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ABSTRACT

Fog computing is characterized by its proximity to edge devices,
allowing it to handle data near the source. This capability alleviates
the computational burden on data centers and minimizes latency.
Ensuring high throughput and reliability of services in Fog environ-
ments depends on the critical roles of load balancing of resources
and task scheduling. A significant challenge in task scheduling is
allocating tasks to optimal nodes. In this paper, we tackle the chal-
lenge posed by the dependency between optimally scheduled tasks
and the optimal nodes for task scheduling and propose a novel
bi-level multi-objective task scheduling approach. At the upper
level, which pertains to task scheduling optimization, the objective
functions include the minimization of makespan, cost, and energy.
At the lower level, corresponding to load balancing optimization,
the objective functions include the minimization of response time
and maximization of resource utilization. Our approach is based
on an Improved Multi-Objective Ant Colony algorithm (IMOACO).
Simulation experiments using iFogSim confirm the performance of
our approach and its advantage over existing algorithms, including
heuristic and meta-heuristic approaches.

CCS CONCEPTS

« Optimization with randomized search heuristics — Evolu-
tionary algorithms; « Scheduling algorithms;

KEYWORDS

Task scheduling, Load-balancing, fog computing, multi-objective
optimization problem, and ant colony optimization

ACM Reference Format:

Najwa Kouka, Vincenzo Piuri, and Pierangela Samarati. 2024. Tasks Sched-
uling with Load Balancing in Fog Computing: a Bi-level Multi-Objective
Optimization Approach . In Genetic and Evolutionary Computation Confer-
ence (GECCO °24), July 14-18, 2024, Melbourne, VIC, Australia. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3638529.3654069

1 INTRODUCTION

The rise of the Internet of Things (IoT) and the widespread use of
diverse mobile devices and sensors are posing new challenges for
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traditional cloud computing solutions [9]. In response, fog comput-
ing was proposed [18] to address these challenges. By definition,
fog computing is a novel decentralized paradigm that provides com-
putational services at the network edge, enabling the development
of innovative services and applications for the future of the Internet
[1]. Fog computing has several unique characteristics, including
proximity to edge devices, a distributed computing model, hetero-
geneous devices, and a strong focus on security [2, 3]. Effective
resource management within the fog environment plays a crucial
role in minimizing costs, processing and communication delays.

Two of the main categories of resource management are task
scheduling and load-balancing [5]. The scheduling involves search-
ing for optimal solutions that organize a set of scheduled tasks
on available resources with the best Quality of Service (QoS) re-
quirements, such as time, deadline, and cost. These tasks are to be
scheduled on a set of computing nodes with varying capabilities,
including network usage, memory usage, and processing power.
The load balancing aims to reduce response time and energy con-
sumption while increasing throughput. In fact, the overload of fog
nodes not only consumes more energy but also results in prolonged
response times and increased costs.

Several approaches have separately solved these two problems
(task scheduling and load-balancing) in a fog-cloud environment.
These approaches include heuristic algorithms and meta-heuristic
algorithms [4]. Unlike heuristic approaches, which typically rely on
specific rules for particular problems, meta-heuristic algorithms are
problem-independent, having the ability to explore a wide range of
problems. In this context, various meta-heuristic algorithms have
been proposed that solve task scheduling or load-balancing as a
Single Objective Optimization (SOP) or as a Multi-Objective Op-
timization (MOP). The most common optimized metrics [6] are
related to makespan, delay, and energy consumption, ignore im-
portant metrics related the load-balancing optimization. Imbalance
in the QoS metrics can greatly affect the overall system perfor-
mance. For instance, tasks might be scheduled on overloaded nodes
because load balancing is not considered in the scheduling perfor-
mance. Thus, the integration of load balancing optimization in the
main process of task scheduling can achieve better performance,
satisfying the requirements of each aspect. Such dependency be-
tween task scheduling and load balancing can be regarded as a
Bi-level Multi-objective Optimization Problem (BMOP) [16]. This
category of optimization problem involves two interconnected op-
timization tasks, each assigned to a distinct decision level (upper
level and lower level). Consequently, assessing a solution at the
upper level necessitates evaluating the lower level. The BMOP is a
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suitable method for formulating various real-world scenarios, such
as feature selection [13].

