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Abstract—The increasing availability of online data has meant

that data-driven models have been applied to more and more

tasks in recent years. In some domains and/or applications, such

data must be protected before they are used. Hence, one of the

problems only partially addressed in the literature is to determine

how the performance of Machine Learning models is affected by

data protection. More important, the explainability of the results

of such models as a consequence of data protection has been

even less investigated to date. In this paper, we refer to this very

problem by considering non-perturbative data protection, and by

studying the explainability of supervised models applied to the

data classification task.

Index Terms—Explainability, Data Protection, Machine Learn-

ing, Privacy, Classification

I. INTRODUCTION

In recent years, the availability of both structured and semi-
structured/unstructured online data (e.g., open and linked data,
Web pages, User-Generated Content) has increased signif-
icantly, together with the use of Machine Learning (ML)
models to perform distinct tasks on such data. In this scenario,
the need for more transparent and explainable algorithms
has increased, particularly when dealing with personal data,
confidential data, or, more in general, data that are not intended
for public and indiscriminate disclosure.

In the literature, to the aim of protecting data, a possible
approach consists of generating a sanitized version of a dataset,
to be released/shared/processed instead of the original one,
with the guarantee that a given privacy requirement is satisfied.
Such privacy requirement demands that data that should re-
main private be not disclosed. To this end, data can be sanitized
in different ways, and two main families of data protection
techniques have been proposed. Perturbative techniques – as
the name says – perturb the original data, for example with
the addition of random noise. Differential privacy [7] is a
well-known privacy model, based on data perturbation, which
enforces a privacy requirement limiting the impact of the data
of a single individual on the results of a given computation.
Regardless of the chosen privacy requirement, the adoption
of perturbative data protection techniques inevitably causes a
permanent loss of data truthfulness (i.e., the truthfulness of
the information of each data item) in the sanitized dataset.
Non-perturbative data protection techniques, instead, protect

data while maintaining their truthfulness, for example by
generalizing them; in this case, data protection is provided
by the fact that the sanitized dataset is less detailed/complete.
k-anonymity [26] and its extensions (e.g., `-diversity [17] and
t-closeness [13]) are examples of well-known privacy models
based on generalization.

Apart from data privacy concerns, there is a growing need
for the outcomes of ML models to be interpretable, due to
several reasons. First, as ML models are being employed in
critical domains such as healthcare, finance, and autonomous
systems, the ability to explain how a model brings out its
outputs becomes increasingly relevant. Second, regulations
and legal frameworks, such as the General Data Protection
Regulation (GDPR) [31], are stressing the right of individuals
to understand and challenge decisions made by automated
systems. Furthermore, the advent of advanced techniques, such
as Deep Learning (DL), Transformer-based architectures, and
Large Language Models (LLMs), has introduced a level of
complexity that poses challenges to interpretability. These
cutting-edge technologies act as “black boxes”, i.e., the in-
ternal working and decision-making processes are not easily
comprehensible or explainable.

For the above-mentioned reasons, the aim of this work
is to analyze the impact of data sanitization based on non-
perturbative data protection on the performance and, more
importantly, the explainability, of commonly used ML models
for the task of data classification.

II. BACKGROUND AND RELATED WORK

This section presents basic concepts and state-of-the-art
work that independently addresses both data protection and
the explainability of ML models. Some works that, like ours,
attempt to relate both aspects are also illustrated.

A. Data Protection
Among the various data protection techniques available and

briefly illustrated in the Introduction, in the preliminary study
presented in this article, we focus just on k-anonymity [26].
This non-perturbative model enforces a privacy requirement
demanding that no released data item be related to less than a
number k of respondents. It has been designed to operate on
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Age Sex Disease

70 M Stroke
50 M Broken leg
70 F Stroke
50 F Asthma

Age Sex Disease

[50-70] M Stroke
[50-70] M Broken leg
[50-70] F Stroke
[50-70] F Asthma

(a) (b)

Fig. 1: A microdata table (a) and an example of a 2-
anonymous version (b) of it.

