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ABSTRACT
Fog computing is characterized by its proximity to edge devices,
allowing it to handle data near the source. This capability alleviates
the computational burden on data centers and minimizes latency.
Ensuring high throughput and reliability of services in Fog environ-
ments depends on the critical roles of load balancing of resources
and task scheduling. A significant challenge in task scheduling is
allocating tasks to optimal nodes. In this paper, we tackle the chal-
lenge posed by the dependency between optimally scheduled tasks
and the optimal nodes for task scheduling and propose a novel
bi-level multi-objective task scheduling approach. At the upper
level, which pertains to task scheduling optimization, the objective
functions include the minimization of makespan, cost, and energy.
At the lower level, corresponding to load balancing optimization,
the objective functions include the minimization of response time
and maximization of resource utilization. Our approach is based
on an Improved Multi-Objective Ant Colony algorithm (IMOACO).
Simulation experiments using iFogSim confirm the performance of
our approach and its advantage over existing algorithms, including
heuristic and meta-heuristic approaches.
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1 INTRODUCTION
The rise of the Internet of Things (IoT) and the widespread use of
diverse mobile devices and sensors are posing new challenges for
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traditional cloud computing solutions [9]. In response, fog comput-
ing was proposed [18] to address these challenges. By definition,
fog computing is a novel decentralized paradigm that provides com-
putational services at the network edge, enabling the development
of innovative services and applications for the future of the Internet
[1]. Fog computing has several unique characteristics, including
proximity to edge devices, a distributed computing model, hetero-
geneous devices, and a strong focus on security [2, 3]. Effective
resource management within the fog environment plays a crucial
role in minimizing costs, processing and communication delays.

Two of the main categories of resource management are task
scheduling and load-balancing [5]. The scheduling involves search-
ing for optimal solutions that organize a set of scheduled tasks
on available resources with the best Quality of Service (QoS) re-
quirements, such as time, deadline, and cost. These tasks are to be
scheduled on a set of computing nodes with varying capabilities,
including network usage, memory usage, and processing power.
The load balancing aims to reduce response time and energy con-
sumption while increasing throughput. In fact, the overload of fog
nodes not only consumes more energy but also results in prolonged
response times and increased costs.

Several approaches have separately solved these two problems
(task scheduling and load-balancing) in a fog-cloud environment.
These approaches include heuristic algorithms and meta-heuristic
algorithms [4]. Unlike heuristic approaches, which typically rely on
specific rules for particular problems, meta-heuristic algorithms are
problem-independent, having the ability to explore a wide range of
problems. In this context, various meta-heuristic algorithms have
been proposed that solve task scheduling or load-balancing as a
Single Objective Optimization (SOP) or as a Multi-Objective Op-
timization (MOP). The most common optimized metrics [6] are
related to makespan, delay, and energy consumption, ignore im-
portant metrics related the load-balancing optimization. Imbalance
in the QoS metrics can greatly affect the overall system perfor-
mance. For instance, tasks might be scheduled on overloaded nodes
because load balancing is not considered in the scheduling perfor-
mance. Thus, the integration of load balancing optimization in the
main process of task scheduling can achieve better performance,
satisfying the requirements of each aspect. Such dependency be-
tween task scheduling and load balancing can be regarded as a
Bi-level Multi-objective Optimization Problem (BMOP) [16]. This
category of optimization problem involves two interconnected op-
timization tasks, each assigned to a distinct decision level (upper
level and lower level). Consequently, assessing a solution at the
upper level necessitates evaluating the lower level. The BMOP is a
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suitable method for formulating various real-world scenarios, such
as feature selection [13].

To the best of our knowledge, this work represents the first
that optimizes task scheduling and load balancing as a bi-level
multi-objective optimization problem, which is denoted the Bi-level
Multi-Objective Task Scheduling-based Load balancing problem
(BMO-TSLB). The contributions of this paper are the following:

(1) We formulate task scheduling and load-balancing as a bi-
level multi-objective optimization problem. In BMO-TSLB,
we consider task scheduling at the upper level and load
balancing at the lower level. The objective set to be opti-
mized at the upper level includes minimizing cost, energy,
and makespan. The decision variables at the upper level
encompass the optimal solution of the lower level, where
the objectives are to minimize response time and maximize
resource utilization.

(2) We propose a new Improved Multi-Objective Ant Colony Op-
timization (IMOACO) to address the BMO-TSLB. In IMOACO,
the dominance comparator is employed to update the mem-
ory of each ant and the global optimal solution.

(3) We conduct an experimental study with a large number of
tasks and heterogeneous nodes using the iFogSim simulator.

The remainder of this paper is structured as follows: Section 2
discusses related work. Section 3 illustrates our proposed formu-
lation of task scheduling optimization with load balancing and
the IMOACO algorithm. Section 4 reports the experimental study
using iFogSim. Section 5 concludes the paper and outlines future
directions.

2 RELATEDWORK
In this section, a brief review of meta-heuristic algorithms for op-
timizing task scheduling and load balancing is illustrated. For in-
stance, task scheduling and resource allocation for the Internet of
Medical Things (IoMT) have been tackled using a Modified Particle
Swarm Optimization (MPSO) [8]. The task scheduling problem is
formulated as SOP, with the objective function as a linear combi-
nation aiming to minimize execution delay, execution cost, energy
consumption, and network bandwidth usage. This approach en-
tails mapping tasks to fog servers for executing IoMT tasks, while
cloud servers manage more complex operations that surpass the
capabilities of fog servers. A method known as Fog-Adaptive Multi-
Objective Optimization Task Scheduling (FOG-AMOSM) is intro-
duced in [21]. This method optimizes both total execution time and
cost consumption in fog computing. Experimental results conducted
on the CloudSim simulator showcase the enhanced performance of
FOG-AMOSM in addressing task scheduling, particularly with a lim-
ited number of tasks. In another study [12], theWhale Optimization
Algorithm (WOA) is applied to optimize the task scheduling prob-
lem in fog computing, with the two objectives of (1) reducing power
consumption and (2) minimizing costs. However, it is important to
note that the algorithm’s performance has not been evaluated in the
context of large-scale task scheduling. In [19] Energy-Efficient Task
Scheduling based on Particle Swarm Optimization (EETSPSO) is
proposed. In this algorithm, the fitness function is a linear equation
derived from considerations of makespan and energy efficiency.

