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Despite advances in recent years in the area of mandatory access control in
database systems, today’s information repositories remain vulnerable to inference
and data association attacks that can result in serious information leakage. Without
support for coping against these attacks, sensitive information can be put at risk
because of release of other (less sensitive) related information. The ability to protect
information diclosure against such improper leakage would be of great benefit to
governmental, public, and private institutions, which are, today more than ever,
required to make portions of their data available for external realease.
In this paper we address the problem of classifying information by enforcing

explicit data classification as well as inference and association constraints. We
formulate the problem of determining a classification that ensures satisfaction of
the constraints, while at the same time guaranteeing that information will not be
overclassified. We present an approach to the solution of this problem and give
an algorithm implementing it which is linear in simple cases, and quadratic in the
general case. We also analyze a variant of the problem that is NP-complete.
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1. INTRODUCTION
Information has become the most important and demanded resource. We live in an

internetworked society that relies on the dissemination and sharing of information in the
private as well as in the public and governmental sectors. This situation is witnessed by a
large body of research, and extensive development and use of shared infrastructures based
on federated or mediated systems [35], in which organizations come together to selectively
share their data. In addition, governmental, public, and private institutions are increasingly
required to make their data electronically available. This often involves large amounts of
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legacy or historical data, once considered classified or accessible only internally, that must
be made partially available to outside interests.
This information sharing and dissemination process is clearly selective. Indeed, if on

the one hand there is a need to disseminate some data, there is on the other hand an equally
strong need to protect those data that, for various reasons, should not be disclosed. Consider,
for example, the case of a private organization making available various data regarding its
business (products, sales, etc.), but at the same time wanting to protect more sensitive
information, such as the identity of its customers or plans for future products. As another
example, government agencies, when releasing historical data, may require a sanitization
process to “blank out” information considered sensitive, either directly or because of the
sensitive information it would allow the recipient to infer. Effective information sharing and
dissemination can take place only if the data holder has some assurance that, while releasing
information, disclosure of sensitive information is not a risk. Given the possibly enormous
amount of data to be considered, and the possible inter-relationships between data, it is
important that the security specification and enforcement mechanisms provide automatic
support for complex security requirements, such as those due to inference channels and
data association [15].
Multilevel mandatory policies, providing a simple (in terms of specification andmanage-

ment) form of access control appear suitable for the problem under consideration, where,
in general, classes of data need to be released to classes of users. Multilevel mandatory
policies control access to information on the basis of classifications, taken from a partially
ordered set, assigned to data objects and subjects requesting access to them. Classifications
assigned to information reflect the sensitivity of that information, while classifications as-
signed to subjects reflect their trustworthiness not to disclose the information they access
to subjects not cleared to see it. By controlling read and write operations accordingly
— allowing subjects to read information whose classification is dominated by their level
and write information only at levels that dominate theirs — mandatory policies provide a
simple and effective way to enforce information protection [3, 19]. In particular, the use of
classifications and the access restrictions enforced upon them ensure that information will
be released neither directly, through a read access, nor indirectly, through an improper flow
into objects accessible by lower-level subjects. This provides an advantage with respect to
authorization-based control, which suffers from this last vulnerability.
Unfortunately, capabilities of existing classification-based (multilevel) systems remain

limited, and little, if any, support for the features mentioned above is provided. First,
proposedmultilevel database models [3] work under the assumption that data are classified
upon insertion (by assigning them the security level of the inserting subject) and therefore
provide no support for the classification of existing, possibly unclassified, databases, where
a different classification lattice and different classification criteria may need to be applied.
Second, despite the large body of literature on the topic and the proposal of several models
for multilevel database systems [14, 16, 23, 26, 36], the lack of support for expressing and
combating inference and data association channels that improperly leak protected infor-
mation remains a major limitation [13, 15, 20]. Without such a capability, the protection
requirements of the information are clearly open to compromise. Proper classification of
data is crucial for classification-based control to effectively protect information secrecy.
We address the problem of computing security classifications to be assigned to infor-

mation in a database system, while reflecting both explicit classification requirements and
necessary classification upgrading to prevent exploitation of data associations and infer-
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ence channels that leak sensitive information to lower levels. We provide a uniform formal
framework to express constraints on the classification to be assigned to objects. Like oth-
ers [6, 29, 30], we consider constraints that express lower bounds on the classifications of
single objects (explicit requirements) or sets of objects (association constraints), as well
as relationships that must hold between the classifications of different objects (inference
constraints). In addition, we allow for constraints that express upper bounds on the clas-
sifications to be assigned to objects to take into consideration visibility requirements and
subjects’ existing (or prior) knowledge.
One of the major challenges in the determination of a data classification for a set of

constraints is maximizing information visibility. Previous proposals in this direction are
based on optimality cost measures, such as upgrading (i.e., bringing to a higher classifi-
cation, assuming all data is at the lowest possible level, otherwise) the minimum number
of attributes or executing the minimum number of upgrading steps [29, 30], or on explicit
constraints allowing the specification of different preference criteria [6]. Determining such
optimal classifications is often an NP-hard problem, and existing approaches typically per-
form exhaustive examination of all possible solutions [6, 30]. Moreover, these proposals
are limited to the consideration of totally ordered sets of classifications [6, 29, 30] and
intra-relation constraints (i.e., constraints involving attributes in a single relational table)
due to functional and multivalued dependencies [30]. While these cost-based approaches
afford a high degree of control over how objects are classified, the computational cost of
computing optimal solutions may be prohibitive. Moreover, it is generally far from obvious
how to manipulate costs to achieve the desired classification behavior.
We introduce a notion of minimality that captures the property of a classification sat-

isfying the protection requirements without overclassifying data. We propose an efficient
approach for computing a minimal classification and present an algorithm implementing
our approach that executes in low-order polynomial time. We also identify an important
class of constraints, termed acyclic constraints, for which the algorithm executes in time
linear in the size of the constraints. Finally, we show that the problem of computing clas-
sifications becomes intractable if the set of classification levels is not a lattice, but may be
an arbitrary poset.
The technique we describe can form the basis of a practical tool for efficiently analyzing

and enforcing classification constraints. This technique can be used for the classification
of existing data repository to be classified (or sanitized) for external release in the design
of multilevel database schemas, as well as in the enhancement of already classified data
whose classification may need to be upgraded to account for inference attacks.

2. BASIC DEFINITIONS AND PROBLEM STATEMENT
Multilevel mandatory policies are based on the assignment of access classes to objects

and subjects. Access classes in a set are related by a partial order, called the dominance
relation, denoted , that governs the visibility of information, where a subject has access
only to information classified at the subject’s level or below (no-read-up principle [2]). The
expression is read as “ dominates ”, and (i.e., and ) as “ strictly
dominates ” . The partially ordered set is generally assumed to be a lattice and,
often, access classes are assumed to be pairs of the form , where is a classification
level taken from a totally ordered set and is a set of categories taken from an unordered
set. In this context, an access class dominates another iff the classification level of the
former is at least as high in the total order as that of the latter, and the set of categories is
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FIG. 1. Examples of security lattices.

a superset of that of the latter. For instance, Figure 1(a) illustrates a classification lattice
with two levels ( ) and two categories (Army, Nuclear). For generality, we do
not restrict our approach to specific forms of lattices, but assume access classes, to which
we refer alternately as security levels or classifications, to be taken from a generic lattice.
We refer to the maximum and minimum elements of a lattice as (top) and (bottom),
respectively, according to standard practice. Figure 1 depicts three classification lattices
that are used to illustrate examples throughout the paper.
The security level to be assigned to an attribute may depend on several factors. The

most basic consideration in determining the classification of an attribute is the sensitivity
of the information it represents. For instance, if the names of a hospital’s patients are not
considered sensitive, the corresponding attribute might be labeled at a level such
as . On the other hand, the illnesses of patients may be considered more sensitive,
and the attribute might be labeled at a higher level, such as . Additional
considerations that can affect the classification of an attribute include data inference and
association. Data inference refers to the possiblity of determining, exactly or inexactly,
values of high-classified attributes from the values of one or more low-classified attributes.
For instance, a patient’s insurance and employer may not be considered sensitive, yet
insurance and employer togethermay determine a specific insurance plan. Thus, knowledge
of a patient’s insurance and employer may permit inference of at least the type of insurance
plan. If the insurance plan is considered more sensitive than either the insurance or the
employer, it may be necessary to raise the classification of either the or the

attribute (or possibly both) to prevent access to information that would enable
inference of insurance plan. Data association refers to the possibility that two or more
attributes are considered more sensitive when their values are associated than when either
appears separately. For instance, the fact that there is a patient named Alice may be ,
and the fact that there is a patient whose illness is HIV may be classified at
level, but the fact that Alice’s illness is HIV may be considered even more sensitive (e.g.,

). If the association of two or more attributes is considered more sensitive than
any of the individual attributes, the classification of at least one of the attributes must be
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set sufficiently high to prevent simultaneous access to all the attributes involved in the
association.2

2.1. Classification Constraints
Classification constraints specify the requirements that the security levels assigned to

attributes must satisfy. Specifically, they are constraints on a mapping that
assigns to each attribute a security level , where is a classification
lattice. We first identify four general classes of constraints according to the requirements
they specify.

Basic constraints specify minimum ground classifications for individual attributes, for
example, and . They reflect the sensitivity
of the information represented by individual attributes and ensure that the attributes are
assigned security levels high enough to protect the information.

Inference constraints are used to prevent bypassing of basic constraints through data
inference. They require the classification of an attribute, or the least upper bound of the
classifications of a set of attributes, to dominate the classification of another attribute. For
instance, the constraint , corresponding to
the inference example from the previous discussion, requires that the least upper bound
( ) of the levels assigned to attributes and dominate the level
assigned to attribute . Note that this constraint does indeed express the desired
prevention of (low-to-high) inference from and to , since, if
the constraint is satisfied, a subject can access both and only if the
subject’s clearance level dominates the classification of . It is also the weakest such
constraint, allowing the greatest possible flexibility in the assignment of classifications to

and . In particular, it does not necessarily require the classification
of either or to dominate that of . For instance, referring to
the lattice in Figure 1(c), if the assignments
and satisfy the constraint, since

, although neither nor dominates .
Association constraints are used to restrict the combined visibility of two or more at-

tributes, requiring the least upper bound of their classifications to dominate a given ground
level. For instance, the association constraint re-
quires that the least upper bound of the classifications of and dominate

. Note that the same effect could be achieved by a basic constraint requiring the
classification of either or to dominate , but this alternative is in gen-
eral stronger than necessary. For instance, if is already classified at the
level because of a basic constraint, a classification of would suffice for .
Also, there is no need to raise the level of above . The explicit association
constraint is the weakest constraint form that specifies the desired requirement.

Classification integrity constraints are imposed by the security model itself and have
the same form as inference and association constraints. They typically include primary
key constraints and referential integrity constraints [36]. Primary key constraints require

Note that, in principle, association constraints could be enforced without direct classification of the involved
attributes (by run time monitoring and logging [18]). In this paper we do not consider this hypothesis (expensive
and most often infeasible in practice) and require, like others, association constraints to be satisfied directly on
the classification of the attributes in the association.
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that key attributes be uniformly classified and that their classification be dominated by
that of the corresponding non-key attributes. Referential integrity constraints require that
the classification of attributes representing a foreign key dominate the classification of the
attributes for which it is foreign key. The purpose of classification integrity constraints is
to ensure that the view of a database visible at any given level adheres to the data integrity
constraints imposed by the data model. For instance, if primary key constraints are not
satisfied, views at certain levels would contain null values for key attributes. Similarly, if
referential integrity constraints are not satisfied, views at certain levels would have foreign
keys with no corresponding primary key.

The constraints in all the four categories express restrictions on the visibility of information
and can be expressed in a single general form termed lower bound constraints, defined
formally as follows.