microdata tables (i.e., tabular data with one record for each
respondent and one column for each attribute of interest). The
first step for sanitizing a data collection requires to remove
(i.e., suppress) all identifiers, i.e., attributes that uniquely
identify respondents, such as SSN or e-mail address.
This de-identification process, however, does not provide
any anonymity guarantee, as the table might include other
attributes (named quasi-identifiers) such as sex, DoB, and
address that, in combination, can be linked to external
sources of information (e.g., voter lists) to reduce the uncer-
tainty about the identities of the de-identified respondents.1 k-
anonymity then operates by generalizing such quasi-identifiers,
up to a point where each combination of them appears with
at least k occurrences. This means that any linking attack
operating on the quasi-identifiers will always find at least k
different individuals (i.e., an equivalence class) to which each
anonymized tuple can correspond, and vice versa.

Figure 1(b) illustrates a 2-anonymous version of the (de-
identified) microdata table of Figure 1(a), reporting medical
information for 4 respondents, and considering Age and Sex
as quasi-identifiers. 2-anonymity is enforced by generalizing
the original Age values to intervals. If a recipient knows
that a target female respondent is aged 50, they can easily
associate her with the last record in Figure 1(a), while in
the 2-anonymous version of Figure 1(b) they cannot pinpoint
which one among the last two records pertains to her. This
applies to any combination of quasi-identifying values.

B. Explainability in Machine Learning

ML is applied today in an increasingly pervasive manner
and with remarkable performance in numerous domains, even
critical ones, such as healthcare, transportation, finance, and
many more [29]. However, the black-box nature of these
models can make it difficult or even impossible for people
to understand how the system arrived at its decisions, which
can be a problem in those contexts where accountability and
trust are becoming more and more important [29]. To date,
solutions for explainability mainly follow two paradigms [6]:
• Transparency by Design. It entails constructing ML models

that are inherently interpretable by their architecture and
functionality. Decision trees, for example, use a series of
decision nodes to create a hierarchical structure of decisions.

1A study on the 2000 US Census data showed that a combination of
sex, DoB and ZIP code permits to uniquely identify 63% of the US
population [10].

Rule-based models are another example of ML models that
achieve explainability by design;

• Post-hoc Interpretability. It concerns the extraction of in-
formation, a posteriori, from pre-trained ML models. This
allows us to interpret such models without compromising
their performance. Their internal mechanisms remain not
directly observable, because the focus is on understanding
the output and the relationship between the input and the
output.
In this article, we focus on post-hoc techniques, which in

turn can follow two explainability paradigms:
• Local Interpretability. It aims at understanding the pre-

dictions of specific instances of a model. A widely-used
solution is LIME (Local Interpretable Model-Agnostic Ex-
planations) [21], which generates explanations for each pre-
diction by locally approximating the model with a simpler,
interpretable model around the prediction. Another well-
known method employs Counterfactual Explanations [28],
which proposes a modified instance of the model that would
have resulted in a different outcome, providing insights into
decision-making by observing the resulting changes;

• Global Interpretability. It aims at understanding the overall
behavior of a model across its entire input space. This can be
achieved with either feature importance analysis methods, or
explainability frameworks such as SHAP (SHapley Additive
exPlanations) [16]. While SHAP is fundamentally designed
for local interpretation, assigning a Shapley value to each
feature to quantify its contribution to the model’s prediction
for a specific instance, it is also possible to use it for global
interpretation by averaging all instances in the data [25].
Finally, feature importance can also be calculated in an ML
model based on the decrease in the model’s accuracy when
a feature is removed.

C. Assessing the Effects of Data Sanitization

When sanitizing a dataset, a certain amount of information
loss due to generalization is inevitable [5] and several metrics
have been proposed for quantifying it [8], for example as-
signing penalties based on the size of the equivalence classes
(e.g., [1], [12]) or on “how much” generalization is applied
(e.g., [30]). Most metrics are general-purpose and do not
explicitly consider the impact of data protection on the specific
application(s) that will use the sanitized data. Some works
have considered the impact of sanitization on data mining tasks
and ML models: for example, in [27] the authors evaluate how
different k-anonymization approaches affect ML classifiers.
We nicely complement this line of work with a specific focus
on explainability. The work discussed in [23] is similar to ours
in studying the effects of k-anonymity on ML macrotrends,
but differs from ours as it focuses on microaggregation-based
k-anonymity (a form of sanitization that enforces the k-
anonymity requirement through data perturbation). The work
in [9] is orthogonal to ours, and proposes a k-anonymiztion
approach where generalization is administered so as to limit
its impact on the quality of subsequent classification tasks.



