
Supporting concurrency and multiple indexes in

private access to outsourced data∗

Sabrina De Capitani di Vimercati,1 Sara Foresti,1 Stefano Paraboschi,2

Gerardo Pelosi,3 Pierangela Samarati2

1DI - Università degli Studi di Milano - 26013 Crema, Italy

firstname.lastname@unimi.it
2 Università degli Studi di Bergamo - 24044 Dalmine, Italy

parabosc@unibg.it
3DEIB - Politecnico di Milano - 20133 Milano, Italy

pelosi@elet.polimi.it

Corresponding author : Pierangela Samarati
DI - Università degli Studi di Milano - Via Bramante 65 - 26013 Crema, Italy

pierangela.samarati@unimi.it

phone: +39-0373-898061, fax: +39-0373-898074

Abstract

Data outsourcing has recently emerged as a successful solution allowing individuals and organizations to

delegate data and service management to external third parties. A major challenge in the data outsourc-

ing scenario is how to guarantee proper privacy protection against the external server. Recent promising

approaches rely on the organization of data in indexing structures that use encryption and the dynamic

allocation of encrypted data to physical blocks for destroying the otherwise static relationship between data

and the blocks in which they are stored. However, dynamic data allocation implies the need to re-write

blocks at every read access, thus requesting exclusive locks that can affect concurrency. Also, these solutions

only support search conditions on the values of the attribute used for building the indexing structure.

In this paper, we present an approach that overcomes such limitations by extending the recently proposed

shuffle index structure with support for concurrency and multiple indexes. Support for concurrency relies

on the use of several differential versions of the data index that are periodically reconciled and applied to

the main data structure. Support for multiple indexes relies on the definition of secondary shuffle indexes

that are then combined with the primary index in a single data structure whose content and allocation

is unintelligible to the server. We show how using such differential versions and combined index structure

guarantees privacy, provides support for concurrent accesses and multiple search conditions, and considerably

increases the performance of the system and the applicability of the proposed solution.

keywords : Data outsourcing, access privacy, concurrency, shuffle index
∗A preliminary version of this paper appeared under the title “Supporting Concurrency in Private Data Outsourcing,” in Proc.

of the 16th European Symposium on Research in Computer Security (ESORICS 2011), Leuven, Belgium, September 2011 [10].

1

Sara Foresti

Sara Foresti
© IOS Press, (2013). This is the author's version of the work. It is posted here by permission of IOS Press for your personal use.
Published in Journal of Computer Security (JCS), Volume 21, Issue 3, Pag 425-461, 2013.

1 Introduction

The evolution of information and communication technology is leading to information system architectures that

rely more and more on third parties for the management of IT functions. A major motivation for such a trend

is economical: with outsourcing an organization can simplify its structure and benefit from the large scale

economies of rented IT services, with low costs and high availability. However, a significant obstacle to a greater

adoption of outsourcing is today represented by possible concerns over improper exposure of confidential or

sensitive information. As a matter of fact, while the external service provider can be relied upon for guaranteeing

protection of managed data, it is of utmost importance to protect possible sensitive information from the eyes

of the service provider itself.

The research and development communities have devoted significant attention to the problem of protecting

data confidentiality in outsourcing scenarios, producing several solutions addressing different aspects of the

problem. All proposals apply encryption to make data not intelligible to the server, providing support for query

execution either by associating additional indexes with the encrypted data (e.g., [1, 4, 8, 16, 17, 24, 26]) or

extending the tree-based indexing structures typically adopted in DBMSs (e.g., [8]). Tree-based approaches,

unlike additional indexes, are not vulnerable to privacy breaches exploiting the possible correlation between

frequencies of the index values and of the actual data behind them [4]. However, even tree-based indexes remain

vulnerable to attacks based on the observation of sequences of accesses and on the analysis of the frequency

distribution of access requests. Such vulnerability can be counteracted by adopting approaches that change

the location of the encrypted data at every access, so to break the otherwise static relationship between data

and their physical location [9, 19, 28]. Dynamically allocated data structures represent the best defense against

frequency attacks by the server. Among them, the shuffle index [9] extends the classical B+-tree structure

used in databases with encryption, cover searches (to “hide” the actual target search in a set of additional

fake searches, thus providing uncertainty over the block actually targeted), and shuffling to enforce dynamic

allocation.

Although the shuffle index enjoys limited overhead with respect to the protection guarantees it offers [9],

like other dynamically allocated data structures, it could potentially affect performance in scenarios where

accesses need to operate concurrently and need to be performed according to different search attributes. In fact,

reallocating data at the server requires write (hence exclusive) locks on the block involved in an access even in

the execution of read-only operations. Also, searches based on attributes different from the index with which

the shuffling structure has been organized require downloading the whole database for evaluating the search

condition locally.

In this paper, we extend the shuffle index in [9] to efficiently support concurrent accesses and multiple indexes

2

while guaranteeing privacy in data accesses. Our solution to support concurrent accesses to the indexed data

consists in having transactions operating on dynamically created portions of the primary shuffle index, which

we call delta versions . Delta versions are maintained in the server main memory, are managed – and shuffled

at each access – independently one from the other, and are periodically reconciled and applied to the primary

data structure on disk.

Our solution to support multiple indexes consists in the definition of secondary index structures which

are then merged – at the logical and physical level – together with the primary index so to form a single

structure whose organization and allocation is unintelligible to the server. This combined shuffle index guarantees

protection against the long-term accumulation of information by the server [9].

The approach presented in this paper supports concurrency and multi-index searches while offering a guar-

antee that the server monitoring the sequence of accesses will not be able to use the information about the

frequency or the order of accesses to infer the content of the database and the target values of accesses per-

formed by users. The experimental results show that our solution produces up to a fourfold increase in system

throughput in case of concurrent accesses. In [10] we presented an early version of our proposal that introduced

delta versions for supporting concurrency. Here we extend the proposal with support for multiple indexes.

Also, we provide the algorithm for reconciling delta versions and formally analyze its correctness and security.

The experimental results are extended by measuring the average service time of a system using the proposed

indexing technique, and the average response time as seen by the client.

The remainder of this paper is organized as follows. Section 2 introduces the shuffle index and describes how

it protects access confidentiality by means of cover searches and dynamic data allocation. Section 3 formally

defines a shuffle index at the abstract, logical, and physical levels, and introduces the use of delta versions for

supporting concurrent accesses. Section 4 describes the execution of concurrent accesses to the shuffle index

using a set of delta versions. Section 5 discusses an approach for reconciling delta versions with the main index.

Section 6 presents the reconciliation algorithm and formally shows its correctness. Section 7 presents secondary

shuffle indexes as a solution for supporting search conditions on different attributes and describes how they can

be combined with the primary shuffle index at the logical and physical levels. Section 8 analyzes the security

guarantees offered by the proposed indexing technique. Section 9 presents the experimental results assessing

the throughput, average service time, and average response time provided by our shuffle index. Section 10

discusses related work. Finally, Section 11 reports our conclusions. The proofs of the theorems are reported in

Appendix A.

3

2 Preliminary concepts

Before introducing our approach, we illustrate the shuffle index with which outsourced data are organized [9].

We assume that the outsourced data collection is stored in a relation r defined over schema R(A1, . . . ,An). The

tuples in r are indexed over a candidate key K ⊆ {A1, . . . ,An}. For simplicity, but without loss of generality,

in this paper we assume that indexes are defined over candidate keys composed of one attribute only, even

if they can be defined on arbitrary subsets of attributes that represent a candidate key for the relation. The

outsourced data are organized as an unchained B+-tree, with actual data stored in the leaves of the tree in

association with their index values (i.e., the shuffle index is a primary index for the outsourced data collection).

The fact that the tree is unchained means that there are no links connecting the leaves. The fan-out F of the

tree regulates the number of index values stored in the nodes. Each node stores a list V [1, . . . , q] of q values,

with #F
2 $ − 1 ≤ q ≤ F − 1 (the lower-bound does not apply to the root) ordered from the smallest to the

greatest, and has q+1 children. The first child of a node is the root of the subtree with all values v < V [1]; the

i-th child is the root of the subtree containing the values v with V [i − 1] ≤ v < V [i]; and the last child is the

root of the subtree with all values v ≥ V [q]. Figure 1(a) illustrates a graphical representation of an example of

our abstract data structure. For simplicity, in our examples we refer to every node with a label (not explicitly

reporting values in the node).

At the logical level, nodes are allocated to logical addresses that work as logical identifiers . Pointers between

nodes of the abstract data structure correspond, at the logical level, to node identifiers, which can then be easily

translated at the physical level into physical addresses at the storing server. In the following, we assume that

the physical address corresponds to the logical identifier of the node stored in it. Note that the possible order

among identifiers does not necessarily correspond to the order in which nodes appear in the value-ordered

abstract representation. Figure 1(b) illustrates a possible representation at the logical level of the abstract

data structure in Figure 1(a). In the figure, nodes appear ordered (left to right) according to their identifiers,

which are reported on the top of each node. Pointers to children are represented by reporting in each node

the ordered list of the identifiers of its children. For simplicity and easy reference, in our example, the first

digit of the node identifier denotes the level of the node in the tree. Before sending to the server the index for

storing it, the content of each node is prefixed with a random salt and then encrypted in CBC mode with a

symmetric encryption function producing an encrypted block. All nodes in the index are encrypted with the

same encryption key, which is shared between the data owner and users authorized to access the outsourced

data collection. Figure 1(d) illustrates the physical representation of the logical data structure in Figure 1(b).

Since each block is encrypted, the server does not have any information on the content of the node stored in the

block or on the parent-child relationship between nodes stored in blocks. Retrieval of the leaf block containing

4

Abstract index r

a b c d

a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3
(a)

Logical index

r [101,104,102,103]
001

d2
201

c1
202

c2
203

b3
204

a1
205

b1
206

c3
207

d1
208

a3
209

b2
210

d3
211

a2
212

101
a [205,212,209]

103
d [208,201,211]

104
b [206,210,204]

102
c [202,203,207]

r [103,101,102,104]
001

b3
201

c1
202

c2
203

a3
204

a1
205

b1
206

c3
207

d1
208

d2
209

b2
210

d3
211

a2
212

101
b [206,210,201]

103
a [205,212,204]

104
d [208,209,211]

102
c [202,203,207]

(b) (c)

Physical index

&
001

$
101

#
102

*
103

?
104

<
201

=
202

%
203

+
204

>
205

\
206

!
207

£
208

@
209

§
210

;
211

)
212

:
001

^
101

#
102

"
103

]
104

-
201

=
202

%
203

{
204

>
205

\
206

!
207

£
208

/
209

§
210

;
211

)
212

(d) (e)

Figure 1: An example of abstract (a), logical (b)-(c), and physical (d)-(e) index before (b)-(d) and after (c)-(e)
the execution of a search operation

the tuple corresponding to an index value requires an iterative process. Starting from the root of the tree and

ending at a leaf, the read block is decrypted retrieving the address of the child block to be read at the next

step. Each access to a leaf block then requires h+1 rounds of communication between the client and the server,

where h is the height of the tree. To avoid leaking to the server the fact that i) some blocks represent a path in

the tree and ii) different accesses aim at the same content, the shuffle index extends the search operation by:

• performing, in addition to the target search, other fake cover searches , guaranteeing indistinguishability

of target and cover searches and operating on disjoint paths of the tree (retrieving, at every level of the

tree, num cover+1 blocks at the same time);

• maintaining a set of blocks in a local cache;

• mixing (shuffling) the content of all retrieved blocks as well as those maintained in cache and rewriting

5

them accordingly on the server.

Intuitively, cover searches introduce uncertainty over the leaf block actually belonging to the target search

and do not allow the server to establish the parent-child relationship between blocks (since every access entails

reading multiple blocks at every level). The cache is used to make searches repeated within a short time interval

not recognizable as being the same search (if the nodes in the target path are already in cache, an additional

cover search will be executed instead). Shuffling moves content among blocks, thus breaking the correspondence

between nodes (contents) and blocks (addresses). Note that shuffling requires to re-encrypt the involved nodes

with a different random salt, so to produce a different encrypted text, and changing the pointers to them in

their parents (which will have to point to the new blocks to which nodes have been allocated). Changing the

allocation of nodes to blocks provides confidentiality: i) subsequent searches looking for the same content would

aim at different blocks, and ii) subsequent searches hitting the same block would involve a different content.