Lower Bound Constraint). Let be a set of attributes and
be a classification lattice. A lower bound constraint over and is an expression

of the form , where , , , and is
either a security level or is of the form , with . If , the expression
may be abbreviated as .

Although inference and association constraints differ in form (i.e., any inference con-
straint always has the level of an attribute on its right-hand side, while any association
constraint always has a security level on its right-hand side), this distinction is not im-
portant in our classification approach, and Definition 2.1 does not distinguish between the
different classes of lower bound constraints.
Note that all constraints allowed by Definition 2.1 have the form (as opposed to
), with security levels on the right-hand side only. That is, each of them specifies a

lower bound on the classification that can be assigned to the attributes (which can be
upgraded as required by other constraints). For instance, a constraint requiring
to be classified at level will be stated as , implying
that must be classified at least . This interpretation is a property of
the problem under consideration, where data classification may need to be upgraded to
combat inference channels and to solve association constraints. Note that assigning to an
attribute a classification lower than that required by lower bound constraints would, directly
or indirectly, leak information to subjects not cleared for it. Thus, the main function of
lower bound constraints is to capture the requirements on classification assignments that
will prevent improper downward information flow.
Although lower bound constraints are sufficient for expressing the prevention of down-

ward information flow, it can also be useful to establish maximum levels that should be
assigned to attributes. Such maximum levels can be specified by upper bound constraints,
defined as follows.

Upper Bound Constraint). Let be a set of attributes and
be a classification lattice. An upper bound constraint over and is an expression

of the form , where is a security level and is an attribute.

Upper bound constraints have two main uses. One is the specification of visibility
requirements, since their satisfaction ensures that the attribute will be visible to all subjects
with level dominated by the specified upper bound. For instance, if we wish to guarantee
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that names of patients in a hospital are always accessible to the administrative staff,wemight
impose the constraint to prevent the classification of from
being raised above . In fact, this constraint together with the lower bound constraint

effectively forces the classification of to be exactly .
The other main use of upper bound constraints is the modeling of subjects’ existing or prior
knowledgeof certain information stored in the database. If such knowledge is not accounted
for in the classification of the database, it is possible to produce classifications that provide
a false sense of security. For instance, suppose that providers know the illnesses of patients
in a hospital. This knowledge could be captured by the constraint .
Without this constraint, it might happen that inference or association constraints produce a
higher (or incomparable) classification, say , for . Thus, although
appears to be information classified at , it really is not, since providers already know
the illnesses of patients. Explicit upper bound constraints can prevent the assignment of
such misleading classifications.
Lower and upper bound constraints can be represented abstractly as pairs (lhs,rhs), where

lhs is the security level or the (possibly singleton) set of attributes appearing on the left-hand
side of the constraint, and rhs is the attribute or security level appearing on the right-hand
side of the constraint. Among lower bound constraints we refer to constraints whose
left-hand side is singleton as simple constraints, and to constraints with multiple elements
in the left-hand side as complex constraints. Although the definitions do not permit
expressions on the right-hand sides of constraints, this does not limit their expressiveness,
since a constraint of the form is equivalent to the set of
constraints . In the remainder of the paper we refer to
arbitrary sets of lower and upper bounds constraints simply as classification constraints
and distinguish between lower and upper bound constraints when necessary.
Any set of classification constraints can be viewed as a directed graph, which we call the

constraint graph, not necessarily connected, containing a node for each attribute and
security level . Each simple constraint is represented in the graph by a directed edge
from the node representing the left-hand side to the node representing the right-hand side.
For complex constraints, the left-hand side is represented by the set of nodes corresponding
to the attributes on the left-hand side of the constraint. We refer to such a set of nodes as
a hypernode. The complex constraint is itself represented in the graph by a directed edge
from the hypernode representing the left-hand side to the node representing the right-hand
side.
Figure 2 illustrates an example of a classification constraint graph, where security levels

are taken from the lattice in Figure 1(c). Circle nodes represent attributes, square nodes
represent security levels, and dashed ellipses represent hypernodes. Note that upper bound
constraints are edges from level nodes to attribute nodes. All other edges represent lower
bound constraints. The constraints refer to information in a hospital database and reflect
the following scenario. The two association constraints, and , require protection
of each patient’s and information. In particular, the association between

s and their es can be knownonly to subjects at level or above, and
the association between s and their s can be known only to subjects at level

or above. Other lower bound constraints reflect (precise or imprecise) inferences
that can be drawn from the data and that must therefore be reflected in the classification.
For instance, by knowing the who is caring for a , a subject can deduce
the patient’s within the specific set of illnesses falling in the doctor’s specialty.



8 S. DAWSON, S. DE CAPITANI DI VIMERCATI, P. LINCOLN, P. SAMARATI

CLASSIFICATION CONSTRAINTS CLASSIFICATION CONSTRAINT GRAPH

Basic constraints

Inference constraints

Association constraints

Upper bound constraints

division

plan insurance

employer

Public

Clinical Research

Provider

Financial

Adminvisit

exam

doctor

treatment

bill

illness

patient

prescription

FIG. 2. An example of classification constraints and corresponding classification constraint graph

Hence, the classification of attribute must dominate the classification of attribute
( ). Analogously, the insurance together with the health care

allows inference on . Hence, subjects should have visibility on both the
and only if they have visibility on . In terms of the classifications, the least
upper bound of the classification of and must dominate the classification
of ( ). The motivation behind the other inference constraints appearing in the
figure is analogous. There are also several basic constraints that require the classification
of certain attributes to dominate specific levels. For instance, s can be
released only to subjects at level or above ( ). In addition, there are three upper
bound constraints reflecting the fact that specific information cannot be classified above
certain levels because of required access or to account for information already known, as
discussed. For instance, the classification of must be dominated by ( )
and the classification of must be dominated by ( ). It should be noted
that the constraint graph is used only informally to help illustrate the approach. In the
discussion we refer to the constraints and to their graphical representation interchangeably,
and we often refer to a constraint (lhs, rhs) as the existence of an edge between lhs and rhs.
Among lower bound constraints we identify two subclasses of constraints. Intuitively,

lower bound constraints whose graph representation is acyclic (i.e., is a DAG) are called
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acyclic constraints, while those involved in a cycle, including cycles through hypernodes 3,
are called cyclic constraints. The notion of cyclic constraints is made more precise by the
following definition.

Cyclic Constraints). Let be a set of attributes, a
classification lattice, and a set of lower bound constraints over and . is cyclic iff
it can be ordered into a sequence lhs rhs lhs rhs such that rhs lhs ,

, and rhs lhs . Such a sequence is referred to as a constraint cycle. A set
of constraints is acyclic iff no subset of is cyclic.

A cycle involving only simple constraints is called a simple cycle. For instance, consid-
ering only the lower bound constraints in Figure 2, the constraints ( , ),
( , , ), and ( , ) are cyclic; the simple constraints
( , ), ( , ), and ( , ) constitute a simple cycle;
and all other lower bound constraints are acyclic.

2.2. Minimal Classification
Given a set of classification constraints, the objective is to produce a classification

, which is an assignment of security levels in to attributes in , that satisfies
the constraints. A classification satisfies a set of constraints, denoted , iff for
each constraint, the expression obtained by substituting every with its corresponding
level holds in the lattice ordering. In general, there may exist many classifications that
satisfy a set of constraints. However, not all classifications are equally good. For instance,
the mapping classifying all data at the highest possible level satisfies any
set of lower bound constraints. Such a strong classification is clearly undesirable unless
required by the classification constraints, as it results in unnecessary information loss (by
preventing release of information that could be safely released). Although the notion of
information loss is difficult tomake both sufficiently general and precise, it is clear that afirst
requirement in minimizing information loss is to prevent overclassification of data. That is,
the set of attributes should not be assigned security levels higher than necessary to satisfy
the classification constraints. A classification mapping that meets this requirement is said
to beminimal. To be more precise, we first extend the notion of dominance to classification
assignments. For a given set of attributes, classification lattice , and mappings

and , we say that iff . The
notion of minimal classification can now be defined as follows.

Minimal Classification). Given a set of attributes, classification
lattice , and a set of classification constraints over and , a classification

is minimal with respect to iff (1) ; and (2) for all such
that , .

In other words, a minimal classification is one that both satisfies the constraints and
is (pointwise) minimal in the lattice. Note that a minimal classification is not neces-
sarily unique. For instance, referring to the lattice in Figure 1(c), the single constraint

For the purpose of determining cycles only, the attribute on the right-hand side of a constraint is considered
reachable from every attribute on the left-hand side. Note that hypernodes never have incoming arcs, but the
attribute nodes they contain may.
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has four minimal solutions, two of which classify one attribute
and the other , while the other two solutions classify one attribute

and the other .
The main problem now is to compute a minimal classification from a given set of

classification constraints.

). Given a set of attributes to be clas-
sified, a classification lattice , and a set of classification constraints over
and , determine a classification assignment that is minimal with respect to .

In general, a set of constraints may have more than one minimal solution. The following
sections describe an approach for efficiently computing one such minimal solution and a
(low-order) polynomial-time algorithm that implements the approach.

3. SKETCH OF THE APPROACH
A basic requirement that must be satisfied to ensure the existence of a classification is

that the set of classification constraints provided as input be complete and consistent. A set
of classification constraints is complete if it defines a classification for each attribute in the
database. It is consistent if there exists an assignment of levels to the attributes, that is, a
definition of , that simultaneously satisfies all classification constraints. Completeness is
easily guaranteed by providing a default classification constraint of the form for
every attribute . In addition, any set of lower bound constraints, which uses only the
dominance relationship and security levels (constants) only on the right-hand side, is by
itself consistent, since mapping every attribute to trivially satisfies all such constraints.
Analogously, any set of upper bound constraints is by itself trivially consistent. However,
a set of constraints that includes both upper and lower bound constraints is not necessarily
consistent, the simplest example of inconsistent constraints being
(assuming that and are distinct). Given an arbitrary set of constraints, our approach
first enforces upper bound constraints to determine a firm maximum security level for
each attribute. In the process, the consistency of the entire constraint set is checked. If
the enforcement of upper bound constraints succeeds, a second phase evaluates the lower
bound constraints to determine a minimal classification. We assume throughout that the
left- and right-hand sides of each constraint are disjoint, since any constraint not satisfying
this condition is trivially satisfied.
The remainder of this section describes the two solution phases at an intuitive level. An

algorithm implementing the approach is presented formally in the following section.

3.1. Upper Bound Constraints
Upper bound constraints require the level of an attribute to be dominated by a specific

security level. Because of the transitivity of the dominance relationship and the presence of
lower bound constraints, upper bound constraints can indirectly affect other attributes be-
sides those on which they are specified. For instance, the combination of upper bound con-
straint and lower bound constraint
forces as a maximum level for attribute as well. Intuitively, an upper
bound constraint affects all the attributes on those paths in the constraint graph that have
the upper bound constraint as the initial edge. Each upper bound constraint can thus be
enforced by traversing paths from security levels and propagating the constraint forward,
lowering the levels of attributes encountered along the way accordingly (to the highest
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levels that satisfy the constraints). More precisely, let be a security level on the left-hand
side of some upper bound constraint. For each edge leaving from node to some attribute
node , we propagate forward as follows. If dominates the current level of , the upper
bound constraint under consideration is satisfied, and the process terminates. If not, the
level of attribute is lowered to the greatest lower bound ( ) of its current value and
. A unique such level is guaranteed to exist because we are working in a lattice. For each
edge leaving from , level is propagated to the node on which that edge is incident. Also,
for each edge leaving from a hypernode that contains , the least upper bound of the
levels of all the attributes in the hypernode is propagated to the node reached by that edge.
Propagating a level to an attribute node means lowering to the greatest lower
bound of its current level and , and proceeding recursively on all edges leaving from
or from hypernodes containing it as just described. This process terminates for each path
when a leaf node (security level) is reached. Then, if the level being propagated dominates
the level of the leaf node, the process terminates successfully for the upper bound constraint
being considered. Otherwise, an inconsistency in the constraints has been detected. In this
case the process terminates with failure.4
The example in Figure 3 provides a simple illustration of the upper bound compu-

tation. Initially, the level of each attribute is set to ( ). There is only one
upper bound constraint, . Propagating level forward
causes to be lowered to . Likewise,
is propagated to as a result of the constraint ,
lowering to . Next, the constraint is
checked and found to be satisfied, since . Similarly, the constraint

is found to be satisfied, since the least upper
bound of and is , which dominates . Finally, the
remaining constraint on , is checked and found to be
satisfied, and the upper bound computation succeeds with the upper bounds as shown in
the figure. Note that if we were to replace the upper bound constraint with

, for example, the process would fail upon checking ,
since is false.