To the best of our knowledge, this work represents the first
that optimizes task scheduling and load balancing as a bi-level
multi-objective optimization problem, which is denoted the Bi-level
Multi-Objective Task Scheduling-based Load balancing problem
(BMO-TSLB). The contributions of this paper are the following:

(1) We formulate task scheduling and load-balancing as a bi-
level multi-objective optimization problem. In BMO-TSLB,
we consider task scheduling at the upper level and load
balancing at the lower level. The objective set to be opti-
mized at the upper level includes minimizing cost, energy,
and makespan. The decision variables at the upper level
encompass the optimal solution of the lower level, where
the objectives are to minimize response time and maximize
resource utilization.

(2) We propose a new Improved Multi-Objective Ant Colony Op-
timization IMOACO) to address the BMO-TSLB. In IMOACO,
the dominance comparator is employed to update the mem-
ory of each ant and the global optimal solution.

(3) We conduct an experimental study with a large number of
tasks and heterogeneous nodes using the iFogSim simulator.

The remainder of this paper is structured as follows: Section 2
discusses related work. Section 3 illustrates our proposed formu-
lation of task scheduling optimization with load balancing and
the IMOACO algorithm. Section 4 reports the experimental study
using iFogSim. Section 5 concludes the paper and outlines future
directions.

2 RELATED WORK

In this section, a brief review of meta-heuristic algorithms for op-
timizing task scheduling and load balancing is illustrated. For in-
stance, task scheduling and resource allocation for the Internet of
Medical Things (IoMT) have been tackled using a Modified Particle
Swarm Optimization (MPSO) [8]. The task scheduling problem is
formulated as SOP, with the objective function as a linear combi-
nation aiming to minimize execution delay, execution cost, energy
consumption, and network bandwidth usage. This approach en-
tails mapping tasks to fog servers for executing IoMT tasks, while
cloud servers manage more complex operations that surpass the
capabilities of fog servers. A method known as Fog-Adaptive Multi-
Objective Optimization Task Scheduling (FOG-AMOSM) is intro-
duced in [21]. This method optimizes both total execution time and
cost consumption in fog computing. Experimental results conducted
on the CloudSim simulator showcase the enhanced performance of
FOG-AMOSM in addressing task scheduling, particularly with a lim-
ited number of tasks. In another study [12], the Whale Optimization
Algorithm (WOA) is applied to optimize the task scheduling prob-
lem in fog computing, with the two objectives of (1) reducing power
consumption and (2) minimizing costs. However, it is important to
note that the algorithm’s performance has not been evaluated in the
context of large-scale task scheduling. In [19] Energy-Efficient Task
Scheduling based on Particle Swarm Optimization (EETSPSO) is
proposed. In this algorithm, the fitness function is a linear equation
derived from considerations of makespan and energy efficiency.
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In addition, Ant Colony Optimization (ACO) is widely utilized for
scheduling problems and has demonstrated good performance in
addressing resource management challenges in both fog and cloud
computing. A novel variant of ACO, called Load Balancing Ant
Colony Optimization (LBACO) [14], incorporates considerations
of the load on each virtual machine alongside core ACO concepts
to expedite task execution. In this algorithm, a load balance factor,
derived from response time and execution time, is employed to
select the optimal node for task execution in each solution (ant).
While numerous algorithms exist for task scheduling [6], they often
overlook the crucial aspect of balancing load distribution alongside
efficient task scheduling. These algorithms come with limitations
such as improper scheduling, non-consideration of large-scale tasks,
and neglecting key cooperative objectives essential for enhancing
fog computing performance.

3 PROPOSED APPROACH

To make a clear presentation of the different abbreviations, the nota-
tions of problem formulation, and their corresponding descriptions
are provided in Table 1.

The task scheduling problem in the context of fog computing
involves allocating IoT tasks to suitable fog nodes from a pool of
candidate fog nodes to optimize overall QoS. Assuming a collection
of |T| independent tasks, denoted as: T = {tl, t2, 13, .. T } Each
task t; is characterized by a set of attributes including:

o Length(t;): is quantified by the number of instructions, with the
unit expressed in million instructions (MI).

o Sizejn(t;): is the input data size, represented, which signifies the
relevant size of the input data.

o Sizegy:(1;): is the output data size presents the size of the output
data.

