
Computing Range Queries on Obfuscated Data

E. Damiani1 S. De Capitani di Vimercati1 S. Paraboschi2 P. Samarati1

(1) Dip. di Tecnologie dell’Infomazione (2) Dip. di Ing. Gestionale e dell’Informazione
Università di Milano Università di Bergamo
26013 Crema - Italy 24044 Dalmine - Italy

{damiani,decapita,samarati}@dti.unimi.it parabosc@unibg.it

Abstract

Data obfuscation techniques trans-
forms data into other data that are
harder to understand. These tech-
niques are receiving an increasing
amount of attention, largely due to
their applications in different areas.
We illustrate an approach for obfus-
cating data that guarantees protec-
tion of data while allowing the ex-
ecution of both equality and range
queries on the obfuscated data.

Keywords: Data obfuscation,
range query, shift register

1 Introduction

Data obfuscation techniques are receiving an
increasing amount of attention, largely due
to their applications to e-business [7]. While
conventional encryption refers to modifica-
tions where data cannot be easily decrypted
without the proper key, obfuscation corre-
sponds to a looser notion of making data un-
usable to some extent. Therefore, while all
encrypted data is also obfuscated, the con-
verse is not true. Of course, one might won-
der why merely obfuscate data when strong
encryption algorithms are available. An ex-
ample could be a report of a government em-
ployment agency. It is not unusual that such
a report is stored in the form of a database
or a worksheet on an independent Web server
open to researchers looking for employment
data patterns. In this case, the employment

agency policy may require that names, Social
Security Numbers and other personal infor-
mation are not disclosed to the site, for ex-
ample because they are only made available
to the researchers on a need-to-know basis.1

On the other hand, researchers must be able
to inspect, display and, to some extent, query
the data held by the Web site to carry out
their work [1]. A common solution to this
problem is obfuscating the data before releas-
ing them to the Web site by applying a suit-
able obfuscation function like, for example,
a substitution cipher such as RC4 or DES.
While RC4 or DES are not considered strong
encyption nowadays, they may well suffice
for this kind of application. Substitution-
based obfuscation has the additional advan-
tage that it keeps the obfuscated data bytes
inside the UTF character set, keeping the en-
crypted data displayable on the client ma-
chines. Alternatively, sensitive data can be
obfuscated by partial masking, which is use-
ful in situations where it is only necessary to
display/disclose a portion of a data field.

1.1 Order-preserving function

One of the main problems in data obfuscation
is the widespread use of order-preserving ob-
fuscation functions on ordered data domains.
More precisely, a function f : D → C is said
to be order-preserving whenever ∀a, b ∈ D :
a < b ⇒ f(a) < f(b) [8]. The main justifica-

1In other words, when a researcher really needs ac-
cess to the real name and SSN of a party involved
(e.g., because she suspects fraud or violation of the
employment regulations) she will have to contact an
authorized representative of the data owner.



tion for order-preserving data obfuscation is
that it allows easy execution of range queries.
Here, by range queries we mean queries select-
ing obfuscated data whose plaintext values lie
on a given range defined by endpoints belong-
ing to the data domain, but not necessarily
present among the obfuscated data.
Order-preserving obfuscation supports effi-
cient execution of range queries on the server
side, but also makes very simple for the site
holding the obfuscated data and/or for an
eavesdropper to reconstruct the plaintext val-
ues. On the other hand, it is not easy to ex-
ecute range queries on obfuscated data if a
non-order preserving obfuscation function is
used, especially if all the servers holding the
data are based on relational databases [3, 4].
In this paper, we shall introduce a tech-
nique for executing range queries on obfus-
cated data. Our approach is aimed at mak-
ing range queries completely undistinguish-
able from standard equality-based ones on the
part of the server.

2 A computational model for

range queries on obfuscated data

In this section we give the basic assumptions
on which we base our proposal and introduce
some notations.

2.1 Basic concepts and scenario

Let D be a data domain equipped with a to-
tal order denoted <. Let P ⊆ D be a sub-
set of the data domain D. For instance, if
D coincides with the set of letters, P can be
any subset of letters (e.g., P can be equal
to {a,b,c,d}). In the following, we use a to
denote the minimum element in P , that is,
a ∈ P and ∀x ∈ P, a < x.