3.2. Lower Bound Constraints
Upon successful completion of the enforcement of upper bound constraints, the maxi-

mum allowed security level for each attribute is known, and the upper bound constraints
require no further consideration. The second phase thus deals exclusively with lower

In principle, the actions executed in this forward propagation process could be rescinded and the upper bound
constraint ignored, pointing out the inability to satisfy it.
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bound constraints to determine a minimal classification. Among lower bound constraints
we consider separately the acyclic and cyclic constraints (see Definition 2.3). The reason
for considering them separately is that acyclic constraints, which are expected to account
for most constraints in practice, can be solved using a simpler and more efficient approach
than that needed for cyclic constraints.

3.2.1. Acyclic Constraints
A straightforward approach to computing a minimal classification involves performing

a backward propagation of security levels to the attributes. Consider an acyclic constraint
graph with no hypernodes (simple constraints only). Starting from the leaves, we traverse
the graph backward (opposite the direction of the edges) and propagate levels according to
the constraints. Intuitively, propagating a level to an attribute node according to a set of
constraint edges means assigning to the least upper bound of
all levels represented by . Note that, because of the successful termination of
the upper bound phase, this least upper bound is guaranteed to be dominated by the level
assigned in the upper bound phase. As long as each is guaranteed to remain fixed,
propagating levels in this way ensures that is assigned the lowest level that satisfies all
constraints on it. Thus, for acyclic simple constraints the unique, minimal solution can
be computed simply by propagating levels back from the leaves, visiting all the nodes in
(reverse) topological order.
As an example, consider the simple constraints and the corresponding constraint graph in

Figure 4. Applying the process just outlined, we first propagate level to and
level to . With the final levels for and now known, we
next propagate the least upper bound of , , and to ,
thus classifying it . Finally, we propagate the least upper bound of
and , to , classifying it . The resulting minimal solution is
shown in Figure 4.
This process is clearly the most efficient one can apply, since each edge is traversed

exactly once. In terms of the constraints, this corresponds to evaluating the constraints in
a specific order, evaluating each constraint only once, when the level of its right-hand side
becomes definitely known, and modifying the left-hand side accordingly.
In a set of acyclic constraints, the propagation method described for simple constraints

alone requires only minor adaptation to handle complex constraints as well. The key
observation is that a complex constraint can be solved minimally by choosing any single
attribute on the left-hand side and assigning it a minimal level that satisfies the constraint,
provided that neither the level of the right-hand side nor the levels of any other attributes on
the left-hand side are later altered. Intuitively, this corresponds to enforcing the constraint
on the attribute in the hypernode whose classification is computed last. As long as the
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FIG. 5. Acyclic (simple and complex) constraints, graph, and minimal solutions

constraints are acyclic, there exists an order of constraint evaluation (security level back-
propagation) that ensures that the security levels of all attributes involved in a complex
constraint are known prior to the selection of one for minimal assignment. For instance,
consider the constraints in Figure 5. The complex constraint

( ) can be solved by assigning either to or to .
Note that either solution is minimal according to Definition 2.4. The particular minimal
solution generated depends on the order of constraint evaluation. For the example in
Figure 5, the first solution ( ) is computed
if the simple constraint on ( ) is evaluated first, whereas the second solution
( ) is computed if the simple constraint
on ( ) is evaluated first.

3.2.2. Cyclic Constraints
For cyclic constraints the simple back-propagation of security levels is not directly

applicable, and it is not clear whether themethod can be adapted easily to deal with arbitrary
sets of cyclic constraints. Simple cycles, that is, cycles involving only simple constraints,
are easily handled since they imply that all attributes in the cycle must be assigned the same
security level — we can simply “replace” the cycle by a single node whose ultimate level is
then assigned to each of the original attributes in the cycle. For instance, we might imagine
replacing the simple cycle involving attributes , , and in Figure 2
by a single node labeled “ , , ” and proceeding as before. However,
when complex constraints are involved in a cycle, the problem becomes more challenging.
Recall that a complex constraint can be solved minimally by selecting any left-hand-side
attribute on which to impose the constraint, provided that the level of no other attribute in
the constraint subsequently changes. For cyclic complex constraints, it can be difficult to
ensure that this requirement is satisfied. We might impose a level on one attribute on the
left-hand side of a complex constraint only to find that a higher level is propagated through
a cycle to another attribute in the same constraint. The constraint remains satisfied, but
the resulting classification may not be minimal, since the original assignment to may
have been higher than necessary for satisfaction of the constraint.
In many cases it may be possible to determine a priori an order of constraint evalua-

tion and a unique candidate on which to impose each complex constraint that guarantees
a minimal classification using back-propagation. However, as the cycles become more
complicated, the determination of such attributes becomes more complex. The prob-
lem becomes particularly acute for cyclic complex constraints whose left-hand sides are
nondisjoint, since the choice of one attribute for one constraint may invalidate the choice
made for another. For instance, consider the following two constraints from Figure 2:
( , , ), ( , , ). Assigning level to

to satisfy the first constraint automatically satisfies the second constraint, im-
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plying that the second constraint must also be imposed on . Moreover, it is not
generally possible to choose a single attribute in the intersection of two or more left-hand
sides on which to impose all the intersecting constraints. As an example, consider three
constraints whose left-hand sides are , , and , respectively. Two at-
tributes appearing together in the left-hand side of one of these constraints will necessarily
have a constraint imposed on them. The result in such a case can still be minimal. However,
it can be far from clear whether any two attributes will do, and if not, which two should be
chosen, when such intersecting constraints are entangled in a complex cycle.
Since it is difficult, at best, to ensure that no level assignment performed during back-

propagation of levels through cycles involving complex constraints will ever be invalidated,
we appear to be left with essentially two alternatives: (1) augment the back-propagation
approach with backtracking capabilities for reconsidering and altering assignments that
result in nonminimal classifications, or (2) develop a different approach for computing
minimal classifications from cyclic constraints. We would of course prefer a method that
is as close as possible in computational efficiency to the simple level propagation for
acyclic constraints. Thus, we reject alternative (1), since the worst-case complexity of a
backtracking approach is proportional to the product of the sizes of the left-hand sides of
all constraints in the cycle. Instead, we develop a new approach to be applied to sets of
cyclic constraints.
This new approach begins with all attributes involved in a cycle at high security levels,

and then attempts to lower the level of each such attribute incrementally as long as all
affected constraints remain satisfied. More specifically, assume that we are given a set
of cyclic constraints and that every attribute in the cycle is initially assigned the highest
classification allowed by the upper bound constraints. For each attribute involved in
the cycle, we attempt to lower the level of , one step at a time along an arbitrary path
down the lattice. At each step we check whether lowering the level of would violate
any constraints, as follows. For each constraint on , we check whether the level of the
left-hand side would still dominate that of the right-hand side if were to be assigned
the lower level. If the constraint would still be satisfied, we continue and try an even
lower level for . Otherwise, we check whether the level of the right-hand side can also
be lowered so that the constraint is again satisfied. If the right-hand side is definitively
assigned (a ground level or an attribute whose level is already determined), and therefore
cannot be lowered, we fail. Otherwise, the right-hand side is another attribute , and we
then attempt (recursively) to lower the level of . If, finally, the attempted lowering of
from a level to a level fails, the lowering is attempted again along a different path

down the lattice from . The last level for which lowering succeeds is ’s final level.
Repeating this procedure for each attribute, the result at the end of the entire process is a
minimal classification for all attributes in the cycle.
For a simple illustration of this procedure, consider the constraint set in Figure 6,

which contains a cyclic subset ( , , ). Assume that all four attributes in the cycle
( , , , and ) are initially labeled at level ( ). To
enforce the cyclic constraints, we select an arbitrary attribute, say , from the cycle
and attempt to lower its level. We may try either or , and we choose
arbitrarily. We can lower to as long as all affected constraints remain
satisfied. The first constraint on remains satisfied, since . The
second constraint on remains satisfied only if can also be lowered
to . Attempting to lower to , we find the simple constraint on
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FIG. 6. Cyclic constraints, constraint graph, and a minimal solution

( ) remains satisfied, and the complex constraint ( ) as well, since
is . It is easy to see, then, that and, consequently, can
be lowered ultimately to . Suppose now that we attempt to lower .
Since we may try and find that both and remain
satisfied. Finally, we attempt to lower . We first try level and find that
the simple constraints on ( and ) remain satisfied, since and

. We now try to lower to . This
attempt fails because constraint remains satisfied only if can be lowered
to . This is not possible because of the constraint ( ).
We then try to lower to and succeed. Subsequently, we try to lower

to . Again constraints and remain satisfied, and so in the last
step of the process we try to lower to . As before, this attempt fails
because it would require to be lowered to as well, which cannot be
done. Once the cyclic constraints have been solved is assigned level , which
is the lowest level that it can assume without violating the dominance constraints imposed
on it, namely ( ) and
( ). The computed minimal solution appears in Figure 6.
Unlike the back-propagationmethod, which is applicable only to acyclic constraints, the

incremental, forward-lowering approach is applicable to all constraints. However, it is not
generally as efficient, although its complexity remains low-order polynomial. Thus, it is
preferable to apply the simple back-propagationmethod wherever possible and reserve the
forward-lowering approach for sets of cyclic constraints. The following section describes
an algorithm that elegantly combines the two approaches for greatest efficiency on arbitrary
sets of constraints.

4. ALGORITHM
At a high level, the algorithm implementing our approach consists of four main parts.

In the first part, we identify sets of cyclic constraints to be evaluated with the forward
lowering approach and determine the order in which attributes (sets of attributes in the case
of cyclic constraints) will be considered for both the upper and lower bound constraint
solving phases. The second part enforces upper bound constraints and, in the process,
checks the entire input constraint set for consistency. The third and fourth parts represent,
respectively, the back-propagationmethod for acyclic constraints and the forward lowering
method for cyclic constraints. These two components operate alternately according to
whether or not the attribute under consideration is involved in a cycle. The procedures
embodying the different parts of the approach are presented formally in Figures 7 – 11.
Here we describe them informally.
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We assume that the input constraint set is partitioned into two sets: , the upper
bound constraints, and , the lower bound constraints. The upper bound constraints
are considered only in the computation of upper bounds for the security levels of attributes
(procedure compute upper bounds), while lower bound constraints are considered in
all phases of the algorithm. To begin the algorithm, proceduremain (Figure 7) initializes
several variables that are used either during theDFS procedures or in the actual classification
process, as follows. For each attribute , Constr[ ] is the set of (lower bound) constraints
whose left-hand side includes attribute , visit is used in the graph traversal to denote if
has been visited, and done[ ] is set to when becomes definitively labeled. For

each security level , we set done to , since security levels are constants, and
visit to , since security levels are leaves in any (lower bound) constraint graph and thus
represent terminal points in any traversal of the graph. With each constraint we
associate a count, count , initialized to the number of attributes in the left-hand side of ,
and used during the computation of a solution to keep track of the number of attributes in
the left-hand side of remaining to be considered (in various phases of the algorithm).
Next, main proceeds to its primary task, which is to determine an ordering of the

attributes that both identifies cyclic relationships and captures the order in which attributes
will be considered when evaluating the classification constraints on them. This ordering
reflects possible dependencies between the security levels of the attributes, as specified
by the lower bound constraints, and is a total order over sets of attributes. Two attributes
whose levels may be mutually dependent are part of a constraint cycle and are considered
equivalent in terms of the attribute ordering. Intuitively, the security level of one attribute
depends on that of a second attribute if the second is reachable from the first in the constraint
graph. For the purpose of determining reachability only, we interpret each edge from a
hypernode to a node as a set of edges, one from each attribute in the hypernode to the node.
For instance, in the constraint in Figure 6, we
would consider to be reachable from either or . This interpretation
reflects the fact that the security levels of either or may depend on the
level of . Using this interpretation of reachability, then, attributes involved in cyclic
constraints correspond to those in strongly connected components (SCCs) of the constraint
graph. More formally, we define SCCs as disjoint sets of attributes involved in constraint
cycles (Definition 2.3), as follows.

