attributes are left intact. Such a biometric
anonymization mechanism would be tremendously valuable across a multitude
of use cases. For example, a marketing firm that has recruited a focus group to
study people’s preference towards di↵erent products by presenting to them series
of images of new products and taking pictures of their facial reactions for anal-
ysis might want to anonymize their collected facial imagery data and transfer
it to a technology company focusing on developing computer vision algorithms
and software. Or, an international medical research institute that has collected
detailed biometric records from a large population might have completed their
study of a particular disease and would like to release an anonymized version
of the dataset publicly so other medical researchers could carry out their own
studies on the dataset and potentially make discoveries that are related, or even
orthogonal, to the data’s original purpose.

To make the data release and reuse possible, the key challenge lies in the high
dimensionality of biometric data as well as in the intrinsic probabilistic nature
of machine learning-based analytics performed on top of it. In comparison, for
traditional tabular data where the useful information associated with each data
record is simply the textual content itself (e.g., date of birth, zip code, etc.),
a rich body of literature exists that provides promising anonymization results.
For biometric data, on the other hand, each data record on itself (e.g., facial
image, voice audio clip, etc.) is essentially just a blob of bits, and does not show
its useful information without either manual labeling or automated machine
learning-based analyses, which by nature is probabilistic. Even though from a
philosophical point of view, our goal of preserving interesting attributes and re-
moving identities might seem self-contradicting in that any features preserved
could potentially be used for re-identification, we argue that our problem at hand
around biometrics is far from being binary. On the contrary, the high dimension-
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ality of the data itself and the probabilistic nature of machine learning-based
analytics introduce a high degree of uncertainty that we can take advantage of
to achieve retention of interesting attributes while performing anonymization.

In this paper we introduce a novel biometric data transformation framework
that aims at accomplishing this exact goal, namely anonymize raw biometric
data to prevent/minimize identity breaching in a manner that retains other data
characteristics for successful subsequent analytics. Our contribution is three-fold:

– To the best of our knowledge, our proposed framework is the first one to
introduce the concept of utility preservation under the context of ML-based
analytics with general biometric information anonymization.

– We introduce a novel anonymization technique that uses a dynamically
assembled random set and task-oriented machine learning models to help
guide a selective weighted-mean based transformation to anonymize biomet-
ric records.

– We demonstrate the e↵ectiveness of our method’s identity protection and
utility preservation via a thorough experimental evaluation using publicly
available multi-modal datasets.

2 Basic Concepts & Problem Statement

Since our objective is to transform a private biometric dataset for public release
such that personal identities cannot be recovered but data utility is preserved as
much as possible, we would like to define a few terms we use as well as making a
clear problem statement for our proposed utility-preserving data anonymization
task, just so we are on level ground going forward with our discussion.

2.1 Basic Concepts

Regarding the utility of a biometric dataset, we define attribute of interest and
additional attributes, as follows.

– Attribute of Interest. An individual’s biometric data contains features that
can be used to predict certain attributes about them. An attribute of in-
terest is an attribute detectable from biometric data, whose value must be
protected. For example, the sentiment states displayed in a set of facial im-
ages could be considered as an attribute of interest due to their potential uses
in computer vision studies or business applications. Therefore, in anonymiz-
ing such a facial dataset, we want to preserve the discoverability of sentiment
states of the images.

– Additional Attribute. Features detectable from the biometric data, in addi-
tion to the attribute of interest, are denoted additional attributes. For exam-
ple, from a voice dataset, information such as age group and dialect can be
extracted by analyzing each audio clip. If the age group information is the
sole attribute of interest, the dialect information is considered an additional
attribute. Preserving the dialect as well as the age group information while
anonymizing the voice dataset could be desirable for the expanded potential
usages of a public release.
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2.2 Problem Statement

Due to the high dimensionality of biometric data and the high uncertainty of
ML-based analytics, we argue it is impossible to formulate a provable security
guarantee for our biometric anonymization problem at hand. Therefore, in this
paper we propose a purely data-driven approach so that the level of utility
preservation and the level of anonymization can both be quantified, experimen-
tally through measurements.