We are interested in a non-order-preserving
bijective function g : P → E such that ∃fg :
E → 2E : fg(e) = {y | g−1(y) < g−1(e)}.
We will incorporate the values of g into ob-
fuscated data, and later use them to execute
range queries. Since g will be used as a part of
an obfuscation function, we would like fg to
be reasonably hard to compute without know-
ing g, even if E is known. Our solution relies

on defining a computational model capable of
computing g so that pseudo-random values
are associated with consecutive domain val-
ues, while allowing easy computation of fg.

Figure 1 summarizes the basic scenario we
consider [4]. At the client-side, a user can
submit a query which is mapped onto a query
on the obfuscated data stored at the server-
side. The transformed query is executed at
the server-side and the result is returned to
the client. At the client-side the result is de-
crypted and the data are returned to the user.
The goal of our approach is to obfuscate data
in order to efficiently compute equality and
range queries at the server-side.

2.2 Our proposal

To fix our ideas, let us consider a specific com-
putational model: a simple shift register of
length n, where n ≥| P |.2 Our claim is that
we shall use this model to produce obfusca-
tion bits to be added to the obfuscated data
values. In its simplest form, our obfuscation
function g : D → E is defined by a pair (s, d)
such that s ∈ E and:

g(x) =

{

s if x = a;
s >>|x−a|·d if x > a

where >> is the bitwise shift operator on
the shift register’s content. Once the data
containing the obfuscation bits have been
published, all clients knowing s and d will
be able to execute range queries, while the
server will see a sequence of unrelated equal-
ity queries. In order to clarify our definition,
suppose that this time our plaintext dataset
is P = {a, b, d, e} (whose values are totally
ordered but not consecutive). Let the start
value of the register be s = 00101100 = 0x2e
and, for the sake of simplicity, d = 1. We get
the following obfuscation bits:

g(a) = 2e; g(b) = 16; g(d) = 0b; g(e) = 85

Note that obfuscation bits can be hidden in
any non-order preserving obfuscation function

2For all domain X, | X | denotes the cardinality of
X.



Query executor

Crypto
module

Untrusted DBMS

Server−sideClient−side

query on obfuscated data

results
original query

user obfuscated data

Figure 1: Scenario

like the ones mentioned in Section 1. This
would simply require an additional secret to
be shared between the original data owner
and the client about where the obfuscation
bits are located within the obfuscated data.

3 Range Query Algorithm

We are now ready to describe the method
that can be used to evaluate range queries
on obfuscated data. Suppose therefore that
a client needs to select all data x such as
x > a where a ∈ D is a value of the
data domain, not necessarily stored in the re-
mote database. The remote database holds
a set of values whose obfuscation bits are
{g(y1)...g(yk)}. The query execution can be
summarized as follows.

Step 1. Find a value t such that t ∈ P and
t is the element of P closest to a from
above (according to the natural order re-
lation in D).

Step 2. Use g to compute g(x) for all ele-
ments x ∈ P and such that x > t.

Step 3. Send an equality query selecting
each g(x) to the server holding the data.

While Steps 2 and 3 are rather straightfor-
ward, an additional word of explanation may
be needed for Step 1. The idea is simply to

Plaintext data P Obfuscation bits

a 1101
b 1110
d 0111
e 1011

Figure 3: An example of plaintext data and
the corresponding obfuscation bits

exploit the shift register and the definition of
g to generate a sequence of equality queries
whose cumulative effect is executing a binary
search among the obfuscated data. Figure 2
illustrates the binary search algorithm.

3.1 A Worked-out example

As an example, consider the plaintext dataset
in Figure 3 together with the corresponding
obfuscation bits. Here, we assume that n = 4,
s = 1101, and d = 1. Suppose now that we
want to find all plaintext values x such that
x > c. According to the algorithm described
in the previous section, we first need to find a
value t ∈ P such that t ≥ c and 6 ∃y ∈ P : t ≥
y ≥ c.