As an example, consider a search for value b3 over the abstract index in Figure 1(a), and assume that the

search adopts a3 as cover and that the local cache contains the path to d2 (i.e., (001,103,201)). Figure 1(b)

illustrates the logical representation of the abstract index before the execution of the search operation and how

accessed blocks are shuffled, level by level, to obtain the structure in Figure 1(c). The nodes involved in the

search operation are denoted in gray in the figure. Note that although the server knows which blocks have

been accessed (gray blocks in Figures 1(d)-(e)) it cannot detect which of those blocks is the actual target of the

search and how the content of blocks has been shuffled, since blocks are re-encrypted using a different salt at

each write operation.

3 Main index and delta versions

Before introducing our solution for supporting concurrent accesses and the evaluation of conditions over different

attributes of the outsourced data collection, we need to formalize the components of the shuffle index data

structure and of the shuffling (which were only procedurally managed in the original proposal [9]). Data can be

seen at the abstract, logical, and physical levels, which we formally capture as follows.

• Abstract (T a): set {na
1, . . . , n

a
m} of abstract nodes forming an unchained B+-tree. Each internal node in

T a is a pair na = 〈Values ,Children 〉 with Values a list of q index values and Children a list of q+1 child

nodes. Leaf nodes are represented with nodes of the form 〈Values ,Tuples 〉 that include, instead of the list

of child nodes, the set Tuples of tuples in r with index value in Values .

• Logical (T): triple (T a, ID,φ), where T a is an abstract data structure, ID is a set of logical identifiers,

and φ : T a → ID is a bijective function associating each abstract node na in T a with a logical identifier

6

id in ID. Triple (T a, ID,φ) determines how the abstract nodes in T a are allocated to logical identifiers

in ID. Each internal node na=〈Values ,Children 〉 ∈ T a is then represented by a (logical) node of the

form 〈id ,V ,P 〉, where id=φ(na), V=Values , and P [j]=φ(Children [j]), j = 1, . . . , q + 1. Leaf nodes are

represented with logical nodes of the form 〈id ,V ,T 〉 that include tuples T instead of pointers to children.

• Physical (T e): set of (disk) blocks storing T . Each logical node 〈id ,V ,P 〉 ∈ T (〈id ,V ,T 〉 ∈ T for

leaves) is stored in a block that can be seen as a pair of the form 〈id ,b〉, where b=Ek(salt ||id ||V ||P)

(b=Ek(salt ||id ||V ||T) for leaves) with E a symmetric encryption function, k the encryption key (which

is the same for all nodes in T and is known to the data owner and authorized users), and salt a value

chosen at random for each encryption.

In the following, we use the term node to refer to an abstract content and block to refer to a specific memory

slot in the logical/physical structure. When either the term node or the term block can be used, we will use

them interchangeably.

Shuffling executed at every access randomly exchanges the content among blocks. A shuffling of logical index

T = (T a, ID,φ) is equivalent to reallocating nodes to potentially different blocks (the corresponding abstract

index structure remains unaltered), as formally defined in the following.

Definition 3.1 (Shuffling) Let T = (T a, ID,φ) be a logical index and π : ID → ID be a random permutation

of ID. The shuffling of T with respect to π is a logical index T ′ = (T a, ID,φ′), where φ′ is a composite function

defined as φ′ = π ◦ φ.

Note that a change in the allocation of nodes to blocks implies that the pointers to children must be updated to

reflect their new allocation, thus preserving the correct parent-child relationship. After shuffling, each abstract

node na=〈Values ,Children 〉 in T a is represented by logical node 〈id ,V ,P 〉 in T ′, where id = φ′(na) = π(φ(na)),

V=Values , and P [j]=φ′(Children [j]) = π(φ(Children [j])), j = 1, . . . , q+ 1. In the following, for simplicity and

without loss of generality, we assume shuffling to operate within the boundary of the tree level (i.e., permutations

are always performed among nodes of the same level of the tree).

A delta version is essentially a – potentially shuffled – portion of the main index, as captured by the following

definition.

Definition 3.2 (Delta version) Let T = (T a, ID,φ) be a logical index. A delta version ∆i = (∆a
i , IDi,φi)

of T is a shuffling of (∆a
i , IDi,φ) with respect to a permutation π, where ∆a

i⊆T a such that ∀na∈∆a
i , the parent

of na belongs to ∆a
i ; IDi=

⋃

na∈∆a
i

φ(na); and φi : T a → ID such that φi(na) = φ(na) if na .∈∆a
i .

7

main index

r [105,102,104,101,107,103,108,106]
001

c2
201

h1
202

h2
203

c3
204

d3
205

g4
206

d4
207

e3
208

c1
209

e2
210

f3
211

f2
212

a4
213

b2
214

c4
215

h4
216

e4
217

a1
218

h3
219

a2
220

f1
221

d2
222

b3
223

g2
224

g3
225

a3
226

e1
227

g1
228

d1
229

b4
230

b1
231

f4
232

g [228,224,225,206]
108107

e [227,210,208,217]
106
h [202,203,219,216]

105
a [218,220,226,213]

104
c [209,201,204,215]

103
f [221,212,211,232]

102
b [231,214,223,230] d [229,222,205,207]

101

(a)

target: a1 (001, 105, 218) ∆1

cover: d2 (001, 101, 222)
e3 (001, 107, 208)

repeated: –

read: 001/101,105,107/208,218,222

shuffle: 101→105, 105→107, 107→101
208→218, 218→208, 222→222 a1

208
e3

218
d2

222

r [107,102,104,105,101,103,108,106]
001

e [227,210,218,217]
101

d [229,222,205,207]
105

a [208,220,226,213]
107

(b)

target: b4 (001, 102, 230) ∆1

cover: g3 (001, 108, 225)

repeated: (001, 101, 218)

read: 001/101,102,108/218,225,230

shuffle: 101→102, 102→108, 108→101
218→225, 225→230, 230→218 a1

208
b4

218
d2

222
e3

225
g3

230

r [107,108,104,105,102,103,101,106]
001

g [228,224,230,206]
101

e [227,210,225,217]
102

d [229,222,205,207]
105

a [208,220,226,213]
107

b [231,214,223,218]
108

(c)

Figure 2: An example of main index (a) and of execution of two subsequent searches (b)-(c) over it using delta
version ∆1

At the physical level, delta versions are stored in blocks obtained by encrypting the nodes in ∆a
i with the same

encryption key k used for the main shuffle index. These blocks are maintained by the server in main memory.

Figure 2(b) illustrates an example of delta version of the logical index in Figure 2(a). Note that, since a delta

version is composed of nodes along paths that are traversed when executing search operations, the parent of

each node in the delta version also belongs to the delta version. Therefore, every delta version always includes

the root of T a. In the following, we use T and ∆i to denote the set of logical nodes forming a shuffle index and

a delta version, respectively.

Merging a delta version with a main index implies enforcing on the main index the allocation of nodes to

blocks prescribed by the delta version, as captured by the following definition.

Definition 3.3 (Merge) Let T = (T a, ID,φ) be a logical index and ∆i = (∆a
i , IDi,φi) be a delta version of

T . The merge of T and ∆i, denoted T ⊕∆i, is logical index T ′ = (T a, ID,φi).

8

In terms of actual enforcement, T ′ can be simply obtained by flushing the blocks of the delta version to the

main index (i.e., by overwriting the blocks on disk with the blocks in main memory associated with the same

physical address), while leaving the other blocks unaltered. Such an operation – which can be performed without

any need to download the involved blocks or performing computation by the client – produces an index that

correctly represents the original data structure and includes the shuffling operated on the delta version (see

Theorem 5.1 in Section 5).

4 Operating on delta versions

The basic idea of our approach is that transactions operate on delta versions (dynamically created and main-

tained in main memory at the server) rather than on the main shuffle index. Figure 3 illustrates the pseudocode

of the algorithm, operating at a trusted party, executed by concurrent transactions when accessing the out-

sourced relation r to search for a target value of the attribute on which the shuffle index has been defined (i.e.,

attribute K). The algorithm is composed of two steps: i) the choice of the delta version on which the search

should operate and ii) the execution of the access to the shuffle index through the chosen delta version. We

now briefly describe the two steps.

Delta version assignment. Every access operation is executed over a delta version. To avoid imposing

synchronization constraints, we assume the allocation of delta versions to each transaction to be determined

by the server (line 1). However, we need to provide a means to control the proper behavior of the server

in the allocation of the versions. It is important to ensure that the server: i) does not discard the shuffling

requests, ii) does not create a new delta version at each access to have transactions always operating on the

main index (and therefore on a static data structure), and iii) does not selectively allocate versions to monitor

specific activities. Therefore, we assume that a trusted client acts as a coordinator for concurrent accesses by

different transactions. The presence of the client allows detecting possible misbehaviors of the server in the

management of delta versions and in the execution of shuffling operations. The client initially sets the number

of delta versions (which corresponds to the maximum amount of concurrent accesses to be supported). The

client maintains a table Version(∆id , ts , status), reporting for each delta version ∆id the time ts of last access

and the status (busy or free) of the version. We require the transaction at the client side to update the entry

for the version allocated to it, by setting ts to the current time and status to busy (line 4) before accessing the

data. We instead account for a lazy process for the transactions in setting that the version allocated to each

of them has been released (status free, line 56). Hence, while a version appearing as free in table Version is

certainly free, a version appearing as busy could actually have been released (but the transaction be late in

reporting the status change). We require the server to manage the allocation of delta versions according to a

9

T =(T a, ID,φ): logical index on a candidate key K with domain DK , height h, fan-out F
∆1,. . . ,∆n: delta versions of T
Allocation1 [0, . . . , h],. . . ,Allocationn[0, . . . , h]: layered structure that keeps track of node-block associations

and of parent-child relationships by storing, for each node in ∆i, its logical identifier id ,
its label label , and the label of its parent parent (see Section 6)

num cover : number of cover searches
target value: value to be searched in the shuffle index

MAIN
/* Delta version assignment */

1: v id := GetAvailableDeltaVersion /* require the allocation of a delta version to the server */
2: let t∈Version s.t. t [∆id]=v id
3: if ∃t′∈Version s.t. t′[status]=‘free’ ∧ t′[ts]>t [ts] then exit /* server’s misbehavior: ∆v id is not the MRU delta version */
4: t [status] := ‘busy’
5: Root := Decrypt(ReadBlocks(root id, ∆v id)) /* retrieve the root node of the chosen delta version */
6: if Root.ts<t [ts] then exit /* server’s misbehavior: the access at time t [ts] has been discarded */
7: t [ts] := current time
8: Root.ts := current time

/* Access execution */
9: target id := repeated id := Root.id /* identifier of the node along the path to the target and of the repeated search */

10: repeated := true /* the root is always a repeated search */
11: num cover := num cover + 1
12: Parents := {Root}
13: for i:=1. . .num cover do cover id[i] := target id
14: for i:=1. . .num cover do /* choose cover searches */
15: randomly choose cover value[j] in DK s.t. /* DK is the domain of attribute K */

∀j=1,. . . ,i−1, ChildToFollow(Root,cover value[i]) (=ChildToFollow(Root,cover value[j]),
ChildToFollow(Root,cover value[i])/∈∆v id .Repeated[1], and
ChildToFollow(Root,cover value[i]) (=ChildToFollow(Root,target value)

/* search, shuffle, and update repeated searches and the delta version */
16: for l:= 1. . . h do
17: let n∈Parents such that n.id=target id /* node along the path to the target at level l − 1 */
18: target id := ChildToFollow(n,target value) /* identifier of the node along the path to the target at level l */

/* identify the blocks to read from the server */
19: ToRead ids := {target id}
20: if target id (∈∆v id .Repeated[l] then /* the target node is not along the path to a repeated search */
21: if repeated then
22: num cover := num cover − 1
23: repeated := false

25: else
26: let n∈Parents s.t. n.id = repeated id /* repeated id is the identifier of the node along the path to the repeated search */
27: repeated id := n.P ∩ ∆v id .Repeated[l] /* identifier of the node along the path to the repeated search */
28: ToRead ids := ToRead ids ∪ {repeated id}
29: for i:=1. . .num cover do
30: let n∈Parents s.t. n.id=cover id[i]
31: cover id[i] := ChildToFollow(n,cover value[i])
32: ToRead ids := ToRead ids ∪ {cover id[i]}