For an original biometric dataset D, suppose it has an attribute of interest p
and a set of n additional attributes {qn}, with their corresponding recognition
models P(·) and {Qn(·)} all trained from the original dataset D. Suppose D
has an identity classification model I(·), also trained from the original dataset.
Then, for any data transformation T (·), we can represent the Utility U(·) of the
transformed data as the collective attribute recognition accuracy

U(T (D)) = P(T (D)) +
nX

i=1

↵iQi(T (D)),

and what we call Identity Mixture M(·) the degree to which the trained identity
classification model is confused by the transformed data

M(T (D)) = 1� I(T (D)).

In the formulas, T (D) is the transformed biometric dataset, {↵n} are user input
weights for the additional attributes. Each of the attribute recognition mod-
els P(·) and {Qn(·)}, as well as the identity classification model I(·), takes as
input an entire dataset and outputs its accuracy. Intuitively, to find the best
anonymization for a biometric dataset D is to find the optimal T ⇤(·) that max-
imizes both U and M (or achieves a good trade-o↵ between them), which is to
say that the corresponding transformed data thoroughly confuses the identity
classification model but can still be used to reliably extract interesting attributes.

2.3 Attack Model

From our problem statement, we would like to make an important observation
on the identity classification model I(·): Only the data owner knows the ground-
truth identity correspondence between the original data D and the transformed
data T (D). Therefore, only the data owner can compute the accuracy I(T (D)).
Any attacker who tries to use an identity classifier I 0(·) would not be able to
recover any identities because of the apparent lack of ground-truth identity cor-
respondence between D and T (D). Therefore, even if the attacker’s model I 0(·)
correctly classified x% of the hidden identities in T (D), the attacker would not
be able to tell which x% in T (D) the model I 0(·) got correctly. Thus, their
attempted re-identification attack is reduced to random guess.

Additionally, we argue that it is reasonable to assume the data owner’s model
is always more powerful than the attacker’s model, 8D : I(D) � I 0(D), because
the data owner and the attacker can both select the latest and most powerful
identity classification algorithm, but the data owner has the advantage of having
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access to the original unanonymized data, which the attacker does not have.
Therefore, if we let the attacker’s model be the same as its upper bound, I 0(·) =
I(·), we can treat the data owner’s measured identity mixture M , to be the
lower bound of what the attacker can possibly experience. In other words, the
already hidden identity in the anonymized data would appear even more mixed
to an attacker. Therefore, in our discussion, we assume that i) the data owner
only releases the final anonymized data, and nothing else, and ii) the identity
classification model used by the attacker is e↵ectively the same as the model
used by the data owner.

Our attack model gives us a solid ground for our subsequent discussions We
believe that, in practice, our data-driven approach can bring value to a wide
range of application scenarios.

3 Rationale of Approach

To achieve our objective of utility-preserving anonymization for biometrics, the
high dimensionality of the data and the uncertainty of ML-based analytics need
to be accounted for. For each data record d we aim to anonymize, we dynamically
assemble a random set containing d and perform a selective weighted-mean-
based operation, where the weighting is only applied to the most important
features, as guided by task-specific machine learning models. We intend to make
our data transformation retain as much truthfulness as possible, hence our par-
ticular design follows the intuition of only utilizing information from the original
biometric dataset, and purposefully avoiding external artificial noise. Therefore,
the transformation step T (·) randomly assembles a short-lived, parameter-driven
(such parameters include desired set size, attribute purity, etc., which are dis-
cussed in detail in Sec. 4.1) set of feature vectors with which to calculate the
weighted-mean for each of the target feature vectors being anonymized.

Under our proposal, each data record becomes di↵erent from its original
form. Also, due to the high dimensional nature of biometrics, it is also unlikely
for any anonymized data record to have an exact match in the original dataset,
or vice versa. As will be demonstrated in Sec. 5.2, regardless of the particular
attack method of choice—be it a direct distance measure between two data
records or via a trained ML model to compute the probability of a match—the
likelihood of an attacker being able to link any anonymized data record to its true
corresponding original record is reduced to a random guess on the entire dataset.
In other words, an anonymized record is equally likely to be the closest, or the
farthest, or anywhere in between, to its true match, as far as re-identification is
concerned. Hence, the attacker is unable to reliably recover any identities from
the anonymized biometric dataset.

