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Abstract

Data sharing and dissemination are becoming increasingly important for conducting our daily life activ-

ities. The main consequence of this trend is that huge collections of data are easily available and accessible,

leading to growing privacy concerns. The research community has devoted many efforts aiming at address-

ing the complex privacy requirements that characterize the modern Information Society. Although several

advancements have been made, still many open issues need to be investigated.

In this paper, we consider a scenario where data are incrementally released and we address the privacy

problem arising when sensitive non released properties depend on (and can therefore be inferred from) non-

sensitive released data. We propose a model capturing this inference problem, where sensitive information

is characterized by peculiar value distributions of non sensitive released data. We then describe how to

counteract possible inferences that an observer can draw by applying different statistical metrics on released

data. Finally, we perform an experimental evaluation of our solution, showing its efficacy.
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1 Introduction

Sharing and dissemination of information play a central role in today’s Information Society. Governmental,

public, and private institutions are increasingly required to make their data electronically available as well as to

offer services and data access over the Internet. This implies disclosing to external parties or sharing information

once considered classified or accessible only internally, which must now be made partially available for outside

interests. A notable side effect of this scenario is that there is a tremendous exposure of private and sensitive

information to privacy breaches. Data publication and sharing must then ensure, on one hand, the satisfaction

of possible needs for data from external parties and, on the other hand, proper protection of sensitive data,

which should be neither directly released nor indirectly leaked. Ensuring privacy to sensitive data is a complex

problem, as the possible correlations and dependencies existing among data can introduce inference channels

causing leakage of sensitive information even if such information is not explicitly released. This problem has been

under the attention of researchers for decades and has been analyzed from different perspectives, resulting in a

large body of research that includes: statistical databases and statistical data publications (e.g., [1]); multilevel

database systems with the problem of establishing proper classification of data, capturing data relationships and

corresponding inference channels (e.g., [12, 24]); ensuring privacy of respondents’ identities or of their sensitive

information when publishing macro or micro data (e.g., [9, 10]); protection of sensitive data associations due

to data mining (e.g., [2]). Several approaches have been proposed addressing all these aspects, and offering

solutions to block or limit the exposure of sensitive or private information. However, new scenarios of data

publication, coupled with the richness of published data and the large umber of available data sources, raise

novel problems that still need to be addressed.

In this paper, we address a specific problem related to inferences arising from the dependency of sensitive

(not released) information referred to some entities on other properties (released) regarding such entities. In

particular, we are concerned with the possible inferences that can be drawn by observing the distribution of

values of non sensitive information associated with these entities. As an illustrating example, the age distribution

of the soldiers in a military location may permit to infer the nature of the location itself, such as a headquarter

(hosting old officials) or a training campus (hosting young privates), which might be considered sensitive. Such

a problem of sensitive information derivation becomes more serious as the amount of released data increases,

since external observations will tend to be more representative of the real situations and the confidence in the

external observations will increase. Although this problem resembles in some aspects the classical problem of

controlling horizontal aggregation of data, it differs from it in several assumptions. In particular, we assume

a scenario where an external observer could gather the data released to legitimate users and inference is due

to peculiar distributions of data values. Also, we are concerned not only with protecting sensitive information
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associated with specific entities, but also with avoiding possible false positives, where sensitive values may be

improperly associated (by the observers) with specific entities.

A preliminary version of this work appeared in [4]. Here, we extend our earlier proposal by introducing several

metrics to assess the inference exposure due to data release. Our metrics are based on the concepts of mutual

information, which has been widely used in several security areas ranging from the definition of distinguishers

for differential side-channel analysis (e.g., [3, 5, 20, 39]) to data-hiding and watermarking security (e.g., [6]),

and of distance between the expected and the observed distribution of values of non sensitive information. We

then revise the definition of safe release according to the proposed metrics, and describe the controls enforced in

a scenario where tuples are released one at a time, upon request. Also, we present an experimental evaluation

proving the effectiveness of our solution.

The remainder of this paper is organized as follows. Section 2 introduces our reference scenario of inference

in data publication, raised from a real case study that needed consideration. Section 3 formally defines the

problem of releasing a dataset without leaking (non released) sensitive information due to the dependency

existing between the frequency distribution of some properties of the released dataset and the not released

information. Section 4 describes two possible strategies that use the mutual information and distance between

distributions for counteracting the considered inference problem. Section 5 illustrates how the two strategies

proposed can be concretely implemented by adopting different metrics that determine when a data release is safe

with respect to inference channels that may leak sensitive information. Section 6 describes how to control the

on-line release of the tuples in a dataset. Section 7 discusses the experimental results proving the effectiveness

of our solution. Section 8 presents related work. Finally, Section 9 gives our conclusions.

2 Reference scenario and motivation

We consider a scenario (see Figure 1) where a data holder maintains a collection of records stored in a trusted

environment. Each record contains different attributes and pertains to a unique data respondent, who is the

only authorized party that can require its release. While the records individually taken are not sensitive, their

aggregation is considered sensitive since it might enable inferring sensitive information not appearing in the

records and not intended for release. We assume all requests for records to be genuine and communication to

data respondents of responses to their record release requests to be protected. As a consequence, malicious

observers are aware neither of the requests submitted by respondents nor of the data holder answers. We also

assume that the number of records stored at the data holder site is kept secret. However, once records are

released, the data holder has no control on them and therefore external observers can potentially gather all the

records released. This may happen even with cooperation of respondents, in the case of external servers where
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released data may be stored.

The data holder must ensure that the collection of records released to the external world be safe with respect

to potential inference of sensitive (not released) information that could be possible by aggregating the released

records. We consider a specific case of horizontal aggregation and inference channel due to the distribution of

values of certain attributes with respect to other attributes. In particular, inference is caused by a distribution of

values that deviates from expected distributions, which are considered as typical and are known to the observers.

In other worlds, a record is released only if, when combined with records already released, does not cause a

deviation of the distribution of the records released from the expected distribution.

In the reminder of this paper, we refer our examples to a real case scenario characterized as follows. The

data holder is a military organization that maintains records on its personnel. Each record refers to a soldier

and reports attributes Name, Age, and Location where the soldier is on duty. Some of the military locations are

headquarters of the army. The information that a location is a headquarter is considered sensitive and neither

appears in the soldiers’ records nor it is released in other forms. Soldiers’ records can be released upon request

of the soldiers. In addition, the age distribution of soldiers is a distribution that can be considered common

and widely known to the external world and, in general, typically expected at each location. However, locations

where headquarters are based show a different age distribution, characterized by an unusual peak of soldiers

middle age or older. Such a distribution clearly differs from the expected age distribution, where the majority of

soldiers are in their twenties or thirties. The problem is therefore that, while single records are considered non

sensitive, an observer aggregating all the released records could retrieve the age distribution of the soldiers in the

different locations and determine possible deviations from the expected age distribution for certain locations,

thus inferring that a given location hosts a headquarter. As an example, consider an insurance company offering

special rates to military personnel. If all the soldiers subscribe a policy with this company to take advantage

of the discount, the insurance company (as well as any user accessing its data) has knowledge of the complete

collection of released records and can therefore possibly discover headquarter locations. Our problem consists in

ensuring that the release of records to the external world be safe with respect to such inferences. The solution

we describe in the following provides a response to this problem by adopting different metrics to assess the

inference exposure of a set of records and, based on that, to decide whether a record (a set thereof) can be

released.

3 Data model and problem definition

We provide the notation and formalization of our problem. Our approach is applicable to a generic data model

with which the data stored at the data holder site could be organized. For concreteness, we assume data to
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be maintained as a relational database. Consistently with other proposals (e.g., [34]), we consider the data

collection to be a single table T characterized by a given set A of attributes; each record in the data collection

is a tuple t in the table. Among the attributes contained in the table, we distinguish a set Y ⊂ A of attributes

whose values represent entities, called targets .

Example 3.1 In our running example, table T is defined on the set A={Name, Age, Location} of attributes,

with Y={Location}. We assume that the domain of attribute Location includes values L1, L2, L3, L4, L5,

representing five different military locations.

While targets, that is, the entities identified by Y (locations in our example), are non sensitive, they are

characterized by sensitive properties , denoted s(Y ), which are not released. In other words, for each y ∈ Y the

associated sensitive information s(y) does not appear in any released record. However, inference on it can be

caused by the distribution of the values of a subset of some other attributes X ⊆ A for the specific y. We denote

by P (X) the set of relative frequencies p(x) of the different values x in the domain of X which appear in table

T . Also, we denote by P (X |y) the relative frequency of each value in the domain of X appearing in table T and

restricted to the tuples for which Y is equal to y. We call this latter the y-conditioned distribution of X in T .

Example 3.2 In our running example, s(Y ) is the type of the location (e.g., headquarter). The sensitive infor-

mation s(y) of whether a location y is a headquarter (L2, in our example) can be inferred from the distribution

of the age of soldiers given the location. Figure 2(a) shows how tuples stored in table T are distributed with

respect to the values of attributes Age and Location. For instance, of the 10000 tuples, 2029 refer to location

L1, 72 refer to soldiers with age lower than 18. Figure 2(b) reports the corresponding relative frequencies of age

distributions. In particular, each column Li, i = 1, . . . , 5, reports the Li-conditioned distribution P (Age|Li) (for

convenience expressed in percentage). For instance, 3.55% of the tuples of location L1 refer to soldiers with age

lower than 18. The last column of the table reports the distribution of the age range regardless of the specific

location and then corresponds to P (Age) (expressed in percentage). For instance, it states that 2.56% of the

tuples in the table refer to soldiers with age lower that 18. Figure 2(c) reports the distribution of soldiers in

the different locations regardless of their age (again expressed in percentage). For instance, 20.29% of the 10000

soldiers are based at L1.