/* read blocks */
33: Read := Decrypt(ReadBlocks({id∈ToRead ids: id∈Allocationv id [l]}, ∆v id)) /* blocks read from the delta version */
34: Read := Read ∪ Decrypt(ReadBlocks({id∈ToRead ids: id (∈Allocationv id [l]}, T)) /* blocks read from the main index */
35: for each n∈Read s.t. n.id (∈Allocationv id [l] do /* insert a tuple in Allocationv id [l] for each new node in the delta version */
36: ta.id := n.id
37: ta.label := label (n.V)
38: let npar∈Parents s.t. t .id∈npar.P
39: ta.parent := label (npar.V)
40: Insert(ta,Allocationv id [l])

/* shuffle nodes */
41: let π be a permutation of ToRead ids
42: for each n∈Read do
43: let ta∈Allocationv id [l] s.t. ta.id=n.id /* update Allocationv id [l] with the new node-block association */
44: n.id := π(n.id)
45: ta.id := n.id
46: for each n∈Parents do /* determine effects on parents and store nodes at level l−1 */
47: for i:=0. . .F do n.P [i] := π(n.P [i])
48: WriteBlock(n.id , Encrypt(n), ∆v id) /* write blocks in the delta version */
49: target id := π(target id) /* update the identifier of the node along the path to the target */
50: repeated id := π(repeated id) /* update the identifier of the node along the path to the repeated search */
51: for i:=1. . .num cover do cover id[i] := π(cover id[i]) /* update the identifier of the nodes along the paths to covers */
52: ∆v id .Repeated[l] := ToRead ids /* update repeated searches at level l */
53: Parents := Read
54: for each n∈Read do WriteBlock(n.id , Encrypt(n), ∆v id) /* write nodes at level h */

/* return the target leaf node */
55: let n∈Read such that n.id=target id
56: t [status] := ‘free’
57: return(n)

Figure 3: Pseudocode of the algorithm that accesses a shuffle index trough a delta version

10

Most Recently Used (MRU) policy, that is, an access should always be enforced on the version most recently

used. The client can then check that the server has performed proper allocation by verifying whether the time

of last access to the delta version allocated to a transaction is greater than the greatest ts associated with a

free version in the table (the “greater than” condition is to accommodate for possible delays of transactions

operating at the client side to set version status free, lines 2-3). We note that, to perform such a control, the

client requires an exclusive lock on table Version when it sends to the server a request for the allocation of a

delta version to a transaction (line 1). This exclusive lock is necessary to prevent changes to the status of the

delta versions in the time window between the assignment by the server of a delta version to the transaction

and the verification by the client of the correctness of the assignment. The exclusive lock is released when the

transaction has set to busy the status of the delta version assigned to it (line 4). We assume the root of every

delta version to be timestamped at each access. This allows the client to check that the root is actually the

result of the access executed at the time ts recorded in the table for the delta version (lines 5-6) and, therefore

(since the root points to the other blocks in the tree) the freshness of the whole version.

Access execution. Access execution works essentially like in the original shuffle index proposal requesting

h + 1 communication steps between a transaction and the server such that at each level of the shuffle index

num cover+2 blocks (lines 9-56) are read from the server. If the operation needs to read a block that does not

belong to the delta version, such a block is taken from the main index and included in the delta version. Apart

from the need to include new blocks in the delta version, the only notable difference with respect to the original

shuffle index proposal is that we depart from the local cache maintained for hiding that subsequent searches

were aiming at the same node. The reason for departing from the cache is that its maintenance would impose

a strong synchronization overhead among the different transactions operating at the client side. To prevent

the server from recognizing that two subsequent accesses aim at the same block, we take a dual approach with

respect to using the cache, and adopt repeated searches instead. Intuitively, while the cache ensures consequent

searches never access the same block (if a value just retrieved is needed, a fake value is searched instead, so

to ensure no intersection between the two searches and that the same number of blocks is accessed at each

level), repeated searches always ensure intersection between subsequent searches (regardless of whether the two

searches are looking for the same value or not). For enforcing repeated searches, we store, in conjunction with

each delta version, a layered structure that keeps track of the identifiers of the blocks accessed during the last

search (Repeated [0,. . . ,l]). Execution of an access on a delta version will also request at least one block per level

among those appearing in the last search. Each search then accesses num cover+2 blocks at every level of the

index, since, besides the blocks of the target and cover searches, an additional block is necessary for the repeated

search. At the beginning, when the delta version is empty, there is no search to repeat and an additional cover

11

∆id ts status

1 15 free
2 14 busy
3 9 free
4 12 busy
5 18 busy
6 10 free

Figure 4: Status of the delta versions available for the shuffle index

is requested instead.

As an example, consider the index in Figure 2(a) and assume that the data owner decides to adopt six delta

versions that are, at initialization time, all empty. Let us now suppose that the data owner searches for value a1

and decides to adopt one cover and operates on delta version ∆1. In this case, two covers (e.g., d2 and e3) are

needed. The blocks on the paths to a1, d2, and e3 are all read from the main index, shuffled, and written back

in ∆1 as illustrated Figure 2(b). Suppose now that, after a number of concurrent accesses to the shuffle index,

the status of the six available delta versions is the one illustrated in Figure 4 and that the data owner needs to

execute another search for value b4. The server assigns to the transaction delta version ∆1, as it is the most

recently used available delta version. Let us also assume that the transaction adopts one cover search (e.g.,

g3), and one repeated access (e.g., 001, 101, 218). Since the nodes along the paths to b4 and g3 (except the

root) do not belong to ∆1 they are read from the main index, and after shuffling their content with all accessed

blocks, they are copied in the delta version. Figure 2(c) illustrates ∆1 after the execution of the second search

operation.

5 Reconciling delta versions and main index

A delta version grows at every access by including new requested blocks that were not previously contained in

the delta version. In the long run, a delta version could potentially include all the blocks of the main index

saturating the server main memory. Hence, we periodically synchronize the main index with the delta versions,

reporting shuffling operations on the main index and resetting the delta versions. Note that we cannot simply

destroy the delta versions without changing the main index. In fact, although all operations are read-only (i.e.,

the abstract data structure remains unaltered), the principle of the shuffle index is that the allocation of nodes

to blocks is dynamic. It is therefore important to apply the shuffle performed on the delta versions to the main

index, so to enjoy the protection of shuffling for subsequent accesses.

If there were a single delta version, applying the performed shuffling on the main index would be simple.

Indeed, it would be sufficient to flush the blocks included in the delta version to the main index on disk, as

formally proved by the following theorem.

12

Theorem 5.1 Given a logical index T = (T a, ID,φ) and a delta version ∆i = (∆a
i , IDi,φi) of T , the set

(T ∪∆i)\({〈id ,V ,P 〉∈T : id∈IDi}∪{〈id ,V ,T 〉∈T : id∈IDi}) of logical nodes represents logical index T ′ =

T ⊕∆i.

Proof: See Appendix A.

The situation may however be complicated by the presence of several delta versions, which can have operated

independently on the same nodes/blocks. In this case, a reconciliation is needed to ensure correctness of the

index and, in particular, to ensure that no content is lost and pointers to child blocks are properly set. We first

note that, while it is important that shuffling is enforced on the main index, the specific way in which nodes

are shuffled (i.e., which node goes to which block) does not have any impact, provided it represents a random

permutation. As long as allocation is dynamic, any rearrangement would do. Hence, a straightforward approach

to enforce shuffling on the main index would be to download all the blocks contained in the delta versions at

the client side, retrieve (by decrypting) the corresponding nodes, allocate them to blocks, and re-upload them

at the server by rewriting the involved blocks on the main index. Such a naive approach, requiring to download

all the blocks and to re-encrypt all the nodes, is clearly too expensive and not needed. Our approach aims at

minimizing the blocks to be downloaded and re-uploaded by limiting these blocks to the ones strictly needed

to guarantee correctness or to avoid leakage on the node allocation, while flushing as many blocks as possible

directly to disk (without downloading them at the client side).

To determine which blocks need to be downloaded and re-encrypted, we have to identify the blocks for which

the presence of multiple delta versions represents a problem. In principle, it is sufficient for two delta versions

to have a block (and hence the corresponding node) in common to require checking all the blocks in them, since

the node (which should be reported in only one block to the main index) may have been re-allocated to any

of the blocks within each delta version. In practice, only the block where the node was originally allocated in

the main index and the new block where it has been allocated in each of the delta versions need to be strictly

involved in some re-encryption, since the delta versions have conflicting node/block allocations.

We then start by characterizing conflicting node/block allocations among a set of delta versions as follows.

Definition 5.2 (Conflicting allocations) Let T = (T a, ID,φ) be a logical index and {∆1, . . . ,∆n} be a set

of delta versions of T . The conflicting allocations of ∆i with respect to {∆1, . . . ,∆n} \ {∆i} is a set Ci of pairs

〈na
i ,id i〉, where na

i∈∆
a
i , id i = φi(na

i), and ∃na
j∈∆

a
j , i .= j, such that either: 1) na

i=na
j (same node); or 2)

φi(na
i) = φj(na

j) (same block).

It is easy to see that, with respect to nodes, the nodes that are in conflict for a given delta version ∆i are all

those nodes that are also present in another version (i.e., belong to ∆a
i ∩∆a

j , for some j .=i) or that are contained

in blocks which are also present in another version (i.e., are allocated to a block in IDi ∩ IDj , for some j .=i).

13

Analogously, with respect to blocks, the blocks that are in conflict for a given delta version ∆i are all those

blocks that are also present in another version (i.e., belong to IDi ∩ IDj , for some j .=i) or that contain nodes

that are also present in another version (i.e., belong to ∆a
i ∩∆a

j , for some j .=i). For completeness, Definition 5.2

captures both components representing conflicts, in terms of pairs 〈node,block〉 since the conflict requires to

revisit the allocation of the node contained in the block . To illustrate, consider the two delta versions ∆1 and

∆2 in Figures 5(b)-(c). The nodes/blocks representing a conflicting allocation in each version are marked with

the word conflict (conf. for leaves) below each block.

All blocks involved in a conflict for some delta version cannot be simply written to disk as the resulting index

would not be correct (some nodes would be lost and others would appear replicated). To ensure consistency of

the content, it is important to reconcile the delta versions so that there is agreement – with respect to common

nodes or common blocks – on which node is allocated to which block. We capture this by formalizing the

definition of reconciled delta version, resulting from a reconciliation of different delta versions, as follows.

Definition 5.3 (Reconciled delta version) Let T = (T a, ID,φ) be a logical index, {∆1, . . . ,∆n} be a set of

delta versions of T , and Ci be the conflicting allocations of ∆i with respect to {∆1, . . . ,∆n} \ {∆i}, i = 1, . . . , n.

A reconciled delta version of {∆1, . . . ,∆n} is a delta version ∆r = (∆a
r , IDr,φr) where ∆a

r = ∆a
1 ∪ . . . ∪∆a

n,

IDr = ID1 ∪ . . . ∪ IDn, and φr(na) = φi(na) if na∈∆a
i and 〈na,φi(na)〉.∈Ci.

Since ∆r is a delta version, by Definition 3.2 φr : T a → ID is a bijective function that associates each abstract

node na ∈ T a with a logical identifier id∈ID. Function φr is such that: φr(na) = φ(na) if na does not belong

to any delta version; φr(na) = φi(na) if na belongs to one delta version only (i.e., ∆i); and φr(na) needs to be

properly defined as the result of a reconciliation among ∆1, . . . ,∆n, otherwise. Therefore φr does not generate

any conflicting allocation and correctly associates nodes with physical addresses reserved by the server to the

shuffle index.

The reconciled delta version can then be enforced on the shuffle index as in the case of a single delta version,

by merging T and ∆r producing logical index Tr=T ⊕∆r that represents the same abstract index as T .

For producing the reconciled version, in addition to blocks in conflict also the blocks containing a pointer to

a block in conflict (e.g., block 103 in ∆2 in Figure 5(c)) need to be re-written, as the pointer should be changed

to refer to the new block where the child node (e.g., c4) has been allocated.