Strongly Connected Component). Let be a set of attributes,
a classification lattice, and a set of lower bound constraints over and . A

strongly connected component (SCC) of is a nonempty subset of having the following
properties:

1.Every attribute is a member of exactly one SCC.
2.Any two distinct attributes belong to the same SCC if and only if there

exist constraints lhs and lhs and a constraint cycle such
that lhs and lhs .

In other words, the SCCs of a constraint set partition the attributes, and each SCC is the
collection of attributes on the right-hand sides of a maximal set of cyclic constraints (which
may include constraints in intersecting or overlapping constraint cycles).
Constraint cycles can therefore be identified by applying known methods for identifica-

tion of SCCs. If we think of each such SCC as a kind of node (or node group) itself, the
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Minimal Classification Generation).

Input: A set of attributes , a classification lattice , and a set of constraints
over and , where is a set of lower bound constraints

and is a set of upper bound constraints.
Output: A minimal classification of .

MAIN
/* Variable initialization and setting */
For do
Constr ; /* Keeps track of sets of constraints with on the left-hand side */
visit[ ] := 0; /* Keeps track of whether has been visited in service routines */
done[ ] := /* Keeps track of whether the level of is final or can still change */
For do done[ ] := ; visit[ ] := 1 /* Security level constants are flagged as done and visited */
For c=(lhs,rhs) do
count c /* General-purpose counter of attributes in lhs of that have been, or need to be, processed */
For lhs do /* Add to set of constraints to be imposed on and increment counter of by one */
Constr A := Constr A c ; count count

/* Compute SCCs and topological order between them. Each SCC is an ordered list of attributes */
Stack := /* Start DFS with empty stack. */
For do if visit[ ] = 0 then dfs visit( ) /* Execute DFS on constraint graph */
max scc := 0 /* Initialize number of SCCs */
For do scc /* Initialize all SCCs to the empty list */
For do visit[ ] := 0 /* Reinitialize all attributes to unvisited for reverse DFS */
While (Stack) do /* Execute reverse DFS, considering attributes in order dictated by Stack */

:= (Stack)
If visit[A] = 0 then /* Create new SCC with and all attributes reached from it in reverse DFS */
max scc := max scc + 1; scc[max scc] := ; dfs back visit( )

/* Enforce constraints to compute minimal solution */
For do ; visit[ ] := 0 /* Initialize levels of all attributes and set them as unvisited */
compute upper bounds /* Enforce upper bound constraints (Figure 8) */
compute partial lubs /* Initialize cache of lub computations for complex constraints (Figure 9) */
compute minimal solution /* Enforce lower bound constraints (Figure 10) */

DFS VISIT(A) /* Execute DFS from pushing attributes in Stack as their visit is finished */
visit[ ] := 1
For lhs rhs Constr do If visit[rhs] = 0 then dfs visit(rhs)

(A,Stack)

DFS BACK VISIT(A) /* Execute reverse DFS from , appending attributes to ’s SCC */
visit[A] := 1
For lhs A do
For A lhs do
If visit A then
scc[max scc] := scc max scc
dfs back visit( )

FIG. 7. Main algorithm for computing a minimal classification.



18 S. DAWSON, S. DE CAPITANI DI VIMERCATI, P. LINCOLN, P. SAMARATI

attribute order we seek is essentially the topological order of the attribute nodes (in the case
of acyclic constraints) and SCCs in the constraint graph. Once computed, this order is used
to guide the evaluation of both upper and lower bound constraints.
The computation of the attribute ordering is accomplished through an adaptation of

known approaches to SCC computation involving two passes of the graph with a depth
first search (DFS) traversal [4, 32] of the lower bound constraints. The first pass (dfs visit)
executes a DFS on the constraints, recording each attribute in a stack (Stack) as its visit is
concluded. The second pass (dfs back visit) considers attributes in the order in which they
appear in Stack, assigning each to the SCC list scc max scc (wheremax scc is incremented
as each attributed is visited) and marking the attribute as visited. The SCCs are maintained
as lists rather than sets so that the attributes within an SCC can be processed in a predictable
order in other parts of the algorithm. For each new attribute popped from Stack, the
process walks the graph backward with a (reverse) DFS and adds to the SCC list containing
all attributes it finds still unvisited, since such attributes are necessarily part of the SCC

containing . Each SCC satisfies the following properties: (1) each attribute is a member
of exactly one SCC, (2) any two attributes belong to the same SCC if and only if they
appear together in a cycle (i.e, are mutually reachable), and (3) the index of the SCC to
which any attribute belongs is no greater than that of any attribute reachable from it (i.e.,
on which it depends). As an example, consider the constraints in Figure 2. The execution
ofmain produces the following SCCs:

scc
scc
scc
scc
scc
scc
scc
scc

After initialization and SCC computation,main initializes each attribute’s classification
to and concludes by invoking the constraint solving procedures compute upper bounds
(Figure 8), compute partial lubs (Figure 9), and compute minimal solution (Figure 10).
Procedure compute upper bounds constitutes the process for enforcing upper bound

constraints outlined in Section 3.1. The first step directly evaluates each upper bound
constraint by assigning to the constrained attribute the greatest lower bound ( ) of its
current level and the level specified by the constraint. The remainder of the procedure then
propagates the enforced upper bounds throughout the (lower bound) constraint graph. This
propagation considers each attribute in increasing SCC index order, since the upper bound
of some attribute can affect the upper bounds only of attributes of equal or higher SCC index,
and thus, the number of traversals is minimized. As each attribute is considered, its upper
bound is propagated to other attributes, via procedure upper bound. As upper bound
processes each constraint on an attribute, it decrements count . The level of the left-
hand side is then propagated to the right-hand side only if the count has reached 0, or the
attribute on the right-hand side is in the same SCC. Such delayed propagation optimizes
the processing of acyclic constraints, since the SCC index of the right-hand side attribute
of any acyclic constraint is higher than that of any attribute on the left-hand side. Only
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after the last attribute in the left-hand side has been processed is it necessary to propagate
the level forward.
By considering all attributes in increasing SCC index order, we ensure that all upper

bounds are eventually propagated through the graph (or found to violate the consistency
requirement). Within a cycle (SCC), each upper bound is propagated (procedure up-
per bound) only as far as necessary — the process terminates along any path in which
the upper bound is already satisfied. To ensure that all upper bounds are eventually propa-
gated throughout the cycle, procedure compute upper bounds calls upper bound on all
unvisited attributes in the cycle. This process guarantees that, even if constraints propagate
upper bounds (from attributes of lower SCC index) into a cycle at several points, every
upper bound will be propagated as far as necessary. Note that the level assigned to any
attribute can always be lowered as much as required by any upper bound propagated into the
attribute. Propagation failure can occur only when security levels (leaf nodes) are reached
and the incoming upper bound does not dominate the level of the leaf node. Such failure in-
dicates that the upper bound constraint that originated the failed propagation is inconsistent
with the lower bound constraints. If compute upper bounds completes successfully, we
know that the constraints are consistent and that the computation of a minimal solution will
be successful (Theorem 5.1). The upper bound constraints need no further consideration.
The purpose of compute partial lubs is to precompute, or cache, the least upper bounds

(lubs) of the levels of certain subsets of attributes. These caches of “partial lubs” are used
in procedureminlevel (called by compute minimal solution) to compute quickly the lub
of the current levels of all attributes, except the attribute currently being processed, in the
left-hand side of an arbitrary constraint. The computation of the partial lubs is designed
to take advantage of the fact that attributes in the left-hand side of an acyclic constraint
are processed in a predictable and consistent order (the SCC index order determined by
the DFS procedures). For each lower bound constraint of the form lhs rhs , lhs
partial lubs are computed. At the conclusion of compute partial lubs (the initialization
phase), the first and last partial lub entries for each constraint are each set to , and each
remaining partial lub Plub for constraint is the least upper bound of the levels of all
attributes from SCC index 1 up to . Later, in compute minimal solution, the attributes
will be processed in reverse SCC index order. As the final assignment for each attribute is
determined, its corresponding partial lub entry for each constraint will be recomputed so
that its value is the least upper bound of its own level and the levels of all other attributes in
the left-hand side already processed (whose partial lub entries correspond to higher index
values). The net effect of the precomputation of partial lubs (by compute partial lubs)
and their later recomputation in compute minimal solution is to maintain the following
property: for any constraint lhs rhs , when the attribute of lhs is processed
in compute minimal solution, the least upper bound of the current levels of all other
attributes in lhs is equal to the least upper bound of Plub and Plub .
Procedure compute minimal solution integrates the two approaches (back-propagation

as outlined in Section 3.2.1 and forward lowering as outlined in Section 3.2.2) for deter-
mining a minimal solution for lower bound constraints. Unlike compute upper bounds it
considers attributes in decreasing order of SCC index. That is, compute minimal solution
traverses the constraint graph from the leaves back, rather than from the roots forward. For
each attribute at the SCC index being considered, all constraints in Constr are pro-
cessed as follows. For each constraint whose right-hand side is definitively labeled
(done[rhs]= ), the procedure determines how to enforce the constraint on . If is
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COMPUTE UPPER BOUNDS
For l A do A A l /* Enforce direct upper bound constraints */
For i max scc do /* Consider SCCs in topological order */
For scc do
If visit[A] = 0 then upper bound /* Propagate upper bounds forward */

UPPER BOUND
visit[A] := 1
For lhs rhs Constr A do
/* Here count is used to delay forward propagation until all lhs attributes have been visited. */
If count then count count
If count or rhs scc i then /* is the last lhs attribute to be visited or belongs to a cycle */
/* Compute levlhs as the least upper bound of attributes on the left-hand side of */
levlhs ; For A lhs do levlhs levlhs A
If levlhs rhs then /* is not satisfied */
If rhs then Fail /* Right hand side is a security level; constraints are inconsistent */
else /* Right-hand side is an attribute; impose constraint on it and propagate forward */

rhs rhs levlhs
If rhs scc i then upper bound rhs

FIG. 8. Procedures for enforcing upper bound constraints.