The existence of a correlation between the distribution of values of attributes X for a given target y and the

sensitive information s(y) is captured by the definition of dependency as follows.

Definition 3.3 (Dependency) Let T be a table over attributes A, let X and Y be two disjoint subsets of

A, and let s(Y ) be a sensitive property of Y . A dependency, denoted X!Y, represents a relationship existing

between the conditional distribution P (X |y) and the value of the sensitive property s(y), for any y ∈ Y .
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The existence of a dependency between the y-conditioned distribution of X and the sensitive property s(y)

introduces an inference channel, since the visibility on P (X |y) potentially enables an observer to infer the sen-

sitive information s(y) even if not released. For instance, with respect to our running example, Age!Location.

Definition 3.3 simply states the existence of a dependency but does not address the issue of possible leakages

of sensitive information. In this paper, we consider the specific case of leakage caused by peculiar value distri-

butions that differ from what is considered typical and expected. We then start by characterizing the expected

distribution, formally defined as baseline distribution as follows.

Definition 3.4 (Baseline distribution) Let A be a set of attributes, and X be a subset of A. The baseline

distribution of X, denoted B(X), is the expected distribution of the different values (or range thereof) of X.

The baseline distribution is the distribution publicly released by the data holder and can correspond to

the real distribution of the values of attributes X in table T (i.e., B(X)=P (X)) at a given time or can be a

“reference” distribution considered typical. We assume the data holder to release truthful information and,

therefore, that the baseline distribution resembles the distribution of the values of X in T at a given point in

time (note that T may be subject to changes over time, for example, due to the enrollment of new soldiers

and the retirement of old soldiers). This being said, in the following, for simplicity, we assume the baseline

distribution B(X) to coincide with P (X). When clear from the context, with a slight abuse of notation, we will

use P (X) to denote the baseline distribution.

Example 3.5 The baseline distribution P (Age) corresponds to the values (expressed in percentage) in the last

column of Figure 2(b), which is also graphically reported as a histogram in Figure 3(a). Figures 3(b)-(f) report

the histogram representation of the Li-conditioned distributions for the different locations in T . As clearly visible

from the histograms, while locations L1, L3, L4, and L5 enjoy a value distribution that resembles the expected

baseline, location L2 (the headquarter) shows a considerably different distribution.

Our goal is to avoid the inference of the sensitive information caused by unusual distributions of values of

X , with respect to specific targets y, in Y that the observer can learn from viewing released tuples (i.e., the

y-conditioned distributions computed over released tuples present some peculiarities that distinguish it from the

baseline distribution). To this purpose, in the following sections we illustrate a solution that the data holder can

adopt for verifying whether the release of a tuple referred to a target y, together with the previously released

tuples, may cause the inference of the sensitive property s(y) and then whether the release of such a tuple can

be permitted or should be denied.
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4 Characterization of the inference problem

In our characterization of the problem, X and Y can be intended as two dependent random variables, meaning

that there is a correlation between the values of X and Y . Due to this dependency, a potential observer can

exploit the distribution of values of X for a given target y (i.e., the y-conditioned distribution) for inferring

sensitive property s(y). To counteract this type of inference, we obfuscate the dependency between X and

Y in the released dataset, by adopting one of the following two strategies: i) make X and Y appear as two

statistically independent random variables; or ii) minimize the distance between the y-conditioned distribution

P (X |y) and the baseline distribution P (X).

Statistical independence. The first strategy ensures that the joint probability P (X,Y ) be “similar” to

P (X)P (Y ). Since when X and Y are two independent variables the joint probability P (X,Y ) is equal to

P (X)P (Y ), this strategy aims at releasing tuples such that the correlation between X and Y is not visible.

As a consequence, the knowledge of the distribution of X does not give any information about the sensitive

property s(y) for each target y in Y . A classical measure of the dependency between two random variables is

the mutual information, denoted I(X,Y ). It expresses the amount of information that an observer can obtain

on Y by observing X , and viceversa. The mutual information I(X,Y ) of two random variables X and Y is

defined as follows.

I(X,Y ) =
∑

x∈X,y∈Y p(y)p(x|y) log2
p(x|y)
p(x)

The lower the mutual information in the released dataset, the more random variables X and Y resemble

statistical independent variables.

Example 4.1 Consider the distributions of the Age values for the different locations and P (Age) in Figure 2(b),

and the values p(Li), i = 1, . . . , 5, reported in Figure 2(c). We have:

I(Age, Location) = p(L1)[p(< 18|L1) log2
p(<18|L1)
p(<18) + . . . + p(≥ 55|L1) log2

p(≥55|L1)
p(≥55) ] + . . . + p(L5)[p(<

18|L5) log2
p(<18|L5)
p(<18) + . . .+ p(≥ 55|L5) log2

p(≥55|L5)
p(≥55) ] = 0.063285

Distance between distributions. The second strategy ensures that when tuples are released, the y-

conditioned distribution of all targets y in Y be “similar” to the baseline distribution. Intuitively, this strategy

aims at hiding the peculiarities of the distribution of variable X with respect to a specific y so that an observer

cannot infer anything about sensitive property s(y). This strategy is then based on the evaluation of the distance

between the baseline distribution P (X) and the y-conditioned distribution P (X |y). The distance between two

distributions can be computed in different ways. The metrics that will be considered in the following section
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adopt either the classical notion of Kullback-Leibler distance between distributions, denoted ∆, or the Pearson’s

cumulative statistic, denoted F .

The Kullback-Leibler distance nicely fits our scenario since it has a straightforward interpretation in terms

of Information Theory. In fact, it represents a possible decomposition of the mutual information [17]. Given

two distributions P (X) and P (X |y) their Kullback-Leibler distance is defined as follows.

∆(X, y) =
∑

x∈X p(x|y) log2
p(x|y)
p(x)

It is easy to see that the mutual information represents the weighted average of the Kullback-Leibler distance

for the different targets, where the weight corresponds to the frequency of value y.

Example 4.2 Consider the distributions of Age values for the different locations and the baseline distribution

P (Age) in Figure 2(b). We have:

∆(Age, L1) = p(< 18|L1) log2
p(< 18|L1)

p(< 18)
+ . . .+ p(≥ 55|L1) log2

p(≥ 55|L1)

p(≥ 55)
= 0.047349

Similarly, we obtain: ∆(Age, L2) = 0.358836,∆(Age, L3) = 0.013967,∆(Age, L4) = 0.007375, and ∆(Age, L5) =

0.010879.

The Pearson’s cumulative statistic is a well known measure, traditionally used in statistics for evaluating

how much two probability distributions are similar. Given two distributions P (X) and P (X |y), their Pearson’s

cumulative statistic is defined as follows.

F (X, y) =
∑

x∈X
(Oy

x−Ex)
2

Ex

where Oy
x is the frequency of value x for X with respect to y (i.e., the number of tuples in T such that x = t[X ]

and y = t[Y ]), and Ex is the expected frequency distribution of the same value x for X according to the baseline

distribution P (X).

Example 4.3 Consider the distributions of the Age values for the different locations and the baseline distribu-

tion P (Age) in Figure 2(b). We have:

F (Age, L1) =

(

OL1
<18 − E<18

)2

E<18
+ . . .+

(

OL1
≥55 − E≥55

)2

E≥55
= 104.532750

Similarly, we obtain: F (Age, L2) = 878.201780, F (Age, L3) = 30.837391, F (Age, L4) = 17.340740, and

F (Age, L5) = 39.875054
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The lower the distance between P (X |y) and P (X) in the released dataset, the more the correlation between

variables X and Y has been obfuscated. To determine when the distance between the y-conditioned distribution

P (X |y) and the baseline distribution P (X) can be considered significant (and then exploited to infer a possible

dependency between X and Y ), we can adopt either an absolute or a relative approach. The absolute approach

compares the distance between P (X |y) and P (X) for each value y of Y with a fixed threshold. The relative

approach compares instead the distance between P (X |y) and P (X) for a given value y, with the distances

obtained for the other values of Y .

Both the strategy based on statistical independence and the strategy based on minimizing the distance

between distributions described above for obfuscating the correlation between X and Y can be concretely

applied through specific metrics. Before describing such metrics in the following section, it is important to note

that an external observer can only see and learn the distribution of values computed on tuples that have been

released. In the remainder of this paper, we will then use Tr to denote the set of tuples released to the external

world at a given point in time, and Pr to denote the value distributions observable on Tr (in contrast to the P

observable on T ). The knowledge of an external observer includes the different observations Pr(X |y) she can

learn by collecting all the released tuples (i.e., Tr), and the baseline distribution P (X) publicly available.

5 Statistical tests for assessing inference exposure

In this section, we describe four statistical tests that can be adopted for verifying whether the release of a set of

tuples is safe, that is, a potential observer can neither identify the entities associated with a sensitive value (e.g.,

an observer cannot identify that L2 is a headquarter), nor improperly associate sensitive values with released

entities in the dataset (i.e., false positives). Figure 4 summarizes such tests, classifying them depending on

the strategy they follow to obfuscate the dependency between statistical variables X and Y , as illustrated in

Section 4.

The statistical tests described in this section are based on the definition of a metric to measure how much

the release of a subset Tr of tuples of T is exposed to inferences (inference exposure), and on the computation of

a threshold that this measure should not exceed to guarantee that the data release is safe. In the following, we

define different properties that the released dataset should satisfy to guarantee that a potential observer cannot

infer the existence of a dependency between the random variables X and Y .
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5.1 Significance of the mutual information

This statistical test aims at ensuring that mutual information Ir(X,Y ) characterizing the released dataset Tr

is statistically not significant . The rationale is that the mutual information between X and Y , as illustrated

in Section 4, measures the average amount of knowledge about Y that an observer acquires looking at X (and

vice-versa). In other words, the mutual information Ir(X,Y ) between X and Y quantifies the (linear or non

linear) dependency between the considered statistical variables. When Ir(X,Y ) is close to zero an observer

does not have enough confidence on the existence of a dependency between X and Y in the released dataset

Tr. Hence, the observer cannot infer anything about the sensitive property s(y) associated with a target y that

belongs to the released dataset.