While the blocks in conflict and their parents are the only ones that should be downloaded by the client and

re-uploaded (after shuffling the nodes in conflict) to produce a correct reconciled version (all other blocks in

the delta versions could simply be flushed to disk directly by the server), we may need to download (and either

include in the shuffling or simply re-write) other blocks. The reason is to ensure that the server cannot infer

node/block allocations by observing that only few blocks have been involved in a reconciliation. As an example,

14

main index

r [105,102,104,101,107,103,108,106]
001

c2
201

h1
202

h2
203

c3
204

d3
205

g4
206

d4
207

e3
208

c1
209

e2
210

f3
211

f2
212

a4
213

b2
214

c4
215

h4
216

e4
217

a1
218

h3
219

a2
220

f1
221

d2
222

b3
223

g2
224

g3
225

a3
226

e1
227

g1
228

d1
229

b4
230

b1
231

f4
232

d [229,222,205,207]
101

e [227,210,208,217]
107

g [228,224,225,206]
108

h [202,203,219,216]
106

a [218,220,226,213]
105

c [209,201,204,215]
104

f [221,212,211,232]
103

b [231,214,223,230]
102

conflict

conflict conflict

conf.

(a)

∆1 ∆2

a1
208

b4
218

d2
222

e3
225

g3
230

r [107,108,104,105,102,103,101,106]
001

g [228,224,230,206]
101

e [227,210,225,217]
102

d [229,222,205,207]
105

a [208,220,226,213]
107

b [231,214,223,218]
108

conflict

conflict conflict conflict conflict downloaded

conf. cover
f2

201
d2

212
e1

215
c4
222

c2
227

r [105,102,103,104,106,101,108,107]
001

f [221,201,211,232]
101

c [209,227,204,222]
103

d [229,212,205,207]
104

e [215,210,208,217]
106

h [202,203,219,216]
107

conflict

conf.

conflict conflict conflict conflictparent

conf.

(b) (c)

reconciled main index

b [231,214,223,218]
108107

e [215,210,222,217]
106
g [228,224,230,206]

105
f [221,201,211,232]

104
h [202,203,219,216]

103
c [209,227,204,212]

102
a [208,220,226,213] d [229,225,205,207]

101

f2
201

h1
202

h2
203

c3
204

d3
205

g4
206

d4
207

a1
208

c1
209

e2
210

f3
211

c4
212

a4
213

b2
214

e1
215

h4
216

e4
217

b4
218

h3
219

a2
220

f1
221

e3
222

b3
223

g2
224

d2
225

a3
226

c2
227

g1
228

d1
229

g3
230

b1
231

f4
232

r [102,108,103,101,107,105,106,104]
001

uploaded

uploaded uploaded uploaded uploaded uploaded uploaded uploaded uploaded

up. up. up.fl.fl. fl. fl. fl. fl.

(d)

Figure 5: An example of main index (a), two delta versions ∆1 (b) and ∆2 (c), and the result of their
reconciliation (d)

for ∆1 in Figure 5(b), the only leaf block to download and re-upload would be conflicting block 222, therefore

the server can infer that it stores the value accessed (as target or cover) by two searches performed with different

delta versions. To avoid leakages like this, and provide the same uncertainty over the block allocation enjoyed

by the original shuffle index proposal, we require each version, for each level of the index, to: i) perform shuffling

of either 0 or at least num cover+1 blocks and ii) flush directly either 0 or not less than num cover+1 blocks.

If for a given level there are less than num cover+1 blocks to flush, additional cover blocks are also downloaded

and re-uploaded after re-encrypting them with a new salt (to make them not recognizable). Like parents, these

latter nodes are not involved in the shuffling to avoid propagating the need for changes to higher levels of the

index. For instance, with reference to ∆1 in Figure 5(b): i) 225 is added as cover to perform shuffling among at

least two nodes at leaf level, and ii) 108 is also downloaded since it would have been the only one flushed at level

one. Figure 5(d) illustrates the merging of the index in Figure 5(a) after reconciliation of delta versions ∆1 and

∆2 in Figures 5(b)-(c). In the figure, blocks flushed by the server from main memory to disk are represented

15

in dark gray and are marked with the word fl. below each of them; blocks that have been downloaded at the

client side, re-encrypted, and uploaded back on the server are represented in light gray and are marked with the

word upload (up., for leaves) below each of them; and blocks that have not been involved in the reconciliation

process are represented in white.

6 Algorithm for reconciling delta versions and main index

The pseudocode of the algorithm, operating at the client side, reconciling a set of delta versions and the main

index is illustrated in Figure 6 and works as follows. Given a logical index T and a set {∆1, . . . ,∆n} of delta

versions of T , the reconciliation algorithm visits all the blocks in the delta versions level by level, following a

bottom-up strategy that starts from the leaves. For each level l = h, . . . , 0, the algorithm first partitions the

blocks in each delta version in the following three classes (lines 5-24).

• ToShufflei[l]: set of blocks at level l of delta version ∆i that must be shuffled before writing them in

the main index. The blocks that must be shuffled include both conflicting allocations (Definition 5.2)

and cover nodes and are at least num cover+1. In the choice of covers, the algorithm first includes in

ToShufflei[l] the blocks in ToAdjust i[l].

• ToAdjust i[l]: set of blocks at level l , with l<h, of delta version ∆i that do not belong to ToShufflei[l] and

that have at least a child in ToShufflei[l + 1].

• Unchanged i[l]: set of blocks at level l of delta version ∆i that belong neither to ToShufflei[l] nor to

ToAdjust i[l]. These nodes must be at least num cover+1, otherwise they are moved to ToAdjust i[l].

To easily classify the blocks composing a delta version without the need for the client to download all of them,

each delta version is associated with a layered structure, called Allocationi[0, . . . , h], stored at the server side

and updated at each shuffling (see Figure 3, lines 36-40, 43-45). This structure summarizes the node/block

associations and the parent-child relationships between (abstract) nodes in the delta version. For each block at

level l in ∆i, Allocationi[l] stores a triple of the form 〈id ,label ,parent〉, where id is the block identifier, label

is the identifier of the values V stored in the block (i.e., it is the identifier of the abstract node), and parent

is the label of the parent of the block. Before starting the reconciliation process, the client downloads from

the server these metadata (line 1) and classifies the blocks in each delta version in the server’s main memory

without the need to download them (lines 2-24). The algorithm then flushes to the main index on disk all

the blocks in Unchanged i[l] (line 25) and downloads the blocks in ToShufflei[l] and ToAdjust i[l], i = 1, . . . , n,

whose content or allocation need to be updated (line 26). The algorithm first adjusts the pointers to children

of the internal nodes in ToAdjust i[l], i = 1, . . . , n, according to the node/block allocation resulting from the

16

T =(T a, ID,φ): logical index on a candidate key K with domain DK , height h, fan-out F
∆1,. . . ,∆n: delta versions of T
Allocation1 [0, . . . , h],. . . ,Allocationn[0, . . . , h]: layered structure that keeps track of node-block associations

and of parent-child relationships by storing, for each node in ∆i, its logical identifier id ,
its label label , and the label of its parent parent

num cover+1: minimum number of nodes to shuffle (to flush, respectively) at each level of each delta version

MAIN
1: for i:=1, . . . , n do Allocationi [0, . . . , h] := Decrypt(Download(Allocation [0, . . . , h],∆i))

/* reconcile ∆1,. . . ,∆n with T starting from the leaves */
2: for l:=h,. . . ,0 do
3: toWrite := ∅, Replicas := ∅
4: for i:=1, . . . , n do

/* classify the nodes at level l in ∆i */
5: ToReconcilei[l] := {tr∈Allocationi [l]:∃tr

′ ∈ Allocationj [l], i (= j, tr .label=tr′.label} /* conflicting nodes */
6: ToShufflei[l] := ToReconcilei[l] ∪ {ts∈Allocationi[l]:∃ts

′ ∈ Allocationj [l], i (= j, ts.id=ts′.id} /* conflicting blocks */
7: if l=h then ToAdjusti[l] := ∅
8: else ToAdjusti[l] := {ta∈Allocationi[l]:∃ta

′ ∈ ToShufflei[l + 1], ta.label=ta′.parent} /* parents of conflicting allocations */
9: Unchangedi[l] := Allocationi[l] \ (ToShufflei[l]∪ToAdjusti[l]) /* nodes to flush */

/* extend the set of nodes to shuffle to be num cover+1 */
10: if 0<|ToShufflei[l]|≤num cover then
11: if |ToShufflei[l]∪ToAdjusti[l]|>num cover then /* extend the set of nodes to shuffle with parents of conflicting allocations */
12: let cover⊆ToAdjusti[l] s.t. |ToShufflei[l]∪cover |=num cover+1
13: ToShufflei[l] := ToShufflei[l] ∪ cover
14: ToAdjusti[l] := ToAdjusti[l] \ cover
15: else
16: if |Allocationi[l]|>num cover then
17: let cover⊆Unchangedi[l] s.t. |ToShufflei[l]∪ToAdjusti[l]∪cover |=num cover+1
18: else cover := Unchangedi[l]
19: ToShufflei[l] := ToShufflei[l] ∪ ToAdjusti[l] ∪ cover
20: ToAdjusti[l] := ∅
21: Unchangedi[l] := Unchangedi[l] \ cover

/* extend the set of nodes to flush to be num cover */
22: if 0<|Unchangedi[l]|≤num cover then
23: ToAdjusti[l] := ToAdjusti[l] ∪ Unchangedi[l]
24: Unchangedi[l] := ∅
25: Blind-Write(Unchangedi[l],∆i) /* flush unchanged blocks */
26: Read := Decrypt(Download(ToShufflei[l]∪ToAdjusti[l],∆i) /* read blocks */
27: for each ta∈(ToAdjusti[l]∪ToShufflei[l]\ToReconcilei[l]) do
28: let block∈Read such that block .id=ta.id
29: if l<h then /* adjust pointer to children in nodes that do not have multiple copies */
30: for j=1, . . . ,F do
31: if ∃ts′∈ToShufflei[l + 1] s.t. ts′.id=block .P [j] then block .P [j] := ρl+1(ts

′.label)
32: toWrite := toWrite ∪ {block}
33: Replicas := Replicas ∪ {block∈Read: ∃tr∈ToReconcilei[l], block .V=tr .V }

/* define an assignment function, with shuffling, for nodes to shuffle */
34: ρl : {ts.label :ts∈(ToShuffle1[l]∪. . .∪ToShufflen[l])} → {ts.id :ts∈(ToShuffle1[l]∪. . .∪ToShufflen[l])} /* identity function otherwise */
35: for each block∈toWrite do block .id := ρl (label (V)) /* update the block identifier */
36: for each block∈Replicas do
37: Copies := {block∈Replicas:block .V=val} /* set of blocks storing the same abstract node */
38: if l<h then
39: create block ′ with block ′.id=ρl (label (V)), block ′.V =V /* create a new block representing the abstract node */
40: for j=1, . . . ,F do /* adjust pointers to children */
41: for i:=1, . . . , n do
42: if ∃tr∈ToReconcilei[l] s.t. tr .label=label (V) and

∃ta′∈Allocationi[l + 1] s.t. block .P [j]=t′.id , block∈Copies then
43: block ′.P [j] := ρl+1(ta

′.label)
44: else block ′.P [j] := block .P [j]
45: else block ′ := 〈ρl (label (V)),V ,block .T 〉 with block∈Copies
46: toWrite := toWrite ∪ {block ′}

/* write reconciled blocks in the main index */
47: for each block∈toWrite do Write(block .id ,Encrypt(salt||block))
48: for i:=1, . . . , d do /* remove all delta versions */
49: remove ∆i from main memory /* server-side */
50: Version[i] := 〈i, 0, 0〉 /* client-side */

Figure 6: Pseudocode of the algorithm that reconciles delta versions and the main index

reconciliation of the nodes/blocks at level l + 1 (lines 27-31). The algorithm then shuffles and reconciles the

blocks in ToShuffle1[l]∪. . .∪ToShufflen[l], such that no two nodes are allocated to the same block and, viceversa,

no two blocks store the same node (line 34). The algorithm also updates the pointers to children in shuffled

blocks representing internal nodes, according to the node/block allocation resulting from the reconciliation

of the nodes/blocks at level l + 1 (lines 35-46). The algorithm encrypts and writes to the main index the

17

∆1 ∆2

l ToShuffle ToAdjust Unchanged ToShuffle ToAdjust Unchanged ρ ToWrite

2 208 a1 201 f2
218 b4 215 e1
230 g3 227 c2

222 d2 212 d2 d2 → 225 225 d2
225 e3∗ e3 → 222 222 e3

222 c4 c4 → 212 212 c4
1 102 e[227,210,225,217] 106 e[215,210,208,217] e → 107 107 e[215,210,222,217]

105 d[229,222,205,207] 104 d[229,212,205,207] d → 101 101 d[229,225,205,207]

101 g[228,224,230,206] g → 106 106 g[228,224,230,206]

107 a[208,220,226,213] a → 102 102 a[208,220,226,213]

101 f [221,201,211,232] f → 105 105 f [221,201,211,232]

107 h[202,203,219,216] h → 104 104 h[202,203,219,216]

108 b[231,214,223,218]∗ 108 b[231,214,223,218]
103 c[209,227,204,222] 103 c[209,227,204,212]

0 001 r[107,108,104,105, 001 r[107,108,104,105, 001 r[105,102,103,104, 001 r[105,102,103,104, r → 001 001 r[102,108,103,101,

102,103,101,106] 102,103,101,106] 106,101,108,107] 106,101,108,107] 107,105,106,104]

Figure 7: An example of reconciliation of the shuffle index in Figure 5(a) with the two delta versions in
Figures 5(b)-(c)

resulting blocks (line 47). Finally, the algorithm empties all the delta versions on the server and updates

relation Version at the client side accordingly (lines 48-50). Note that the reconciliation algorithm, similarly

to the search algorithm illustrated in Section 4, requires an interaction between the client and the server that

consists of h + 1 communication steps. During these steps, the client however does not download all the nodes

of the delta versions, but only the ones in ToShufflei[l] and ToAdjust i[l], with i = 1, . . . , n and l = 0, . . . , h.