® Memysize(t;): is the required memory size to execute the task.

In addition, assume that the fog system comprises a set of |N|
computing nodes, denoted as N = {nl, ng, N3, ..., N|N| } Each one
nj possesses distinctive attributes including:

e CPU(nj): is the CPU processing rate.

® Memsize(nj): is the memory size.

® Bw(n;): is the network bandwidth.

® STR(nj): is the storage capacity.

® CPUcost(nj): is the cost of CPU usage.

® Bwcost(nj): is the cost of bandwidth usage.
® Memeost (nj): is the cost memory usage.

The decision variables for task scheduling represent the scheduled
tasks and are denoted by X. Each variable of X presents the state
of task t; if it is allocated to n;: Xj j. The decision variable X; ; can
be given as:

if t; allocated to nj
otherwise

Xi,j {é (1
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Table 1: Description of mathematical notations

Notation Description
T={tLtsts,.... 1} Tasks

N = {nl,ng, ns,.. Nodes

X Task Schedule

Xi,j Scheduling of ¢; on n;
MS Makespan

Length(t;) Length of ¢;

Sizein (t;) Input size of ¢;

CPU (nj) CPU processing rate of n;

Memsize(nj)
Memygize (t;)
Bw(n;)
Bw(t)
STR(nj)
CPUcost(”j)
BWcost(nj)
Memcost(”j)
ppower(nj)

RU (n;)
ETC(t;, nj)
Penum(n;j)
COStcomp(tb nj)
Costcomm (i, "j)
Cost(tj,nj)
Cost(X)
Ep(ti: nj)
Etrans(ti,nj)
Energy(t;,nj)
Energy(X)
RT (t;, nj)
RT(X)
fitnesstL
fitnessYT
PMRT
PMETC
PMCost
PMEnergy

Memory size of n;

Memory size of ¢;

Network bandwidth of n;

Required bandwidth to execute t;
Storage capacity of n;

Cost of CPU usage of n;

Cost of bandwidth usage of n;

Cost of memory usage of n;
Processing power of n;

Resource utilization of n;

Expected computation time of ¢; on n;
Number of CPUs for node n;
Computational cost to execute ¢; on n;
Communication cost to execute #; on n;
Cost to execute £; on n;

Cost to execute all tasks

Energy to execute t; on n;

Energy to transmit a ¢; on n;

Energy (Etrans + Ep) to execute £; on n;
Energy to execute all tasks

Response time to execute ¢; on n;
Response time to execute all tasks
Fitness function of the lower level
Fitness function of the upper level
Pheromone matrix of RT

Pheromone matrix of ETC

Pheromone matrix of Cost
Pheromone matrix of Energy

3.1 Problem Formulation

The bi-level optimization problems BMO-TSLB involve two inter-
connected optimization tasks, with each assigned to a distinct deci-
sion level (i.e., upper and lower levels) [15, 16]. Consequently, the
assessment of an upper-level solution necessitates the evaluation of
the lower level. In our scenario, the optimization of task scheduling
is closely linked to load-balancing optimization.

The proposed task scheduling optimization is formulated as
BMOP, where the lower level consists of Multi-Objective Load-
Balancing Optimization (LL-MOLBO) and the upper level consists
of Multi-Objective Task Scheduling Optimization (UL-MOTSO). The
set of objective functions for UL-MOTSO is denoted by F, which
includes the minimization of Cost, the minimization of Energy,
and the minimization of MS. The set of objective functions for
LL-MOLBO is denoted by f, which includes the minimization of
response time RT and the maximization of resource utilization
RU. The general proposed formulation of BMO-TSLB is defined as
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follows:
minF = {Cost (X,y*), Energy (X,y*),MS (X, y*)} (2)
subject to:
y" € argmin {RT (X),RU (X)} (3)
Each objective function will be detailed below.