In addition, Ant Colony Optimization (ACO) is widely utilized for
scheduling problems and has demonstrated good performance in
addressing resource management challenges in both fog and cloud
computing. A novel variant of ACO, called Load Balancing Ant
Colony Optimization (LBACO) [14], incorporates considerations
of the load on each virtual machine alongside core ACO concepts
to expedite task execution. In this algorithm, a load balance factor,
derived from response time and execution time, is employed to
select the optimal node for task execution in each solution (ant).
While numerous algorithms exist for task scheduling [6], they often
overlook the crucial aspect of balancing load distribution alongside
efficient task scheduling. These algorithms come with limitations
such as improper scheduling, non-consideration of large-scale tasks,
and neglecting key cooperative objectives essential for enhancing
fog computing performance.

3 PROPOSED APPROACH
Tomake a clear presentation of the different abbreviations, the nota-
tions of problem formulation, and their corresponding descriptions
are provided in Table 1.

The task scheduling problem in the context of fog computing
involves allocating IoT tasks to suitable fog nodes from a pool of
candidate fog nodes to optimize overall QoS. Assuming a collection
of |𝑇 | independent tasks, denoted as: 𝑇 =

{
𝑡1, 𝑡2, 𝑡3, . . . , 𝑡 |𝑇 |

}
. Each

task 𝑡𝑖 is characterized by a set of attributes including:

• 𝐿𝑒𝑛𝑔𝑡ℎ(𝑡𝑖 ): is quantified by the number of instructions, with the
unit expressed in million instructions (𝑀𝐼 ).

• 𝑆𝑖𝑧𝑒𝑖𝑛 (𝑡𝑖 ): is the input data size, represented, which signifies the
relevant size of the input data.

• 𝑆𝑖𝑧𝑒𝑜𝑢𝑡 (𝑡𝑖 ): is the output data size presents the size of the output
data.

• 𝑀𝑒𝑚𝑠𝑖𝑧𝑒 (𝑡𝑖 ): is the required memory size to execute the task.

In addition, assume that the fog system comprises a set of |𝑁 |
computing nodes, denoted as 𝑁 =

{
𝑛1, 𝑛2, 𝑛3, . . . , 𝑛 |𝑁 |

}
. Each one

𝑛 𝑗 possesses distinctive attributes including:

• 𝐶𝑃𝑈 (𝑛 𝑗 ): is the CPU processing rate.

• 𝑀𝑒𝑚𝑠𝑖𝑧𝑒 (𝑛 𝑗 ): is the memory size.

• 𝐵𝑤 (𝑛 𝑗 ): is the network bandwidth.

• 𝑆𝑇𝑅(𝑛 𝑗 ): is the storage capacity.

• 𝐶𝑃𝑈𝑐𝑜𝑠𝑡 (𝑛 𝑗 ): is the cost of CPU usage.

• 𝐵𝑤𝑐𝑜𝑠𝑡 (𝑛 𝑗 ): is the cost of bandwidth usage.

• 𝑀𝑒𝑚𝑐𝑜𝑠𝑡 (𝑛 𝑗 ): is the cost memory usage.

The decision variables for task scheduling represent the scheduled
tasks and are denoted by 𝑋 . Each variable of 𝑋 presents the state
of task 𝑡𝑖 if it is allocated to 𝑛 𝑗 : 𝑋𝑖, 𝑗 . The decision variable 𝑋𝑖, 𝑗 can
be given as:

𝑋𝑖, 𝑗

{
1 𝑖 𝑓 𝑡𝑖 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑛 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)
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Table 1: Description of mathematical notations

Notation Description

𝑇 =
{
𝑡1, 𝑡2, 𝑡3, . . . , 𝑡 |𝑇 |

}
Tasks

𝑁 =
{
𝑛1, 𝑛2, 𝑛3, . . . , 𝑛 |𝑁 |

}
Nodes

𝑋 Task Schedule
𝑋𝑖,𝑗 Scheduling of 𝑡𝑖 on 𝑛 𝑗

𝑀𝑆 Makespan
𝐿𝑒𝑛𝑔𝑡ℎ (𝑡𝑖 ) Length of 𝑡𝑖
𝑆𝑖𝑧𝑒𝑖𝑛 (𝑡𝑖 ) Input size of 𝑡𝑖
𝐶𝑃𝑈 (𝑛 𝑗 ) CPU processing rate of 𝑛 𝑗

𝑀𝑒𝑚𝑠𝑖𝑧𝑒 (𝑛 𝑗 ) Memory size of 𝑛 𝑗

𝑀𝑒𝑚𝑠𝑖𝑧𝑒 (𝑡𝑖 ) Memory size of 𝑡𝑖
𝐵𝑤 (𝑛 𝑗 ) Network bandwidth of 𝑛 𝑗

𝐵𝑤 (𝑡𝑖 ) Required bandwidth to execute 𝑡𝑖
𝑆𝑇𝑅 (𝑛 𝑗 ) Storage capacity of 𝑛 𝑗

𝐶𝑃𝑈𝑐𝑜𝑠𝑡 (𝑛 𝑗 ) Cost of CPU usage of 𝑛 𝑗

𝐵𝑤𝑐𝑜𝑠𝑡 (𝑛 𝑗 ) Cost of bandwidth usage of 𝑛 𝑗

𝑀𝑒𝑚𝑐𝑜𝑠𝑡 (𝑛 𝑗 ) Cost of memory usage of 𝑛 𝑗

𝑝𝑝𝑜𝑤𝑒𝑟 (𝑛 𝑗 ) Processing power of 𝑛 𝑗

𝑅𝑈 (𝑛 𝑗 ) Resource utilization of 𝑛 𝑗

𝐸𝑇𝐶 (𝑡𝑖 , 𝑛 𝑗 ) Expected computation time of 𝑡𝑖 on 𝑛 𝑗

𝑃𝑒𝑛𝑢𝑚 (𝑛 𝑗 ) Number of CPUs for node 𝑛 𝑗

𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑝 (𝑡𝑖 , 𝑛 𝑗 ) Computational cost to execute 𝑡𝑖 on 𝑛 𝑗

𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑚 (𝑡𝑖 , 𝑛 𝑗 ) Communication cost to execute 𝑡𝑖 on 𝑛 𝑗