Consider the main shuffle index in Figures 5(a) and its delta versions in Figures 5(b)-(c) and assume that

num cover=1. Figure 7 illustrates an example of execution of the reconciliation algorithm. The columns of the

table represent: the level of the shuffle index (l); the nodes that must be downloaded, reconciled, and shuffled by

the data owner (ToShuffle); the nodes that must be downloaded and updated but that should not be involved

in shuffling operations (ToAdjust); the nodes that are flushed directly to disk (Unchanged); the assignment of

nodes in ToShuffle to blocks (ρ); and the blocks written on the server (ToWrite). In columns ToShuffle and

ToAdjust , a * denotes covers. We note that each row in the table illustrates the evolution of an abstract node

during the reconciliation of the delta versions with the main index.

It is interesting to note that, for l=2, ToAdjust is empty for both the delta versions since the visited nodes

are leaves. Also, node 225 storing value e3 is moved from Unchanged to ToShuffle, since ToShuffle would

otherwise include less than num cover+1 nodes. For l=1, Unchanged is empty for both the delta versions, since

the only node in Unchanged for ∆1 is moved to ToAdjust to guarantee that Unchanged includes either 0 or at

least num cover+1 nodes in each delta version. For l=0, the root note clearly belongs to ToAdjust since its

children has been shuffled and therefore its content must be updated accordingly. It is easy to see from the

figure that each abstract node is written back to the server only once, only the nodes in ToShuffle are possibly

associated with a different block, while nodes in ToAdjust are stored in the same block after updating pointers

to children.

18

The main index T ′ obtained by the algorithm in Figure 6 is the result of the merge of the original index T

with a delta version ∆ρ that includes all the blocks/nodes in all delta versions and that shuffles (at least) all

the nodes/blocks with conflicting allocations. That is, ∆ρ guarantees that the node/block allocation of blocks

that do not belong to any delta version remains unchanged, while any other allocation may change. Hence,

∆ρ can be seen as an extended reconciled delta version of {∆1, . . . ,∆n} and T (i.e., it represents a reconciled

delta version possibly including additional cover nodes). Formally, the correctness of the algorithm in Figure 6

is proved by the following theorem.

Theorem 6.1 Given a logical index T = (T a, ID,φ), a set {∆1, . . . ,∆n} of delta versions of T , and ∆r =

(∆a
r , IDr,φr) a reconciled delta version of {∆1, . . . ,∆n} with T , the logical index T ′ = (T a, ID,φρ) computed

by the algorithm in Figure 6 represents T ⊕∆ρ, where ∆ρ = (∆a
ρ, IDρ,φρ) with ∆a

ρ = ∆a
r , IDρ = IDr, and

φρ(na) = φ(na) if na .∈∆a
ρ.

Proof: See Appendix A.

7 Supporting multiple indexes

The adoption of a shuffle index built on a candidate key K permits to efficiently evaluate conditions of the

form K = v, with v a value in the domain of K, without revealing to the server any information about the

target v of the access. The evaluation of conditions on attributes different from K requires instead the data

owner to download all the tuples in r and to locally evaluate the search condition on them. The computational

cost of these queries could potentially be quite high. To efficiently support the evaluation of these queries at

the server side, even when their frequency is low, the data owner has to define additional indexes on different

attributes of the outsourced relation. If the data owner adopts index structures that statically allocate data to

disk blocks, the definition of more than one index on the same relation may compromise both data and access

confidentiality, since the storage server can exploit static indexes for drawing inferences. In fact, the adoption

of an index structure that does not change data allocation at each access permits the server to keep track of the

frequency with which the content of each block is accessed by users’ queries. If the server knows the frequency

distribution of accesses to values in the domain of the indexed attribute, it can exploit the collected information

to infer both the target of each access and the value of the indexed attribute stored in each (encrypted) block.

Also, the presence of multiple indexes defined on the same relation may enable the server to reconstruct the

associations among the values of indexed attributes in each tuple of the relation. As an example, suppose that

the outsourced relation stores the medical data of the patients in a hospital and that the data owner defines

two indexes, on attribute Name and on attribute Disease, respectively. By monitoring the frequency of accesses

19

to blocks, the server might possibly reconstruct, not only the names of the hospitalized patients, but also the

diseases of some of them (which should be kept secret). An evaluation of the risk can be found in [4], where the

exposure deriving from access to index structures over encrypted data has been investigated. In fact, as shown

in [4], knowledge of the frequency distribution of values can enable the server to reconstruct, for a significant

fraction of the data, the correspondence between the plaintext data and the values of the index.

In this section, we extend our shuffle index data structure to support multiple indexes.

7.1 Secondary indexes and combined shuffle index

We define a set of secondary shuffle indexes over the attributes frequently involved in accesses to the outsourced

relation. Consistently with usual practice in commercial systems, we assume that both the primary and sec-

ondary shuffle indexes are defined over candidate keys, that is, each value in the domain of the indexed attributes

appears at most in one tuple of the outsourced relation.

At the abstract level , primary and secondary shuffle indexes represent independent abstract data structures.

Given candidate key Ai, the abstract secondary index T a
i on Ai is a set {na

1, . . . , n
a
m} of abstract nodes forming

an unchained B+-tree. The internal nodes of the secondary index are pairs of the form na = 〈Values ,Children 〉,

with Values a list of index values and Children a list of q + 1 child nodes. The leaf nodes are pairs of the form

na = 〈Values ,Key-values 〉, where Key-values represents the set of values of attribute K (on which the primary

shuffle index has been defined) for the tuples such that t[Ai]∈Values (the primary shuffle index has instead the

tuples in the leaves). Figure 8(a) illustrates, on the right-hand side, an abstract secondary index defined on the

same outsourced relation as the primary index in Figure 1(a), which has been reported on the left-hand side of

Figure 8(a) for the reader’s convenience.

At the logical level , the primary and secondary indexes can either be kept separate or combined in a single

shuffle index representing all the abstract structures defined on the outsourced relation. The main advantage of

keeping indexes separate at the logical level is that each index can be managed independently from the others.

The drawback is that an observer (e.g., the storage server) can monitor the attribute involved in each query

evaluation (i.e., the attribute on which the search condition is defined). To prevent this leakage of information,

we combine all the abstract indexes defined for the outsourced relation in a single combined shuffle index at

the logical level. This permits to shuffle blocks that store nodes of different abstract structures, breaking the

correspondence between blocks and the abstract index to which the nodes they store belong (i.e., the attribute

on which the index has been defined). All the abstract indexes defined on the outsourced relation must have the

same height (i.e., the leaves of all the indexes must be at the same level) to be combined in one logical structure.

In fact, if the abstract indexes had different heights, the paths visited while accessing the logical index would be

20

Abstract indexes

a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3

r

a b c d E F G H

E1 E2 E3 F1 F2 F3 G1 G2 G3 H1 H2 H3

K rA

(a)

Logical index

101r [208,203,205,201]
102r [207,204,206,202]

201
[324,305,312]H

202
[301,315,311]d

203
[319,304,313]F

204
[318,314,320]b

KA

205
[321,302,323]G

206
[310,307,316]c

207
[303,306,309]a

208
[317,322,308]E

b2
314

d2
315

E1
317

b1
318

b3
320

G1
321

E2
322

G3
323

H1
324

d1
301

G2
302

a1
303

H2
305

a2
306

E3
308

a3
309

d3
311

H3
312

c3
316

c1
310

c2
307

 F2
304

 F3
313

F1
319

001r [102,101]

(b)

Physical index

?
101

£
201

$
202

%
203

&
204

<
301

>
302

\
303

^
304

'
305

[
306

]
307

{
308

}
309

+
310

*
311 312

"
102

/
205

(
206

)
207

=
208

§
313

#
314

@
315

-
316

;
317

:
318 .319 ,320 _321

°
322 ç323 è

324

!
001

+
(c)

Figure 8: An example of an abstract primary and secondary index (a) and the corresponding logical (b) and
physical (c) combined shuffle index

composed of a different number of nodes depending on the abstract index to which the path belongs, potentially

disclosing to the server the attributes involved (either as target, cover, or repeated searches) in each access to

the index. Note however that, since the fan-out of B+-trees is usually relatively high, forcing the leaves of all

abstract indexes to be at the same level can only modestly increase (at most one level) the height of each index.

To combine multiple abstract indexes in one logical structure, we add a prefix to all the values in each

abstract node. This prefix represents the attribute on which the index has been defined. We then create an

auxiliary root node for the structure, whose children are the roots of the abstract primary and secondary indexes

defined for the outsourced relation. At the logical level, a combined shuffle index is defined as follows.

Definition 7.1 (Combined shuffle index - Logical level) Let R(A1, . . . ,An) be the outsourced relation,

21

and I = {K,Ai, . . . ,Aj}⊆{A1, . . . ,An} be the set of attributes on which either the primary or a secondary

index has been defined. A logical index T for R over I is a triple (T a, ID,φ) where:

• T a={Ai.na | Ai∈I ∧ na∈T a
i }∪{root} is the set of nodes in the abstract indexes T a

i , Ai∈I, defined on

the outsourced relation and the auxiliary root node root=〈I,Children〉, with Children the root nodes of the

abstract indexes;

• ID is a set of logical identifiers;

• φ : T a → ID is a bijective function associating each abstract node Ai.na in T a with a logical identifier id

in ID.

The logical index determines how the nodes in the abstract structures T a
i , with Ai∈I, are allocated to logical

identifiers in ID. Note that the allocation of abstract nodes to logical identifiers is independent from the abstract

index to which nodes belong (i.e., nodes of the same abstract index may be allocated to non-contiguous identi-

fiers). As discussed in Section 3, each internal node na=〈Values ,Children 〉 of an abstract index is represented by

a (logical) node of the form 〈id ,V ,P 〉, where id=φ(na), V=Values , and P [j]=φ(Children [j]), j = 1, . . . , q+1.

The leaf nodes of the logical index may have a different structure, depending on whether they represent the

leaves of the primary index or the leaves of a secondary index. Leaves of the primary index are of the form

〈id ,V ,T 〉, where T is a set of tuples. Leaves of the secondary indexes are of the form 〈id ,V ,K-v 〉, where

K-v is a set of values in the domain of attribute K on which the primary index has been defined. Figure 8(b)

illustrates the combined shuffle index representing the two abstract structures in Figure 8(a). For simplicity, in

the figure we do not report the prefix of each value stored in logical nodes, but we distinguish the nodes of the

primary index from the nodes of the secondary index by denoting them with a different color.

At the physical level , a combined shuffle index T is stored in a set of (disk) blocks T e that contain the

encrypted representation of the nodes in T . Figure 8(c) illustrates the physical representation of the logical

structure in Figure 8(b).

7.2 Access to data via secondary indexes

The evaluation of a search condition t[Ai] = vi, with Ai an attribute used for building a secondary shuffle index

and vi a value in the domain of attribute Ai, operates in two steps:

1. search for vi to retrieve the value vk in the domain of attribute K such that ∃t ∈ r: t[Ai] = vi ∧ t[K] = vk;

2. search for vk to retrieve the tuple t with t[K] = vk to be returned in response to the query.