4 Methodology

In this section, we discuss our proposed framework for performing utility-
preserving anonymization on biometric data. Our proposal is generally applicable
to all types of biometrics, and not restricted to any particular data modalities or
feature extraction methods. For example, as demonstrated in Sec. 5, our method
is evaluated on both facial image-based and voice audio-based datasets, where
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multiple di↵erent feature extraction methods are used, including no feature ex-
traction at all (e.g., raw image pixels).

4.1 Dynamically Assembled Random Set

Regardless of the particular preprocessing and feature extraction, each biometric
data record is essentially a feature vector, which we transform through a series
of operations, starting with dynamically assembling a random set of other data
records from the dataset to be anonymized. For each target data record d in
the original dataset D, we assemble a set F of g data records (g can be roughly
interpreted as the size of the crowd that d is hiding in, and can be determined
experimentally, as demonstrated in Sec. 5), where d 2 F , and the rest g � 1 of
the data records, F \{d}, are selected from D based on their attribute-of-interest
values, according to a purity parameter

t =
|{f 2 F |pf = pd}|

g
,

where pf denotes the value of f ’s attribute of interest. For example, if t = 1,
then all g elements in F share the same attribute-of-interest value as d; if t =
|{k2D|pk=pd}|

|D| , which is the proportion of pd in the entire population D, then all
of F ’s elements are to be uniformly randomly selected from D regardless of their
attribute-of-interest values; if t = 1

g , then all other elements in F are selected
to be of di↵erent attribute-of-interest values than d. This way of assembling the
set F is inspired by the k-anonymity, `-diversity, and t-closeness methods, but
di↵ers in that our approach was designed with the main objective of preserving
the attribute of interest, while also including mechanisms for trading o↵ between
attribute preservation and identity mixture, in the form of di↵erent set sizes

g 2 Z+ and purity levels t 2
h
1
g , 1

i
.

4.2 Selective Weighted Mean-based Transformation

After dynamically assembling a random set F , we transform the target biometric
record d by computing its weighted mean with the rest of F ’s elements F \ {d}.
In order to preserve d’s attributes, we want to protect its corresponding features
by assigning them a higher weight such that they do not get completely buried
when d is averaged with the rest of F . The higher weight, the more we anchor
d’s features in place during averaging.

One caveat of the weighting is that on one hand it protects the target’s fea-
tures, but on the other hand, it could potentially weaken the identity mixing
e↵ect of the averaging. For example, for g ⌘ |F | = 10, a high weight w = 1000,
would virtually completely anchor a target in place, rendering the transforma-
tion almost trivial. To mitigate this problem, we modify the weighting strategy
such that the weights are only applied to selective “important” features of each
biometric record as derived from the task-specific machine learning model for the
attribute of interest. For example, a sentiment classifier on facial features might
pay more attention to features around the mouth. Our weighted mean calcula-
tion would therefore apply nontrivial weights to the target d’s mouth features,
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Algorithm 1 Utility Preserving Biometric Anonymization

Inputs:

D : the set of original biometric data feature vectors to be anonymized
P(·) : the classifier trained on D for the attribute of interest

{Qn(·)} : the classifiers trained on D for the additional attributes
cp : number of features to retain for attribute of interest

{cqn} : numbers of features to retain for each of the additional attributes
g : size of random set for anonymization
t : purity of the random set’s attribute-of-interest value
w : weight parameter for computing weighted mean

Output:

D0 : the set of anonymized biometric data feature vectors

1: Ip  list of feature indices in descending order of importance from P(·)
2: {Iqn} lists of feature indices in descending order of importance from {Qn(·)}
3: I  Ip[0 : cp] [ {[i2{n}Iqi [0 : cqi ]}

4: XI  indicator vector s.t. XI [j] =

⇢
1, if j 2 I
0, o.w.

5: D0  ;
6: for each d 2 D do

7: Randomly select F ✓ D s.t. d 2 F , |F | = g, and |{f2F |pf=pd}|
g = t

8: d
0  1

w ·mean(F ) + (w�1)
w ·XI � d

9: D0  D0 [ {d0}
10: end for

11: return D0

and use w = 1 for other non-important features like the hair. This way, the
weighting helps protect biometric attributes without running the risk of largely
fixing target biometric records unchanged and causing low identity mixtures.