𝐶𝑜𝑠𝑡 (𝑡𝑖 , 𝑛 𝑗 ) Cost to execute 𝑡𝑖 on 𝑛 𝑗

𝐶𝑜𝑠𝑡 (𝑋 ) Cost to execute all tasks
𝐸𝑝 (𝑡𝑖 , 𝑛 𝑗 ) Energy to execute 𝑡𝑖 on 𝑛 𝑗

𝐸𝑡𝑟𝑎𝑛𝑠 (𝑡𝑖 , 𝑛 𝑗 ) Energy to transmit a 𝑡𝑖 on 𝑛 𝑗

𝐸𝑛𝑒𝑟𝑔𝑦 (𝑡𝑖 , 𝑛 𝑗 ) Energy (𝐸𝑡𝑟𝑎𝑛𝑠 + 𝐸𝑝 ) to execute 𝑡𝑖 on 𝑛 𝑗

𝐸𝑛𝑒𝑟𝑔𝑦 (𝑋 ) Energy to execute all tasks
𝑅𝑇 (𝑡𝑖 , 𝑛 𝑗 ) Response time to execute 𝑡𝑖 on 𝑛 𝑗

𝑅𝑇 (𝑋 ) Response time to execute all tasks
fitness𝐿𝐿 Fitness function of the lower level
fitness𝑈𝐿 Fitness function of the upper level
𝑃𝑀𝑅𝑇 Pheromone matrix of 𝑅𝑇
𝑃𝑀𝐸𝑇𝐶 Pheromone matrix of 𝐸𝑇𝐶
𝑃𝑀𝐶𝑜𝑠𝑡 Pheromone matrix of𝐶𝑜𝑠𝑡
𝑃𝑀𝐸𝑛𝑒𝑟𝑔𝑦 Pheromone matrix of 𝐸𝑛𝑒𝑟𝑔𝑦

3.1 Problem Formulation
The bi-level optimization problems BMO-TSLB involve two inter-
connected optimization tasks, with each assigned to a distinct deci-
sion level (i.e., upper and lower levels) [15, 16]. Consequently, the
assessment of an upper-level solution necessitates the evaluation of
the lower level. In our scenario, the optimization of task scheduling
is closely linked to load-balancing optimization.

The proposed task scheduling optimization is formulated as
BMOP, where the lower level consists of Multi-Objective Load-
Balancing Optimization (LL-MOLBO) and the upper level consists
ofMulti-Objective Task SchedulingOptimization (UL-MOTSO). The
set of objective functions for UL-MOTSO is denoted by 𝐹 , which
includes the minimization of 𝐶𝑜𝑠𝑡 , the minimization of 𝐸𝑛𝑒𝑟𝑔𝑦,
and the minimization of 𝑀𝑆 . The set of objective functions for
LL-MOLBO is denoted by 𝑓 , which includes the minimization of
response time 𝑅𝑇 and the maximization of resource utilization
𝑅𝑈 . The general proposed formulation of BMO-TSLB is defined as

follows:

min 𝐹 =
{
𝐶𝑜𝑠𝑡 (𝑋,𝑦∗), 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑋,𝑦∗), 𝑀𝑆 (𝑋,𝑦∗)

}
(2)

subject to:

𝑦∗ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛
{
𝑅𝑇 (𝑋 ), 𝑅𝑈 (𝑋 )

}
(3)

Each objective function will be detailed below.

3.1.1 Objective functions of UL-MOTSO. The proposed task
scheduling optimization consists of assigning tasks to appropriate
𝑛 𝑗 . The initial search space for this level is based on LL-MOLBO,
where 𝑛 𝑗 ∈ 𝑦∗. The descriptions of makespan, cost, and energy are
given below:
• Makespan (𝑀𝑆) is defined as the total time taken to complete
the entire task 𝑇 . The minimization of𝑀𝑆 is the first objective
to optimize. The𝑀𝑆 is calculated as follows:

𝑀𝑆 (𝑋 ) =𝑚𝑎𝑥 ∀ 𝑗∈ |𝑁 |

|𝑇 |∑︁
𝑖=1

𝐸𝑇𝐶 (𝑡𝑖 , 𝑛 𝑗 ) ∗ 𝑋𝑖, 𝑗 (4)

where 𝐸𝑇𝐶 (𝑡𝑖 , 𝑛 𝑗 ) is the expected time of computation of task 𝑡𝑖
in 𝑛 𝑗 as presented in following equation:

𝐸𝑇𝐶 (𝑡𝑖 , 𝑛 𝑗 ) =
𝐿𝑒𝑛𝑔𝑡ℎ(𝑡𝑖 )
𝑝𝑝𝑜𝑤𝑒𝑟 (𝑛 𝑗 )

∗ 𝑋𝑖, 𝑗 (5)

where 𝑝𝑝𝑜𝑤𝑒𝑟 (𝑛 𝑗 ) is the processing power of 𝑛 𝑗 (given in MIPS),
which is defined as follows:

𝑝𝑝𝑜𝑤𝑒𝑟 (𝑛 𝑗 ) = 𝑀𝑖𝑝𝑠 (𝑛 𝑗 ) ∗ 𝑃𝑒𝑛𝑢𝑚(𝑛 𝑗 ) (6)

in the formula,𝑀𝑖𝑝𝑠 (𝑛 𝑗 ) represents the computing power of 𝑛 𝑗 ,
and 𝑃𝑒𝑛𝑢𝑚(𝑛 𝑗 ) represents the number of CPUs for node 𝑛 𝑗 .