22

If the first access to the combined shuffle index returns an empty result, the data owner does not need to evaluate

the second search since no tuple in the outsourced relation satisfies the search condition. Otherwise, if the first

access returns a value, the second search will certainly return a tuple. Note that the server cannot infer, by

observing two subsequent accesses to the combined shuffle index, whether they are related to the evaluation

of the same search condition. In fact, two subsequent accesses related to the evaluation of the same condition

adopt different target, cover, and repeated searches. Thanks to the combination of all abstract indexes in one

logical structure, the data owner can choose cover and repeated searches from the domain of any attribute on

which an index (either primary or secondary) has been defined. In the choice of cover searches, the data owner

must guarantee [9]: i) the indistinguishability of target and covers to the server’s eyes, and ii) that the paths

that correspond to target, cover, and repeated searches are disjoint, with only the auxiliary root and possibly

the nodes at level 1 in common (i.e., the access visits disjoint paths on the abstract indexes).

To illustrate, consider a search for A’s value H1 over the index in Figure 8(b) and assume num cover=1.

The data owner first calls the search algorithm in Figure 3 with H1 as target, F2 as cover, and d2 as repeated

search. The algorithm download blocks: (001) at level 0, (101,102) at lever 1, (201,202,203) at level 2, and

(304,315,324) at level 3. The leaves accessed by the search algorithm are therefore: 〈304,F2,d2〉, 〈315,d2,T d2〉,

and 〈324,H1,b3〉, where T d2 is the tuple in the outsourced relation with value d2 for attribute K. The data

owner then calls again the search algorithm in Figure 3 with b3 as target, a2 as cover, and F2 as repeated search.

The algorithm, in this second access to the combined shuffle index, downloads blocks: (001) at level 0, (101,102)

at lever 1, (201,204,207) at level 2, and (306,315,320) at level 3. The leaves accessed by the search algorithm

are then: 〈306,a2,Ta2〉, 〈315,F2,d2〉, and 〈320,b3,T b3〉, where Ta2 and T b3 are the tuples in the outsourced

relation with value a2 and b3 for attribute K, respectively. Tuple T b3 is the only tuple in the outsourced relation

satisfying the search condition (i.e., composing the query result).

The support of multiple indexes nicely complements the support of concurrency without requiring any special

reconsideration. In fact, having merged primary and secondary indexes in a single data structure essentially

makes the presence of multiple indexes transparent to the concurrency manager. The only note to make is that

delta versions will be defined on the combined shuffle index (in contrast to the single primary index). Figure 9

illustrates the delta version resulting from the search for value H1 over the combined index in Figure 8 described

above.

8 Security analysis

We analyze the protection offered by our proposal for the new aspects introduced with respect to the serial

version operating only with the main index built on one candidate key. When a secondary index is used, it is

23

201
[303,320,309]a

202
[315,305,312]H

203
[301,304,311]d

204
[319,306,313]F

207
[318,314,324]b

101r [201,207,206,203]
102r [208,204,205,202]

H1
315

a2
320

b3
324

F2
306

d2
304

001r [101,102]

K A

Figure 9: An example of delta version of the combined shuffle index in Figure 8

first necessary to retrieve the node in the secondary index that satisfies the search condition and then execute

an independent access to the primary shuffle index, searching for the value retrieved by the first search.

Like in the original proposal, we focus the analysis on leaves of the index (nodes at a higher level are subject

to a greater number of accesses, due to the multiple paths that pass through them, and are then involved in

a larger number of shuffling operations, which increase their protection). Since a combined shuffle index is,

at the logical and physical levels, indistinguishable from a (primary) shuffle index and our search operations

execute essentially like in the original proposal (with repeated searches instead of cache), our solution enjoys the

protection guarantees given by cover searches like in [9]. The only potential exposure in our solution is when

two different delta versions require access to the same block in the main index for the first time. Since the main

index changes only upon reconciliation, the server can infer that the two requests actually refer to the same

node. However, since every access execution entails reading at least num cover+1 blocks (in addition to the

repeated search) at every level, and covers are chosen guaranteeing indistinguishability (with respect to access

profiles) between targets and covers, the server cannot determine whether the transactions operating on the two

different delta versions are actually aiming at the same target, or either or both of them are accessing the block

as a cover. The probability that the two transactions aimed at the same target is then 1
(num cover+1)2 . When m

delta versions request access to the same block from the main index, the probability that all the transactions

aimed at the same target is 1
(num cover+1)m , as formally stated by the following theorem.

Theorem 8.1 When the server detects m conflicts over a single physical block in m versions, the probability

that any pair of them is due to accesses to the same logical node as a target is 1
(num cover+1)2 . The probability

that all of them are due to accesses to the same logical node as a target is 1
(num cover+1)m .

Proof: See Appendix A.

The crucial property we are interested in evaluating is the protection against the inferences the server may

make on the data content by exploiting information on the frequency of accesses to the blocks. Applying classical

24

concepts of information theory, we can model the information available to the server on the association between

a node na
i and the block id j storing it as probability P(na

i , id j). A value equal to 1 for this probability means

that the server will be able to correctly identify the node-block correspondence, whereas a value equal to 1
|T a|

will correspond to the absence of any knowledge. If the block is replicated in delta versions, each instance will

be associated with the analogous probability. Let ID ′ be the set of blocks involved in an access in a version

(excluding the repeated search). For all na
i ∈ T a, and for all id j∈ID ′, after the shuffling P(na

i , id j) becomes
∑

idj∈ID′

P(na
i ,idj)

num cover+1 , because the shuffling can associate each node with any of the blocks involved in the access

with equal probability, thus flattening the probability distribution. After the reconciliation, all the blocks that

have been accessed by a single version will be transferred to the main index, where they will be associated with

the probabilities computed in the version. Blocks accessed by multiple versions will be shuffled together, with

a further averaging of probabilities among the blocks. In fact, since the set of blocks that are shuffled in each

level of each delta version is at least num cover+1, the algorithm in Figure 6 guarantees that the server cannot

infer with probability higher than 1
num cover+1 the block that stores, after reconciliation, each of the nodes that

have been accessed by more than one delta version, as formally proved by the following theorem.

Theorem 8.2 Let T = (T a, ID,φ) be a logical index, {∆1, . . . ,∆n} be a set of delta versions of T , T ′ be

the logical index resulting from reconciling {∆1, . . . ,∆n} and T through the Algorithm in Figure 6, and na ∈

(∆i ∩∆j), i, j = 1, . . . , n, i .= j. The server has probability lower than 1
num cover+1 to identify the block where

na is allocated.

Proof: See Appendix A.

As a consequence of this theorem and of the above observations, for each node na
i , P(na

i , id j) will progressively

move toward value 1
|T a| after each access and each reconciliation.

It is natural to study the evolution of these probabilities using the concept of entropy, which allows us to

identify at an aggregate level the knowledge of the server and its degradation due to shuffling and merging. In

particular, we are interested in the impact of delta versions over the entropy, which we evaluated – as common

in the study of codes and channels when analytical models become unmanageable – experimentally. We then

designed a set of experiments with an initial configuration corresponding to a worst case assumption where the

server has a precise knowledge about the node-block correspondence (the entropy is then equal to zero) and

evaluated how the entropy increases with access execution (for the serial index) and with access execution and

merging after reconciliation (for our proposal). The experiments have considered a variety of configurations,

with different numbers of nodes, numbers of versions, values for num cover , and access profiles. Access profiles

have been simulated by synthetically generating a sequence of accesses that follow a self-similar probability

distribution with skewness γ in the range [0.25, 0.5] (given a domain of cardinality d, a self-similar distribution

25

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 500 1000 1500 2000 2500 3000

En
tro

py
 (b

it)

Number of accesses

Serial - Average uncertainity
Concurrent - Average uncertainity

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 500 1000 1500 2000 2500 3000

En
tro

py
 (b

it)

Number of accesses

Serial - Average uncertainity
Concurrent - Average uncertainity

(b)

Figure 10: Evolution of the entropy for values of γ equal to 0.5 (a) and 0.25 (b)

with skewness γ provides a probability equal to 1 − γ of choosing one of the first γd domain values). We then

applied the same sequence of accesses to the serial and concurrent shuffle index and evaluated the growth of

the entropy. Figure 10 illustrates the experimental results using 4 covers, 4 versions, 1000 nodes, skewness γ

equal to 0.5 and 0.25, and varying the number of accesses. Experiments with different configurations presented

a similar behavior.

As visible from the figure, the evolution of entropy in the concurrent scenario does not have a smooth trend,

but it is characterized by two growing trends: a lower growing rate, characterizing the time window between

two reconciliations, and a higher growing rate, characterizing reconciliations. Before the first reconciliation,

the entropy is slightly lower in the concurrent scenario than in the serial index. The reason is that each delta

version serves a smaller number of accesses than the shuffle index in the serial version (assuming uniform

distribution of load among versions, each transaction has one fourth of the accesses operating on the main

index). However, already at the first reconciliation, the entropy for the concurrent scenario becomes higher

than that of the serial scenario, and remains higher. While an even higher entropy might sound not intuitive

and an unexpected advantage (more protection with better performance), the explanation for such a behavior

is simply that reconciliation and merging enjoy shuffling over a larger number of nodes all at one time. In fact,

reconciliation makes the concurrent shuffle index stronger because this phase applies a shuffle over all the nodes

in the conflict set. The size of this set depends on the number of conflicts and our model forces it to be for

each delta version at least as large as the number of covers used for every shuffle. The size of the conflict set

will often be greater than the number of covers, and the growth of entropy produced by a shuffle increases more

than linearly with the number of blocks involved in the shuffle (i.e., the execution of two shuffles over two sets

of m distinct elements produces lower entropy than a single shuffle over a set of 2m elements). The cost of such

26

better protection can be due to reconciliation, which is below 10% of the access cost in the configuration that

maximizes the server throughput (Section 9).

9 Performance analysis

We implemented the search and reconciliation algorithms with Java programs. To assess the system performance,

we used a data set of 1TB stored in the leaves of a shuffle index with 4 levels. The size of the nodes of the

shuffle index was 8KB. The hardware used in the experiments included a server machine with 2 Intel Xeon

Quad 2.0GHz L3-4MB, 12GB RAM, four 1TB disks, 7200RPM, 32MB cache, and Linux Ubuntu with the ext4

file system, and a client machine with an Intel Core 2 Duo CPU T5500 at 1.66GHz, 2GB DRAM, and Linux

Ubuntu. The client and the server operate in a local area network (100Mbps Ethernet, with average RTT of

0.48ms). The results reported in this section have been obtained as the average over 50 runs and, for each run,

the number of accesses is 5000 and the number of covers adopted at each access is 4. The inverse of the average

disk time needed to perform a single search gives an upper bound of 52tps to the maximum throughput of the

system.

To emulate the workload of an outsourcing service, we designed a generator scheme, modeling the number

of access requests per second as a random variable following a Poisson distribution with mean arrival rate λ

(the time when an access request arrives is independent from the time of arrival of previous requests). In our

experiments, we considered λ=16tps and λ=32tps, which correspond to 30% and to 60%, respectively, of the

physical maximum throughput (52tps). These are sensible workloads for a service hosted on a single machine

and a robust test for the deployment of the proposed solution in a real world scenario. In fact, a workload of

60% of the maximum disk service rate is known to be optimal with respect to the upper bound of the physical

maximum throughput [18]. Due to the value of the maximum throughput, well below the ability of the program

to simulate requests, a single emulator in the client can adequately model the requests originating from multiple

transactions in different network locations.

To evaluate the performance gain obtained with the support of concurrent searches and the overhead due

to reconciliation, we compare the results obtained in three different scenarios: i) serial shuffle index [9]; ii)

concurrent shuffle index where delta versions are never reconciled; and iii) concurrent shuffle index where delta

versions are periodically reconciled. In the experiments, delta versions are reconciled every 128 and every 256

access requests, for the configuration with λ=16tps and λ=32tps, respectively. A higher reconciliation frequency

increases the overhead because it more often requires write locks on the disk blocks to be re-written. On the

other hand, a lower frequency requires less often such locks but over a considerably larger number of blocks

(conflicts among versions grow more than linearly with respect to the number of access requests). Figure 11

27

 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34

16 32 64 128 256 512

Th
ro

ug
hp

ut
 (t

ps
)

Number of accesses between two reconciliations

λ=32tps
λ=16tps

Figure 11: Server throughput varying the number of access requests between two subsequent reconciliations

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (t

ps
)

Number of delta versions

without reconciliation
with reconciliation

serial

(a)

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (t

ps
)

Number of delta versions

without reconciliation
with reconciliation

serial

(b)

Figure 12: Server throughput varying the number of delta versions between 1 and 128, with access request
arrival rate equal to λ=16tps (a) and λ=32tps (b)

shows as the chosen threshold values enable us to balance these two aspects and optimize the server throughput

for the employed operating setup.