Note that not only can the attribute of interest be preserved by the weight-
ing, so can any additional attributes. For example, in addition to the sentiment
attribute of interest, the data owner of a facial image dataset might also want
to preserve gaze directions as an additional attribute. In that case, they would
query their gaze detector for a set of relevant features, which most likely are
around the eyes. And these eye features would then be added to the list of
features that nontrivial weights are applied to.

The algorithm pseudo-code is shown in Alg. 1. Line 1 through 4 collect the
set of important features from the corresponding task-specific ML models. Line
7 prepares the dynamically assembled random set as discussed in Sec. 4.1. The
selective weighted mean as discussed in Sec. 4.2 is computed on Line 8, where
� is the component-wise multiplication operator. Please note that even though
we only use a single weight w here, the algorithm can be easily extended to
incorporate multiple weights, one per attribute for example, by modifying the
indicator-vector preparation on Line 4 and/or the averaging computation on Line
8. Lastly, each iteration of the for-loop in Line 6 through 10 is independent from
the rest, leading to highly parallelizable and e�cient computation in practice.
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5 Experimental Evaluation

In this section, we experimentally evaluate our biometric anonymization tech-
nique using publicly available datasets. First, we describe the characteristics of
the datasets we use, and the experimental settings. Next, we report the results
of the various sets of experiments where we compare the e↵ects of parameters
in our proposed technique by examining its capabilities of identity mixture and
biometric attribute preservation under various experimental settings.

5.1 Experimental Setup

Datasets. Our framework enables the preservation of multiple attributes of
biometric data while performing anonymization. Thus, an ideal dataset for us
to use to demonstrate this capability would be one that contains ground-truth
label information for multiple interesting attributes. We curated two publicly
available datasets that fitted our requirement for testing our method.

The first one is the facial image FER-2013 dataset [7], which contains
grayscale images of human faces with associated ground-truth sentiment label
information, and thus suits our purpose. A round of manual inspection was
performed on the original dataset to remove problematic images that were du-
plicates, non-photographic, or of poor resolution, etc. We treat sentiment as an
example biometric attribute of interest in our experiments. Moreover, we aug-
ment FER-2013 with themouth-slightly-open attribute using a model pre-trained
on the CelebFaces Attributes (CelebA) dataset [8] as an additional attribute. As
a result, the final in-use FER-2013 dataset has 8,470 training images, 978 val-
idation images and 1,060 testing images, and it has 4 classes for the sentiment
attribute and two classes for the mouth-slightly-open attribute.

The other one is the voice AudioMNIST [9] dataset, which contains the wave-
form signal of di↵erent people speaking digits. We use spoken digit as the at-
tribute of interest in our experiments. We sub-sampled the dataset to rebalance
the di↵erence classes since the original class distributions were highly skewed.
We ended up with 7,200 training audios, 2,400 validation audios, and 2,400 test-
ing audios. The dataset contains 24 speaker identities and has 10 classes for the
spoken digit. For both datasets, the training and validation splits are used to
train the classifiers and we use the testing split to evaluate our proposed method.

Data Preprocessing. For FER-2013, we experimented with multiple feature
extraction methods as the representation for each data records: i) FaceGraph,
which is the fully-connected graph built on facial landmarks extracted from each
facial image (using the Swift Vision Library [10]); ii) Pixel, which simply uses
the raw pixel values of an image as the feature vector; iii) Eigenface [11], which
is the projection of an facial image onto the eigenspace computed from all facial
images; and iv) Vggfeats, which is the feature of the final layer of the facenet [12]
neural network. For AudioMNIST, on the other hand, we extract the embeddings
by using HuBERT [13] on the voice signal and then average the embeddings of
each token as our final data representation.