3.1.1 Objective functions of UL-MOTSO. The proposed task
scheduling optimization consists of assigning tasks to appropriate
n;j. The initial search space for this level is based on LL-MOLBO,
where n; € y*. The descriptions of makespan, cost, and energy are
given below:

e Makespan (MS) is defined as the total time taken to complete
the entire task T. The minimization of MS is the first objective
to optimize. The MS is calculated as follows:

7|
MS(X) = max Vje|N| ZETC(ti,nj)*Xi,j (4)
i=1
where ETC(t;,nj) is the expected time of computation of task t;
in nj as presented in following equation:
Length(t;)

ETC(tj,nj) = *
b ppower(nj)

Xi,j (5)

where ppower (1) is the processing power of n; (given in MIPS),
which is defined as follows:

Ppower(n;) = MiPS("j) *Penum(nj) (6)

in the formula, Mips(nj) represents the computing power of nj,
and Penum(nj) represents the number of CPUs for node n;.

o Cost consumption: in general, the cost of executing tasks in-
cludes both the cost of computation and the cost of communica-
tion, which are detailed as follows:

— Cost of computation: the computation cost for a specific ¢;
consists of two components: processing cost and memory cost.
These costs can be estimated using the following expressions:

Costeomp (ti,nj) = CPUcost(nj) * ETC(t;,nj)+
Memcost(”j) * Memgize () (7)
— Cost of communication: depends on the file size and band-
width usage per transmitted data unit per node. The necessity

of bandwidth amount for ¢; is Bw(t;). The communication cost
(Costcomm (i, nj)) for a particular ¢; is calculated as follows:

Costcomm (i, nj) = BWcost(nj) * Bw(t;) ®)
The cost consumption for executing ¢; on node n; is measured
with Equation 9
Cost(tj,nj) = Costcomp (ti, nj) + Costcomm (ti, nj) 9)
To this end, the total cost of scheduled task X is measured by
Equation 9.

e

Cost(X) = > 3" Cost(ti,nj) + X (10)

J=11i=1
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¢ Energy Consumption: energy consumption is composed of
two components: (1) the energy spent on transmitting a task to
a computing node denoted as E;rqns; (2) the energy spent on
executing the task denoted as E.
The energy E;rqns required to transmit ¢; to n; is calculated by
multiplying the transmission time by a constant coefficient as
defined in Equation 11.

Etrans(ti:nj) =A*Trans(ti’nj) (11)

where A is a constant related to the wireless interface.
Trans(t,nj) is the transmission time for task t; to fog node n;
[20], which is determined as follows:

Sizejn (t;) + Sizeous (t;)
Bw(nj)

Trans(tj,nj) = (12)
The energy consumption E, for task processing is defined as
follows:

Ep(ti,nj) = p*x ETC(t;,nj) (13)
where p is the coefficient denoting the energy consumption per
CPU cycle. The energy consumption for executing task #; on

node n; is determined by Equation 14, while the overall energy
for execution of the scheduled task X is determined with 15.

Energy(ti,nj) = Etrans(ti,nj) + Ep(ti,nj) (14)
[N |T|

Energy(X) = Z ZEnergy(ti, nj) * Xij (15)
j=1i=1

3.1.2 Objective functions of LL-MOLBO. In the proposed load
balancing optimization, the solution comprises an optimal set of
nodes that optimize the conflicting objectives: RT and RU.

e Response time RT: the response time of a task ¢; is the sum of
the specified node’s execution time plus the task’s transmission
time from the source to the destination. The next formula is
utilized to compute the response time of ¢i that is handled at
computing node n;:

RT(t;,nj) = ETC(ti,nj) + Trans(ti,nj) (16)

The total RT of scheduled tasks X is determined by RT (X) (Equa-
tion 17).
IN| |T]|
RT(X) = ZZRT(!’,’, nj) * Xj, (17)

j=1i=1

¢ Resource utilization RU: the resource utilization of node n; is
the optimal utilization of resources, with a crucial link between
efficiency and the reduction of MS. Therefore, these two con-
cepts exhibit an inverse relationship. The resource utilization is
determined as follows:
7|

ETC(tj,n;j
RU(nj) = Z; # (18)

The total resource utilization of scheduled tasks is defined by
Equation 19.
IN|

RU(X) = Z RU(n;) (19)
j=1

J
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3.2 IMOACO: Improved Multi-Objective Ant
Colony Optimization