• Cost consumption: in general, the cost of executing tasks in-
cludes both the cost of computation and the cost of communica-
tion, which are detailed as follows:
– Cost of computation: the computation cost for a specific 𝑡𝑖
consists of two components: processing cost and memory cost.
These costs can be estimated using the following expressions:

𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑝 (𝑡𝑖 , 𝑛 𝑗 ) = 𝐶𝑃𝑈𝑐𝑜𝑠𝑡 (𝑛 𝑗 ) ∗ 𝐸𝑇𝐶 (𝑡𝑖 , 𝑛 𝑗 )+
𝑀𝑒𝑚𝑐𝑜𝑠𝑡 (𝑛 𝑗 ) ∗𝑀𝑒𝑚𝑠𝑖𝑧𝑒 (𝑡𝑖 ) (7)

– Cost of communication: depends on the file size and band-
width usage per transmitted data unit per node. The necessity
of bandwidth amount for 𝑡𝑖 is𝐵𝑤 (𝑡𝑖 ). The communication cost
(𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑚 (𝑡𝑖 , 𝑛 𝑗 )) for a particular 𝑡𝑖 is calculated as follows:

𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑚 (𝑡𝑖 , 𝑛 𝑗 ) = 𝐵𝑤𝑐𝑜𝑠𝑡 (𝑛 𝑗 ) ∗ 𝐵𝑤 (𝑡𝑖 ) (8)

The cost consumption for executing 𝑡𝑖 on node 𝑛 𝑗 is measured
with Equation 9

𝐶𝑜𝑠𝑡 (𝑡𝑖 , 𝑛 𝑗 ) = 𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑝 (𝑡𝑖 , 𝑛 𝑗 ) +𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑚 (𝑡𝑖 , 𝑛 𝑗 ) (9)

To this end, the total cost of scheduled task 𝑋 is measured by
Equation 9.

𝐶𝑜𝑠𝑡 (𝑋 ) =
|𝑁 |∑︁
𝑗=1

|𝑇 |∑︁
𝑖=1

𝐶𝑜𝑠𝑡 (𝑡𝑖 , 𝑛 𝑗 ) ∗ 𝑋𝑖, 𝑗 (10)
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• Energy Consumption: energy consumption is composed of
two components: (1) the energy spent on transmitting a task to
a computing node denoted as 𝐸𝑡𝑟𝑎𝑛𝑠 ; (2) the energy spent on
executing the task denoted as 𝐸𝑝 .
The energy 𝐸𝑡𝑟𝑎𝑛𝑠 required to transmit 𝑡𝑖 to 𝑛 𝑗 is calculated by
multiplying the transmission time by a constant coefficient as
defined in Equation 11.

𝐸𝑡𝑟𝑎𝑛𝑠 (𝑡𝑖 , 𝑛 𝑗 ) = 𝜆 ∗𝑇𝑟𝑎𝑛𝑠 (𝑡𝑖 , 𝑛 𝑗 ) (11)

where 𝜆 is a constant related to the wireless interface.
𝑇𝑟𝑎𝑛𝑠 (𝑡𝑖 , 𝑛 𝑗 ) is the transmission time for task 𝑡𝑖 to fog node 𝑛 𝑗
[20], which is determined as follows:

𝑇𝑟𝑎𝑛𝑠 (𝑡𝑖 , 𝑛 𝑗 ) =
𝑆𝑖𝑧𝑒𝑖𝑛 (𝑡𝑖 ) + 𝑆𝑖𝑧𝑒𝑜𝑢𝑡 (𝑡𝑖 )

𝐵𝑤 (𝑛 𝑗 )
(12)

The energy consumption 𝐸𝑝 for task processing is defined as
follows:

𝐸𝑝 (𝑡𝑖 , 𝑛 𝑗 ) = 𝜇 ∗ 𝐸𝑇𝐶 (𝑡𝑖 , 𝑛 𝑗 ) (13)
where 𝜇 is the coefficient denoting the energy consumption per
CPU cycle. The energy consumption for executing task 𝑡𝑖 on
node 𝑛 𝑗 is determined by Equation 14, while the overall energy
for execution of the scheduled task 𝑋 is determined with 15.

𝐸𝑛𝑒𝑟𝑔𝑦 (𝑡𝑖 , 𝑛 𝑗 ) = 𝐸𝑡𝑟𝑎𝑛𝑠 (𝑡𝑖 , 𝑛 𝑗 ) + 𝐸𝑝 (𝑡𝑖 , 𝑛 𝑗 ) (14)

𝐸𝑛𝑒𝑟𝑔𝑦 (𝑋 ) =
|𝑁 |∑︁
𝑗=1

|𝑇 |∑︁
𝑖=1

𝐸𝑛𝑒𝑟𝑔𝑦 (𝑡𝑖 , 𝑛 𝑗 ) ∗ 𝑋𝑖, 𝑗 (15)

3.1.2 Objective functions of LL-MOLBO. In the proposed load
balancing optimization, the solution comprises an optimal set of
nodes that optimize the conflicting objectives: 𝑅𝑇 and 𝑅𝑈 .
• Response time 𝑅𝑇 : the response time of a task 𝑡𝑖 is the sum of
the specified node’s execution time plus the task’s transmission
time from the source to the destination. The next formula is
utilized to compute the response time of 𝑡𝑖 that is handled at
computing node 𝑛 𝑗 :

𝑅𝑇 (𝑡𝑖 , 𝑛 𝑗 ) = 𝐸𝑇𝐶 (𝑡𝑖 , 𝑛 𝑗 ) +𝑇𝑟𝑎𝑛𝑠 (𝑡𝑖 , 𝑛 𝑗 ) (16)

The total 𝑅𝑇 of scheduled tasks𝑋 is determined by 𝑅𝑇 (𝑋 ) (Equa-
tion 17).

𝑅𝑇 (𝑋 ) =
|𝑁 |∑︁
𝑗=1

|𝑇 |∑︁
𝑖=1

𝑅𝑇 (𝑡𝑖 , 𝑛 𝑗 ) ∗ 𝑋𝑖, 𝑗 (17)

• Resource utilization 𝑅𝑈 : the resource utilization of node 𝑛 𝑗 is
the optimal utilization of resources, with a crucial link between
efficiency and the reduction of 𝑀𝑆 . Therefore, these two con-
cepts exhibit an inverse relationship. The resource utilization is
determined as follows:

𝑅𝑈 (𝑛 𝑗 ) =
|𝑇 |∑︁
𝑖=1

𝐸𝑇𝐶 (𝑡𝑖 , 𝑛 𝑗 )
𝑀𝑆 (𝑋 ) (18)

The total resource utilization of scheduled tasks is defined by
Equation 19.