Another related line of work concerns the impact of data
protection on Explainable Artificial Intelligence (XAI). In
[24], the authors analyze the impact of private learning
techniques in combination with Federated Learning [11] on
generated explanations for Deep Learning models. Other re-
cent works are more domain-specific: for example, the work
in [19] focuses on the industrial domain, presenting vari-
ous approaches for performing perturbative privacy-preserving
AI, including homomorphic encryption applications on Deep
Neural Networks [20], as well as model-agnostic and model-
specific methods explainability approaches, and discuss their
limitations. Close to our work is [2], which aims to evaluate the
effects of data protection on Shapley values for explainability.
However, our work differs from these latter in the considera-
tion of non-perturbative (rather than perturbative) sanitization.
Other related, but different works, have explored issues of
explainability in cybersecurity (e.g., [22]).

III. AN EXPLAINABILITY STUDY APPLIED TO THE TASK
OF CLASSIFYING PROTECTED DATA

The methodological framework employed to carry out the
proposed preliminary study follows the pipeline illustrated in
Figure 2.2 It consists of four main steps: (i) data anonymiza-
tion using non-perturbative techniques; (ii) classification on
both original and anonymized data using four distinct ML
models; (iii) evaluation of the classification performances;
and (iv) explainability analysis.

Fig. 2: The experimental pipeline.

Concerning step (i), the selection of two diverse datasets,
namely ADULT and Diabetes (illustrated in detail in the
following), aimed to explore different domains and facilitate
a comprehensive exploration of the research objectives. To
sanitize these datasets, we employed k-anonymity, for distinct
values of k. Subsequently, in step (ii), we proceeded with
the training of four distinct ML classifiers, namely Random
Forests, k-Nearest Neighbors (kNNs), Support Vector Ma-
chines (SVMs), and XGBoost, with respect to both original

2Note that, since we investigate data protection leveraging non-perturbative
sanitization within models that guarantee some form of anonymity, in the
remainder of this paper we use the terms anonymization and sanitization
interchangeably.

data and each k-anonymized dataset. This allowed us to
investigate and compare the classification performance of each
ML model, obtained in step (iii), with explainability aspects
of the trained models on the original and anonymized data.
In particular, to provide the interpretation of each model’s
decision-making processes, we employed, in step (iv), the
SHAP framework as illustrated in Section II-B for global
interpretability. Furthermore, for a more localized focus on
individual predictions, we utilized the LIME framework.

A. The Data

ADULT.3 This dataset comprises a collection of socio-
economic attributes of individuals from the United States Cen-
sus Bureau database.4 It is commonly used for ML and data
mining tasks to predict whether an individual’s annual income
exceeds a specific threshold (50K US Dollars). It counts
around 45K records, each consisting of 14 attributes with
associated both categorical and continuous values, i.e., age,
workclass, education, education-num, marital-status, occupa-
tion, relationship, race, sex, capital-gain, capital-loss, hours-
per-week, native-country, and the target attribute income.

Diabetes.5 This dataset includes around 100K records de-
scribing medical and demographic information of patients,
with their diabetes (positive/negative) status. This dataset can
be utilized to predict whether a patient has diabetes based
on the following attributes: age, gender, body-mass-index-
BMI, hypertension, heart-disease, smoking-history, HbA1c-
level, blood-glucose-level, and the target attribute diabetes.

B. Data Sanitization

The ADULT dataset has been sanitized employing the
Python library Mondrian,6 as it supports the generalization
of categorical attributes (other tools and libraries only support
numerical attributes), leveraging a generalization hierarchy. As
quasi-identifiers for performing k-anonymity, we chose age,
education, marital-status, occupation, race.