Task scheduling problem has been established as an NP-Hard prob-
lem, highlighting the potential for significant improvements in
scheduling efficiency through the use of ACO in fog computing
task scheduling. Since ACO is initially designed for SOP, it is in-
adequate when addressing the MOP. Several multi-objective ACO
algorithms have been proposed to solve MOP [7, 11, 22], by em-
ploying a single colony with several pheromone trace matrices 7",
where m € [1, M] (where M represents the number of objectives),
and a single heuristic information matrix n. Additionally, multi-
colony ACO algorithms consist of several colonies of ants. Each
colony uses separate pheromones to maximize the explored search
area. Taking inspiration from these works, the proposed IMOACO
employs two colonies for task scheduling and load balancing, re-
spectively. IMOACO utilizes several pheromone trace matrices 7/
and a unified heuristic information matrix 1. To elaborate, for the
UL-MOTSO, there are three pheromone trace matrices (PMETC,
PMCOst and PME"€9Y) and a single heuristic information matrix
1. In contrast, for the lower-level load balancing, a single pheromone
trace matrix is associated with the RT, since the RU can be updated
after completing the path of each ant. For each colony, every ant
selects the next node to visit according to the probability distribu-
tion. In the upper-level colony, the search process is initiated by
utilizing the optimal solutions n; € y* from the lower-level colony.
The flowchart of our proposed IMOACO is outlined in Figure 1 and
the main search process in each colony follows the steps outlined
below.

3.21 LL-MOLBO optimization colony. The optimization pro-

cess of the LL-MOLBO colony is outlined as follows:

e Step 1: Initialization: at the beginning of the process, the ex-
pected response time of the task t; on n; is represented by the
matrix PMRT,

RT(t1,n1) RT(t1,n2) RT(tl,n|N|)
PMRT _ RT(t2,n1) RT (t2,n2) RT(tg,n|N|) (20)
RT(t7,n1) RT(t7), n2) RT(t7),niny)

During the initial iteration of the lower-level optimization, each
anty (k = 1..A, A is the number of the ants) initialize the first
pheromone TiI:]]."k(O) with the value of index i, j of PMRT (Equa-
tion 21).

Subsequently, each ant is randomly deployed on a task node ¢;.

LL.k
77 (0) = pMET (21)

o Step 2: Calculation of heuristic information: each ant con-
structs a tour by executing |T| tasks with a probabilistic transi-
tion rule.

Every anty, selects the next n; to visit according to the probability
given by the following equation:

LL.k LL,k
LL,k(t) _ (Uij )ﬁ(fij )(x

Pij B LLk\g LLk
ZjeQ(Ui’j, )ﬁ(fi’j’ )
In this context, f and « represent the respective weightings
assigned to the heuristic information and pheromone trace. The

(22)
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l
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Pheromones evaporation

Yes

Return output

Add non-dominated solution
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Update pheromones

'

Pheromones evaporation

A4

Return y*

Figure 1: Flowchart of IMOACO based on BMO-TSLB optimization

heuristic function of anty is denoted by qll‘j‘K indicating the
response time of the node n; to execute ;.
The calculation method is as follows:
LLK 1

n.o = (23)
b ﬁtness{flf
J
where the fitness"! is based on the RT, which is defined by Equa-
tion 24.

ﬁtnessiLjﬁ = RT(ti, nj) (24)

The smaller the fitness'! value is, the larger the probability of
selecting the current node n; for ¢; since it has a minimum RT.

Step 3: Local pheromone update: after each iteration, the
pheromone of each ant is updated using the following formula-
tion:

(25)

LLk _ LLk LLk
oy ) =1 _P)Ti,j (t—1)+ ATi,j

where p is the pheromone evaporation rate and the quantity of

LL.k

pheromone left by each anty Deltar; ; calculated as follows:

LLk _ Y

St s == 26
“ - RT(ti,nj) (#6)

Here Q is a constant related to the quantity of pheromone left
by the ants.

o Step 4: Update global pheromone: When all the ants have
constructed their solution, the best solution is selected from
ants based on fitness function (fitness’ = RT(X)). Then, the
updating of the global pheromone is performed on the solution
X;,j as follows:

LLEk(p _ 1y 4 ALLK

LLk
T (1) =1 T (27)

LLk _ VA LLk
where the Arl.)j () = Xy Arl.’j (1).

Step 5: Update non-dominated solutions: the optimal y* is
updated based on the non-dominated solutions found by differ-
ent ants, utilizing the RT (Equation 17) and RU (Equation 18)
objective functions, respectively.