𝑅𝑈 (𝑋 ) =
|𝑁 |∑︁
𝑗=1

𝑅𝑈 (𝑛 𝑗 ) (19)

3.2 IMOACO: Improved Multi-Objective Ant
Colony Optimization

Task scheduling problem has been established as an NP-Hard prob-
lem, highlighting the potential for significant improvements in
scheduling efficiency through the use of ACO in fog computing
task scheduling. Since ACO is initially designed for SOP, it is in-
adequate when addressing the MOP. Several multi-objective ACO
algorithms have been proposed to solve MOP [7, 11, 22], by em-
ploying a single colony with several pheromone trace matrices 𝜏𝑚 ,
where𝑚 ∈ [1, 𝑀] (where𝑀 represents the number of objectives),
and a single heuristic information matrix 𝜂. Additionally, multi-
colony ACO algorithms consist of several colonies of ants. Each
colony uses separate pheromones to maximize the explored search
area. Taking inspiration from these works, the proposed IMOACO
employs two colonies for task scheduling and load balancing, re-
spectively. IMOACO utilizes several pheromone trace matrices 𝜏𝑚
and a unified heuristic information matrix 𝜂. To elaborate, for the
UL-MOTSO, there are three pheromone trace matrices (𝑃𝑀𝐸𝑇𝐶 ,
𝑃𝑀𝐶𝑜𝑠𝑡 , and 𝑃𝑀𝐸𝑛𝑒𝑟𝑔𝑦 ) and a single heuristic information matrix
𝜂. In contrast, for the lower-level load balancing, a single pheromone
trace matrix is associated with the 𝑅𝑇 , since the 𝑅𝑈 can be updated
after completing the path of each ant. For each colony, every ant
selects the next node to visit according to the probability distribu-
tion. In the upper-level colony, the search process is initiated by
utilizing the optimal solutions 𝑛 𝑗 ∈ 𝑦∗ from the lower-level colony.
The flowchart of our proposed IMOACO is outlined in Figure 1 and
the main search process in each colony follows the steps outlined
below.

3.2.1 LL-MOLBO optimization colony. The optimization pro-
cess of the LL-MOLBO colony is outlined as follows:
• Step 1: Initialization: at the beginning of the process, the ex-
pected response time of the task 𝑡𝑖 on 𝑛 𝑗 is represented by the
matrix 𝑃𝑀𝑅𝑇 .

𝑃𝑀𝑅𝑇 =


𝑅𝑇 (𝑡1, 𝑛1) 𝑅𝑇 (𝑡1, 𝑛2) ... 𝑅𝑇 (𝑡1, 𝑛 |𝑁 | )
𝑅𝑇 (𝑡2, 𝑛1) 𝑅𝑇 (𝑡2, 𝑛2) ... 𝑅𝑇 (𝑡2, 𝑛 |𝑁 | )

... ... ... ...

𝑅𝑇 (𝑡 |𝑇 | , 𝑛1) 𝑅𝑇 (𝑡 |𝑇 | , 𝑛2) ... 𝑅𝑇 (𝑡 |𝑇 | , 𝑛 |𝑁 | )

 (20)

During the initial iteration of the lower-level optimization, each
𝑎𝑛𝑡𝑘 (𝑘 = 1..𝐴, 𝐴 is the number of the ants) initialize the first
pheromone 𝜏𝐿𝐿,𝑘

𝑖, 𝑗
(0) with the value of index 𝑖, 𝑗 of 𝑃𝑀𝑅𝑇 (Equa-

tion 21).
Subsequently, each ant is randomly deployed on a task node 𝑡𝑖 .

𝜏
𝐿𝐿,𝑘
𝑖, 𝑗

(0) = 𝑃𝑀𝑅𝑇
𝑖,𝑗 (21)

• Step 2: Calculation of heuristic information: each ant con-
structs a tour by executing |𝑇 | tasks with a probabilistic transi-
tion rule.
Every 𝑎𝑛𝑡𝑘 selects the next𝑛 𝑗 to visit according to the probability
given by the following equation:

𝑝
𝐿𝐿,𝑘
𝑖, 𝑗

(𝑡) =
(𝜂𝐿𝐿,𝑘
𝑖, 𝑗

)𝛽 (𝜏𝐿𝐿,𝑘
𝑖, 𝑗

)𝛼∑
𝑗∈Ω (𝜂𝐿𝐿,𝑘𝑖, 𝑗

)𝛽 (𝜏𝐿𝐿,𝑘
𝑖, 𝑗

)𝛼
(22)

In this context, 𝛽 and 𝛼 represent the respective weightings
assigned to the heuristic information and pheromone trace. The
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Figure 1: Flowchart of IMOACO based on BMO-TSLB optimization

heuristic function of 𝑎𝑛𝑡𝑘 is denoted by 𝜂
𝐿𝐿,𝐾
𝑖,𝑗

, indicating the
response time of the node 𝑛 𝑗 to execute 𝑡𝑖 .
The calculation method is as follows:

𝜂
𝐿𝐿,𝐾
𝑖,𝑗

=
1

fitness𝐿𝐿𝑖,𝑗
(23)

where the fitness𝐿𝐿 is based on the 𝑅𝑇 , which is defined by Equa-
tion 24.

fitness𝐿𝐿𝑖,𝑗 = 𝑅𝑇 (𝑡𝑖 , 𝑛 𝑗 ) (24)

The smaller the fitness𝐿𝐿 value is, the larger the probability of
selecting the current node 𝑛 𝑗 for 𝑡𝑖 since it has a minimum 𝑅𝑇 .

• Step 3: Local pheromone update: after each iteration, the
pheromone of each ant is updated using the following formula-
tion:

𝜏
𝐿𝐿,𝑘
𝑖, 𝑗

(𝑡) = (1 − 𝑝)𝜏𝐿𝐿,𝑘
𝑖, 𝑗

(𝑡 − 1) + Δ𝜏𝐿𝐿,𝑘
𝑖, 𝑗

(25)

where 𝑝 is the pheromone evaporation rate and the quantity of
pheromone left by each 𝑎𝑛𝑡𝑘 𝐷𝑒𝑙𝑡𝑎𝜏

𝐿𝐿,𝑘
𝑖, 𝑗

calculated as follows:

Δ𝜏𝐿𝐿,𝑘
𝑖, 𝑗

=
𝑄

𝑅𝑇 (𝑡𝑖 , 𝑛 𝑗 )
(26)

Here 𝑄 is a constant related to the quantity of pheromone left
by the ants.