For the Diabetes dataset, anonymization was carried out
using the Python library anonypy,7 which also employ the
Mondrian algorithm [12], and offers enhanced practicality for
managing numerical attributes. We designated blood-glucose-
level-BMI, age, HbA1c as quasi-identifiers.

C. Classification Models

Random Forests (RFs). It is an ensemble learning method
that combines multiple decision trees to form a robust pre-
dictive model [3]. Each decision tree is trained on a random
subset of the data and features, and the final prediction is
composed by the aggregation of the predictions of each tree.
It can be used for classification and regression tasks. In our
study, we employed the RandomForestClassifier class

3http://archive.ics.uci.edu/dataset/2/adult
4https://www.census.gov/data.html
5https://archive.ics.uci.edu/dataset/34/diabetes
6https://github.com/qiyuangong/Mondrian
7https://pypi.org/project/anonypy/



from the scikit-learn Python library,8 set the parameter
n_estimators to 100, and employed the Gini index.

k-Nearest Neighbors (kNNs). It is a non-parametric, super-
vised learning model, used for regression and classification,
which predicts the target variable by considering the k nearest
data points in the feature space. Specifically, it identifies
the k nearest neighbors based on a chosen distance metric,
in our case, the Minkowski metric [18]. In our study, we
employed the KNeighborsClassifier class from the
scikit-learn library, and set k = 5.

Support Vector Machines (SVMs). They are supervised
learning models with associated learning algorithms that build
hyperplanes in high-dimensional feature spaces to separate
instances into different classes. SVMs can employ different
kernel functions to handle both linear and non-linear classi-
fication. In our study, we used the LinearSVC class from
scikit-learn, which uses a linear kernel and set the regu-
larization parameter C to 1; this controls the trade-off between
achieving a larger margin and minimizing classification errors.

XGBoost (XGB). It is an optimized gradient-boosting
algorithm known for its high performance [4]. It creates
a strong ensemble model combining weak models such as
decision trees. It employs boosting techniques to chain model
training and makes the subsequent model focus on the en-
hancement of the previous one. In our study, we used the
XGBClassifier clas from scikit-learn and set the
parameter n_estimators to 100.

D. Performance Evaluation and Explainability Analysis

The classification performance of ML models on the
considered datasets was evaluated by performing 10-fold
cross-validation using the cross_val_score class from
scikit-learn, selecting as scoring functions accuracy
and f1, and setting n_jobs (the number of jobs) to �1, to
use all processors available for computation. To assess model
explainability, we implemented SHAP and LIME frameworks
by means of the official Python classes shap,9 and lime.10

IV. EXPERIMENTAL EVALUATIONS

The primary objective of our evaluation is to assess the
variations in adaptability and explainability shown by ML
models when the considered features are sanitized via k-
anonymity.11 To emphasize these variations, each model was
trained on distinct sanitized datasets. For each k-anonymous
dataset (when k = 1, we deal with the original datasets),
and for each ML model, we conducted both a classification
performance evaluation and an explainability analysis of fea-
tures, the latter based on their average importance derived from
Shapley values.

8https://scikit-learn.org/stable/index.html
9https://pypi.org/project/shap/
10https://pypi.org/project/lime/
11In the remainder of this paper, we refer to dataset attributes as features

when referring to ML tasks.

A. Classification Performance Evaluation
Given that the primary objective of this study is not to

optimize the classification performance of ML models, but
to examine the impact of non-perturbative sanitization on
both performance and explainability (and their interplay),
no feature selection/engineering techniques, or model tuning,
have been applied to ML classifiers. This choice aims to
observe changes in performance outcomes only for the effects
of non-perturbative sanitization.

Table I presents performance results on the ADULT dataset
in terms of both accuracy (Acc) and F1-score (F1) (the metrics
also used for the other datasets). The results indicate that RFs
and XGB models achieve higher performance, outperforming
both kNNs and SVMs models, which exhibit comparatively
lower performance even on the non-sanitized dataset. As a
general observation, it can be noted that, for increasingly
higher values of the sanitization parameter k, there is no sig-
nificant decrease in the F1-score. This suggests that the model
can effectively leverage the remaining features to maintain or
even enhance its predictive capabilities despite the sanitization
process, keeping similar performance to k = 1.