Evaluation Protocol. We use the classification on attribute of interest as a
driving example for our experiments. Each classification task itself, however,
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is not necessarily our focus—our goal is not to find the model that achieves
absolutely the best accuracy for a classification test; rather, we are mostly in-
terested in demonstrating that a model trained on the original biometric data
can continue to successfully perform classification tasks even on the version of
the biometric data transformed by our anonymization method. Therefore, we
simply experimented with a few well-known classification algorithms and empir-
ically picked the one that struck a balance between classification performance
and training speed. We ended up picked the o↵-the-shelf Random-Forest [14]
classifier from scikit-learn [15] for our experiments for attribute classification.
It provided good accuracy on both the attribute of interest and the additional
attribute on FER-2013 as well as AudioMNIST.

The evaluation protocol is setup as follows. First, to evaluate the preserved
attribute of interest, we train and test a random-forest classifier on the original
unanonymized data. We then apply this classifier on the anonymized data to
check the level of preservation on the attribute of interest. We also evaluate the
level of identity mixture on the anonymized data. Since the FER-2013 dataset
does not come with identity information, when evaluating the level of identity
mixture, we simply consider each image as a di↵erent identity and then measure
the cosine distance between each anonymized data record to all originals to find
the closest one as the potential match. AudioMNIST, on the other hand, does
include the identity information. So, we employ an ML-based method to measure
the level of identity mixture, where we train a multi-layer perceptron (MLP) over
the identity labels using the original dataset and then evaluate its performance
on the anonymized dataset.

Feature Ranking. In our proposed method, we need to rank all data features in
order to decide which ones to retain. There are existing feature ranking methods
that determine the importance of each feature [16, 17]. The random-forest clas-
sifier also ranks each feature upon building its decision trees, which we directly
use as our metrics to gauge the importance of each feature.

Parameter Settings. We carried out a thorough scan through the parameter
space in order to uncover all interesting trends and crucial regions in our ex-
periments. For the sake of presentation brevity, we report in Sec. 5.2 only the
representative results, under the following parameter settings:

– Set attribute purity t: ranges from 0.0 to 1.0 with step size 0.1;
– Set size: g = 8, 32, 128;
– Feature retention ratio rp = cp/|d| for the attribute of interest:

rp = 0.1%, 1%, 10%, 50%, 100%;
– Feature retention ratio rq = cq/|d| for the additional attributes:

rq = 0%, 0.1%, 1%, 10%, 50%;
– Weight: w = 10, 100, 1000,

where cp, cq, and d are as defined in Alg. 1. After we explored these parameters
(see Fig. 1 through 4), we used t = 0.6, g = 32, rp = 1%, w = 100 for FER-2013,
and t = 0.8, g = 128, rp = 1%, w = 10 for AudioMNIST.
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(a) g = 32, w = 100, rp = 1%, rq = 0% (b) g = 128, w = 10, rp = 1%, rq = 0%

Fig. 1: Varying set purity t. Higher t leads to better attribute-of-interest recog-
nition accuracy as each original data record d is combined with more records
sharing d’s attribute value.

5.2 Results

We organize our results as follows. First, we report the attribute recognition
accuracies on the original unanonymized dataset as baselines. Next, we perform
ablation studies on the parameters of our method and discuss the result. We
then take a closer examination of the quality of the anonymization achieved by
our method. Please note that all these above results on FER-2013 are obtained
by using the FaceGraph feature representation. So lastly, we experiment with
applying our method on all four di↵erent feature representations on FER-2013,
as discussed in Sec. 5.1, and report our findings.

Performance on Unanonymized Data. Before any discussion on the
anonymized biometric data, we first establish a reference point by obtaining the
accuracy of the classification model for the attribute of interest on original un-
anonymized data. We expect this classification result to be reasonably accurate
because otherwise it would be di�cult to assess the level of utility preservation if
the original biometric dataset already had low utility to begin with. For the at-
tributes of interest on FER-2013 and AudioMNIST, the random-forest classifier
achieved 77% and 90.6% recognition accuracy, respectively.

E↵ects of Parameters. Figures 1 through 4 show how each parameter a↵ects
the data transformation’s identity mixture and preservation of the attribute of
interest. In each of these experiments, we tune a single parameter while keeping
the rest fixed at the optimal configuration we obtained empirically.