• Step 4: Update global pheromone: When all the ants have
constructed their solution, the best solution is selected from
ants based on fitness function (fitness𝐿𝐿 = 𝑅𝑇 (𝑋 )). Then, the
updating of the global pheromone is performed on the solution
𝑋𝑖, 𝑗 as follows:

𝜏
𝐿𝐿,𝑘
𝑖, 𝑗

(𝑡) = 𝜏
𝐿𝐿,𝑘
𝑖, 𝑗

(𝑡 − 1) + Δ𝜏𝐿𝐿,𝑘
𝑖, 𝑗

(27)

where the Δ𝜏𝐿𝐿,𝑘
𝑖, 𝑗

(𝑡) = ∑𝐴
𝑘=1 Δ𝜏

𝐿𝐿,𝑘
𝑖, 𝑗

(𝑡).

• Step 5: Update non-dominated solutions: the optimal 𝑦∗ is
updated based on the non-dominated solutions found by differ-
ent ants, utilizing the 𝑅𝑇 (Equation 17) and 𝑅𝑈 (Equation 18)
objective functions, respectively.

3.2.2 UL-MOTSO optimization colony.

• Step 1: Initialization: at the beginning of the optimization
process in the upper level, the different objective functions are
measured and expressed as a matrix: (1) 𝑃𝑀𝐸𝑇𝐶 ; (2) 𝑃𝑀𝐶𝑜𝑠𝑡 ; (3)
𝑃𝑀𝐸𝑛𝑒𝑟𝑔𝑦 (determined as 𝑃𝑀𝑅𝑇 ). Also, for each 𝑎𝑛𝑡𝑘 the three
pheromones are initialized with matrix 𝑃𝑀𝐸𝑇𝐶 , 𝑃𝑀𝐶𝑜𝑠𝑡 , and
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𝑃𝑀𝐸𝑛𝑒𝑟𝑔𝑦 , respectively.

𝜏
𝑈𝐿,𝑘,1
𝑖, 𝑗

(0) = 𝑃𝑀𝐸𝑇𝐶
𝑖,𝑗 (28)

𝜏
𝑈𝐿,𝑘,2
𝑖, 𝑗

(0) = 𝑃𝑀𝐶𝑜𝑠𝑡
𝑖, 𝑗 (29)

𝜏
𝑈𝐿,𝑘,3
𝑖, 𝑗

(0) = 𝑃𝑀
𝐸𝑛𝑒𝑟𝑔𝑦

𝑖,𝑗
(30)

• Step 2: Calculation of heuristic information: the heuristic
function of the𝑈𝐿 −𝑀𝑂𝑇𝑆𝑂 of each 𝑎𝑛𝑡𝑘 is denoted by 𝜂𝑈𝐿,𝑘

𝑖, 𝑗
,

and it is determined by:

𝜂
𝑈𝐿,𝑘
𝑖, 𝑗

=
1

fitness𝑈𝐿𝑖,𝑗
(31)

where fitness𝑈𝐿𝑖,𝑗 = 𝐸𝑇𝐶 (𝑡𝑖 , 𝑛 𝑗 ) +𝐶𝑜𝑠𝑡 (𝑡𝑖 , 𝑛 𝑗 ) +
𝐸𝑛𝑒𝑟𝑔𝑦 (𝑡𝑖 , 𝑛 𝑗 ). Based on the different pheromones concentration
and heuristic function, each 𝑎𝑛𝑡𝑘 chooses node 𝑗 for task 𝑖 with
the probability 𝑝 (𝑖, 𝑗)𝑈𝐿,𝑘 is measured as follows:

𝑝𝑖, 𝑗 (𝑡)𝑈𝐿,𝑘 =
(𝜂𝑈𝐿,𝑘
𝑖,𝑗

)𝛽 ∏𝑀
𝑚=1 (𝜏

𝑈𝐿,𝑘,𝑚
𝑖,𝑗

)𝛼𝑚∑
𝑗∈𝑦∗ (𝜂𝑈𝐿,𝑘𝑖,𝑗

)𝛽 ∏𝑀
𝑚=1 (𝜏

𝑈𝐿,𝑘,𝑚
𝑖,𝑗

)𝛼𝑚
(32)

where 𝛼𝑚 represents the respective weightings assigned to the
pheromone trace of objective𝑚.

• Step 3: Update objectives functions: for each 𝑎𝑛𝑡𝑘 , the sched-
uled task is evaluated with 𝑀𝑆 , 𝐶𝑜𝑠𝑡 , and 𝐸𝑛𝑒𝑟𝑔𝑦, which are
measured by equations 4, 10, and 15. Once the objective func-
tions are evaluated, the fitness function will be updated.

• Step 4: Local pheromone update: Once the solution is updated,
each pheromone𝑚 trace is updated as follows:

𝜏
𝑈𝐿,𝑘,𝑚
𝑖,𝑗

(𝑡) = 𝜏
𝑈𝐿,𝑘,𝑚
𝑖,𝑗

(𝑡 − 1) + Δ𝜏𝑈𝐿,𝑘,𝑚
𝑖,𝑗

(33)

where Δ𝜏𝑈𝐿,𝑘,𝑚
𝑖,𝑗

value represents the change in pheromone level
of 𝑎𝑛𝑡𝑘 on edge (𝑡𝑖 , 𝑛 𝑗 for objective𝑚), which measured as fol-
lows:

Δ𝜏𝑈𝐿,𝑘,𝑚
𝑖,𝑗

=
𝑄

𝐹𝑘
, (34)

where 𝐹𝑘 ∈ (𝐸𝑇𝐶 (𝑡𝑖 , 𝑛 𝑗 ),𝐶𝑜𝑠𝑡 (𝑡𝑖 , 𝑛 𝑗 ), 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑡𝑖 , 𝑛 𝑗 )).

• Step 5: Update global pheromone: after each iteration, the
global pheromones for each edge 𝑋𝑖, 𝑗 are updated as follows:

𝜏
𝑈𝐿,𝑘,𝑚
𝑖,𝑗

(𝑡) = (1 − 𝑝𝑚)𝜏𝑈𝐿,𝑘,𝑚
𝑖,𝑗

(𝑡 − 1) + Δ𝜏𝑈𝐿,𝑘,𝑚
𝑖,𝑗

(35)

where 𝑝𝑘 is the pheromone evaporation rate for objective 𝑚,
𝑝 ∈ [0, 1]. Δ𝜏𝑈𝐿,𝑚

𝑖,𝑗
(𝑡) = ∑𝐴

𝑘=1 Δ𝜏
𝑈𝐿,𝑘,𝑚
𝑖,𝑗

(𝑡).