3.2.2 UL-MOTSO optimization colony.

o Step 1: Initialization: at the beginning of the optimization
process in the upper level, the different objective functions are
measured and expressed as a matrix: (1) PMETC, (2) pMCost; (3)
PMERer9y (determined as PMRT). Also, for each anty, the three
pheromones are initialized with matrix PMETC pMmCost | and
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PMERergy respectively.

UL,k,1 _ ETC
i 0) = PMl.’j (28)

UL,k,2 _ Cost
T (0) = PM;; (29)

UL,k,3 _ Energy
T (0) = PMl.’j (30)

o Step 2: Calculation of heuristic information: the heuristic
function of the UL — MOTSO of each anty. is denoted by ;71.Uj.L’k,
and it is determined by:

1
ULk _ (31)

n. =
b ﬁtnesslUjL

where ﬁtnessgjL = ETC(t;, nj) + Cost(tj,nj) +
Energy(t;, nj). Based on the different pheromones concentration
and heuristic function, each anty chooses node j for task i with
the probability p(i, j)ULKis measured as follows:
ULk M ULkmya,y,
(VL&) B T4 (U Lkom)

ULk M ( ULk,
Zjey* (’71',]' )ﬁ Hm:l(Ti’j m)am

pij(HULF = (32)

where a;;, represents the respective weightings assigned to the
pheromone trace of objective m.

o Step 3: Update objectives functions: for each anty, the sched-
uled task is evaluated with MS, Cost, and Energy, which are
measured by equations 4, 10, and 15. Once the objective func-
tions are evaluated, the fitness function will be updated.

o Step 4: Local pheromone update: Once the solution is updated,
each pheromone m trace is updated as follows:

ULk, ULk, ULk,
T} (1) = Tij Mt —-1)+ Afi’j m (33)
UL,km

where At;’;
of anty. on edge (t;, n; for objective m), which measured as fol-

lows:

value represents the change in pheromone level

AgULEM - L (34)
Jj Fr
where Fy. € (ETC(t;,nj), Cost(t;,nj), Energy(ti, nj)).

o Step 5: Update global pheromone: after each iteration, the
global pheromones for each edge X; ; are updated as follows:

ULk, ULk, ULk,
T () = (1 —pm)rl.,j M-1)+ Az, m (35)
where p; is the pheromone evaporation rate for objective m,

peloa). Al = 5, adkRm ),

o Step 6: Update the best global optimal solution: the update
of the best global solution is conducted using a dominance com-
parator that includes the objective functions MS(X), Cost(X),
and Energy(X).

o Step 7: Verification of stopping criteria if the current iteration
G reaches the maximum number of iterations (Gpqx ), the best
global solution is returned, otherwise, it proceeds to step 2.
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4 EXPERIMENTAL STUDIES

This experiment aims to demonstrate how the problem formulation
of task scheduling impacts QoS parameters such as time, cost, and
energy, while also considering the load balance of nodes.

However, the proposed IMOACO is compared against heuristics
and meta-heuristics algorithms:

e FCFS: First Come First Serve algorithm, is a heuristic algo-
rithm that schedules the first process to arrive and allows it to
run to completion [10].

¢ RR: Round Robin algorithm is a type of CPU scheduling algo-
rithm where each process is allocated a fixed time quantum for
its execution [10].

o SJF: Shortest Job First algorithm. It’s a scheduling policy that
chooses the waiting process with the shortest execution time
[10].

e LBACO: Load Balancing Ant Colony Optimization is an im-
proved version of the ACO algorithm, where the probability for
selecting the optimum node for each task is based on excessive
virtual memory and the predicted execution time [14].

e ACO: is a standard ACO algorithm where the objective is mini-
mizing the makespan of a given task set. The task is allocated to
the resource possessing the highest processing speed to ensure
that all tasks are completed in the shortest possible time [17].

Within our simulations, we have manipulated the volume of in-
coming tasks, ranging from a modest 100 to a substantial 1000. The
performance of the compared algorithms is evaluated in terms of
total cost computation, total energy consumption, makespan, and
total resource utilization.