From a practical point of view, to verify when the release of a given subset Tr of T can be considered safe,

it is sufficient to check whether the mutual information Ir(X,Y ) of Tr is below a predefined threshold Irc close

enough to zero. For instance, the release of a set Tr of tuples related to a subset of the soldiers in our running

example does not disclose information on the dependency between Age and Location if Ir(Age, Location) < Irc.

A safe release is formally defined as follows.

Definition 5.1 (Safe release w.r.t. Mutual Information – MIS) Let T be a table over attributes A, X

and Y be two subsets of A such that X!Y, Tr be a subset of tuples in T , and Irc be the critical value for the

mutual information. The release of Tr is safe iff Ir(X,Y ) < Irc.

The problem becomes now how to compute Irc. The solution we propose is based on the following prop-

erty [7].

Property 5.2 Let T be a table over attributes A, X and Y be two subsets of A such that X!Y, and Tr be a

subset of tuples in T . Under the independence hypothesis between X and Y :

2Nr log(2)Ir(X,Y ) ∼ χ2((NXr − 1)NYr)

where Nr=|Tr| is the number of released tuples, NXr is the number of values of X in Tr, and NYr is the number

of values of Y in Tr.

Property 5.2 states that under the hypothesis of independence between X and Y , 2Nr log(2)Ir(X,Y ) is asymp-

totically chi-square distributed with (NXr − 1)NYr degrees of freedom.1

1In [7] the mutual information was computed by comparing each y-conditioned distribution P (X|y) with a sample distribution
P (X) estimated on the same dataset. Hence, the number of degrees of freedom was (NXr −1)(NYr −1). In this paper, the baseline
distribution P (X) is assumed to be known to the observer. Coherently, Property 5.2 is derived under the assumption that the
observer tests the mutual information at hand by comparing it to the case where samples (x,y) are drawn from the distribution
P (X, Y ) = P (X)P (Y ). Then, the number of degrees of freedom increases to (NXr − 1)NYr .
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Example 5.3 Figure 5 compares the distribution of the rescaled (by factor 2Nr log(2), with Nr = 5000) mutual

information Ir(Age, Location) of our dataset, with the chi-square distribution with (10 − 1)5 = 45 degrees of

freedom, where 10 is the number of different values for attribute Age and 5 is the number of different values

for attribute Location. The histogram in the figure has been obtained with 10000 Monte Carlo iterations,

considering the baseline distribution P (Age) and the distribution P (Location) of the sensitive information of

our running example. From the figure, it is easy to see that the approximation of our rescaled mutual information

to the chi-square distribution nicely holds.

Since, by Property 5.2, Ir(X,Y ) is distributed as a chi-square distribution with (NXr − 1)NYr degrees of

freedom, we propose to compute the critical value Irc for the mutual information by selecting a significance

level α (i.e., a residual probability) and imposing P (Ir(X,Y ) > Irc) = α (i.e., the probability that Ir(X,Y )

is greater than threshold Irc should be equal to α). As a consequence, Irc can be obtained by constraining
∫ 2Nr log(2)Irc
0 χ2[(NXr −1)NYr ](x)dx = 1−α. The significance level α represents the confidence in the result of a

statistical analysis. Indeed, the higher the value of α, the more restrictive the condition that a release must satisfy

to be considered safe. In fact, a lower value for α represents a low probability of error in drawing conclusions

starting from the mutual information measured on the data. The value of the significance level α must be

chosen in such a way to limit the confidence that an observer can have in the test results, thus preventing the

observer from exploiting this test for drawing inferences. For instance, if an observer can evaluate the statistical

test with significance level α = 5%, the inference she can draw from the result obtained has a high probability

of being right (i.e., a high mutual information is due to chance only in 5% of the cases). The value chosen for α

by the data holder should then be higher than the risk that an observer is willing to take when trying to guess

the sensitive property s(y) of a target y in Y . If the cost of the observer for her attack is low (e.g., the observer

is interested in detecting which location is a headquarter for curiosity), she will be probably willing to take a

high risk of making a wrong guess and she will therefore choose a high significance level for her analysis. In

this case, α should be high to guarantee a better protection of the sensitive property (e.g., 15%-20%). On the

other hand, if the cost of an observer for her attack is high (e.g., the observer wants to destroy headquarters),

she will be probably willing to take a low risk of error, and α could be lower, thus permitting the release of a

larger subset of tuples (e.g., 5% represents the typical value adopted in statistical hypothesis testing). Since it

is unlikely for the data holder to know the significance level considered by a possible observer in the analysis,

the data holder should estimate it and choose a value for α trying to balance the need for data protection on

one side and the need for data release on the other side. In fact, the released dataset is protected against those

analyses that assume a risk of error lower than α.

Once the data holder has fixed the significance level and computed the critical value Irc for the mutual
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information, she can decide whether to release a tuple when its respondent requires it. Let Tr be a safe set of

released tuples and t be a tuple in T that needs to be released. To decide whether to release t, it is necessary to

check if the mutual information Ir(X,Y ) associated with Tr∪{t} is lower than critical value Irc. If this is the

case, tuple t can be safely released; otherwise tuple t cannot be released since it may cause leakage of sensitive

information.

Example 5.4 Consider the military dataset in Figure 2(a), the release of the subset Tr of tuples in Figure 6(a),

and assume that the data holder chooses a significance level α = 20%. The mutual information Ir(Age, Location)

of Tr is 0.025522, while the critical value Irc is 0.025527. Since Ir(Age, Location) < Irc, the release of Tr is

safe.

Consider the release of the whole dataset T in Figure 2(a), and assume that the data holder adopts a less

restrictive significance level α = 5%. The mutual information I(Age, Location) of the whole dataset is 0.063285

(see Example 4.1) and its critical value Irc is 0.004448. Therefore, as expected, the release of the whole dataset

is not safe.

5.2 Significance of the distance between distributions

The evaluation of the significance of the distance between distributions aims at verifying whether there are spe-

cific targets in the released dataset that can be considered as outliers , that is, whose y-conditioned distribution

is far from the expected distribution represented by the baseline P (X). The rationale is that peculiarities of

the y-conditioned distribution can be exploited for inferring the sensitive property s(y). This statistical test,

operating on the single values y of Y , works at a finer granularity level than the previous one, based on the

mutual information.

As already noted in Section 4, a possible way for the data holder to verify whether the y-conditioned

distribution presents some peculiarities consists in computing the Kullback-Leibler distance ∆r(X, y) between

the y-conditioned distribution Pr(X |y) of the released dataset and the baseline distribution P (X). Following an

approach similar to that illustrated in Section 5.1, the disclosure of the sensitive property s(y) can be prevented

by ensuring that ∆r(X, y) is statistically not significant , for all targets y in the released dataset.

From a practical point of view, we can verify if the release of a given subset Tr of T can be considered safe

by checking whether the distance ∆r(X, y) is smaller than a predefined threshold ∆rc(y) for all targets y. A

safe release is formally defined as follows.

Definition 5.5 (Safe release w.r.t. KL Distance – KLD) Let T be a table over attributes A, X and Y be

two subsets of A such that X!Y, Tr be a subset of tuples in T , and ∆rc(y) be the critical value for ∆r(X, y),

for all values y of Y in Tr. The release of Tr is safe iff for all values y of Y in Tr, ∆r(X, y) < ∆rc(y).
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According to Definition 5.5, if ∆r(X, y) < ∆rc(y) for all released targets y, the release of Tr is safe. If there

exists at least a target y′ such that ∆r(X, y′) ≥ ∆rc(y′), the release of Tr is not safe and y′ is considered exposed.

The approach we propose to compute threshold ∆rc(y) is based on the observation that the mutual infor-

mation Ir(X,Y ) is by definition equal to
∑

y∈Y p(y)∆r(X, y), and that Property 5.2 can be adapted for the

Kullback-Leibler distance ∆r(X, y) as follows.

Property 5.6 Let T be a table over attributes A, X and Y be two subsets of A such that X!Y, y be a value

of Y , and Tr be a subset of tuples in T . Under the independence hypothesis between X and Y :

2Nr(y) log(2)∆r(X, y) ∼ χ2(NXr − 1)

where Nr(y) is the number of released tuples with Y = y, and NXr is the number of values of X in Tr.

Property 5.6 states that under the hypothesis of independence between X and Y , 2Nr(y) log(2)∆r(X, y) is

asymptotically chi-square distributed with (NXr − 1) degrees of freedom.

Example 5.7 Figures 7(a)-(e) compare the distribution of the rescaled (by factor 2Nr(y) log(2) with Nr(L1) =

1014, Nr(L2) = 649, Nr(L3) = 826, Nr(L4) = 1003, and Nr(L5) = 1506) Kullback-Leibler distance ∆r(Age, Li),

i = 1, . . . , 5, with the chi-square distribution with 10 − 1 = 9 degrees of freedom. The histograms in the figures

have been obtained with 10000 Monte Carlo iterations, considering the baseline distribution P (Age) and the

distribution P (Location) of the sensitive information of our running example. From the figures, it is easy to

see that our rescaled ∆r(Age, Li) fit the considered chi-square distribution.

For each target y, Property 5.6 can be used to compute the critical value ∆rc(y) for ∆r(X, y) by selecting

a significance level α and requiring P (∆r(X, y) > ∆rc(y)) = α. As a consequence, ∆rc(y) can be obtained by

constraining
∫ 2Nr(y) log(2)∆r(X,y)
0 χ2(NXr − 1)(x)dx = 1 − α. As already observed for the mutual information,

higher values of α guarantee better protection against inference exposure of the sensitive property.