First, we examined the influence of the set purity t, which determines the
percentage of the data records sharing the same attribute value as the target in
each random set, as defined in Sec. 4.1. As shown in Fig. 1, the set purity and
the recognition accuracy of the attribute of interest on the anonymized data is
positively correlated, which demonstrates that our method can indeed preserve
the attribute of interest e↵ectively. On the other hand, varying the purity level
does not a↵ect the level of identity mixtures.
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(a) g = 32, t = 0.6, rp = 1%, rq = 0% (b) g = 128, t = 0.8, rp = 1%, rq = 0%

(c) g = 32, t = 0.6, rp = 50%, rq = 0% (d) g = 128, t = 0.8, rp = 50%, rq = 0%

Fig. 2: Varying weight w. Under rp = 1%, our method works well regardless of the
weight since only 1% of features are retrained. On the other hand, with rp = 50%,
the identity mixture decreases when w increases because the anonymized data
record is now much closer to the original one because of the large portion of
features being retained via a higher rp and anchored in place via a higher w.

The weight w controls how much a data record is anchored in place during
transformation in terms of its retained features. Its other features would still
be blended with the other data records. As shown in Fig. 2, when we set the
feature retention to only keep rp = 1% of features, even with very small weight,
we can still achieve high recognition accuracy for the attribute of interest and
high identity mixture on anonymized data. On the other hand, when we retain
rp = 50% features, the larger weight w results in lower identity mixture as the
anonymized data is now much too similar to the original data.

The set size g is related to the size of the population each data record is to be
mixed with. Therefore, a larger g would lead to a more diverse set for our method
to increase the level of identity mixture. On the other hand, as we can control
the set purity t, the result set will a↵ect identity mixture more than it does the
attribute of interest. As shown in Fig. 3, identity mixture improves when set size
increases, whereas the recognition accuracy of the attribute of interest remains
relatively unchanged.

For the feature retention ratio rp for the attribute of interest, retaining more
features would lead to smaller di↵erence between the original data record and
its anonymized version, resulting in lower identity mixture, as can be observed
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(a) t = 0.6, w = 100, rp = 1%, rq = 0% (b) t = 0.8, w = 10, rp = 1%, rq = 0%

Fig. 3: Varying set size g. With larger set size, identity mixture increases as
mixing more data leads to better anonymization without a↵ecting the recognition
of the attribute of interest.

(a) g = 32, t = 0.6, w = 100, rq = 0% (b) g = 128, t = 0.8, w = 10, rq = 0%

Fig. 4: Varying feature retention ratio rp. Retaining more features increases the
similarity between the original and anonymized data. Therefore, it helps increase
attribute recognition accuracy, but lead to lower identity mixture. Hence, a trade-
o↵ needs to be made here.

in Fig. 4. On the other hand, thanks to feature ranking, even if only rp = 1%
of features are retained, the recognition accuracy of the attribute of interest
remains una↵ected even though the identity mixture drops significantly. As we
expect identity mixture to be high in an anonymized dataset, we can use such
experimental parameter space exploration to help locate desirable configuration.
For example, for the feature retention ratio in the range rp 2 [0.1%, 10%], we
observe, for both FER-2013 and AudioMNIST, both high levels of identity mix-
ture and high attribute recognition accuracy—both are desirable characteristics
for utility-preserving anonymization.

Additional Attribute. We next demonstrate, using FER-2013, the preserva-
tion of not only the attribute of interest, but also an additional attribute, while
performing anonymization. The results are shown in Fig. 5. It can be seen that
when we retain more features related to the additional attribute, the recognition
accuracy of the attribute of interest stays the same while the recognition accu-
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Fig. 5: Varying feature retention ratio rq for the additional attribute for FER-
2013 (g = 32, t = 0.6, w = 100, rp = 1%). The corresponding identity mixtures
are 0.99, 0.99, 0.97, 0.70, from left to right. Again, a trade-o↵ can be made here
that achieves good recognition accuracy for both the attribute of interest and
the additional attribute, as well as a high degree of identity mixture.

racy for the additional attribute enjoys a drastic boost. For example, when we
retain just 1% of the features for the addition attribute, its recognition accuracy
increases by ⇠15% without decreasing identity mixture, which is at 0.99. This
clearly demonstrates that our method can e↵ectively preserve multiple attributes
when performing anonymization.