To assess the performance of our model we analyzed the following three parameters: i) the throughput; ii)

the average service time (server-side); and iii) the average response time (client-side). The results are described

in the following.

Throughput. Figures 12(a)-(b) report the server throughput, varying the maximum number of delta versions

between 1 and 128 with access request arrival rate equal to λ=16tps and λ=32tps, respectively. Although the

performance overhead of concurrent applications highly depends on the random disk access patterns required to

execute read and write accesses to blocks, Figure 12 demonstrates how the adoption of our concurrency support

offers a threefold (fourfold, respectively) increase of the server throughput compared to the serial shuffle index

28

 1

 10

 100

 1000

 10000

 100000

 1 2 4 8 16 32 64 128

Av
er

ag
e

se
rv

ic
e

tim
e

(m
s)

Number of delta versions

Total
Avg. synch. time

Avg. disk time
Avg. think time
Avg. CPU time

Avg. network time

(a)

 1

 10

 100

 1000

 10000

 100000

 1 2 4 8 16 32 64 128

Av
er

ag
e

se
rv

ic
e

tim
e

(m
s)

Number of delta versions

Total
Avg. synch. time

Avg. disk time
Avg. think time
Avg. CPU time

Avg. network time

(b)

Figure 13: Average service time varying the number of delta versions between 1 and 128, with access request
arrival rate equal to λ=16tps (a) and λ=32tps (b)

when λ=16tps (λ=32tps, respectively). Note that the server throughput is higher than or equal to the mean

arrival rate λ of client requests, meaning that the time necessary to the server to process an access request is lower

than the time between two consecutive accesses. Figure 12 also highlights the limited cost due to reconciliation,

which has a maximum of 25% and is 6% in the configuration that maximizes the server throughput.

Average service time. The service time necessary to the server to provide a response to an access request

depends on different factors: disk time, synchronization time (i.e., time for locking the data structures in main

memory and time spent for the periodic reconciliation procedures), network time, CPU time, and think time

(i.e., time due to the protocol latencies at the client side). Figures 13(a)-(b) report the components influencing

the average service time, varying the maximum number of delta versions between 1 and 128, with access request

arrival rate equal to λ=16tps and λ=32tps, respectively. It is immediate to see that the component that most

affects the average service time is the average disk time, which grows exponentially with the maximum number of

delta versions (this trend is worse in configurations with a high system workload, that is, for λ=32tps). Although

the average disk time increases exponentially with the maximum number of delta versions, the average service

time does not increase. This is due to the fact that the average synchronization time quickly decreases as the

maximum number of delta versions grows, since resource contention drops. The average network, CPU, and

think times have instead a low impact on the average service time. Indeed, the average network time only

slightly grows with the maximum number of delta versions and the average CPU and think times are constant

regardless of the number of ongoing transactions. In fact, the process communication costs are negligible with

respect to the computational time demands of the server application. Analogously, the latencies imposed by the

interactive access protocol at the client side are independent from the concurrent management of transactions.

29

 1

 10

 100

 1000

 10000

 100000

 1 2 4 8 16 32 64 128

Av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

Number of delta versions

λ=32tps
λ=16tps

Figure 14: Average response time varying the number of delta versions between 1 and 128

Average response time. To minimize the time required to complete an access request, we need to carefully

choose the number of delta versions to adopt for supporting concurrency. Figure 14 illustrates the average

response time, varying the maximum number of delta versions between 1 and 128, when the access request

arrival rate is equal to λ=16tps and λ=32tps. Figure 14 shows that the average response time is minimized by

using 32 delta versions, and it is equal to 250ms for λ=16tps and to 2000ms for λ=32tps.

10 Related work

Previous work is related to the definition of indexing structures for the execution of queries on encrypted

outsourced data (e.g., [1, 8, 16, 17, 23, 24, 26]). The proposals in [8, 26] specifically adopt the B+-tree and

the B-tree data structures to define an index able to efficiently support search operations on the key attribute.

Although these solutions efficiently support accesses to the outsourced data, they suffer from inference attacks

when even a limited number of indexes is published [4]. Indeed, they are static and do not offer protection

against the attacks based on the frequency of the accesses. Another line of work related to our is represented by

cryptographic techniques proposed for hiding to the server the value (or set thereof) in which a user querying

outsourced data is interested [12, 21, 27]. These proposals however do not address access confidentiality, and are

therefore not applicable to the considered scenario. Other related works are in the area of Private Information

Retrieval (PIR) [6]. In these works, a database is typically modeled as a N -bit string and a user is interested

in retrieving the i-th bit of the collection without allowing the server to know/infer which is the bit the user

is interested in. In general, PIR proposals can be classified in two main classes: information-theoretic PIR

and computational PIR. Information-theoretic PIR protocols prevent an attacker with unlimited computing

power to learn any information about the user’s query [2, 6]. Computational PIR protocols preserve the privacy

30

of queries against adversaries restricted to polynomial-time computations [3, 5]. Recently, traditional PIR

protocols have been integrated with relational databases, to the aim of protecting sensitive data (i.e., constant

values) within SQL query conditions while providing the client with efficient query evaluation [22]. The original

query formulated by the client is properly sanitized before execution and the client resorts to traditional PIR

protocols, operating on the sanitized query result only, to extract the tuples of interest. The difference between

PIR proposals and our solution is that PIR protocols suffer from a high computational overhead [25] and

typically protect the confidentiality of users’ queries, while data confidentiality is not considered an issue.

The proposals in [9, 11, 13, 19, 20, 28, 29] aim at protecting data confidentiality and the accesses realized by

the client over the data. The solution in [19] is based on the definition of a B-tree index and of a technique for

accessing the content of a node in the tree that prevents the server from inferring which node has been accessed.

However, the server can observe repeated accesses to the same physical block, which correspond to repeated

searches for the same values, and launch a frequency attack to infer information about the values stored in each

node of the B-tree. To counteract this shortcoming, in [20] the authors propose a solution based on the definition

of a fixed query plan, which is however impractical. The proposal in [28], aimed at preserving both access and

pattern confidentiality, adopts the pyramid-shaped database layout of Oblivious RAM [15] and an enhanced

reordering technique between adjacent levels of the data structure to protect both data confidentiality and the

secrecy of users’ queries. The performance of a search operation is however highly affected by the reordering

of lower levels of the database, since this reordering can take hours and needs to be periodically performed.

This appears a strong obstacle to the real deployment of such a solution. Also, this proposal assumes the

presence of a secure coprocessor on the server, trusted by the client. The proposal in [13] exploits Oblivious

RAM layout as well and proposes an enhanced management of the shuffling-based approach, by limiting the

shuffling to accessed records only. To this aim, it exploits a cache managed by a secure coprocessor operating on

the server. The main drawback of this solution is that it relies on a secure coprocessor for guaranteeing access

pattern confidentiality, and its security naturally depends on the size of the local cache, which will typically

be limited. The first proposal combining shuffling, cover searches, and cache to offer an extensive protection of

confidentiality with a limited overhead in response times is illustrated in [9], where data are organized according

to a novel data structure whose management does not rely on a trusted component at the server side. A similar

solution has been proposed subsequently in [29], where the authors combine cover searches and shuffling to

protect access confidentiality. This approach is however less flexible and less efficient than the proposal in [9]

as it does not adopt a B+-tree index structure and it uses a constant number of cover searches (equal to two).

Although all these proposals aim at providing access confidentiality, they offer support neither for concurrent

accesses nor for the efficient evaluation of searches for values of attributes different from the candidate key on

which the primary index has been defined.

31

11 Conclusions

Dynamically allocated data structures have recently emerged as a promising solution to provide privacy protec-

tion of data whose storage and management are delegated to external servers. Such solutions, working on an

index defined over the data and requesting write locks at every access (to enforce dynamic allocation) may result

limited and affect performance in scenarios where multiple transactions need to operate concurrently or searches

based on attributes different from the primary key need to be supported. In this paper, we have addressed these

limitations and extended the recently proposed shuffle index approach to efficiently support concurrent trans-

actions and multiple indexes. Our solution provides data and access privacy, also against frequency attacks by

the server, comparable to or better than the original (serial) shuffle index approach. Furthermore, it provides

support for the evaluation at the server side of a wider set of queries and a up to fourfold throughput in case of

concurrent accesses, thus providing a convincing argument for its adoption.

Acknowledgements

This work was supported in part by the EC within the 7FP under grant agreement 257129 (PoSecCo), by the

Italian Ministry of Research within PRIN 2010-2011 project “GenData 2020” (2010RTFWBH), and by Google

under the Google Research Award program.

References

[1] R. Agrawal, J. Kierman, R. Srikant, and Y. Xu. Order preserving encryption for numeric data. In Proc.

of ACM SIGMOD 2004, Paris, France, June 2004.

[2] A. Ambainis. Upper bound on communication complexity of private information retrieval. In Proc. of

ICALP 1997, Bologna, Italy, July 1997.

[3] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with polylogarithmic

communication. In Proc. of EUROCRYPT 1999, Prague, Czech Republic, May 1999.

[4] A. Ceselli, E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati. Modeling

and assessing inference exposure in encrypted databases. ACM TISSEC, 8(1):119–152, February 2005.

[5] B. Chor and N. Gilboa. Computationally private information retrieval (extended abstract). In Proc. of

STOC 1997, El Paso, TX, USA, May 1997.

[6] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval. JACM, 45(6):965–981,

November 1998.

32

[7] S. Cimato, M. Gamassi, V. Piuri, R. Sassi, and F. Scotti. Privacy-aware biometrics: Design and imple-

mentation of a multimodal verification system. In Proc. of ACSAC 2008, Anaheim, CA, USA, December

2008.

[8] E. Damiani, S. De Capitani Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati. Balancing confidentiality

and efficiency in untrusted relational DBMSs. In Proc. of CCS 2003, Washington, DC, USA, October 2003.

[9] S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, and P. Samarati. Efficient and private

access to outsourced data. In Proc. of ICDCS 2011, Minneapolis, MN, USA, June 2011.

[10] S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, and P. Samarati. Supporting concurrency

in private data outsourcing. In Proc. of ESORICS 2011, Leuven, Belgium, September 2011.

[11] S. De Capitani di Vimercati, S. Foresti, and P. Samarati. Managing and accessing data in the cloud:

Privacy risks and approaches. In Proc. of CRiSIS 2012, Cork, Ireland, October 2012.

[12] E. De Cristofaro, Y. Lu, and G. Tsudik. Efficient techniques for privacy-preserving sharing of sensitive

information. In Proc. of TRUST 2011, Pittsburgh, PA, USA, June 2011.

[13] X. Ding, Y. Yang, and R.H. Deng. Database access pattern protection without full-shuffles. IEEE TIFS,

6(1):189–201, March 2011.

[14] M. Gamassi, V. Piuri, D. Sana, and F. Scotti. Robust fingerprint detection for access control. In Proc. of

RoboCare 2005, Rome, Italy, May 2005.

[15] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. JACM, 43(3):431–

473, May 1996.

[16] H. Hacigümüs, B. Iyer, and S. Mehrotra. Providing database as a service. In Proc. of ICDE 2002, San

Jose, CA, USA, February 2002.

[17] H. Hacigümüs, B. Iyer, S. Mehrotra, and C. Li. Executing SQL over encrypted data in the database-

service-provider model. In Proc. of SIGMOD 2002, Madison, WI, USA, June 2002.

[18] E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik. Quantitative system performance: Computer

system analysis using queueing network models. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1984.

[19] P. Lin and K.S. Candan. Hiding traversal of tree structured data from untrusted data stores. In Proc. of

WOSIS 2004, Porto, Portugal, April 2004.

33

[20] P. Lin and K.S. Candan. Secure and privacy preserving outsourcing of tree structured data. In Proc. of

SDM 2004, Toronto, Canada, August 2004.