Once the data holder has fixed the significance level and computed the critical values ∆rc(y) for each target

y, she can decide whether to release a tuple when its respondent requires it. Let Tr be a safe set of released tuples

and t be a tuple in T whose release has been requested. To decide whether to release t, it is necessary to check if

the distance ∆r(X, y) for target y = t[Y ], computed on Tr∪{t}, is lower than the critical value ∆rc(y). If such

a control succeeds, the release of t, that is, the disclosure of Tr ∪ {t}, is considered safe. Otherwise, target y is

considered exposed (i.e., y is an outlier) and the release of t is blocked. Note that condition ∆r(X, y) < ∆rc(y)

is certainly satisfied for all the targets different from t[Y ] because Tr is assumed to be safe.

Example 5.8 Consider the military dataset in Figure 2(a) and the release of the subset Tr of tuples in Fig-

ure 8(a), and assume that the data holder adopts a significance level α=20%. The distances between each
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Li-conditioned distribution Pr(Age|Li), i = 1, . . . , 5, and the baseline distribution P (Age) are: ∆r(Age, L1) =

0.026582, ∆r(Age, L2) = 0.056478, ∆r(Age, L3) = 0.028935, ∆r(Age, L4) = 0.029818, and ∆r(Age, L5) =

0.014996. The critical values are: ∆rc(L1) = 0.026599, ∆rc(L2) = 0.057343, ∆rc(L3) = 0.028954, ∆rc(L4) =

0.029834, and ∆rc(L5) = 0.015018. Since the distance ∆r(Age, Li) computed for each location Li, i = 1, . . . , 5,

is lower than the corresponding critical value, the release of Tr is safe.

Consider the release of the whole dataset T in Figure 2(a) and assume that the data holder adopts a less re-

strictive significance level α=5%. The distances between each Li-conditioned distribution and the baseline distri-

bution are: ∆(Age, L1) = 0.047349,∆(Age, L2) = 0.358836,∆(Age, L3) = 0.013967,∆(Age, L4) = 0.007375, and

∆(Age, L5) = 0.010879 (see Example 4.2). Their critical values are: ∆rc(L1) = 0.006015, ∆rc(L2) = 0.009395,

∆rc(L3) = 0.007388, ∆rc(L4) = 0.006081, and ∆rc(L5) = 0.004051. Since the distance ∆(Age, Li) of each

location Li, i = 1, . . . , 5, exceeds the corresponding critical value, the release of T is, as expected, not safe.

By comparing the two metrics discussed so far, it is easy to see that the metric based on the mutual

information does not distinguish the exposures of the different targets. Hence, if for a given y, pr(y) represents

a small portion of the released dataset, a high value for ∆r(X, y) has a limited influence on the decision of

whether the release of Tr is safe or not, since the contribution of ∆r(X, y) in the computation of Ir(X,Y )

is limited. On the contrary, the test based on the Kullback-Leibler distance results more restrictive than the

evaluation of the significance of the mutual information since the safety control is performed at the level of each

single target y of Y .

5.3 Chi-square goodness-of-fit test

The chi-square goodness-of-fit test aims at verifying, like the statistical test described in Section 5.2, whether the

released dataset includes a target y that can be considered an outlier . The chi-square goodness-of-fit test [32]

is a well known statistical test, traditionally used to determine whether a probability distribution (Pr(X |y))

fits into another (theoretical) probability distribution (P (X)), that is, if the two probability distributions are

similar. The test is based on the computation of Pearson’s cumulative statistic Fr(X, y) that measures how

“close” the observed y-conditioned distribution Pr(X |y) is to the expected (baseline) distribution P (X). When

Fr(X, y) is close to zero, Pr(X |y) appears as a distribution that fits P (X) (i.e., the values of Pr(X |y) appear

as randomly extracted from the baseline distribution P (X)) and therefore nothing can be inferred about the

sensitive property s(y) associated with target y.

From a practical point of view, we verify if the release of a given subset Tr of T can be considered safe

by checking whether the Pearson’s cumulative statistic Fr(X, y) is smaller than a predefined threshold Frc.

Formally, a safe release is defined as follows.
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Definition 5.9 (Safe release w.r.t. Chi-Square Goodness-of-Fit – CST) Let T be a table over at-

tributes A, X and Y be two subsets of A such that X!Y, Tr be a subset of tuples in T , and Frc be the

critical value for Fr(X, y). The release of Tr is safe iff for all values y of Y in Tr, Fr(X, y) < Frc.

According to Definition 5.9, if all the released targets y satisfy condition Fr(X, y) < Frc, the release of Tr is safe;

if there exists at least a target y′ that violates the condition, the release of Tr is not safe and y′ is considered

exposed.

The threshold Frc is computed by exploiting the following statistical property enjoyed by the chi-square

goodness-of-fit test [32].

Property 5.10 Let T be a table over attributes A, X and Y be two subsets of A such that X!Y, y be a value

of Y , and Tr be a subset of tuples in T . Under the independence hypothesis between X and Y :

Fr(X, y) =
∑

x∈X
(Oy

x−Ex)
2

Ex
∼ χ2(NXr (y)− 1)

where NXr (y) is the number of values of X for the tuples in Tr with Y = y.

Property 5.10 states that, under the hypothesis of independence between X and Y , the Pearson’s cumulative

statistic Fr(X, y) is asymptotically chi-square distributed with (NXr (y) − 1) degrees of freedom. Like for the

metrics already discussed, we compute the critical value Frc(y) for the Pearson’s cumulative statistic by selecting

a significance level α and requiring P (Fr(X, y) > Frc(y)) = α. As a consequence, Frc(y) can be obtained by

constraining
∫

∑
x∈X

(Oy
x−Ex)2
Ex

0 χ2(NXr (y)− 1)(x)dx = 1− α. It is important to note that the number of degrees

of freedom of the chi-square distribution depends on the number NXr of values of variable X that have been

released for target y, which may be different from the number of values in the domain of attribute X (for more

details see Section 6).

Once the data holder has fixed the significance level and computed the critical value Frc, she can decide

whether to release a tuple when its respondent requires it. Let Tr be a safe set of tuples and t be a requested

tuple in T . To evaluate whether the release of tuple t is safe, it is necessary to check whether the Pearson’s

cumulate statistic Fr(X, y) for target y=t[Y ], computed on Tr∪{t} is lower than the fixed threshold Frc. If this

is the case, tuple t can be safely released; otherwise the release of t is blocked since it reveals that y is an outlier.

We note that it is not necessary to check the Pearson’s cumulate statistics of the other targets in Tr, since they

are not affected by the release of t, and their associated Fr(X, y) are lower than Frc, as Tr is supposed to be

safe.

Example 5.11 Consider the military dataset in Figure 2(a) and the release of the subset Tr of tuples in

Figure 9(a) and assume that the data holder adopts a significance level α=20%. The Pearson’s cumulative

statistics for the five locations are: Fr(Age, L1) = 8.550683, Fr(Age, L2) = 0.961415, Fr(Age, L3) = 9.717669,
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Fr(Age, L4) = 8.293681, and Fr(Age, L5) = 8.554984. The critical values are: Frc(L1) = 8.558059, Frc(L2) =

1.642374, Frc(L3) = 9.803249, Frc(L4) = 11.030091, and Frc(L5) = 8.558059. It is immediate to see that

Fr(Age, Li) < Frc(Li), for all i = 1, . . . , 5. As a consequence, the release of Tr is safe.

Consider the release of the whole dataset T in Figure 2(a) and assume that the data holder adopts a less

restrictive significance level α=5%. The Pearson’s cumulative statistics for the five locations are: F (Age, L1) =

104.532750, F (Age, L2) = 878.201780, F (Age, L3) = 30.837391, F (Age, L4) = 17.340740, and F (Age, L5) =

39.875054 (see Example 4.3). The critical values are: Frc(L1) = 15.507313, Frc(L2) = 16.918978, Frc(L3) =

Frc(L4) = Frc(L5) = 15.507313. Therefore, P (Age|Li), i = 1, . . . , 5, is not close enough to P (Age) and the

release of the whole dataset is not safe. This result is not surprising since none of the Li-conditioned distribution

P (Age|Li), i = 1, . . . , 5, in our running example exactly fits the baseline distribution P (Age).

5.4 Dixon’s Q-test

The Dixon’s Q-test, similarly to the statistical tests described in Section 5.2 and Section 5.3, aims at verifying

whether there is one target in the released dataset that can be considered an outlier . The Dixon’s Q-test is

a well-known solution for outlier detection in a given dataset that can be adopted whenever there is at most

one outlier and at least three targets in the considered dataset [15]. This statistical test differs from the ones

illustrated in Section 5.2 and Section 5.3 since, instead of comparing each distance between Pr(X |y) and P (X)

against a fixed threshold, it evaluates if one of the distances between Pr(X |y) and P (X) is significantly higher

than the others. The Dixon’s Q-test can be applied considering any definition of distance between distributions

(e.g., Kullback-Leibler distance, or Pearson’s cumulative statistic). In line with the rest of the paper, we apply

the Dixon’s Q-test to the Kullback-Leibler distance∆r(X, y) between Pr(X |y) and P (X). We note that different

versions of this test have been proposed in the literature, and we adopt r10 [15]. This test assumes the presence

of at most one outlier at the upper hand of the dataset (i.e., one outlier characterized by a high value for the

distance between distributions) and no outlier at the lower hand of the dataset (i.e., no outlier is characterized

by a low distance between distributions).