Step 1.

Shift s of bn
2
c = 2 positions rightwards:

u = s >>2= 0111
Decrypt u and obtain g−1(u) = d

Shift u leftward of bn
4
c = 1position:



Algorithm 1 Binary Search

/* Input: A value a ∈ D */
/* Output: A value y ∈ P : y ≥ a and 6 ∃y′ ∈ P : y ≥ y′ ≥ a */

1. i :=2; u:=‘ ’;
2. Shift s of bn

2
c positions rightwards to obtain the obfuscation bits u =>>bn

2
c s

3. Repeat

3.1 Send to the server an equality query to get the obfuscated data item corresponding to u

3.2. Decrypt the obfuscated dat. Let y be the result
3.3 If(y > a)

then shift u leftwards of n = b n
2i c bits;

else If(y < a)
then shift u rightwards of n = b n

2i c bits;

3.4 i:= i + 1;
until(bnc ≤ 0 or y = a)

Figure 2: Binary search algorithm

u = u <<1= 1110
Decrypt u and obtain g−1(u) = b

At this point we know that d is the lowest
element of P greater than c.

Step 2&3.

Send an equality query to the server in
order to retrieve all dataset whose obfus-
cation bits are equal to 0111 or 1011.

4 Conclusions

In this paper we have proposed a simple
and effective technique for obfuscating data
while allowing the efficient execution of range
queries. Each range query is translated into
a sequence of equality queries composed of
two part: the first, which is logarithmic in
the number of database entries, locates the
database entry which is closest to the range
query limit; the second, which is linear in the
number of the database entries actually lying
in the desired range, collects one by one all the
elements of the query answer. The server can-
not distinguish the queries belonging to the
sequence from other equality queries it may
receive, making statistical reconstruction of
the plaitext value more difficult. We plan to
develop this topic in a future paper evaluating

the degree of strength of our technique with
respect to unauthorized inferences, comparing
it to server side techniques like [4].

Acknowledgements

The work reported in this paper has been par-
tially supported by the Italian MURST within
the KIWI and MAPS projects.

References

[1] R. Agrawal. Privacy cognizant in-
formation systems, October 2003.
http://www.acm.org/sigs/sigsac/ccs/
/CCS2003/keynote.html.

[2] R. Agrawal, A. Evfimievski, and
R. Srikant. Information sharing across
private databases. In Proc. of the Inter-

national Conference on Management of

Data, San Diego, California, June 2003.

[3] E. Damiani, S. De Capitani di Vimercati,
S. Paraboschi, and P. Samarati. Imple-
mentation of a storage mechanism for un-
trusted dbmss. In Proc. of the Second

International IEEE Security in Storage

Workshop, Washington, DC, USA, Octo-
ber 2003.

[4] E. Damiani, S. De Capitani di Vimercati,
S. Jajodia, S. Paraboschi, and P. Sama-



rati. Balancing confidentiality and effi-
ciency in untrusted relational dbmss. In
Proc. of the 10th ACM Conference on

Computer and Communications Security,
Washington, DC, USA, October 2003.

[5] H. Hacigümüs, B. Iyer, C. Li, and
S. Mehrotra. Executing SQL over en-
crypted data in the database-service-
provider model. In Proc. of the ACM SIG-

MOD’2002, Madison, Wisconsin, USA,
June 2002.

[6] H. Hacigümüs, B. Iyer, C. Li, and
S. Mehrotra. Providing database as a
service. In Proc. of the 18th Interna-

tional Conference on Data Engineering,
San Jose, California, USA, February 2002.

[7] R. Khosla, E. Damiani, and W.I. Grosky.
Human-Centered E-Business. Kluwer
Academic Publishers, 2003.

[8] B. Schneier. Applied Cryptography. Wiley
& Sons, 1996.

[9] E.Y. Yang, J. Xu, and K.H. Bennett.
Private information retrieval in the pres-
ence of malicious failures. In Proc. of the

26th Annual International Computer Soft-

ware and Applications Conference, Ox-
ford, England, August 2002.