COMPUTE PARTIAL LUBS
/* For each constraint , compute an array Plub with one entry for each attribute in the lhs, plus a */
/* sentinel ( ) at either end. The entries are ordered opposite to the order in which attributes are processed */
/* later in compute minimal solution. At the end of this computation, each entry Plub */
/* contains the lub of the levels of attributes corresponding to entries through . */
For c do count Plub
For i max scc do /* Consider SCCs in topological order. */
For scc do /* Within each SCC, consider attributes in reversed order */.
For lhs rhs Constr A do
count count ; count
Plub Plub A

For c do count ; Plub

FIG. 9. Computation of upper bound of complex constraints

simple ( lhs ), the level of the right-hand side is accumulated via the least upper bound
( ) operation into variable (initialized to ). Otherwise, is complex, and
is called to compute a minimal level that must dominate (accounting for the current
levels of the other attributes on the left-hand side of the constraint) and still satisfy the
constraint. Procedure minlevel first computes the least upper bound of the levels of all
other attributes (lubothers) by using the precomputed partial lubs. If is the attribute
on the left-hand side to be processed, the lub of the other levels is simply the lub of the
partial lubs Plub and Plub . Next,minlevel computes a minimal level for
that maintains satisfaction of by descending the lattice along a path from ’s current

level, one level at a time, stopping at the lowest level foundwhose direct descendants would
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COMPUTE MINIMAL SOLUTION
For max scc do /* Consider SCCs in reverse topological order */
For scc do /* Consider attributes in list order */
done[ ]:= ; /* Set as tentatively done and initialize level to be assigned to to */
For c=(lhs,rhs) Constr A do /* Consider all constraints where appears on the left-hand side */
If done[rhs] then /* rhs is definitively labeled */
case lhs of /* Depending on whether is a simple ( lhs ) or complex ( lhs ) constraint */
1: rhs /* Raise according to the level being back-propagated */
1: A /* A is a minimal level for that does not violate */

else done[ ]:= /* is involved in a cycle; computed level is not final */
If done[ ] then /* is final; assign it to */
else /* is in cycle; execute forward lowering propagation */
DSet := l l is a maximal level, l l /* The set of levels directly dominated by */
While DSet
Choose l in DSet; DSet DSet l
Lower /* Downgrades required if is lowered to l (Figure 11) */
If Lower then /* can be downgraded to */
For Lower do /* Enforce all required downgrades */
DSet := l l maximal level, l l /* Try to lower again from the current level */

done[ ] := /* Level of is final */
/* For each constraint in which appears on the lhs, update the entry in Plub corresponding to */
/* to be the lub of the levels of all attributes corresponding to entries through . Note that, because */
/* of the order in which attributes are processed, entry has already been set to the lub of the final */
/* levels of all attributes corresponding to entries and higher. */
For c Constr A do

count ;
Plub Plub
count count

MINLEVEL(A,c)
/* Return a minimal level last for that keeps lhs rhs satisfied */

count /* Number of attributes in lhs of whose level is not yet final */
lhs rhs ; /* Get the lhs and rhs of */
last /* Initialize last to ’s current level */
lubothers Plub Plub ; /* The lub of the levels of all attributes in lhs except */
If lubothers rhs then last:= ; /* If the lub of the other attributes satisfies , last can go to */
else /* Lub of other attributes does not satisfy the constraint */

/* Try successively lower levels for , starting from last */
Try := is a maximal level s. t. last /* The set of levels directly dominated by last */
While Try do
Choose in Try; Try Try
if lubothers rhs then
last ;
Try := is a maximal level s. t. last

return last

FIG. 10. Lower bound constraint enforcement
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all violate the constraint if assigned to .5 The returned level is then accumulated via a lub
operation into . If all the constraints in Constr[ ] have the right-hand side done (which
is always the case for acyclic constraints), is simply assigned the level so computed.
Intuitively, this corresponds to enforcing back-propagation of security levels.
If, on the other hand, there is at least one constraint on whose right-hand side is not

definitively labeled (done[rhs]= ), then attribute must be involved in a constraint
cycle. In this case, compute minimal solution proceeds by performing the forward low-
ering computation starting from . At the start of this computation, level represents a
lower bound on ’s final level. Thus, must eventually be assigned a level somewhere
between its current level (whichmust be at least as high as if the constraints are consistent)
and . We know that the constraints are satisfied with at its current level, so the incre-
mental forward lowering process begins by computing the set of levels (DSet) immediately
below in the lattice. A member of this set is chosen arbitrarily, and try to lower
checks whether can be lowered to level . Procedure try to lower takes an attribute
and a level and returns a set of attribute/level pairs that represent a satisfactory (but

possibly non-minimal) assignment of levels to attributes that allows to be lowered to
while maintaining satisfaction of all constraints. If no such assignment exists, try to lower
returns the empty set to indicate failure. In the event that try to lower succeeds, com-
pute minimal solution proceeds to enforce all level assignments (in set Lower) returned
by try to lower. It then continues to attempt lowering the level of from the most recent
point of success. In the event that try to lower fails, another level to try is chosen from
DSet. If all levels in DSet are tried and fail (DSet ), the current level assigned to is
a minimal level for that maintains satisfaction of all constraints. Note that the condition
DSet must eventually become true, either because all attempts at lowering fail, or
because is reached. Note also that when a lowering attempt succeeds for some level
in DSet, it is not necessary to consider any other level in DSet. That is, a minimal
level for will always be found by considering only levels lower than the level that last
succeeded. This point is discussed in more detail in the correctness proof for the algorithm.
The keys to the operation of procedure try to lower are the sets Tocheck and Tolower.

Tocheck is the set of attribute/level pairs that remain to be checked to determine success
or failure of the lowering attempt. Tolower is the set of attribute/level assignment pairs
that must ultimately be enforced if the lowering attempt succeeds. Now, for a given call

, Tocheck is initialized to and Tolower to , since it is the attempt
to lower the level of to that must be checked, while no assignments are yet implied by
the attempted lowering. The procedure continues as long as there are assignments to check.
The checking process amounts to propagating levels forward through the constraint graph,
maintaining additional lowerings found to be necessary in set Tocheck, moving them then
to set Tolower for their later enforcement, if they do not result in any constraint violation.
In the event of a constraint violation, try to lower fails immediately, returning the empty
set. Otherwise, it returns the set Tolower containing the assignments found to be necessary
to enable the level of attribute to be lowered to .

In the generally assumed case of classification lattices whose elements are pairs consisting of a classification
level (taken from a totally ordered set) and a set of categories [25] (e.g., Figure 1(a)) the minimum level to be
assigned to can be computed directly without the need of walking through the lattice. In this case, the entire else
branch of the minlevel procedure can in fact be substituted with the simple computation, If lubothers rhs
then last rhs rhs lubothers else last rhs lubothers , where rhs (lubothers resp.) is the
classification level of rhs (lubothers resp.) and rhs (lubothers resp.) the corresponding set of categories.
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TRY TO LOWER(A,l)
/* Determines whether can be downgraded to without violating any constraints. If so, returns the set */
/* of required downgrades on all affected attributes; otherwise, returns . */
Tocheck := A /* Assignments of levels to attributes that must be checked for satisfaction */
Tolower /* Assignments that have been checked and must be enforced if is downgraded to */
Repeat
/* Consider each assignment A in Tocheck and determine whether it can be enforced */
Choose A Tocheck
Tocheck Tocheck A
Tolower Tolower A /* Add A to the set of assignments to be enforced (tentative) */
For lhs rhs Constr A do /* Consider each constraint with on the left hand side */
/* Compute level as lub of attributes in lhs */
level
For lhs do
If Tolower then /* If is in the set of attributes to be lowered */
level level /* Use the level at which is to be lowered */

else level level /* Use its current level */
If level rhs then /* is not satisfied */
case done[rhs] of

: return /* Level of rhs cannot be changed, so cannot be satisfied. Fail. */
: /* Try to lower level of rhs to keep satisfied */
newlevel rhs level /* Maximum level for rhs that keeps satisfied */
If rhs Tolower Tocheck then
/* rhs already needed to be downgraded to some level . If newlevel is higher than , */
/* nothing needs to be done. Otherwise, the level of rhs needs to be lowered to the glb */
/* of newlevel and , and this assignment needs to be checked. */
If newlevel then
newlevel newlevel
If rhs Tolower then
Tolower Tolower rhs

else Tocheck Tocheck rhs
Tocheck Tocheck rhs newlevel

else /* rhs was neither in Tocheck nor in Tolower */
Tocheck Tocheck rhs newlevel

until Tocheck /* Until there are no more required assignments to check */
/* Return set of downgrades to be enforced if is downgraded to . */
return Tolower

FIG. 11. Procedure try to lower



24 S. DAWSON, S. DE CAPITANI DI VIMERCATI, P. LINCOLN, P. SAMARATI

CLASSIFICATION CONSTRAINTS CLASSIFICATION CONSTRAINT GRAPH

Basic constraints

Inference constraints

Association constraints

Upper bound constraints

division

plan insurance

employer

Public

Clinical Research

Provider

Financial

Adminvisit

exam

doctor

treatment

bill

illness

patient

prescription

CLASSIFICATION LATTICE

EFFECTS OF THE CLASSIFICATION PROCESS
Result of Result of

Initial compute compute
Attribute Constr[] SCC level upper bound minimal solution

1
2
2
2
3
4
5
6
7
8
8
8

FIG. 12. Classification constraints, constraint graph, and classification lattice of our working example and
values produced by the classification process
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Note that in the forward-lowering process, the level propagated forwardmay change and
become either higher or lower because of complex constraints. The level can increase when
traversing a complex constraint, because in this case we require only that the right-hand
side is dominated by (i.e, lowered to) the level of the lub of all the attributes in the left-hand
side. The level can also decrease when, traversing a complex constraint, we would require
rhs to be dominated by (lowered to) a level incomparable to its current level or the level
recorded for it in either Tocheck or Tolower. In this case, the process can succeed only
if the attribute is dominated by both levels, that is, if it can be lowered to their greatest
lower bound. We therefore record this required assignment to be checked (in Tocheck) and
propagate the level forward.
Once aminimal level has been computed for any attribute ,compute minimal solution

updates the partial lubs inwhich is involved to keep the partial lubs correctwith respect
to , as described earlier.

Figure 12 displays the set of constraints of Figure 2 and their evaluation
by the classification process. For the reader’s convenience, the corresponding classifi-
cation graph and the classification lattice are also shown. The table at the bottom of
the figure reports for each attribute , the set of lower bound constraints imposed on it
(Constr[ ]), the SCC to which it belongs as computed by main, and its security level
at initialization, after the enforcement of the upper bound constraints (procedure com-
pute upper bounds), and after the enforcement of the lower bound constraints (procedure
compute minimal solution). The execution of the two procedures is illustrated in Fig-
ure 13. Table compute upper bounds illustrates the effects of the procedure for the
different values of variable (ranging over the SCC index in increasing order) and variable
(ranging over all the attributes within each SCC). For each such iteration, the table reports

the calls to procedure upper bound (where recursive calls are indented) together with the
level assignment updates caused by them and the constraint whose evaluation caused the
update (column ). The top portion of the table (with no entries for ) describes the initial
direct enforcement of upper bound constraints on the constrained attribute.
The second table illustrates the execution of procedure compute minimal solution for

the different values of variable (ranging over the SCC index in decreasing order) and
variable (ranging over all the attributes within each SCC). For changes due to back-
propagation ( is involved only in acyclic constraints), the table reports the change to ’s
level and the constraints that caused that change, which are all the constraints with on the
left-hand side (i.e., Constr[ ]). For changes due to forward propagation ( is involved in a
cycle), the table reports the calls to procedure try to lower together with the level updates
caused by them and the constraints (column ) that forced the updates. For unsuccessful
calls to try to lower, value is reported in the last column of the table, while column
reports the constraint that caused the failure (because it could not be satisfied).

5. CORRECTNESS AND COMPLEXITY ANALYSIS
In this section we state the correctness of our approach and discuss its complexity. Proofs

of the theorems appear in the Appendix.

Correctness). Algorithm 4.1 solves Problem 2.1 (
). That is, given a set of classification constraints over a set of attributes
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COMPUTE UPPER BOUNDS

calls to UPPER BOUND updates to levels

upper bound( ,1)
upper bound( ,2)

upper bound( ,2)

upper bound( ,2)

upper bound( ,3)
upper bound( ,4)
upper bound( ,5)
upper bound( ,6)
upper bound( ,7)
upper bound( ,8)
upper bound( ,8)
upper bound( ,8)

upper bound( ,8)

COMPUTE MINIMAL SOLUTION

calls to TRY TO LOWER updates to levels
try to lower( , )
try to lower( , )
try to lower( , )
try to lower( , )

try to lower( , )

try to lower( , )
try to lower( , )

try to lower( , )

try to lower( , )

FIG. 13. Execution of the classification process on the constraints of Figure 12
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and a classification lattice , Algorithm 4.1 generates a minimal classification
mapping satisfying .