The Dixon’s Q-test requires to first organize the values on which it needs to be evaluated (i.e., ∆r(X, y) in

our scenario) in ascending order. Starting from the last two values in the ordered sequence (i.e., the two highest

values), it computes coefficient Qr(X) as their relative distance. More formally, Dixon’s coefficient is computed

as:

Qr(X)= ∆r(X,yn)−∆r(X,yn−1)
∆r(X,yn)−∆r(X,y1)

,

where ∆r(X, y1),. . . ,∆r(X, yn) is the sequence, in ascending order, of distance values.

The Dixon’s Q-test is not able to identify any outlier in the dataset if Qr(X) is close enough to zero, since
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the distance between each pair of subsequent values in the sequence is almost the same. In this case, there is no

target y such that the distance between its y-conditioned distribution Pr(X |y) and the baseline P (X) stands

out from the other distances.

From a practical point of view, we verify if the release of a given subset Tr of T can be considered safe by

checking whether the Dixon’s coefficient Qr(X) is smaller than a predefined threshold Qrc. The critical value

Qrc is computed by fixing a significance level α and imposing P (Qr(X) > Qrc) = α. Figure 10 summarizes

the critical values Qrc when the number of distinct values in the domain of Y ranges between 3 and 10 and the

significance level is fixed to 20%, 10%, 5%, and 1%, respectively. If Qr(X) < Qrc, the release of Tr does not

reveal the presence of any outlier and the release of Tr is safe. A safe release is formally defined as follows.

Definition 5.12 (Safe release w.r.t. Dixon’s Q-test – DQT) Let T be a table over attributes A, X and

Y be two subsets of A such that X!Y, Tr be a subset of tuples in T , and Qrc be a critical value for Qr(X).

The release of Tr is safe iff Qr(X) < Qrc.

If condition Qr(X) < Qrc does not hold, an observer can infer that the target y characterized by the maximum

distance ∆r(X, y) between Pr(X |y) and P (X) is an outlier.

Once the data holder has fixed the significance level and computed the critical value Qrc for the Dixon’s

Q-test, she can decide whether to release a tuple when its respondent requires it. Let Tr be a safe set of released

tuples and t be a requested tuple in T . To decide whether to release t, it is necessary to check if Dixon’s

coefficient Qr(X) associated with Tr∪{t} is lower than critical value Qrc. If this is the case, tuple t can be

safely released; otherwise tuple t is not released since it may cause leakage of sensitive information.

Example 5.13 Consider the military dataset in Figure 2(a) and the release of the subset Tr of tuples in Fig-

ure 11(a), and assume that the data holder adopts a significance level α = 20%. The distance values between

Pr(Age|Li), i = 1, . . . , 5, and the baseline P (Age) are equal to: ∆r(Age, L1) = 0.209188,∆r(Age, L2) = 0.361504,

∆r(Age, L3) = 0.037932, ∆r(Age, L4) = 0.018421, and ∆r(Age, L5) = 0.021103. To apply the Dixon’s Q-

test, these distance values are considered in ascending order and then the Dixon’s coefficient is computed as

Qr(X) = 0.361504−0.209188
0.361504−0.018421 = 0.443963. Since attribute Location has 5 distinct values in its domain, we con-

sider the third column in the table in Figure 10 for the definition of critical value Qrc. In particular, the critical

value is fixed to 0.451 for the considered significance level. Since Dixon’s coefficient is lower than the critical

value, the release of Tr is safe.

Consider the release of the whole dataset T in Figure 2(a) and assume that the data holder adopts a less

restrictive significance level α = 5%. The distance values in Example 4.2 are considered in ascending order and

Dixon’s coefficient is computed as Qr(X) = 0.358836−0.047349
0.358836−0.07375 = 0.886263, which is greater than 0.642. Therefore,

the release of the whole dataset of our running example is not safe, since it discloses that L2 is an outlier.
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6 Controlling exposure and regulating releases

We now illustrate how the incremental release of tuples is controlled and regulated according to the metrics

discussed in the previous section.

The data holder first chooses the metric and the significance level α she wants to adopt. Every time a

tuple t is requested, it is necessary to check if the release of t, combined with all the tuples already released and

potentially known to an observer Tr, may cause the unintended disclosure of sensitive information. In particular,

if Tr∪{t} satisfies the definition of safe release for the considered metric (see Section 5), t is released. If tuple

t cannot be released when it is requested, its release might simply be denied. However, this choice represents

a restrictive solution, since it does not take into consideration the fact that if a tuple cannot be released when

it is requested, it may be safely released at a later time (i.e., after the release of other tuples in the dataset).

Indeed, the grant or denial of the release of a tuple depends on the set of tuples that has already been released.

Exploiting this observation, we propose to insert the tuples that cannot be released when requested into a queue.

Every time a tuple t is released, the tuples in the queue are analyzed to check whether a subset of them can be

safely released.

Particular attention has to be payed on the release of the first few tuples because they will produce random

value distributions that usually do not resemble the actual distributions existing in the dataset. Such random

distributions may characterize the data release as not safe, thus blocking any further release and raising many

false alarms (since also targets that are not outliers will have a random initial distribution that will differ

from the baseline). However, no observer could put confidence on statistics computed over a few releases as

they cannot be considered accurate and their distribution can be completely random. With reference to the

release of the first few tuples, it is also important to note that the metrics illustrated in Section 5 are based

on approximation properties that hold only when a sufficient number of tuples has been released. There is

therefore a starting time at which the data holder should define an alternative condition for determining if a

release should be considered safe. In the following we discuss, for each of the metrics in Section 5, how to check

whether the release of a tuple t is safe when only few tuples have been released.

Significance of the mutual information and significance of the Kullback-Leibler distance between

distributions. The definition of the critical value for the mutual information described in Section 5.1 is based

on Property 5.2, which is an asymptotic approximation of Ir(X,Y ) to a chi-square distribution that holds only

if a sufficient number of tuples has been released. Using the traditional Monte Carlo approach, we propose

to compute the critical value of the mutual information for the release of a small number n of tuples as the

α-th percentile of the mutual information obtained by extracting a sufficient number of samples (10000 in
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our experimental evaluation) of n tuples each from a simulated dataset composed of |T | tuples, where X is

distributed following P (X), and X and Y are statistically independent. Indeed, if the mutual information of

the released dataset is close to the mutual information of a sample of the same size extracted from a dataset

where X and Y are statistically independent, the observer cannot exploit the released tuples for drawing

inferences. The remaining aspect to consider is when to start adopting the critical value computed exploiting

Property 5.2. A nice approximation is represented by 2NXNY tuples (100 in our example), which is confirmed

by our experimental evaluation illustrated in Figure 12. In this figure, the curve representing the critical value

for the mutual information, corresponding to the value computed through the Monte Carlo method in the

interval [0-100] and exploiting Property 5.2 in interval [100-10000], presents a smooth trend. This result also

confirms that Property 5.2 holds in our framing of the problem.

The same approach can be adopted for the metric based on the Kullback-Leibler distance since Property 5.6

derives from Property 5.2, and the mutual information is a weighted average of the Kullback-Leibler distances

for the different targets y in the dataset.

Chi-square goodness-of-fit test. The approximation on which this statistical test is based holds on a data

collection only if, for each target y and for each x ∈ X , a sufficient number of tuples (typically 5 [32]) has

been released. In other words, considering a target y, for each x ∈ X , there must be at least 5 tuples in Tr

with t[Y ] = y and t[X ] = x. If, for a given target y, there are less than 5 tuples with value x for attribute

X , we can combine x with either its preceding or subsequent value in the domain of X and sum their relative

frequencies. With reference to our example, if only 2 soldiers located at L2 in the age range [20-24] have been

released, range [20-24] for L2 can be combined either with [18-19] or with [25-29] for the same location. Suppose

now that the relative frequency for age range [25-29] is 4. By merging [20-24] with [25-29] for location L2, we

obtain a new value [20-29] of the domain of attribute Age for location L2, with relative frequency equal to 6.

This process is iteratively applied, possibly combining a set of contiguous values for attribute X , until all the

relative frequencies of the values in the domain of X are greater than or equal to 5. If all the values in X are

combined in a unique value, the test cannot be applied and the release is considered safe. If at least 2 values

in the domain of X are maintained, the test can be evaluated. We note however that when multiple original

values of X are combined, the approximation in Property 5.10 should be revised to consider the correct number

of degrees of freedom, which is equal to the number of values in the domain of X in Tr after the possible merge

operation. For instance, with reference to our example, suppose that the values for attribute Age for location

L2 have been combined obtaining the following domain values: ≤ 24, [25 − 39], [40 − 44], [45, 49], ≥ 50. The

critical value of Pearson’s cumulative statistic for L2 should be computed considering a chi-square distribution

with 4 (instead of 9) degrees of freedom.
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Dixon’s Q-test. As already noted, this statistical test can be applied only on data collections that include at

least 3 elements [15]. In our scenario, it can then be used only if 3 different distances between the y-conditioned

distributions and the baseline can be computed. Consequently, datasets with less than 3 different distance

values are considered safe since an observer could not gain any information.

7 Experimental results

To evaluate the behavior of the metrics presented in Section 5, we implemented the data release strategy

described in Section 6 with a Matlab prototype and executed a series of experiments. For the experiments,

we considered the dataset T introduced in Example 3.2, which has been obtained by randomly extracting

10000 tuples from the baseline distribution P (Age) of the age of soldiers of the UK Regular Forces as at 1 April

2006 [38] (Figure 3(a)). The experiments evaluated the inference exposure (computed as the mutual information,

Kullback-Leibler distance between distributions, Pearson’s cumulative statistic, or Dixon’s coefficient), and the

information loss (i.e., the number of tuples not released upon request) caused by our privacy protection technique.

We also compared the results obtained adopting the different metrics.