4.1 Parameter Settings

For the conducted experiments, the simulator iFogSim is employed
for modeling and simulating the fog environment for task schedul-
ing. The CPU of the experiment processor is an Intel(R) Core(TM)
15-9300HF CPU @ 2.40GHz with 16 GB of memory, the operation
system is Windows 11 64-bit, and the development tool is Eclipse.
In this section, we present all parameter settings in Table 2, encom-
passing parameters relevant to tasks, fog nodes, and common pa-
rameters for ACO-based algorithms (ACO, LBACO, and IMOACO).

4.2 Results and Analysis

In this section, the comparative results are presented. Tables 3-6
display the mean and standard deviation values of cost, energy,
makespan, and resource utilization across 20 independent runs. In
each table, blue and light blue colors are used to color the first
and second-best algorithm’s results. Table 7 presents the average
rankings of each compared algorithm based the Friedman Test.

The performance of the proposed algorithm is assessed by vary-
ing the task count from 100 to 1000. Observing Figures 2 and 3,
it is evident that increasing the task count impacts system perfor-
mance by escalating the burden. With a higher number of tasks,
both makespan and resource utilization increase. Consequently, the
service time of tasks on fog nodes also rises.
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Table 2: Experiment parameters setting

Entity type Parameter Value
Length of task [9,000, 15,000] MI
File size 300
Tasks Output size 300
Number of 100 — 1000
tasks
Processing rate 512 — 1024 MIPS
Penumper VM 1
Bandwidth 500-1200
Memory 512-2048
Fog nodes (VM)  Storage 100000-800000
Unit cost mem- 0.05
ory
Unit cost stor- 0.001
age
Unit cost band- 0.1
width
Number of VM 50
Number of ants 10
ACO algorithms Grmax iO
B 1
Q 100
IMOACO Number of ants 5

in each colony

Figure 3 illustrates the results obtained by the proposed approach
in terms of resource utilization. The figure indicates that IMOACO
achieved maximum resource utilization across all ranges of tasks,
from small to large, when compared with other algorithms. As con-
firmed by results reported in the tables, the IMOACO outperforms
the other algorithms concerning different metrics.

The observed results indicate that the makespan time of the
proposed IMOACO algorithm is shorter compared to other algo-
rithms. This is attributed to its exploiting the load-balancing to
select optimal nodes for scheduling tasks.

5 CONCLUSIONS

In this paper, the primary contribution lies in the novel formula-
tion of task scheduling optimization, aiming to address most QoS
aspects. This formulation introduces a bi-level multi-objective task
scheduling approach, to simultaneously optimize scheduling and
load balancing. In the optimization process, cost, energy, makespan,
response time, and resource utilization are considered as criteria to
seek an optimal solution that meets user requirements. To address
the formulated problem, we introduce an improved multi-objective
ACO algorithm that utilizes a dominance comparator to assess
solutions discovered during the search process. We conducted a
comparative analysis between our proposed IMOACO approach
and existing scheduling algorithms. The experimental results illus-
trate that our proposed task scheduling mechanism surpasses the
compared algorithms in terms of cost, energy, makespan, and re-
source utilization. The proposed algorithms demonstrate stability in
resource utilization even as task numbers increase. This capability
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Figure 3: Comparison of resource utilization performances

ensures effective handling of the substantial surge in request gen-
eration from edge devices, thereby preventing resource overload.
However, a primary limitation of this work lies in the necessity to
accommodate dynamic environments where there is a lack of prior
information regarding task properties or available resources.

In the future, the developed algorithm can be extended to address
real-time scheduling by extending optimization techniques to solve
dynamic MOP. Additionally, our forthcoming research will focus
on addressing the application of our approach to real-time health
scenarios.
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Table 3: Cost (mean and standard deviation)

N. Kouka, V. Piuri, P. Samarati

N FCFS SJF RR ACO LBACO IMOACO
100  2.2271e+051 36e+04 2.2534e+051 29¢+04  2.2343e+059 51¢+03  2.2790e+051 41e+04  2.2573e+051 04e+04 | 2.2079€+058 86e+03
200  4.4788¢4051 6oe+0s  4.4160€4051 530404  4.5001€+051 oet0s  4.4667€+051 620404  4.4571€+051 540404 | 4414664051 590404
300 6.6669e+051 72¢+04 6.6668€+053 21¢+04 6.6497e+051 63e4+04 6.7019€+051 76e+04 6.6843e+052 15¢+04 = 6.6393e+052 53¢+04
500 1.1111e+062.60e+04 1.1130e+063 260404 1.1075¢+062 380404  1.1062e4062 27e+04  1.1168€+061 agetos | 1.10426+062 410404
1000 2.2155e+003 35¢+04 2.2157€+003 36e+04 2.2163e+004 17¢+04 2.2321e+063 8ge+04  2.2365€+062 950+04 | 2.2148e+064 01e+04