Complexity. In the complexity analysis we adopt the following notational conventions
with respect to a given instance of : ( )
denotes the number of attributes in ; ( ) denotes the total number of security levels
in ; ( ) denotes the number of constraints in ;
denotes the total size of all constraints in ; denotes the height of ; denotes the
maximum number of immediate predecessors (“branching factor”) of any element in ;
denotes the maximum cost of computing the least upper bound or greatest lower bound

of any two elements in . Define to be maximum, for all paths from the top to the
bottom of a lattice, of the sum of the branching factor of each element of the path. is
no greater than , and is also no greater than the size of (number of elements + size
of the immediate successor relation).

Complexity). Algorithm 4.1 solves any instance of the
problem in time, and, if the set of constraints
is acyclic, in time. Therefore, is solvable in

polynomial time.

Note, in particular, that the time taken by Algorithm 4.1 is linear in the size of the
constraints for acyclic constraints, and no worse than quadratic for cyclic constraints.
Whether the complexity for the cyclic case can be improved to linear in the size of the
constraints remains an open question. However, the complexity bound above for the cyclic
case is truly worst case — it assumes that the entire constraint set forms a single SCC,
which rarely occurs in practice. For any instance of the problem, the acyclic complexity
analysis applies to all acyclic portions of the constraint set. In Algorithm 4.1 the higher
price is paid only for cyclic constraints, which typically include only a small portion of the
input constraint set.

The cost of lattice operations. An important practical consideration is the efficiency of
lattice computations. Previous work [31] has shown that constant-time testing of partial
orders can be accomplished through a data structure requiring space and
time to construct, where is the number of elements in the poset. Encoding techniques [1,
9] are known that enable near constant-time computation of lubs/glbs, so that in the
above analysis can be taken as constant, at the expense of additional preprocessing time.
In practice, one would expect to use the same classification lattice over many different
instances of , so that the additional preprocessing cost for
lattice encoding is less of a concern. Finally, we note that the generally considered
classification lattices with access classes represented by pairs classification and a set of
categories can be efficiently encoded as bit vectors that enable fast testing of the dominance
relation and lub and glb computations. The limited number of levels (16) and categories
(64) required by the standard [8] allows the encoding of any security level in a small number
of machine words, effectively yielding constant-time lattice operations.
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6. RETURNING A PREFERRED MINIMAL SOLUTION
As noted in Section 3.2.1, minimal solutions are generally not unique, since complex

lower bound constraints can be solved minimally by assigning, if necessary, any one
attribute on the left-hand side a sufficiently high level. The approach presented returns
one minimal solution, where the particular solution returned depends both on the (fixed)
topological order of attribute nodes and cycles that guides the back-propagation of security
levels and on the (arbitrary) order in which constraints are evaluated within cycles. Not all
minimal solutions to a set of constraints may be considered equal. Some solutions may be
preferred over others, for instance because they grant greater visibility (i.e., accessibility to
more subjects) on certain selected attributes.
Previous approaches addressing the problem of minimizing information loss while sat-

isfying some upgrading constraints based the choice of the specific solution to be returned
on the concept of “optimal” classification. Optimality is expressed as minimization of cost
measures determined from the association of weights to attributes and costs to security lev-
els, and where the cost of each solution is the weighted sum of the classifications assigned.
Finding such an optimal solution is however an NP-hard problem, and existing approaches
typically perform exhaustive examination of all possible solutions [30]. Beside suffering
from a general computational intractability, these cost-based approaches are very difficult
to use in practice, as it is generally far from obvious how to manipulate costs to achieve the
desired classification behavior.
We describe here two ways of specifying preference criteria on the minimal solution to

be returned which are intuitive and easy to use. We also illustrate how they can be included
in our approach without increasing the computational cost of finding the solution.

Soft upper bound constraints. Soft upper bound constraints are, as their name suggests,
upper bound constraints (Definition 2.2), whose satisfaction is not mandatory, rather they
are desiderata on the solution. Intuitively, soft upper bound constraints express visibility
requirements that should be satisfied in the solution, if possible. Since not all soft constraints
may be simultaneously satisfiable, it is convenient to consider soft constraints ordered
according to their importance. We assume a list of soft upper bound constraints is provided
as input, where the order in which the constraints appear reflects their importance. Soft
upper bound constraints are enforced just after the upper bound constraints provided as
part of the problem specification (Section 2). The process for enforcing soft upper bound
constraints is essentially the same as that for enforcing other upper bound constraints. The
only difference is in the fact that constraints are considered in a specific order, and that
constraints that cannot be satisfied (since they conflict with other upper or lower bound
constraints or with soft upper bound constraints already enforced) can simply be ignored.

Attribute priority. Another, complementary, approach to specify and compute a pre-
ferred solution is the consideration of explicit priorities between attributes, which establish
their importance in terms of visibility. The algorithm should then return the minimal
solution that avoids penalizing those attributes whose visibility is more important.
To the purpose of considering priorities, we first assume that attributes are prioritized

according to a total order , where implies that the visibility of is more
important than the visibility of . We then extend this order to classifications as follows.

Lexicographic Order). Given a set of attributes, a classification
lattice , and a total ordering on the elements of , a classification
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lexicographically dominates (with respect to ) another classification ,
denoted , iff

. In other words, iff, for the least attribute (in the total order
) for which and differ, .

Based on the above definition, a classification is said to be priority-minimal if it classifies
the attributes whose visibility is more important as low as possible. This concept is made
precise by the following definition.

Priority-Minimal Classification). Given a set of attributes, clas-
sification lattice , a set of classification constraints over and , and a
total ordering on the elements of , a classification is priority-minimal
with respect to and iff (1) ; and (2) such that ,

.

It is easy to see that the definition of priority-minimal is stronger than the definition of
minimal (Definition 2.4) and that any classification that is priority-minimal is also minimal
(the converse does not necessarily hold). The proof is trivial by contradiction. Suppose
the implication does not hold and consider a classification that is priority-minimal (with
respect to some total order on the attributes) but is not minimal. Then, there exists a
classification such that and , i.e., . Hence

and , which contradicts the assumption that is priority-minimal.
While the additional control offered by the concept of attribute priority is useful, the

assumption of totally ordered attributes is likely too strong as a practical requirement. We
can imagine instead that attribute priorities will form a partial order, reflecting the fact that,
while some attributes are more important than others in terms of visibility, there may be no
relative importance between other attributes. We can also imagine the priority order to be
only partially specified (on attributes whose visibility is most important), while all attributes
not explicitly mentioned are assumed to have the same priority (at the top of the attribute
ordering). For instance, referring to the example in Figure 2, a priority order specification
might say simply that , meaning that the solution should guarantee
first the maximum visibility of , then the maximum visibility of , then
the visibility of the other attributes (in no particular order).
To account for this general situation, we extend the definition of priority-minimal to

allow the given priority ordering on the attributes to be partial. We say that a total
ordering respects a partial ordering if for all : .

Partial-Priority-Minimal Classification). Given a set of at-
tributes, classification lattice , a set of classification constraints over
and , and a partial ordering on the elements of , a classification is
partial-priority-minimal with respect to and iff (1) ; and (2)
such that , total orders respecting , .

Definition 6.3 simply extends Definition 6.2 to the case where the ordering on attributes
is a partial order. Again, the condition of partial-priority-minimal is stronger than simple
minimality and any solution satisfying Definition 6.3 is also a minimal solution. More
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precisely, it is a minimal solution preferred according to the visibility constraints specified
by the given partial order on attributes.
WithminormodificationsAlgorithm4.1 can be used to compute partial-priority-minimal

solutions. Here we sketch how such a modified algorithm would work. The enforcement
of upper bound constraints is carried out as in Algorithm 4.1, since their enforcement is
deterministic. For lower bound constraints, the algorithm is modified to use the incremental
lowering process (forward propagation) on attributes in nondecreasing attribute priority
order, as determined by the partial order . More specifically, for some total order
on the attributes that respects , the incremental lowering procedure (try to lower) is
applied successively to each attribute from least to greatest according to . The level
of each attribute is lowered as far as possible before proceeding to the next attribute. In
this way, each attribute is assigned the lowest level that satisfies the constraints, subject
to the additional constraint that the levels of attributes (lower in attribute priority order)
already assigned cannot be modified. We state without proof that the solution so computed
is partial-priority-minimal (with respect to ). The time complexity of this computation
is the same as that of computing a minimal solution for a set of cyclic constraints (analyzed
in the appendix), .
When the priority ordering on attributes is only partially specified (i.e., some subset of the

attributes is not prioritized), the performance of the algorithm for computing partial-priority-
minimal solutions can be improved by first executing the incremental lowering process as
described only on the prioritized attributes. Then, procedure compute minimal solution
from Algorithm 4.1 can be run unmodified. Intuitively, running the forward propaga-
tion approach on the prioritized attributes will set their final levels as low as possible.
Then, the algorithm will proceed by executing compute minimal solution to determine a
classification as before.

Consider the constraints in Figure 12 and assume the partial priority
order , (with no other attributes prioritized). En-
forcement of upper constraints is as illustrated in Example 4.1. The process of enforcing
lower bound constraints is illustrated in Figure 14. The first phase of the process takes
care of priorities, considering the prioritized attributes ( , , and ) in
nondecreasing priority order and executing the lowering (forward propagation process) on
them. For each attribute, the table illustrate the calls to try to lower and their possible
effects on levels together with the constraints that caused that effect (column ). After
this forward propagation, the level of the prioritized attributes is final. The level of the
other attributes is then computed evaluating lower bound constraints as already discussed
in Example 4.1, causing the effects illustrated in Figure 14. The table at the bottom of the
figure reports the levels of the attributes before and after the enforcement of lower bound
constraints.

7. ARBITRARY PARTIAL ORDERS
The results presented thus far are based on the assumption of classification levels forming

a lattice. We consider here the problem of determining a classification if the security levels
do not form a lattice but may instead be an arbitrary poset. It turns out that the problem
becomes intractable under this new condition, as the following theorem states.
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COMPUTE MINIMAL SOLUTION (with priorities , )

calls to TRY TO LOWER updates to levels
try to lower( , )

try to lower( , )

try to lower( , )

try to lower( , )
try to lower( , )
try to lower( , )
try to lower( , )
try to lower( , )

try to lower( , )
try to lower( , )

try to lower( , )
try to lower( , )

EFFECTS OF THE CLASSIFICATION PROCESS
Result of compute Result of compute minimal

Attribute upper bound solution (with priorities)

FIG. 14. Lower bound computation with priorities on the constraints of Figure 12
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We define the problem similarly to ,
except that the constraint set is restricted to simple constraints, the partial order is not
restricted to be a lattice, and the problem is stated as a decision problem. Given a partial
order and a set of constraints , each constraint taking one of two forms: ,

, where the s are attributes, and is a constant drawn from , is there an assignment
from attributes to members of that satisfies all the constraints ?

is -complete.

Proof. The proof is presented in the appendix.