Anonymization Quality. We have so far been judging the quality of
anonymization via identity mixture. While an informative metric, identity mix-
ture does not paint the whole picture, as it is based only on the binary hit-or-miss
results of identity classification models. A “perfect” anonymization would reduce
an attacker’s re-identification attempts to random guesses, which means the at-
tacker gains zero information with the attacks. Therefore, we use two methods
to take a deeper look into the anonymization quality achieved by our proposed
approach, with di↵erent set sizes. i) The level of identity mixture over top-k
predictions, and ii) The KL divergence between the predicted probability and
that of random guesses. Results are shown in Fig. 6 and Fig. 7.

The level of identity mixture over top-k prediction means that a re-
identification attack is considered successful if the true identity is contained in
the attacker’s top k candidate matches. As shown in Fig. 6, if the curve is below
and close to that of the random guess, it implies that the data are anonymized
in a way that the attacker can only achieve random guess in re-identification at-
tacks. Moreover, if the curve is above the random guess, it means the anonymized
data can actually fool the attacker better than random guess, in which case the
attacker might as well try guessing randomly.

We also measure how far the predicted distribution deviates from that of
random guesses. A value close to zero means that the attacker won’t be able
to do better than random guess. We compute each KL divergence from random
guess for each data record and then average across the whole dataset. Results
are shown in Fig. 7, where we observe that i) the overall KL divergence values
are already close to zero, indicating good anonymization qualities, and ii) with
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(a) t = 0.6, w = 100, rp = 1%, rq = 0% (b) t = 0.8, w = 10, rp = 1%, rq = 0%

Fig. 6: The level of identity mixture over top-k predictions, where a re-
identification attack is considered successful if the true identity is contained
in the attacker’s top k candidate matches. The straight lines correspond to ran-
dom guesses.

(a) t = 0.6, w = 100, rp = 1%, rq = 0% (b) t = 0.8, w = 10, rp = 1%, rq = 0%

Fig. 7: KL Divergence from random guess at di↵erent set size. For FER-2013, the
KL divergence from random guess is almost 0, whereas the overall KL divergence
remain very small for AudioMNIST.

larger set size, re-identification attempts tend to behave increasingly more like
random guesses.

Di↵erent Data Representations. Lastly, we experiment with multiple dif-
ferent biometric feature extractions and data representations. Results are shown
in Fig. 8. First, it can be observed that our method is applicable to di↵erent
data representations. For example, when setting the feature retention ratio to
rp 2 [0.1%, 1%], good identity mixture is observed for all di↵erent data rep-
resentations, even though they do show varying recognition accuracies for the
attribute of interest. In this particular example, our FaceGraph representation
happens to give the best result among all. We also observe that the Vggfeats
performs the worst, likely due to the low resolution of the images and the fact
that the domain of images is di↵erent from that of the pretrained model. In
general, the optimal data representation as well as parameter configuration can
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Fig. 8: Di↵erent data representations for FER-2013. The rest of the parameter
setting is g = 32, t = 0.6, w = 100, rq = 0%. Our method is applicable to di↵erent
data representations, and with only 1% features, the method can increase the
identity mixture to almost 1.0 while retaining good accuracy on the attribute of
interest.

always be found by our empirical data-driven approach, to tailor for the specific
data type, utility-preserving needs, and anonymization requirements.

6 Related Work

Closely related research can be considered those e↵orts to apply or adapt the
data truthfulness preserving anonymity techniques, for example k-anonymity, `-
diversity, and t-closeness to various data sources, ranging from categorical data
that might appear in for example relational database tables, to location data and
biometric data. Typically, most applications seek to find that balance between
anonymizing the data e↵ectively while also retaining utility to some degree [18,
19]. The fundamental di↵erence of our proposed method from these existing
techniques is that we do not generalize, as each transformed biometric data
record remains di↵erent from the others, which opens up the possibility of more
interesting attributes being preserved through anonymization. Next, we briefly
survey these techniques.