Table 4: Energy (mean and standard deviation)

N FCFS SJF RR ACO LBACO IMOACO
100  2.7466e+051 6g8e+04 2.7791e+051 59¢+04 2.7554€+051 17¢+04 2.8106€+051 74e+04 2.7838e+051 28¢+04 = 2.7229€+051 09e+04
200 5.5235¢4052. 050404 5.4461e+051 050404  5.5498€+052 05¢404  5.5086€4052 00et04  5.4967€+051 500404 | 5.4443¢+051 opetoa
300  8.2220e4055 12404  8.2219€+053 96404  8.2007€+052 010404  8.2652€+053 17¢+04  8.2434€+057 g6c+04 | 8:.18806+053 120404
500 1.3703e+063 32¢+04 1.3726€+064.03¢+04 1.3658e+062 94¢+04 1.3642e+062 80e+04 1.3772e+061 75¢+04 = 1.3618e+062 97¢+04
1000 2.7323€+064 130404  2.7325€+064 140404  2.7333€+065 140404  2.7527€+064 700404  2.75826+063 6ae+04 | 2-73156+064 040404

Table 5: Makespan (mean and standard deviation)

N FCFS SJF RR ACO LBACO IMOACO
100 6.56586¢+031 72¢+03  6.5040e+031 20e+03  6.3185€+031 28e403  4.8691€+033 850402 9.0164€+032 110403 | 4:6173+033 610402
200 7.6086e+036 78¢+02  7.2057e4+031.11e403  7.5290e4+031 28¢+03 4.3735e4+032.33¢+02  1.2260e+041 770403 = 4.0153e+033 49¢+02
300 8.1602e+031.93¢+03 8.2903e4+031.89¢+03  8.1152e4+031 80¢+03  6.2682e4+03330¢+02 1.6959€4+042 10e+03 = 5.4561e4+033 25¢+02
500 1.1773¢+041 g5e403 1.181664041 goeto3  1.1870e+041 83403  9.5386€+033 13¢402  2.8117€+043 760403 | 8271064033 240402
1000  2.3827e+045 110403  2.3750e+041 oges03  2.4790e+041 ¢3e+03  1.7748e+043 g10102  5.3248e+044 200403 | 1.5797¢+044 760402

Table 6: Resource Utilization (mean and standard deviation)

N FCFS SJF RR ACO LBACO IMOACO
100 5.9568¢-011 26001 5.9637e-011.09e—01 6.1188¢-017 18e—01 7.8165-013 110-02 4.3755e-010 g4e—02 | 8.0073e-015 82602
200 3.9527e-01355e-02 4.1659e-01554¢—02 4.0937e-01¢ 68e—02 6.8220e-013 37,—02 2.4740e-013 69¢—02 | 7.3734e-015 69¢-02
300 5.7310e-017.24¢-01 5.6526e-011.30¢-01 5.7079€-011 14¢-01 7.1413e-013 01¢—02 2.6646€-013 12¢,—02 = 8.1313e-014 17¢-02
500 6.4504e-0171 02e-01 6.4314e-019 81¢—02 6.3665e-019 ¢7¢—02 7.7377e-01258¢—02 2.6924e-01339¢—02 = 8.9085e-012 62¢-02
1000  6.2432e-015.12¢-02 6.2554e-014 49¢-02 5.9852e-013 90e—02 8.3852€-0171.13¢—02 2.8193e-012 47¢—02 = 9.3510e-011 94¢-02

Table 7: Average Rankings of the Algorithms for Perfor-

mance Metrics

Algorithm Cost Energy Makespan Resource utilization
FCFS 3.40 3.40 4.20 3.00
SJF 3.40 3.40 3.80 3.20
RR 3.59 3.59 4.00 2.80
ACO 4.60 4.60 2.00 5.00
LBACO 5.00 5.00 6.00 1.00
IMOACO 1.00 1.00 1.00 6.00
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