8. RELATED WORK
Inference problems have been studied extensively in the context of multilevel database

systems. Most inference research addresses detection of inference channels within a
database or at query processing time. Initial proposals in the first category [12, 24, 28, 33]
analyze the database schema to locate inference channels based on semantic relationships
between attributes. For instance,DISSECT [24], analyses the database schema to determine
inference paths due to sequences of foreign key relationships, and signals the database
administrator a possible inference problem whenever two database relations are connected
by multiple paths at different classifications. These approaches are mostly intended to
supportmultilevel schema designby identifying possible inference channels for the database
administrator rather than automatically solving them. More recent approaches [7, 11, 17,
20, 37] extend the inference analysis to the consideration of database content (finer-grained
inference control) and possibly external information. In some sense, these approaches are
complementary to ours, as the information produced by them could be used as input to
our approach for the definition of classification constraints. The proposals in the second
category [10, 18, 21, 27, 34] evaluate database transactions to determine whether they
lead to illegal inferences and, if so, disallow the query. The solutions investigated are not
applicable in our context, where constraint processing is executed offline for the purpose
of producing a classified database that prevents improper information leakage without the
need of (expensive and often impractical or infeasible) runtime control and logging.
The work closest to ours is that of Su andOzsoyoglu [30] and that of Stickel [29]. Su and

Ozsoyoglu [30] consider the problem of upgrading data to block inference channels due to
functional and multivalued dependencies. Their approach takes as input a set of attributes
together with a proposed classification for them and a set of functional dependencies
assumed to cause inference. It returns an alternative inference channel-free classification
for the attributes, obtained by upgrading the classifications provided as input. Intuitively,
each functional dependency corresponds to a lower bound constraint requiring the least
upper bound of the security levels of a given set of attributes to dominate the security levels
of the attribute functionally dependent on them. Minimization of information loss due to
possible upgrading is determined based on the following optimality criteria. Each attribute
at each possible given level is associated with a weight, based on the usage and importance
of the attribute to the application. The optimal solution to be produced is the one that
satisfies all the constraints while minimizing the difference between the total weight of
attributes before and after the security level adjustment. Determining such a solution is an
NP-hard problem, and the algorithm proposed in [30] finds it at the price of executing an
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exhaustive search among all possible solutions. For the same problem, Stickel [29] within
the context of DISSECT [24], computes the optimal solution by applying the Davis-Putnam
approach to theorem proving; where the Davis-Putnam procedure is used to produce all the
minimal solutions to a set of constraints, fromwhich the optimal can then be chosen. Apart
from the same computational complexity concerns associated with the other approaches
mentioned, the work in [29, 30] has several drawbacks. First, it is generally far from
obvious how to manipulate costs to achieve the desired classification behavior. Second, the
proposed approacheswork only under the assumption of totally ordered security levels. For
the simple case of classification composed of pairs security level, set of categories , Stickel
suggests their approach could be applied by exploding the problems into one problem for
each possible category in the category set. However, details are not given there. Also,
such a solution would add another dimension to the computational complexity of finding
the optimal solution. The notion of minimal classification used in this paper was first
proposed in [6], within the content-based classification of existing data repositories. There,
the approach to the determination of a preferred minimal solution still computes all the
possible classifications, thus bearing an exponential cost, and it, like others, is limited to
the consideration of totally ordered security levels. As a final remark, none of the previous
work considered upper bound constraints.

9. CONCLUSIONS
We have examined the problemof computing an assignment of security levels to database

attributes from a set of classification constraints. The constraints we consider permit
the specification of relationships between the security levels of a set of one or more
attributes and the level of another attribute or an explicit level. In contrast to previous
proposals investigating theNP-hard problemof determining optimal solutions (with respect
to some cost measure), we provide an efficient algorithm for computing one solution with
(pointwise) minimal information loss. Our approach efficiently handles complex cyclic
constraints and guarantees a minimal solution in all cases in quadratic time, but also
provides linear time performance for the common case of acyclic constraints.
The work presented in this paper leaves space for further work. Work to be investigated

include, the investigation of criteria and possible heuristics towards the determination of a
possible preferred solution; the investigation of incremental solutions to the consideration
of updates to the classification constraints; the investigation of the applicability of the
approach to nonmandatory policies and its possible extensions to discretionary domains.

APPENDIX: PROOFS

A.1. CORRECTNESS OF ALGORITHM 4.1
We first establish several lemmas used in the proof of the main theorem. The proofs

often refer to immediate constraints on an attribute, by which we mean either lower bound
constraints in which the attribute appears on the left-hand side or upper bound constraints
in which the attribute is on the right-hand side.
Lemma A.1 establishes the correctness of compute upper bounds, showing that it

succeeds in generating an initial classification mapping that satisfies the input constraints
if and only if the constraints are consistent.
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Let be a set of classification constraints over a set
of attributes and a classification lattice .
i) If compute upper bounds terminates with failure, then is inconsistent.
ii) If compute upper bounds terminates with success, then the computed classification
mapping satisfies , and hence, is consistent.
iii) Procedure compute upper bounds always terminates.

Proof.

i). We first prove that the following property holds of the current classificationmapping
throughout the computation of compute upper bounds:

For all mappings such that , there exists a constraint such that .
(A.1.1)

In other words, at all times in compute upper bounds it is not possible to change the levels
of any attributes to higher or incomparable levels without violating at least one constraint.
We prove this property by induction, showing that if it holds before the modification of
any , it also holds after the change. At the start of the procedure, for all
attributes , and the property trivially holds, since there is no mapping that does not
dominate. Now, there are two points in compute upper bounds at which attributes’ levels
may be modified. The first is at the start of compute upper bounds itself, where each
upper bound constraint is enforced, and the second is in the subprocedure upper bound.
In both cases, the modification results from a processing a constraint of the form lhs ,
where , and the level assigned to is the greatest lower bound (glb) of the level of
lhs and . Let denote the level of lhs under , and let . Let except
that . Note that is the mapping that results from ensuring the satisfaction of
. We analyze two cases according to the possible relationships between and .

Case 1: . In this case, and . Hence, is not modified, and
the property continues to hold.

Case 2: . In this case, . Let be any mapping such that .
Suppose . If , then , since is the
glb of and . Hence, . Otherwise, . Hence, , and by
hypothesis, there exists such that . In either case, the property holds for
the modified mapping . Suppose instead that . Then, for some ,

. Since except on , we have , ,
and hence, . By hypothesis, then, there exists such that , and the
property again holds for the modified mapping . This establishes property A.1.1.

Suppose now that upper bound (and hence, compute upper bounds) terminates with
failure. This means that a constraint lhs rhs , such that rhs is a security level,
was found not to be satisfied; that is, . Since rhs is fixed, the only way to satisfy
the constraint would be to suitably modify for some attribute(s) in lhs. Let
be any mapping from attributes in to levels in . If , then , since .
Otherwise, . By the property just proved (A.1.1), there exists a constraint
such that . Hence, for any mapping , there exists a constraint that cannot be
satisfied, and therefore is inconsistent.
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ii). Assume that compute upper bounds terminates successfully. We show that the
computed mapping satisfies by induction on SCC index. That is, we show that, if at
the start of iteration (of the loop over SCCs in compute upper bounds) satisfies all
immediate constraints on all attributes in all SCCs of index less than , then at the end of
that iteration satisfies all immediate constraints on all attributes in all SCCs of index less
than or equal to .
We begin by noting that before the first iteration ( ), , since for each

constraint of the form , is assigned , so that . Now
consider an arbitrary iteration . The following properties are readily established:

1. Every constraint on every attribute in scc is checked for satisfaction under . This
follows from the fact that compute upper bounds calls upper bound on all attributes
for which visit is 0, and visit is set to a nonzero value only by upper bound itself.
2. For any constraint of the form lhs rhs (on the attribute being processed) found

to be violated by , rhs is assigned the glb of its current level and that of lhs, satisfying .
Furthermore, any other constraint with the same rhs remains satisfied, if it was previously,
since the new level of rhs is dominated by its previous level. Now, from the properties
of the DFS procedures [32], we know that the SCC index of rhs must be greater than or
equal to that of . If it is equal, a recursive call to upper bound on rhs ensures that all
immediate constraints on it are (re)checked.
3. From the properties of the SCCs computed by the DFS procedures, we know that the

levels of any attributes in an SCC of index less than are unmodified after iteration , since
such attributes are not reachable by any constraints on attributes in scc .
4. Since the levels assigned to attributes can only be lowered, the upper bound constraints

remain satisfied.

From properties 1, 2, and 4, we can conclude that all immediate constraints on all attributes
in scc are satisfied after iteration . From properties 3 and 4, we can conclude that
all constraints on all attributes in SCCs of index less than remain satisfied. Hence, the
induction step is proved.

iii). Procedure compute upper bounds is composed of three loops over finite sets.
Termination of the procedure is straightforward to establish, except perhaps for the
recursive subprocedure upper bound, called in the third loop, for each SCC scc .

is called recursively only when an attribute in the SCC being
processed (scc[i]) is assigned a level strictly lower than the one it currently has. Each
attribute can be lowered only a finite number of times (bounded by the height of the lat-
tice), and the number of attributes in each SCC is finite. Hence, the number of times

can be called in an SCC is finite.

Lemma A.1 shows that, if the algorithm continues beyond the end of com-
pute upper bounds, then the remainder of the algorithm starts from a point at which
satisfies the constraints (and otherwise the constraints are inconsistent). The remaining

lemmas are used in the proof of the main theorem to show that key parts of the final phase
of the algorithm (compute minimal solution) preserve the property that, after every mod-
ification, remains a solution. First, we prove Lemma A.2, which shows that arguments
about the satisfaction of generated classification assignments can be made locally. That
is, it establishes that, if any changes to a solution mapping that are limited to a subset of
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the attributes result in satisfaction of the immediate constraints on those attributes, then the
modified mapping remains a solution for all constraints.

Given (1) a set of constraints on a set of attributes and (2) a subset
of , let be an assignment of levels to attributes such that and be an assignment
such that and that differs from only on attributes in . Let denote the set of
immediate constraints on attributes in , that is, .
Then, if and only if .

Proof.

(If): Assume that satisfies . Let lhs rhs be an arbitrary constraint in . If
, then by assumption, . Otherwise, , so lhs , and thus,
lhs lhs . Now, rhs rhs and lhs lhs

rhs rhs , and hence, .
(Only if): If satisfies , satisfies any subset of .

The following lemma shows that any change to a solution resulting from the output of
procedure try to lower in Algorithm 4.1 preserves as a solution.

Let be the set of pairs of the form returned by . If
the assignment obtained by replacing with for all

satisfies all immediate lower bound constraints on attributes in scc , where scc is the
SCC containing .

Proof. The following properties are readily established.

1. When a pair Tocheck is selected, all immediate lower bound constraints on
are checked for satisfaction.
2. If any constraint of the form lhs rhs is found to be violated, either the right-hand

side is done and cannot be satisfied (in which case try to lower returns ) or a pair of the
form rhs is added to Tocheck, where is the greatest level that can be assigned to rhs
and still satisfy all constraints checked up to that point.
3. From the established properties of the DFS procedures [32], we know that every

attribute in the SCC containing is reachable from .
4. For any attribute , at most one pair of the form can exist in Tocheck or

Tolower (but not both) at any time. This follows immediately from the fact that, whenever
a pair involving is added to one set, any pair involving in the other set (if one exists)
is first removed.
5. For any pair of the form Tocheck and any pair of the form subse-

quently added to Tocheck, .
6. Every pair Tocheck is eventually selected.

Properties 1, 2, 3, and 6 together show that any constraint that could be violated
by any assignment modification (represented in Tolower) is checked, and if possi-
ble, another modification is made to satisfy the constraint. Properties 1 through 4
together show that, at all times in try to lower the modifications to represented
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in Tolower are such that satisfies all immediate constraints on all attributes in the
SCC containing , provided that all pairs in Tocheck also represent satisfying as-

signments. At the end of the procedure, Tocheck is empty, so the lemma holds.

Theorem 5.1 (Correctness). Algorithm 4.1 solves . That
is, given a set of classification constraints over a set of attributes and a classification
lattice , Algorithm 4.1 generates a minimal classification mapping
that satisfies , or terminates with failure if the set is inconsistent.