• Step 6: Update the best global optimal solution: the update
of the best global solution is conducted using a dominance com-
parator that includes the objective functions 𝑀𝑆 (𝑋 ), 𝐶𝑜𝑠𝑡 (𝑋 ),
and 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑋 ).

• Step 7: Verification of stopping criteria if the current iteration
𝐺 reaches the maximum number of iterations (𝐺𝑚𝑎𝑥 ), the best
global solution is returned, otherwise, it proceeds to step 2.

4 EXPERIMENTAL STUDIES
This experiment aims to demonstrate how the problem formulation
of task scheduling impacts QoS parameters such as time, cost, and
energy, while also considering the load balance of nodes.

However, the proposed IMOACO is compared against heuristics
and meta-heuristics algorithms:
• FCFS: First Come First Serve algorithm, is a heuristic algo-
rithm that schedules the first process to arrive and allows it to
run to completion [10].

• RR: Round Robin algorithm is a type of CPU scheduling algo-
rithm where each process is allocated a fixed time quantum for
its execution [10].

• SJF: Shortest Job First algorithm. It’s a scheduling policy that
chooses the waiting process with the shortest execution time
[10].

• LBACO: Load Balancing Ant Colony Optimization is an im-
proved version of the ACO algorithm, where the probability for
selecting the optimum node for each task is based on excessive
virtual memory and the predicted execution time [14].

• ACO: is a standard ACO algorithm where the objective is mini-
mizing the makespan of a given task set. The task is allocated to
the resource possessing the highest processing speed to ensure
that all tasks are completed in the shortest possible time [17].

Within our simulations, we have manipulated the volume of in-
coming tasks, ranging from a modest 100 to a substantial 1000. The
performance of the compared algorithms is evaluated in terms of
total cost computation, total energy consumption, makespan, and
total resource utilization.

4.1 Parameter Settings
For the conducted experiments, the simulator iFogSim is employed
for modeling and simulating the fog environment for task schedul-
ing. The CPU of the experiment processor is an Intel(R) Core(TM)
i5-9300HF CPU @ 2.40GHz with 16 GB of memory, the operation
system is Windows 11 64-bit, and the development tool is Eclipse.
In this section, we present all parameter settings in Table 2, encom-
passing parameters relevant to tasks, fog nodes, and common pa-
rameters for ACO-based algorithms (ACO, LBACO, and IMOACO).

4.2 Results and Analysis
In this section, the comparative results are presented. Tables 3-6
display the mean and standard deviation values of cost, energy,
makespan, and resource utilization across 20 independent runs. In
each table, blue and light blue colors are used to color the first
and second-best algorithm’s results. Table 7 presents the average
rankings of each compared algorithm based the Friedman Test.

The performance of the proposed algorithm is assessed by vary-
ing the task count from 100 to 1000. Observing Figures 2 and 3,
it is evident that increasing the task count impacts system perfor-
mance by escalating the burden. With a higher number of tasks,
both makespan and resource utilization increase. Consequently, the
service time of tasks on fog nodes also rises.
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Table 2: Experiment parameters setting

Entity type Parameter Value

Tasks

Length of task [9, 000, 15, 000]𝑀𝐼
File size 300
Output size 300
Number of
tasks

100 − 1000

Fog nodes (VM)

Processing rate 512 − 1024 MIPS
𝑃𝑒𝑛𝑢𝑚 per VM 1
Bandwidth 500-1200
Memory 512-2048
Storage 100000-800000
Unit cost mem-
ory

0.05

Unit cost stor-
age

0.001

Unit cost band-
width

0.1

Number of VM 50

ACO algorithms

Number of ants 10
𝐺𝑚𝑎𝑥 50
𝛼 1
𝛽 1
Q 100

IMOACO Number of ants
in each colony

5

Figure 3 illustrates the results obtained by the proposed approach
in terms of resource utilization. The figure indicates that IMOACO
achieved maximum resource utilization across all ranges of tasks,
from small to large, when compared with other algorithms. As con-
firmed by results reported in the tables, the IMOACO outperforms
the other algorithms concerning different metrics.

The observed results indicate that the makespan time of the
proposed IMOACO algorithm is shorter compared to other algo-
rithms. This is attributed to its exploiting the load-balancing to
select optimal nodes for scheduling tasks.

5 CONCLUSIONS
In this paper, the primary contribution lies in the novel formula-
tion of task scheduling optimization, aiming to address most QoS
aspects. This formulation introduces a bi-level multi-objective task
scheduling approach, to simultaneously optimize scheduling and
load balancing. In the optimization process, cost, energy, makespan,
response time, and resource utilization are considered as criteria to
seek an optimal solution that meets user requirements. To address
the formulated problem, we introduce an improved multi-objective
ACO algorithm that utilizes a dominance comparator to assess
solutions discovered during the search process. We conducted a
comparative analysis between our proposed IMOACO approach
and existing scheduling algorithms. The experimental results illus-
trate that our proposed task scheduling mechanism surpasses the
compared algorithms in terms of cost, energy, makespan, and re-
source utilization. The proposed algorithms demonstrate stability in
resource utilization even as task numbers increase. This capability

Figure 2: Comparison of makespan performances

Figure 3: Comparison of resource utilization performances

ensures effective handling of the substantial surge in request gen-
eration from edge devices, thereby preventing resource overload.
However, a primary limitation of this work lies in the necessity to
accommodate dynamic environments where there is a lack of prior
information regarding task properties or available resources.