7.1 Inference exposure

We evaluated how the metrics discussed in Section 5 vary with the release of tuples and compared them with

the corresponding critical values. The experiments have been conducted on 20 randomly extracted sequences of

10000 requests each. For the sake of readability, in this section we illustrate the graphs showing the evolution of

the inference exposure and of its critical value for one of the 20 sequences; the results obtained with the other

sequences present a similar trend.

Mutual information. Figure 12 shows the evolution of both the mutual information, and the corresponding

critical value, varying the number of released tuples (the scale of the axis in Figure 12 is logarithmic). The two

curves are close to each other and their distance decreases as the number of released tuples increases. It is easy

to see that the mutual information of released data is always lower than the critical value. The figure also shows

a smooth trend for the curve representing the critical value, confirming that the approximation in Property 5.2

nicely holds in our scenario. In fact, the discontinuity in the critical value of the mutual information when the

100th tuple is released, due to the fact that the critical value is computed using the Monte Carlo based approach

in the interval [1-100] and the approach using Property 5.2 in the interval [100-10000], is small and cannot be

noticed in the figure.
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Kullback-Leibler distance. Figures 13(a)-(e) show the evolution of both the Kullback-Leibler distance

between Pr(Age|Li) and P (Age), i = 1, . . . , 5, and the corresponding critical values, varying the number of

released tuples (the scale of the axis in Figures 13(a)-(e) is logarithmic). It is not surprising that the trends

shown in these figures are similar to that illustrated in Figure 12. Indeed, the mutual information is the weighted

average of the Kullback-Leibler distance values of all the locations in the dataset. It is interesting to note that

all the locations present a similar trend for the evolution of both the Kullback-Leibler distance and its critical

value. Also, like for the mutual information, Figures 13(a)-(e) present a smooth trend in the curves representing

the critical values for the five locations, confirming that the approximation in Property 5.6 holds. In fact, the

discontinuity in the critical value of the Kullback-Leibler distance when the 100th tuple is released cannot be

noticed from the figure.

Chi-square goodness-of-fit. Figures 14(a)-(e) show the evolution of both the Pearson’s cumulative statistic

of each location, and the corresponding critical values, varying the number of released tuples. As discussed

in Section 5.3, when a sufficient number of tuples have been released the critical value Frc is the same for all

the locations. On the contrary, when a limited number of tuples have been released, the critical value may be

different for each location, depending on the number of distinct values in the domain of attribute X for each

location. As it is visible from Figure 14, the curve representing the critical value has different steps. Each step

corresponds to a change in the number of values in the domain of X and therefore a different (higher) number

of degrees of freedom of the chi-square distribution in Property 5.10. When the number of released tuples does

not permit to correctly evaluate if the Chi-square goodness-of-fit test is passed or not, the release is considered

safe since an observer cannot gain knowledge by looking at the released data. This is the reason why the

Pearson’s cumulative statistic and its critical value are not computed for the first few (about 10) released tuples

in Figures 14(a)-(e). For all the locations, the value of the Pearson’s cumulative statistic increases while tuples

are released. In particular, this growing trend is more visible when less than 100 tuples have been released. Also

in this case, as expected, the distance between the Pearson’s cumulative statistic and its critical value decreases

while data are released.

Dixon’s Q-test. Figure 15 shows the evolution of both the Dixon’s coefficient and the corresponding critical

value, varying the number of released tuples. The distance between Dixon’s coefficient and the critical value

decreases while tuples are released. As it is visible from Figure 15, the Dixon’s coefficient and its critical value

are not reported for the first 5 tuples released. This is due to the fact that, for the first 5 tuples, it is not

possible to compute 3 different distance values between y-conditioned distributions and the baseline. The curve

representing the critical value presents three steps. Each step corresponds to the release of a tuple that permits
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to compute an additional difference. In other words, it corresponds to the release of a tuple t such that t[Y ] is

a target that either was not represented in Tr or that was characterized by a distance from the baseline equal

to the distance of another target.

We note that, for all the considered metrics, the distance between the exposure and its critical value decreases

as more data are released, since the fluctuations in the value distribution characterize the release of the first few

tuples. In fact, as the number of tuples in the released dataset increases, the impact of the release of a single

tuple on the distribution of released values decreases.

7.2 Information loss

To evaluate the quality of the results obtained adopting our metrics, we consider the number of released and

discarded tuples. Figures 16(a)-(b) summarize the average number of tuples released by each of our metrics

with significance level α equal to 20% and 5%, respectively, for the 20 sequences of 10000 requests that we

generated for our experiments, distinguishing also how many requests for each location have been fulfilled.

Comparing the results in Figures 16(a)-(b) we note that, as expected, a lower significance level permits

to release a higher number of tuples for all the considered metrics. Indeed, most of the cells in the table in

Figure 16(b) have higher values than the corresponding cells in Figure 16(a). It is also easy to see that there

is not a metric that is always better than the others in terms of the number of tuples released. For instance,

Dixon’s Q-test is less restrictive that the other metrics, since it releases the highest number of tuples as a whole

and for each locations when α = 20%, and as a whole and for each locations but L3 when α = 5%. From our

analysis of the results reported in the two tables, we can conclude that the considered metrics adopt a different

approach to protect the released data: CST and KLD block the release of the tuples of the outlier, while MIS

and DQT block the release of the tuples from all the locations.

The location with the fewest released tuples is L2 for both MIS and CST metrics, and for DQT in the

case α = 20%. This is a non-surprising result, since L2 is the headquarter (i.e., the outlier that needs to be

protected). On the contrary, metric KLD blocks more tuples from L1 than from L2, and DQT, for α = 5%,

blocks more tuples from location L3 than from L2. The location that enjoys the largest number of tuples released

with α = 20% is L3 for all the metrics but DQT, which privileges location L5. With α = 5%, the location with

the highest percentage of released tuples is L4 for all the metrics but MIS, which privileges location L3.

It is interesting to note that all the metrics proposed in this paper to evaluate if a release is safe permit

to release a considerable number of tuples, especially if compared with the (more intuitive) approach of fitting

the baseline distribution within each Li-conditioned distribution. Fitting the baseline within an Li-conditioned

distribution forces a maximum number of tuples that could be released for each age range in Li, since the relative
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frequency of the tuples in each age range must be exactly that of the baseline for each location in the released

dataset. For instance, in the baseline distribution almost 19.67% soldiers are in the range [25-29], while in L2

only 8.78% of tuples (140 tuples) fall in such range. Respecting the baseline distribution requires, even in the

case where all tuples in the range [25-29] of L2 are released to not release tuples in other ranges (so that the 140

tuples above actually correspond to 19.67%). Figure 17 graphically depicts this reasoning of fitting the baseline

distribution (in black) within the L2-conditioned distribution (gray going over the black). For each value range,

no more than the number reached by the baseline distribution should be released. Figure 18 summarizes the

number of tuples for each location that would be released adopting the approach of fitting the baseline within

each Li-conditioned distribution, i = 1, . . . , 5. It is easy to see that this approach is far more restrictive than

our solution and blocks the release of a larger number of tuples. Each of the proposed metrics permits to release

a higher number of tuples for most of the locations (but for CST in the case of location L4 with α = 20% and

L3 with α = 5%). In particular, our approach permits to release in most cases more than twice the number of

tuples that would be released by fitting the baseline distribution within each Li-conditioned distribution. This

is mainly due to the fact that, when fitting the baseline within each P (Age|Li), the presence of a low number

of tuples in an age-range for a location (e.g., 2 soldiers with age greater than 55 in L3, L4, and L5) hardly

constraints the release of the tuples in all the other age ranges. In our example, the two tuples representing

soldiers older than 55 must represent the 0.21% of all the tuples released for locations L3, L4, and L5. As a

consequence, the data holder can release at most 952 tuples of L3, L4, and L5. Our metrics try to loosen this

constraint, by evaluating the distance (or its average) between the distributions, instead of the value that the

distribution has at each age value.

7.3 Comparison

To further compare the behavior of the metrics proposed, we have randomly generated 100 request sequences

of 5000 tuples each, out of the 10000 in our dataset of the UK Regular Forces. For each of the metrics proposed

in the paper, and for each of the 100 random request sequences, we run our algorithm. For this series of

experiments, we fixed the significance level α to 20%, which represents the most restrictive release scenario. We

then checked, for each of the metrics, how many of the 100 safe releases obtained running our algorithm with

the considered metric represents a safe release also with respect to each of the other three metrics. Figure 19

summarizes the number of datasets obtained adopting each metric (on the row) that are safe also with respect

to the other metrics (on the column). It is immediate to see that DQT is the less restrictive metric, confirming

the results illustrated in the previous subsection. In fact, none of the 100 datasets obtained adopting DQT

metric is safe with respect to the other three metrics (fourth row in Figure 19). On the contrary, 54 (61
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and 45, respectively) datasets obtained using MIS metric (KLD and CST metrics, respectively) also satisfy

the definition of safe release of Dixon’s Q-test. The most restrictive metric is instead KLD, since no dataset

obtained adopting a different metric resulted safe with respect to KLD metric (second column in Figure 19)

while at least one dataset obtained adopting KLD metric is safe with respect to each of the other three metrics

(second row in Figure 19). It is interesting to note that this result is different from the conclusions drawn in

the previous subsection, where we noted that MIS and CST are the metrics that minimize the release of tuples.

It is however not surprising since the analysis illustrated in Figure 19 is different from the one summarized in

Figures 16(a)-(b). In fact, the results illustrated in Figure 19 are obtained analyzing a dataset that is considered

safe by one metric with respect to the other metrics introduced in Section 5. On the contrary, the results in

Figures 16(a)-(b) are obtained analyzing the safe datasets produced by each of the metrics of interest, starting

from the same original data collection and considering the same order in the request of tuple. The results in

Figure 19 confirm the fact that the considered metrics measure the exposure of the released dataset in different

ways and that the considered metrics obtain a different result if applied to the same sequence of tuple requests.