[21] Y. Lu and G. Tsudik. Privacy-preserving cloud database querying. JISIS, 1(4):5–25, November 2011.

[22] F. Olumofin and I. Goldberg. Privacy-preserving queries over relational databases. In Proc. of PETS 2010,

Berlin, Germany, July 2010.

[23] P. Samarati and S. De Capitani di Vimercati. Data protection in outsourcing scenarios: Issues and direc-

tions. In Proc. of ASIACCS 2010, Beijing, China, April 2010.

[24] E. Shmueli, R. Waisenberg, Y. Elovici, and E. Gudes. Designing secure indexes for encrypted databases.

In Proc. of IFIP DBSec 2005, Storrs, CT, USA, August 2005.

[25] R. Sion and B. Carbunar. On the computational practicality of private information retrieval. In Proc. of

NDSS 2007, San Diego, CA, USA, February/March 2007.

[26] H. Wang and L.V.S. Lakshmanan. Efficient secure query evaluation over encrypted XML databases. In

Proc. of VLDB 2006, Seoul, Korea, September 2006.

[27] S. Wang, D. Agrawal, and A. El Abbadi. A comprehensive framework for secure query processing on

relational data in the cloud. In Proc. of SDM 2011, Seattle, WA, USA, September 2011.

[28] P. Williams, R. Sion, and B. Carbunar. Building castles out of mud: Practical access pattern privacy and

correctness on untrusted storage. In Proc of CCS 2008, Alexandria, VA, USA, October 2008.

[29] K. Yang, J. Zhang, W. Zhang, and D. Qiao. A light-weight solution to preservation of access pattern

privacy in un-trusted clouds. In Proc. of ESORICS 2011, Leuven, Belgium, September 2011.

34

A Proofs of theorems

Theorem 5.1 Given a logical index T = (T a, ID,φ) and a delta version ∆i = (∆a
i , IDi,φi) of T , the set

(T ∪∆i)\({〈id ,V ,P 〉∈T : id∈IDi}∪{〈id ,V ,T 〉∈T : id∈IDi}) of logical nodes represents logical index T ′ =

T ⊕∆i.

Proof: We first note that by Definition 3.2, na∈∆a
i iff φ(na)∈IDi. Therefore, in the set

(T ∪∆i)\({〈id ,V ,P 〉∈T : id∈IDi}∪{〈id ,V ,T 〉∈T : id∈IDi}) of logical nodes there is not an abstract node

represented by two or more logical nodes and there is not a logical identifier repeated in two or more logical

nodes. By Definition 3.3, T ′ = T ⊕∆i = (T a, ID,φi). The correct allocation for all the nodes na∈(T a\∆a
i)

in T ′ is id=φ(na). Therefore, if na is a leaf, logical node 〈id ,V ,T 〉∈T correctly represents na. If na is an

internal node, all the children of na do not belong to ∆i (Definition 3.2) and logical node 〈id ,V ,P 〉∈T correctly

represents na. Analogously, the correct allocation for all the nodes na∈∆a
i in T ′ is id=φi(na). Therefore, if na

is a leaf, the corresponding logical node correctly represents na. If na is an internal node, its children either

belong to ∆i or to the main index. Since pointers to children are defined according to φi, the logical node

〈id ,V ,P 〉∈∆i storing na correctly represents na. The structure is then consistent. !

Theorem 6.1 Given a logical index T = (T a, ID,φ), a set {∆1, . . . ,∆n} of delta versions of T , and ∆r =

(∆a
r , IDr,φr) a reconciled delta version of {∆1, . . . ,∆n} with T , the logical index T ′ = (T a, ID,φρ) computed

by the algorithm in Figure 6 represents T ⊕∆ρ, where ∆ρ = (∆a
ρ, IDρ,φρ) with ∆a

ρ = ∆a
r , IDρ = IDr, and

φρ(na) = φ(na) if na .∈∆a
ρ.

Proof: The proof of the theorem is based on the following observations. Given a logical index T = (T a, ID,φ)

and a delta version ∆i = (∆a
i , IDi,φi) of T :

1. the parent of each node in ∆a
i belongs to ∆a

i :

na
x∈∆

a
i =⇒ na

y = 〈Valuesy,Childreny〉∈∆a
i s.t. na

x∈Childreny (by Definition 3.2);

2. if node na belongs to delta version ∆i, the logical identifier φ(na) associated with na in the main shuffle

index belongs to ∆i:

na∈∆a
i ⇐⇒ φ(na)∈IDi (by Definition 3.2);

3. if a node na and its identifier φi(na) in ∆i belong to ToShufflei[l], also node na
j allocated to φ(na) in ∆i

belongs to ToShufflei[l]:

〈na,φi(na)〉∈ToShufflei[l] ⇐⇒ ∃na
j∈T

a s.t. 〈na
j ,φ(n

a)〉∈ToShufflei[l], i = 1, . . . , n, l = 0, . . . , h (the same

relationship holds for ToAdjust i[l] and Unchanged i[l]).

35

To prove that T ′ is a logical index resulting from T ⊕∆ρ, we first need to prove that T ′ is a correct logical

representation of T a where nodes are allocated to blocks according to φρ. To this purpose, we consider separately

the blocks in ToShufflei[l], ToAdjust i[l], Unchanged i[l], and the blocks that do not belong to any delta version.

• Blocks that do not belong to any delta version. These nodes/blocks are not modified by the algorithm.

Given a node na∈T a such that na .∈∆a
i , i = 1, . . . , n, by observation 2 above, also φ(na).∈IDi, i = 1, . . . , n.

Furthermore, if na is an internal node, its children Children [j], j = 1, . . . , q + 1 (and the blocks to which

they are allocated in T) do not belong to ∆a
i , i = 1, . . . , n. Then, the subtree rooted at 〈id ,V ,P 〉

(〈id ,V ,T 〉, respectively) representing node na in T is consistent and correctly represents the result of the

reconciliation.

• Unchanged i[l]. These blocks are written on the main index, directly from the delta version without the

client’s intervention. Given a node/block allocation 〈na,φi(na)〉 that belongs to Unchanged i[l], !∆j , i .= j,

such that na∈∆a
j or φ(na)∈IDj , since otherwise 〈na,φi(na)〉 and 〈na

i ,φ(n
a)〉 would belong to ToShufflei[l].

This observation also holds for all the children of the node (if na is an internal node), since otherwise

〈na,φi(na)〉 would belong to ToAdjust i[l]. If na is an internal node, its children are stored in blocks that do

not belong to any delta version, or that belong to Unchanged i[l + 1] or to ToAdjust i[l + 1]. Since all these

blocks are not re-allocated by the algorithm, the block 〈id ,V ,P 〉 representing na in ∆i correctly refers

to the blocks storing the children of na and therefore correctly represents the result of the reconciliation.

Analogously, if na is a leaf node, block 〈id ,V ,T 〉 representing na in ∆i correctly represents the result of

the reconciliation.

• ToAdjust i[l]. These blocks are downloaded by the client, which updates the pointers according to the

reconciled blocks at level l+1 if l<h, and writes them on the main index without changing their allocation.

Given a node/block allocation 〈na,φi(na)〉 that belongs to ToAdjust i[l], !∆j , i .= j, such that na∈∆a
j or

φ(na)∈IDj , since otherwise 〈na,φi(na)〉 and 〈na
i ,φ(n

a)〉 would belong to ToShufflei[l]. However, if na is

an internal node, its children may belong to ToShufflei[l + 1]. Hence, the pointers in the logical node

〈id ,V ,P 〉 representing na in ∆i must be updated according to the reconciliation of the nodes at level

l+1. More precisely, if P [j] .∈IDi, then Children [j] of na is a node that does not belong to any delta

version and therefore its allocation has not been modified. Consequently, P [j] remains unchanged. If

P [j]∈IDi then Children [j] of na belongs to ∆a
i . If 〈Children [j],P [j]〉 either belongs to Unchanged i[l + 1]

or to ToAdjust i[l + 1], then P [j] refers to the correct block in T ′ and therefore it remains unchanged.

Otherwise, if 〈Children [j],P [j]〉 belongs to ToShufflei[l + 1], then Children [j] has been allocated to a

different identifier. Since nodes at level l+1 have already been reconciled with the main index, P [j] can

36

easily be updated to the identifier of the node in T ′ storing Children [j] (i.e., φρ(Children [j])). If na is a leaf

node, block 〈id ,V ,T 〉 representing na in ∆i already correctly represents the result of the reconciliation.

• ToShufflei[l]. These blocks are downloaded by the client, reconciled with ToShuffle1[l],. . . ,ToShufflen[l],

shuffled, and written on the main index. We note that a node/block allocation 〈na,φi(na)〉 belongs to

ToShufflei[l] in three cases: i) na∈∆j , i .= j; ii) φi(na)∈IDj , i .= j; or iii) it is a cover node. In the

first case, the algorithm combines all the blocks storing na in all the delta versions, obtaining one block

that is written in the main index. If na is an internal node, block 〈id ,V ,P 〉 computed by the algorithm

is such that id=φρ(na), V=Values , and the pointers to children are obtained as described for the blocks

in ToAdjust i[l], considering the reallocation defined when reconciling nodes at level l+1. If na is a leaf,

block 〈id ,V ,T 〉 computed by the algorithm is such that id=φρ(na), V=Values , and T=Tuples . In the

second and third cases, the logical node storing 〈na,φi(na)〉 is reallocated to φρ(na) (i.e., id=φρ(na)) and,

if na is an internal node, the pointers to children are updated as described for the blocks in ToAdjust i[l].

We note that T ′ does not have replicated nodes, since T a, ∆a
1 ,. . . ,∆

a
n do not include replicas. Also, if a

node na belongs to two (or more) delta versions, 〈na,φi(na)〉 belongs to ToShufflei[l] for all delta versions ∆i

such that na∈∆i. Therefore, only one copy of these nodes is allocated to a block in T ′. We conclude that T ′

is a correct logical representation of T a. Also, φρ(na) = φ(na) if na .∈∆a
ρ, since the blocks in T \∆ρ are not

modified by the algorithm. Since all the blocks in ToShuffle1[l],. . . ,ToShufflen[l] are shuffled, l = 0, . . . , h, and

ToShufflei[l] includes all the blocks in Ci at level l , the algorithm shuffles all the blocks/nodes with conflicting

allocation. !

Theorem 8.1 When the server detects m conflicts over a single physical block in m versions, the probability

that any pair of them is due to accesses to the same logical node as a target is 1
(num cover+1)2 . The probability

that all of them are due to accesses to the same logical node as a target is 1
(num cover+1)m .

Proof: As it was shown in [9], the shuffle index relies on the indistinguishability hypothesis, which guarantees

that accesses to covers are not distinguishable from accesses to targets. Experimental support is provided in [9]

that guarantees that covers can follow the same statistical profile as targets. We can then see that each logical

access is indistinguishable from both the target and any of the num cover covers. Having 1 target and num cover

covers, each physical access will have a probability equal to 1
(num cover+1) of being associated with the logical

node representing the target and a probability equal to num cover
(num cover+1) of being associated with a logical node

representing a cover. Based on the indistinguishability hypothesis, the probabilities will be independent. Then,

the probability that two accesses to the same block correspond to two accesses to the node as a target will be

the product of them, that is, p = 1
(num cover+1)2 . The same reasoning applied over all the conflicts in the m delta

37

versions permits to show that the probability that all m accesses refer to the same target is p = 1
(num cover+1)m .

!

Theorem 8.2 Let T = (T a, ID,φ) be a logical index, {∆1, . . . ,∆n} be a set of delta versions of T , T ′ be

the logical index resulting from reconciling {∆1, . . . ,∆n} and T through the Algorithm in Figure 6, and na ∈

(∆i ∩∆j), i, j = 1, . . . , n, i .= j. The server has probability lower than 1
num cover+1 to identify the block where

na is allocated.

Proof: Since na∈(∆i∩∆j), 〈na,φi(na)〉∈ToShufflei[l] and 〈na,φj(na)〉∈ToShufflej [l]. Since we include cover

nodes, ToShufflek[l], k = 1, . . . , n, includes at least num cover+1 pairs. As a consequence, in the worst case,

there are at least num cover+1 nodes that must be reallocated and num cover+1 possible allocations. Since

nodes/blocks in ToShuffle1[l]∪. . .∪ToShufflen[l] are shuffled by the algorithm, na has the same probability of

being allocated by the shuffling to any of the (at least num cover+1) available blocks. !

38