Categorical data was one of the first sources for application of k-
anonymity [20] and `-diversity [21]. k-Anonymity, which our dynamically assem-
bling a random set technique is inspired by, is a property induced in the data
by generalization and suppression, which means each record is indistinguish-
able from k�1 other records. `-Diversity addresses the weakness of k-anonymity
with regards to attribute disclosure, by demanding that there are at least ` well-
represented values of the attribute within each group of indistinguishable records
(equivalence class). Achieving the property of k-anonymity in a database can be
a challenging task. In fact, Bayardo and Agrawal [22] highlight that achieving
optimal k-anonymity on a database is an NP-hard computational problem and
they propose an optimization technique to achieve a given level of k-anonymity
automatically. t-Closeness extends the protection of k-anonymity by requiring
that the distribution of a sensitive attribute in an equivalence class be similar
to the global attribute distribution, so no information is leaked by a potentially
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altered cluster-specific distribution, which is another concept we borrowed when
dynamically assembling a random set in our proposed pipeline.

Biometric image data is most relevant to the contribution in this paper. Ini-
tially obfuscation of image data was achieved by blurring, blacking out or pix-
elating salient regions of the face [23]. While these methods achieve admirable
anonymization of the biometric data, they do not retain any degree of util-
ity. Anonymization of facial image biometric data while retraining utility has
been addressed by several prior studies [11,24–26], which introduced the k-same
family of algorithms. In general, this family of algorithms work as follows with
di↵erent variations: Firstly, the biometric data in the database is partitioned
into clusters, usually with k individuals per cluster, for the required level of k-
anonymity. The centroids of the clusters are computed and the k individuals in
a cluster are replaced by their corresponding cluster centroid. In this way every
individual in the cluster shares the same de-identified face (i.e., the centroid).
The algorithms vary in how individuals are assigned to clusters, e.g., using label
information or not, and in what space the analysis is performed, e.g., pixel space,
parameter space. The k-same family of algorithms were not extended to enforce
`-diversity in attributes that could be considered sensitive. Furthermore, many
of the instantiations of k-same operate in pixel-space, leading to degradation
in the utility of the anonymity representations, e.g., via excessive blurring in-
duced by the centroid computation. Recent works have explored more advanced
anonymization models such as neural networks for face de-identification [27–29].
While showing impressive clarity in generating fake faces for replacing real faces,
these techniques require large amounts of training data and are also di�cult to
interpret or reason about, making it di�cult to audit the models for industrial
applications. It is also in question as to whether the focus should be on accurate
reproduction of life-like anonymized images in pixel-space or a focus on generat-
ing highly anonymized abstract representations that can retain utility for other
tasks, we follow the latter approach in this paper. The survey article [23] has
further related work on face de-identification for the interested reader.

7 Conclusions

In this paper we introduce a biometric data anonymizing transformation frame-
work that aims at stripping away personally identifiable information while at the
same time preserving the utility of the biometrics by leaving intact its other char-
acteristics such that downstream tasks such as machine learning-based analytics
could still extract useful and valuable attributes from the anonymized biomet-
ric data. We present our end-to-end algorithm design, which uses dynamically
assembled random set and selective weighted-mean to transform biometrics. We
experimentally evaluated our method using publicly available facial image and
voice audio datasets and observed that our proposed method could e↵ectively
anonymize the di↵erent modalities of biometrics, while at the same time suc-
cessfully preserve other interesting attributes for downstream analytics.
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Disclaimer

This paper was prepared for information purposes by the teams of researchers
from the various institutions identified above, including the Global Technology
Applied Research group of JPMorgan Chase Bank, N.A.. This paper is not a
product of the Research Department of JPMorgan Chase Bank, N.A. or its af-
filiates. Neither JPMorgan Chase Bank, N.A. nor any of its a�liates make any
explicit or implied representation or warranty and none of them accept any
liability in connection with this paper, including, but limited to, the complete-
ness, accuracy, reliability of information contained herein and the potential legal,
compliance, tax or accounting e↵ects thereof. This document is not intended as
investment research or investment advice, or a recommendation, o↵er or solic-
itation for the purchase or sale of any security, financial instrument, financial
product or service, or to be used in any way for evaluating the merits of partic-
ipating in any transaction.
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