In the future, the developed algorithm can be extended to address
real-time scheduling by extending optimization techniques to solve
dynamic MOP. Additionally, our forthcoming research will focus
on addressing the application of our approach to real-time health
scenarios.
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Table 3: Cost (mean and standard deviation)

N FCFS SJF RR ACO LBACO IMOACO

100 2.2271𝑒+051.36𝑒+04 2.2534𝑒+051.29𝑒+04 2.2343𝑒+059.51𝑒+03 2.2790𝑒+051.41𝑒+04 2.2573𝑒+051.04𝑒+04 2.2079𝑒+058.86𝑒+03
200 4.4788𝑒+051.66𝑒+04 4.4160𝑒+051.58𝑒+04 4.5001𝑒+051.66𝑒+04 4.4667𝑒+051.62𝑒+04 4.4571𝑒+051.54𝑒+04 4.4146𝑒+051.59𝑒+04
300 6.6669𝑒+051.72𝑒+04 6.6668𝑒+053.21𝑒+04 6.6497𝑒+051.63𝑒+04 6.7019𝑒+051.76𝑒+04 6.6843𝑒+052.15𝑒+04 6.6393𝑒+052.53𝑒+04
500 1.1111𝑒+062.69𝑒+04 1.1130𝑒+063.26𝑒+04 1.1075𝑒+062.38𝑒+04 1.1062𝑒+062.27𝑒+04 1.1168𝑒+061.42𝑒+04 1.1042𝑒+062.41𝑒+04
1000 2.2155𝑒+063.35𝑒+04 2.2157𝑒+063.36𝑒+04 2.2163𝑒+064.17𝑒+04 2.2321𝑒+063.88𝑒+04 2.2365𝑒+062.95𝑒+04 2.2148𝑒+064.01𝑒+04

Table 4: Energy (mean and standard deviation)

N FCFS SJF RR ACO LBACO IMOACO

100 2.7466𝑒+051.68𝑒+04 2.7791𝑒+051.59𝑒+04 2.7554𝑒+051.17𝑒+04 2.8106𝑒+051.74𝑒+04 2.7838𝑒+051.28𝑒+04 2.7229𝑒+051.09𝑒+04
200 5.5235𝑒+052.05𝑒+04 5.4461𝑒+051.95𝑒+04 5.5498𝑒+052.05𝑒+04 5.5086𝑒+052.00𝑒+04 5.4967𝑒+051.89𝑒+04 5.4443𝑒+051.96𝑒+04
300 8.2220𝑒+052.12𝑒+04 8.2219𝑒+053.96𝑒+04 8.2007𝑒+052.01𝑒+04 8.2652𝑒+052.17𝑒+04 8.2434𝑒+052.66𝑒+04 8.1880𝑒+053.12𝑒+04
500 1.3703𝑒+063.32𝑒+04 1.3726𝑒+064.03𝑒+04 1.3658𝑒+062.94𝑒+04 1.3642𝑒+062.80𝑒+04 1.3772𝑒+061.75𝑒+04 1.3618𝑒+062.97𝑒+04
1000 2.7323𝑒+064.13𝑒+04 2.7325𝑒+064.14𝑒+04 2.7333𝑒+065.14𝑒+04 2.7527𝑒+064.79𝑒+04 2.7582𝑒+063.64𝑒+04 2.7315𝑒+064.94𝑒+04

Table 5: Makespan (mean and standard deviation)

N FCFS SJF RR ACO LBACO IMOACO

100 6.5658𝑒+031.72𝑒+03 6.5040𝑒+031.20𝑒+03 6.3185𝑒+031.28𝑒+03 4.8691𝑒+033.85𝑒+02 9.0164𝑒+032.11𝑒+03 4.6173𝑒+033.61𝑒+02
200 7.6086𝑒+036.78𝑒+02 7.2057𝑒+031.11𝑒+03 7.5290𝑒+031.28𝑒+03 4.3735𝑒+032.33𝑒+02 1.2260𝑒+041.77𝑒+03 4.0153𝑒+033.49𝑒+02
300 8.1602𝑒+031.93𝑒+03 8.2903𝑒+031.89𝑒+03 8.1152𝑒+031.80𝑒+03 6.2682𝑒+033.30𝑒+02 1.6959𝑒+042.10𝑒+03 5.4561𝑒+033.25𝑒+02
500 1.1773𝑒+041.85𝑒+03 1.1816𝑒+041.89𝑒+03 1.1870𝑒+041.83𝑒+03 9.5386𝑒+033.13𝑒+02 2.8117𝑒+043.76𝑒+03 8.2710𝑒+033.24𝑒+02
1000 2.3827𝑒+042.11𝑒+03 2.3750𝑒+041.98𝑒+03 2.4790𝑒+041.68𝑒+03 1.7748𝑒+043.61𝑒+02 5.3248𝑒+044.20𝑒+03 1.5797𝑒+044.76𝑒+02

Table 6: Resource Utilization (mean and standard deviation)

N FCFS SJF RR ACO LBACO IMOACO

100 5.9568𝑒−011.26𝑒−01 5.9637𝑒−011.09𝑒−01 6.1188𝑒−011.18𝑒−01 7.8165𝑒−013.11𝑒−02 4.3755𝑒−019.04𝑒−02 8.0073𝑒−015.82𝑒−02
200 3.9527𝑒−013.55𝑒−02 4.1659𝑒−015.54𝑒−02 4.0937𝑒−016.68𝑒−02 6.8220𝑒−013.37𝑒−02 2.4740𝑒−013.69𝑒−02 7.3734𝑒−015.69𝑒−02
300 5.7310𝑒−011.24𝑒−01 5.6526𝑒−011.30𝑒−01 5.7079𝑒−011.14𝑒−01 7.1413𝑒−013.01𝑒−02 2.6646𝑒−013.12𝑒−02 8.1313𝑒−014.17𝑒−02
500 6.4504𝑒−011.02𝑒−01 6.4314𝑒−019.81𝑒−02 6.3665𝑒−019.67𝑒−02 7.7377𝑒−012.58𝑒−02 2.6924𝑒−013.39𝑒−02 8.9085𝑒−012.62𝑒−02
1000 6.2432𝑒−015.12𝑒−02 6.2554𝑒−014.49𝑒−02 5.9852𝑒−013.90𝑒−02 8.3852𝑒−011.13𝑒−02 2.8193𝑒−012.47𝑒−02 9.3510𝑒−011.94𝑒−02

Table 7: Average Rankings of the Algorithms for Perfor-
mance Metrics

Algorithm Cost Energy Makespan Resource utilization

FCFS 3.40 3.40 4.20 3.00

SJF 3.40 3.40 3.80 3.20

RR 3.59 3.59 4.00 2.80

ACO 4.60 4.60 2.00 5.00

LBACO 5.00 5.00 6.00 1.00

IMOACO 1.00 1.00 1.00 6.00
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