Proof.
We show that compute minimal solution produces an assignment that (i) satisfies
if one exists (ii) any attribute for which done has been assigned a

minimal level that satisfies its constraints. We show this by induction on the outermost
loop of compute minimal solution on SCCs. Initially assigns to every attribute,
which trivially satisfies all lower bound constraints in , and for every we have
the assignments and done , which trivially satisfies the minimality
requirement.
By Lemma A.1, compute upper bounds always terminates and returns failure if the

constraints are inconsistent, otherwise producing an assignment which satisfies (but
which is usually not minimal). Inductively, we assume that at the start of an iteration of
the outermost loop is a solution, and that any attribute marked done has been assigned a
minimal satisfying level, and we must show that is a solution at the end of that iteration,
and any attribute marked done at the end of that iteration has been assigned a minimal
satisfying level. By Lemma A.2 it suffices to show that (1) at the end of any iteration
differs from at the start only on attributes of a given SCC, (2) the level assigned by
to any attribute is never raised, and (3) all direct constraints on attributes of that SCC are
satisfied at the end of any iteration.
Let be the SCC index in the outermost loop of compute minimal solution and be the

list scc . We argue by induction on the second-level loop (For scc ), and show that
satisfies at the end of each iteration of this inner loop, and further that the minimality

requirement is met for all attributes that are done. Let be an arbitrary attribute in .
Consider Constr . If every Constr is such that done ,
we simply take the least upper bound of a set of predetermined levels, and since we are
working in a lattice, a unique least upper bound exists. Otherwise, there is at least
one Constr such that done . So, after processing each

Constr , done , and we proceed from the initialization of DSet. At
this point in the computation holds a lower bound on the level that may be assigned
to , , and DSet is initialized to the set of levels immediately below
and that dominate . We argue that satisfies at the end of any iteration of the inner
while-loop, and that the minimality requirement is met. If try to lower fails for every

DSet, no assignments in are modified, and thus, remains satisfied, and since all
lower levels failed, we have found a minimal assignment for . Otherwise, by LemmaA.3,
try to lower returns a set of pairs of the form , where scc , , and
such that replacing by for all such satisfies all constraints on attributes
in scc . The inner while-loop concludes by making this replacement and resetting DSet
to levels immediately below . Hence, satisfies at the end of each iteration of the
while-loop, and any attribute for which done has been assigned a minimal
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level that satisfies its constraints. By induction satisfies at the end of the enclosing
for-loop, and thus at the end of the outermost loop.

Termination. There are two aspects of termination that are not obvious once one
takes into consideration the termination argument in Lemma A.1. First, the while-loop
at the end of compute minimal solution terminates because DSet is finite, and in each
iteration every level in DSet is strictly dominated by any level in the preceding itera-
tion. Thus, as long as try to lower terminates, the while-loop will terminate, because
either the bottom of the lattice is reached or because every level tried in one iteration
fails. Second, it is not immediately obvious that the repeat-loop in try to lower termi-
nates. Note that it continues as long as the set Tocheck is not empty. In each iteration
of the loop one pair is removed from Tocheck and added to Tolower. However, for
any attribute, there can be at most one pair involving that attribute in either Tocheck or
Tolower. It is possible that, for some pair Tolower, a pair will be added
to Tocheck. If so, must strictly dominate , so the number of times a pair involving
the same attribute may be entered into Tocheck is bounded by the height of the lattice.

A.2. ALGORITHM 4.1 IS LOW-ORDER POLYNOMIAL
In the complexity analysis we adopt the following notational conventions with respect

to a given instance of : ( ) denotes the
number of attributes in ; ( ) denotes the number of security levels in ;
( ) denotes the number of constraints in ; denotes
the total size of all constraints in ; denotes the height of ; denotes the maximum
number of immediate predecessors (“branching factor”) of any element in ; denotes the
maximum cost of computing the lub or glb of any two elements in . Define to be
maximum, for all paths from the top to the bottom of a lattice, of the sum of the branching
factor of each element of the path. is no greater than , and is also no greater than
the size of (number of elements + size of the immediate successor relation).

Theorem 5.2 (Complexity). Algorithm 4.1 solves any instance of the prob-
lem in time, and, if the set of constraints
is acyclic, in time. Therefore, is solvable in

polynomial time.

Proof. For the analysis, we consider two cases: (1) is acyclic, and (2) is
cyclic. We begin by noting that the preprocessing steps in main, apart from dfs visit
and dfs back visit, require (in total) time proportional to . Procedures dfs visit
and dfs back visit themselves are simply a minor adaptation of Tarjan’s linear-time SCC
computing algorithm [32], and require time proportional to . In the acyclic case, com-
pute upper bounds processes all constraints in once for each attribute on the left-hand
side, and, for each constraint, may perform one lub and one glb operation. Thus, it
requires time proportional to , which is certainly . In the cyclic case, com-
pute upper boundsmay check all constraints in multiple times per attribute. Whenever
the level of the attribute on the right side of some constraint is lowered and is in the
same SCC as the attribute on the left side for which the constraint is being checked, all
constraints on must be rechecked. Since this rechecking is done only upon lowering
the level of the attribute, the number of times an attribute’s constraints can be rechecked is
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bounded by , the height of the lattice. Thus, in the cyclic case the enforcement of upper
bound constraints can be accomplished in time. Overall, the time complexity for
all parts of the algorithm before compute minimal solution is in the acyclic case
and in the cyclic case.

It remains to determine the complexity of compute partial lubs and com-
pute minimal solution. For each constraint lhs rhs, compute partial lubs computes
and stores a number of partial lubs requiring lhs space and lhs time. Overall,
the time complexity of compute partial lubs is .

For compute minimal solution note that the effect of the three nested for-loops is
to consider every attribute in each of its constraints, which requires no more than
iterations of the innermost loop, while the containing loop iterates times overall. In the
acyclic case, note that every attribute is its own SCC. When considering any attribute in
compute minimal solution, then, the computation of the level of any attribute appearing
on the rhs of any constraint on will have been completed (done[rhs] is always true), and
theDSet computation and while-loop are never performed. Thus, apart from constant-time
initializations in the second for-loop, the only cost to consider for the acyclic case is that of
the innermost for-loop. For each constraint, either a lub operation is performed, or possibly
a lub operation and a call to minlevel. The minlevel procedure first performs several
constant-time initializations and one lub operation. The remainder of minlevel considers
overall at most security levels, each involving a lub operation. The time complexity of
minlevel, then, is . Since the cost of minlevel is at least as high as that of a lub
operation, the worst-case cost of the inner loop is when all iterations involve minlevel,

, which, for acyclic constraints, dominates the time complexity of all other parts
of the algorithm.

For cyclic constraints, the cost due to the innermost for-loop of com-
pute minimal solution cannot be greater than that of the acyclic case. In the containing
loop (the loop over attributes), the while-loop may execute for every attribute in the SCC.
Like minlevel, the while-loop considers at most security levels, each involving the
try to lower computation. In the worst case, try to lower processes the constraints for
all attributes in the SCC. More precisely, it processes the constraints of every attribute in
the SCC not marked done. The number of such attributes decreases by one after each
invocation of try to lower, but on average, try to lower may process as many as half the
constraints involved in the SCC. Now, it can happen that, for some pair Tolower
and level , is removed from Tolower and added to Tocheck, implying the
reprocessing of constraints on . For any attribute, this reintroduction into Tocheck can
happen at most times, since must be strictly lower than . For each constraint
considered, the lub of all attributes in the lhs is computed, requiring time proportional
to . Assuming suitable data structures for constant-time operations involving
Tolower and Tocheck, the only remaining nonconstant cost comes from at most two glb
operations. The time complexity of try to lower, then, is , and that of the while-
loop in compute minimal solution is . Over all attributes in the SCC, the
time complexity of compute minimal solution due to the while-loop is ,

which dominates the cost due to the innermost for-loop of compute minimal solution.
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(a) (b)
FIG. A.1. Poset for (a), and four-element poset (b).

A.3. CLASSIFICATION ASSIGNMENT IN A POSET IS NP-COMPLETE
We define the problem similarly to ,

except that the constraint set is restricted to simple constraints, the partial order is not
restricted to be a lattice, and the problem is stated as a decision problem. Given a partial
order and a set of constraints , each constraint taking one of two forms: ,

, where the s are attributes, and is a constant drawn from , is there an assignment
from attributes to members of that satisfies all the constraints ?

Theorem 7.1. [ is -complete.]

Informally, to see why is a hard problem, consider a poset of
security levels with four elements with two upper elements each dominating the two lower
elements, as depicted in Figure A.1(b). If an attribute is known to dominate the two
lower elements, in the final analysis that attribute must be assigned to one of the two
upper elements, and thus a choice must be made. Multiple such choices may result in an
exponential number of possibilities. Below we sketch a proof using this kind of choice to
encode propositional truth or falsity in satisfiability problems.
We give a polynomial reduction from , demonstrating -hardness. We first define

a partial order (the security levels), beginning with the empty set , and for each clause
Clause of the form , where each literal is either the propositional variable

or its negation , we add the element named to , and further add seven more
elements to , one for each truth assignment that satisfies the clause. For convenience,
we name these seven elements by simply concatenating the names of the clauses with the
literals they contain, using overbars to denote negation: “ ”, “ ”,
“ ”, etc. For each propositional variable , we add three elements to , named
“ ”, “ ”, and “ ”. Intuitively, these stand for the j-th proposition being undecided,
true, and false, respectively.
With the above set of constants, we define a partial order relation on them as follows.

We define the relation to include, for each propositional variable ,
and . We define the relation to include, for each element of the form

in , (seven for each clause). We also define the relation
to include, for each element of the form in ,

for each , , such that (i.e., occurs as a positive literal in the
corresponding clause). Similarly, we define the relation to include, for each element
of the form in , for each , , such that
(i.e., occurs as a negative literal in the corresponding clause). The final partial order
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of interest will be made up of elements of , related by .
There are eight ( ) elements in for each clause, plus three elements for each
propositional variable. The partial order has height one. Figure A.1(a) displays the partial
order produced for the problem . Clauses of length two were used in
the figure to improve readability.
To simplify our arguments about the reduction,wefirst define a set of constraints that does

not conform to the syntactic restrictions of , in that constraints of the
form (upper bound constraints) are used. We later show how these constraints can be
replacedwith an equivalent set that does conform to the definition of .
To form the constraints, we use a set of attributes, one for each propositional variable
, and one for each clause Clause . We define a set of inequations to include,

for each clause Clause , the constraint , and for each literal in that clause,
. We also define a set of inequations to include, for each propositional

variable , the constraint . Thus there are four constraints in per
clause, and one constraint in for each propositional variable. Continuing with

our simple example, , the inequations
, and

.
We claim that the problem given by the partial order

, with the constraints has a solution if and only
if the original problem has one. This may be observed by noting that every attribute

must be assigned some , since must be lower than and some
propositions. Also, the only that exist in correspond to assignments of
propositional variables that satisfy the clause. Further, must be assigned either or
. We claim there is a correspondence between a propositional variable being assigned

true (or false, resp.) in the problem, and being assigned ( , resp.) in the
problem. Thus one may see that a solution to the problem

may be derived from any solution to the constructed problem and
vice versa.
Note that the constraints of the form are upper bound constraints and do not

conform to the restrictions on the constraints in the definition of .
Each such constraint can be replaced by a set of constraints of the required form as
follows. For each Clause , create one new attribute and seven constraints of the form

, one for each of the seven clause elements for Clause in the partial
order. These lower bound constraints have the effect of forcing to have only one
possible assignment in the partial order, namely . Now, the constraints of the form

used in the reduction can be replaced by the equivalent constraints ,
which are of the form required by the definition of .
Finally, we note that is in , since we can guess a solution and

check it in polynomial time.
Using results of Pratt and Tiuryn [22], this result can be improved to apply to small fixed

partial orders, including the four-element partial order of security levels with two upper
elements each dominating the two lower elements (Figure A.1(b)).
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