In Table II we can observe, on the Diabetes dataset, the
RFs and XGB models performing slightly better than the other
two. In this case, a small decrease in F1-scores is observed
across all models when transitioning from the original dataset
to the first level of sanitization with k = 2. This disparity
can be attributed to the presence, in the ADULT dataset, of
other influential features (e.g., capital-gain) that contribute to
maintaining performance levels similar to those of the original
dataset, while in the Diabetes dataset there are no strong
features other than the sanitized ones. This lack of additional
influential features leads to a more pronounced, but not heavy,
impact on model performance during the sanitization process.

TABLE I: Classification performance on ADULT as k varies.

RFs kNNs SVMs XGB

k Acc F1 Acc F1 Acc F1 Acc F1

1 0.86 0.85 0.78 0.75 0.80 0.76 0.87 0.86
2 0.85 0.85 0.77 0.75 0.79 0.72 0.87 0.86
5 0.85 0.85 0.77 0.75 0.79 0.73 0.87 0.86

10 0.85 0.84 0.77 0.75 0.79 0.73 0.86 0.86
20 0.84 0.84 0.77 0.75 0.79 0.73 0.87 0.86
50 0.85 0.84 0.77 0.75 0.79 0.74 0.87 0.86
70 0.83 0.83 0.77 0.75 0.80 0.76 0.86 0.85
100 0.83 0.83 0.77 0.75 0.80 0.76 0.86 0.85

TABLE II: Classification performance on Diabetes as k varies.

RFs kNNs SVMs XGB

k Acc F1 Acc F1 Acc F1 Acc F1

1 0.97 0.97 0.95 0.95 0.96 0.96 0.97 0.97
2 0.95 0.95 0.95 0.94 0.94 0.93 0.96 0.95
5 0.95 0.95 0.95 0.94 0.94 0.93 0.96 0.95

10 0.95 0.95 0.95 0.94 0.94 0.93 0.95 0.95
20 0.95 0.94 0.95 0.94 0.94 0.93 0.95 0.95
50 0.94 0.94 0.95 0.94 0.93 0.91 0.95 0.95
70 0.94 0.94 0.95 0.94 0.93 0.92 0.95 0.95
100 0.94 0.94 0.95 0.94 0.93 0.90 0.95 0.94



B. Explainability Analysis with SHAP

We employed SHAP to determine feature importance ranks.
Following the generation of beeswarm plots, the observed
fluctuation in rank as k increases was systematically recorded
and subsequently represented in the line graphs presented
herein. Visual trends of feature importance ranks are shown
by means of the matplotlib Python class,12 for distinct
values of k on the considered datasets and classifiers.

ADULT. The impact of the anonymization of the quasi-
identifiers of ADULT (see Section III-B) using the four ML
models is illustrated in Figure 3.

Fig. 3: Feature importance rank trends associated with RFs,
kNNs, SVMs, and XGB, as k varies on the ADULT dataset.

12https://matplotlib.org/

Observing the results, it is evident that age holds a domi-
nant position in the feature importance ranking for the non-
anonymized dataset with k = 1 (except for SVMs). However,
as k increases, its importance undergoes a gradual decline
until reaching a significant drop at k = 20 (RFs and XGB)
and at k = 50 (kNNs and SVMs), experiencing a drastic
decline with further anonymization (k 2 {50, 70, 100}) for all
models. The effects of this decline appear to be offset by the
growth in the importance of alternative features, indicating the
models’ ability to adapt when some features are obscured or
less discernible. Greater variability can be observed for XGB;
this is likely because of the model’s adaptive boosting and its
capacity to adjust its group of weak learners to capture and
utilize changing patterns and data relationships.

Diabetes. The anonymization of the quasi-identifiers of the
Diabetes dataset (see Section III-B) yielded distinctly different
outcomes in terms of feature importance ranks compared to
the results observed in the ADULT dataset. In Diabetes, the
process of anonymization exhibited a minimal impact, with
the ranks of the features displaying greater stability across
various levels of anonymization. Since no significant changes
in feature importance ranks are observed for RFs and XGB
models, for the sake of conciseness, Figure 4 illustrates the
feature importance rank trends for kNNs and SVMs models
only; indeed, they exhibit just initial rank fluctuations among
feature importance.