Each metric is therefore suited for protecting a different statistical characteristic of the data that could be

exploited for inference purposes. For instance, MIS metric is the ideal solution to protect the released data

against attacks that exploit the mutual information between X and Y (i.e., their statistical dependency) to gain

information about the sensitive property. To decide the metric and the value for α to be adopted for protecting

the release of her dataset, the data holder needs to estimate the attacks that a possible observer could exploit to

gain sensitive information. If the data holder wants to achieve a higher protection for her data, she can combine

(a subset of) the metrics introduced in Section 5. This approach, while better preserving privacy of sensitive

data, has the drawback of limiting the number of tuples released, since the released dataset must satisfy all the

conditions in Figure 4 (or a subset thereof). Analogously, to take a safe approach, the data holder can choose

a high value for the significance level.

8 Related work

Several research efforts have been recently dedicated to the problem of protecting privacy in data publication

(e.g., [9, 18, 27, 34]). In particular, considerable attention has been devoted to the problem of protecting

respondents’ identities and the sensitive information associated with them. Most of these proposals use the

notion of k-anonymity [34] as a starting point or adopt some extensions of k-anonymity (e.g., [18, 25, 27, 29]),

while others are based on the idea of fragmenting data and publishing associations at the group level (e.g., [13,

41]). Among them, t-closeness [27] and (αi,βi)-closeness [18] present some similarities with our work. t-closeness

protects attribute disclosure by imposing that the distribution of sensitive values in the equivalence classes of
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the released table (i.e., in the groups of tuples with the same value for the quasi-identifying attributes) must be

similar to the distribution in the private table. To this purpose, t-closeness approach adopts the Earth Mover’s

Distance (EMD) for measuring the distance between the global distribution computed on the whole private table

and the distributions computed within each equivalence class. The distance between these distributions should

be no more than t. In [18], the authors present an extension of t-closeness that overcomes some of its limitations

(e.g., the difficulty in choosing a correct value for t and the impossibility to specify that some attribute values

are more sensitive than others). With this approach, the data publisher defines a different range [αi,βi] for each

value vi of a sensitive attribute. A table can then be released if, for each equivalence class, the fraction of tuples

in the class with a given sensitive value vi falls in the corresponding range [αi,βi]. Although our proposal and

these two approaches have in common the fact that they consider inference issues caused by anomalous value

distributions, our work addresses a different and more complex scenario characterized by incremental releases

of detailed data. Also, in our scenario the sensitive information is not released but can be inferred due to a

value distribution dependency between a set of attributes appearing in the released dataset and the sensitive

property itself.

The problem and scenario we consider resemble the scenarios where data are continuously generated and

may need to be immediately released (e.g., [26, 40, 42]). In this case, data have to be timely released without

violating the privacy of the individuals to whom they refer. The solutions proposed are typically based on the

generalization of the data to be released coupled with the introduction of a limited delay in data publication

(e.g., [40, 42]), or on the addition of noise (e.g., [26]). Such solutions share with our work the need of incre-

mentally releasing data in a way that sensitive information is properly protected. Our work however aims at

avoiding inferences from the released data in contrast to the protection of respondents’ identities, and does not

allow the use of generalization but requires the release of detailed data.

Inference problems have been extensively studied in the context of multilevel database systems (e.g., [11, 24,

28, 30]). Most inference research addresses detection of inference channels within a stored database or at query

processing time. In the first case, inference channels are removed by upgrading selected schema components or

redesigning the schema (e.g., [33]). In the second case, database transactions are evaluated to determine whether

they lead to illegal inferences and, if so, deny the query (e.g., [21, 23, 31, 36]). None of these approaches is

however applicable to the problem under consideration. As a matter of fact, the inference problem we address

is due to a dependency existing between the value distributions observable aggregating all the released tuples

and the sensitive information that we want to protect. Previous work on inference focuses instead on locating

inference channels based on semantic relationships among attributes or on queries submitted to the system.

Our problem has also common aspects with the problem that arises when the aggregation of two or more

data items is considered more sensitive than the data items singularly taken. A well-known example is the Secret
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Government Agency (SGA) Phonebook [35]: the entire phonebook is classified as confidential and it is accessible

only by users with the appropriate clearance but single entries are unclassified and available to any requester.

Although our problem is conceptually similar, the classical solutions developed for addressing the aggregation

problem (e.g., [14, 22, 24]) are not directly applicable in our context. These approaches define a threshold on

the amount of data that can be released to each user and focus on maintaining history and establishing how to

control collusion among users.

Other related proposals are those used to assess the interestingness of association rules in knowledge discovery

problems. In [37], the authors introduced the J-measure to assess the relevance of an association rule. In some

sense, these proposals are complementary to our work, as they can be used for assessing dependencies among

the attributes characterizing a data collection. The information they produce can then be used as input to our

approach for the definition of appropriate dependencies.

9 Conclusions

We considered the problem of protecting sensitive information in an incremental data release scenario, where

the data holder releases non sensitive data on demand. As more and more data are released, an external

observer can aggregate such data and infer the sensitive information by exploiting a dependency between the

distribution of the non sensitive released data and the sensitive information itself. In this paper, we presented

an approach for characterizing when data can be released without incurring to such inference. To this purpose,

we defined different metrics that can be considered to determine when the released data can be exploited for

inference, and introduced the concept of safe release according to such metrics. We also discussed how to

enforce the information release control at run-time, and provided an experimental evaluation of the proposed

solution, proving its efficacy. Our work leaves space for further investigations that can extend our solution in

several directions. Interesting open issues that can be addressed include the consideration of inferences arising

from information other than value distributions differing from a given pre-defined one, and the consideration

of different types of knowledge that observers can exploit for inference, such as the order in which tuples are

released or the time between two subsequent releases.

Acknowledgements

This work was supported in part by the EU within the 7FP project “PrimeLife” under grant agreement 216483,

by the Italian Ministry of Research within the PRIN 2008 project “PEPPER” (2008SY2PH4), and by the
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Figure 1: Reference scenario

Figure 2: Number of tuples in table T by Age and Location (a), Li-conditioned distributions P(Age|Li),

i = 1, . . . , 5, over table T (b), and location frequencies (c)

Figure 3: Histogram representation of the baseline distribution (a) and of the Li-conditioned distributions

P (Age|Li), i = 1, . . . , 5, in Figure 2(b)

Figure 4: Statistical tests and safe release control

Figure 5: Comparison between the chi-square distribution with 45 degrees of freedom and the distribution of

2Nr log(2)Ir(Age, Location)

Figure 6: Number of tuples by Age and Location in a safe dataset Tr w.r.t. mutual information significance

with α = 20% (a), Li-conditioned distributions Pr(Age|Li), i = 1, . . . , 5, over Tr (b), and location frequencies

(c)

Figure 7: Comparison between the chi-square distribution with 9 degrees of freedom and the dis-

tribution of 2Nr(L1) log(2)∆r(Age, L1) (a), 2Nr(L2) log(2)∆r(Age, L2) (b), 2Nr(L3) log(2)∆r(Age, L3) (c),

2Nr(L4) log(2)∆r(Age, L4) (d), and 2Nr(L5) log(2)∆r(Age, L5) (e)

Figure 8: Number of tuples by Age and Location in a safe dataset Tr w.r.t. Kullback-Leibler distance with

α = 20% (a), Li-conditioned distributions Pr(Age|Li), with i = 1, . . . , 5, over Tr (b), and location frequencies

(c)

Figure 9: Number of tuples by Age and Location in a safe dataset Tr w.r.t. Chi-Square Goodness-of-Fit with

α = 20% (a), Li-conditioned distributions Pr(Age|Li), i = 1, . . . , 5, over Tr (b), and location frequencies (c)

Figure 10: Critical values Qc for the Dixon’s Q-test with significance levels 20%, 10%, 5%, 1% and [3-10] distinct

values in Y domain [16]

Figure 11: Number of tuples by Age and Location in a safe dataset Tr w.r.t. Dixon’s Q-test with α = 20% (a),

Li-conditioned distributions Pr(Age|Li), i = 1, . . . , 5, over Tr (b), and location frequencies (c)

Figure 12: Evolution of the mutual information and its critical value

Figure 13: Evolution of the Kullback-Leibler distance between Pr(Age|Li) and P (Age) and its critical value for

each location

Figure 14: Evolution of the Pearson’s cumulative statistic and its critical value for each location

Figure 15: Evolution of the Dixon’s coefficient and its critical value

Figure 16: Average number of requested tuples that have been released by each metric for each location

Figure 17Fitting the baseline distribution within the L2-conditioned distribution

Figure 18: Number of requested tuples released fitting the baseline

Figure 19: Number of datasets obtained adopting a metric that are safe also with respect to the other metrics
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Number of tuples
Age L1 L2 L3 L4 L5 Total

<18 72 26 38 47 73 256
18-19 151 53 82 140 223 649
20-24 539 147 449 505 736 2376
25-29 452 114 370 418 613 1967
30-34 335 213 234 318 501 1601
35-39 321 238 277 332 538 1706
40-44 128 219 122 162 220 851
45-49 20 205 50 49 76 400
50-54 9 71 28 34 31 173
≥55 2 13 2 2 2 21

Total 2029 1299 1652 2007 3013 10000
(a)

P(Age|Li)
Age L1 L2 L3 L4 L5 P(Age)