Fig. 4: Feature importance rank trends associated with kNNs
and SVMs as k varies on the Diabetes dataset.

C. Explainability Analysis with LIME
Through LIME, we analyzed the importance of each feature

and determined if the same subset of features that maintained



(a) (b) (c)

Fig. 5: Feature importance obtained with LIME for three anonymized ADULT instances using the RFs model. Three key values
of k are tested, i.e., k = 2 (a), k = 20 (b), k = 100 (c).

high ranks in the feature importance rank trends obtained with
SHAP align with the features identified as influential by LIME.

In Figure 5, three examples of feature interpretability using
LIME are presented for the ADULT dataset using the RFs
model, for k = 2 (Figure 5(a)), k = 20 (Figure 5(b)),
and k = 100 (Figure 5(c)). A prominence of the capital-
gain feature as a highly influential factor can be observed,
confirming the assertion made in the previous section that
this feature played a crucial role in mitigating significant
performance drops during the anonymization process. These
findings align with the observed trends in feature importance
ranks from the previous section on SHAP analysis. They also
confirm that feature age, which initially held a top rank for
k = 2, gradually decreased for k = 20, and ultimately reached
zero for k = 100, thereby providing further support to the
previous findings. Due to space constraints, we report in the
paper only this example, with the note that further evidence
is available at the link that contains supporting material.

D. Discussion of the Results

The analysis of both model classification performance and
explainability analysis provides useful insights into the impact
of non-perturbative anonymization on ML models. From the
feature importance rank trends, we observed consistent pat-
terns across different datasets and models.

In the ADULT dataset, the anonymization brought some
light changes, where the most notable was on the age feature
which, from a global interpretability point of view, started in
the top-rank position and ended in the last one for high k
values. This suggests that the models adapted to use alternative
features to maintain their performance in the presence of
anonymization.

In the Diabetes dataset, the impact of anonymization on
feature importance rank was less pronounced. In this case,
ML models exhibited a stronger dependency on the se-
lected quasi-identifiers for generating predictions, even post-
anonymization. Such stability in feature importance ranks
could be indicative of the inherent characteristics of the Dia-
betes dataset, where the quasi-identifiers may hold substantial

predictive power that is less susceptible to the effects of
anonymization.

In general, we can observe that when strong features in both
datasets are sanitized, the ML models demonstrate the ability
to adapt and leverage alternative features to maintain pretty
satisfactory performance levels, which are almost comparable
to those of pre-sanitization.

V. CONCLUSIONS AND FURTHER RESEARCH

In the context of online data dissemination, some of which
need to be protected, we studied the impact of non-perturbative
sanitization on the performance and explainability of four
ML classifiers considering different publicly available datasets.
In particular, with regard to explainability, we used Shapley
values to build a feature importance rank for each anonymized
dataset at distinct anonymization levels, and, by analyzing
the resulting changes, we showed insights into the effects
of anonymization on the interpretability of the selected ML
models. This study further reveals discernible patterns in
feature rank trends, thereby illuminating the adaptability or
challenges encountered by models, as exemplified by the linear
SVMs model.

Future research can explore additional anonymization tech-
niques (e.g., `-diversity and t-closeness) and their impact on
additional datasets and ML models. Indeed, in this prelim-
inary study, we used only basic classification models; fur-
thermore, they were performed on minimally processed data,
without possibly studying parameter optimization versus data
anonymization. Therefore, it becomes important to investigate
the performance of more advanced (and optimized) models
combined with anonymization techniques and explainability
paradigms, as well as advanced data pre-processing methods.
For example, studying the effects of anonymization on Deep
Learning models. We must also emphasize that we considered
structured data that can be disseminated online. However,
we are well aware of data protection issues involving semi-
structured or unstructured data, which largely characterize the
Web ecosystem [14], [15]. For this reason, it will be equally
important to study the impact of innovative data protection



solutions in this context, including with respect to the use
of cutting-edge technologies like Large Language Models
(LLMs).
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