<18 3.55 2.00 2.31 2.34 2.42 2.56
18-19 7.44 4.08 4.96 6.98 7.40 6.49
20-24 26.56 11.32 27.18 25.16 24.44 23.76
25-29 22.28 8.78 22.40 20.83 20.35 19.67
30-34 16.51 16.40 14.16 15.84 16.63 16.01
35-39 15.82 18.32 16.77 16.54 17.86 17.06
40-44 6.31 16.86 7.38 8.07 7.30 8.51
45-49 0.99 15.78 3.03 2.44 2.52 4.00
50-54 0.44 5.46 1.69 1.69 1.03 1.73
≥55 0.10 1.00 0.12 0.11 0.05 0.21

(b)

Li P(Li)

L1 20.29
L2 12.99
L3 16.52
L4 20.07
L5 30.13

(c)

Figure 2
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Test Safe release control

Statistical Independence MIS (Section 5.1) Ir(X,Y ) < Irc
Distance Absolute KLD (Section 5.2) ∀y ∈ Y , ∆r(X, y) < ∆rc(y)

CST (Section 5.3) ∀y ∈ Y , Fr(X, y) < Frc

Relative DQT (Section 5.4) Qr(X)<Qrc

Figure 4
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Number of tuples
Age L1 L2 L3 L4 L5 Total

<18 9 5 7 8 11 40
18-19 23 11 12 19 29 94
20-24 80 30 68 70 109 357
25-29 71 18 55 58 88 290
30-34 51 30 43 47 74 245
35-39 55 28 46 50 76 255
40-44 25 24 23 25 38 135
45-49 2 10 11 11 13 47
50-54 2 8 4 5 6 25
≥55 1 1 0 0 0 2

Total 319 165 269 293 444 1490
(a)

Pr(Age|Li)
Age L1 L2 L3 L4 L5 Pr(Age)

<18 2.82 3.03 2.60 2.73 2.48 2.68
18-19 7.21 6.67 4.46 6.49 6.53 6.31
20-24 25.08 18.18 25.28 23.89 24.55 23.96
25-29 22.26 10.91 20.45 19.80 19.81 19.46
30-34 15.99 18.18 15.98 16.04 16.67 16.44
35-39 17.24 16.97 17.10 17.06 17.12 17.11
40-44 7.84 14.55 8.55 8.53 8.56 9.07
45-49 0.63 6.06 4.09 3.75 2.93 3.15
50-54 0.63 4.85 1.49 1.71 1.35 1.69
≥55 0.30 0.60 0.00 0.00 0.00 0.13

(b)

Li Pr(Li)

L1 21.41
L2 11.08
L3 18.05
L4 19.66
L5 29.80

(c)

Figure 6
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Number of tuples
Age L1 L2 L3 L4 L5 Total

<18 12 4 6 5 16 43
18-19 25 11 18 18 43 115
20-24 86 29 90 72 141 418
25-29 66 19 65 67 112 329
30-34 56 31 37 49 94 267
35-39 57 29 55 51 115 307
40-44 19 18 19 27 47 130
45-49 9 8 8 4 13 42
50-54 2 4 6 2 7 21
≥55 0 1 1 1 0 3

Total 332 154 305 296 588 1675
(a)

Pr(Age|Li)
Age L1 L2 L3 L4 L5 Pr(Age)

<18 3.61 2.60 1.97 1.69 2.72 2.57
18-19 7.53 7.14 5.90 6.08 7.31 6.87
20-24 25.90 18.83 29.51 24.32 23.98 24.96
25-29 19.89 12.34 21.31 22.64 19.05 19.64
30-34 16.87 20.13 12.13 16.55 15.99 15.94
35-39 17.17 18.83 18.03 17.23 19.56 18.33
40-44 5.72 11.69 6.23 9.12 7.99 7.75
45-49 2.71 5.19 2.62 1.35 2.21 2.51
50-54 0.60 2.60 1.97 0.68 1.19 1.25
≥55 0.00 0.65 0.33 0.34 0.00 0.18

(b)

Li Pr(Li)

L1 19.82
L2 9.20
L3 18.21
L4 17.67
L5 35.10

(c)

Figure 8
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Number of tuples
Age L1 L2 L3 L4 L5 Total

<18 13 0 8 6 4 31
18-19 25 1 13 35 35 109
20-24 92 0 80 100 135 407
25-29 74 0 76 94 117 361
30-34 65 3 55 63 98 284
35-39 64 38 48 71 94 315
40-44 32 7 21 29 41 130
45-49 3 3 11 13 18 48
50-54 0 0 3 8 4 15
≥55 0 0 0 0 0 0

Total 368 52 315 419 546 1700
(a)

Pr(Age|Li)
Age L1 L2 L3 L4 L5 Pr(Age)

<18 3.53 0.00 2.53 1.43 0.73 1.82
18-19 6.79 1.92 4.13 8.35 6.41 6.41
20-24 25.00 0.00 25.4 23.87 24.73 23.94
25-29 20.11 0.00 24.13 22.43 21.43 21.24
30-34 17.66 5.77 17.46 15.04 17.95 16.71
35-39 17.39 73.08 15.24 16.95 17.21 18.53
40-44 8.70 13.46 6.67 6.92 7.51 7.65
45-49 0.82 5.77 3.49 3.10 3.3 2.82
50-54 0.00 0.00 0.95 1.91 0.73 0.88
≥55 0.00 0.00 0.00 0.00 0.00 0.00

(b)

Li Pr(Li)

L1 21.65
L2 3.06
L3 18.52
L4 24.65
L5 32.12

(c)

Figure 9
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Number of elements

Significance 3 4 5 6 7 8 9 10

20% 0.781 0.560 0.451 0.386 0.344 0.314 0.290 0.273
10% 0.886 0.679 0.557 0.482 0.434 0.399 0.370 0.349
5% 0.941 0.765 0.642 0.560 0.507 0.468 0.437 0.412
1% 0.988 0.889 0.780 0.698 0.637 0.590 0.555 0.527

Figure 10
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Number of tuples
Age L1 L2 L3 L4 L5 Total

<18 14 3 5 8 15 45
18-19 36 10 10 34 43 133
20-24 104 30 77 84 176 471
25-29 96 18 73 76 134 397
30-34 69 50 48 77 109 353
35-39 64 32 49 64 120 329
40-44 0 36 18 30 42 126
45-49 0 34 17 10 18 79
50-54 3 14 5 6 4 32
≥55 1 3 0 1 0 5

Total 387 230 302 390 661 1970
(a)

Pr(Age|Li)
Age L1 L2 L3 L4 L5 Pr(Age)

<18 3.62 1.30 1.66 2.05 2.27 2.28
18-19 9.30 4.35 3.30 8.72 6.51 6.75
20-24 26.87 13.04 25.50 21.54 26.63 23.91
25-29 24.81 7.83 24.17 19.49 20.27 20.15
30-34 17.83 21.75 15.89 19.74 16.49 17.92
35-39 16.54 13.91 16.23 16.41 18.15 16.70
40-44 0.00 15.65 5.96 7.69 6.35 6.40
45-49 0.00 14.78 5.63 2.56 2.72 4.01
50-54 0.78 6.09 1.66 1.54 0.61 1.63
≥55 0.25 1.30 0.00 0.26 0 0.25

(b)

Li Pr(Li)

L1 19.64
L2 11.68
L3 15.33
L4 19.80
L5 33.55

(c)

Figure 11
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Original MIS KLD CST DQT
L1 2029 1156.00 (56.97%) 871.85 (42.97%) 994.55 (49.02%) 1935.85 (95.41%)
L2 1299 705.20 (54.29%) 697.65 (53.71%) 255.35 (19.66%) 1262.65 (97.20%)
L3 1652 1119.00 (67.74%) 1549.75 (93.81%) 1300.00 (78.69%) 1565.45 (94.76%)
L4 2007 1256.95 (62.63%) 1874.75 (93.41%) 1361.85 (67.86%) 1990.20 (99.16%)
L5 3013 1876.65 (62.29%) 2415.65 (80.17%) 1899.25 (63.04%) 3013.00 (100.00%)
Total 10000 6095.78 (60.96%) 7408.67 (74.09%) 5119.88 (51.20%) 9631.55 (96.32%)

(a) α = 20%

Original MIS KLD CST DQT
L1 2029 1187.55 (58.53%) 918.35 (45.26%) 1021.85 (50.36%) 1996.90 (98.42%)
L2 1299 720.05 (55.43%) 713.30 (54.91%) 322.30 (24.81%) 1275.80 (98.21%)
L3 1652 1145.90 (69.36%) 1576.20 (95.41%) 1151.90 (69.73%) 1571.80 (95.15%)
L4 2007 1283.50 (63.95%) 1951.85 (97.25%) 1698.15 (84.61%) 1996.25 (99.46%)
L5 3013 1907.85 (63.32%) 2530.20 (83.98%) 2344.55 (77.81%) 2996.75 (99.46%)
Total 10000 6290.58 (62.91%) 7757.14 (77.57%) 6478.14 (64.78%) 9846.14 (98.46%)

(b) α = 5%

Figure 16
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Figure 17: Fitting the baseline distribution within the L2-conditioned distribution
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Original Released
L1 2029 500 (24.6%)
L2 1299 580 (44.6%)
L3 1652 952 (57.7%)
L4 2007 952 (47.5%)
L5 3013 952 (31.6%)
Total 10000 3937 (39.37%)

Figure 18
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MIS KLD CST DQT
MIS 100 0 0 54
KLD 1 100 1 61
CST 0 0 100 45
DQT 0 0 0 100

Figure 19

50


	Introduction
	Reference scenario and motivation
	Data model and problem definition
	Characterization of the inference problem
	Statistical tests for assessing inference exposure
	Significance of the mutual information
	Significance of the distance between distributions
	Chi-square goodness-of-fit test
	Dixon's Q-test

	Controlling exposure and regulating releases
	Experimental results
	Inference exposure
	Information loss
	Comparison

	Related work
	Conclusions

