Towards Privacy-Enhanced Authorization
Policies and Languages

C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, and P. Samarati

Dipartimento di Tecnologie dell’Informazione
Universita di Milano —26013 Crema - Italy
{ardagna,damiani,decapita,samarati}@dti.unimi.it

Abstract. The protection of privacy in today’s global infrastructure
requires the combined application solution from technology (technical
measures), legislation (law and public policy), and organizational and
individual policies and practices. Emerging scenarios of user-service in-
teractions in the digital world are also pushing toward the development
of powerful and flexible privacy-enhanced models and languages.

This paper aims at introducing concepts and features that should be in-
vestigated to fulfill this demand. In particular, the content of this paper
is a result of our ongoing activity in the framework of the PRIME project
(Privacy and Identity Management for Europe), funded by the European
Commission, whose objective is the development of privacy-aware solu-
tions for enforcing security.

1 Introduction

Traditional access control systems are based on regulations (policies) that es-
tablish who can, or cannot, execute which actions on which resources. However,
in today’s systems the definition of an access control model is complicated by
the need to formally represent complex policies, where access decisions depend
on the application of different rules coming, for example, from laws practices,
and organizational regulations. Given the complexity of the scenario, these tra-
ditional policies are too limiting and do not satisfy all the above requirements.
Although recent advancements allow the specifications of policies with refer-
ence to generic attributes/properties of the parties and the resources involved,
they are not designed for enforcing privacy policies. For instance, privacy issues
that are not addressed by traditional approaches include protecting user iden-
tities by providing anonymity, pseudonymity, unlinkability, and unobservability
of users at communication level, system level, or application level. Therefore, the
consideration of privacy issues introduces the need for rethinking authorization
policies and models and the development of new paradigms for access control
and in particular authorization specification and enforcement.

In this paper, we present our recent research work in the context of the
PRIME project [12]. Our work deals with three main key aspects:

— Resource representation. Writing access control policies where resources to
be protected are pointed at via data identifiers and access conditions are



evaluated against their attribute values is not sufficient anymore. Rather, it
is important to be able to specify access control requirements about resources
in terms of available metadata describing them.

— Context representation. Distributed environments have increased the amount
of context information available at policy evaluation time (e.g., location-
based one), and this information is achieving a more and more important
role.

— Subject identity. Evaluating conditions on the subject requesting access to
a resource often means accessing personal information either presented by
the requestor as a part of the authentication process or available elsewhere.
Identifying subjects raises a number of privacy issues, since electronic trans-
actions (e.g., purchases) require disclosure of a far greater quantity of infor-
mation than their physical counterparts.

A privacy-enhanced authorization model and language is then described al-
lowing for definition and enforcement of powerful and flexible access restrictions
based on generic properties associated with subjects and objects. We also bring
forward the idea of exploiting the semantic web to allow the definition of access
control rules based on generic assertions defined over concepts in the ontologies
that control metadata content and provide abstract subject domain concepts,
respectively [16]. These rules are then enforced on resources annotated with
metadata regulated by the same ontologies.

The remainder of this paper is organized as follows. Section 2 presents the
different types of privacy policies we have identified. Section 3 and Section 4 illus-
trate our privacy-enhanced model and language, respectively. Section 5 describes
a possible representation of expressing our language by using an XML-based syn-
tax. Finally, Section 6 presents our conclusions.

2 Privacy policies

To address the requirements mentioned in the previous section, different types
of policies need to be introduced.

— Access control policies. They govern access/release of data/services managed
by the party (as in traditional access control) [4].

— Release policies. They govern release of properties/credentials/PII of the
party and specify under which conditions they can be disclosed [2].

— Data handling policies. They define the personal information release will be
(or should be) deals with at the receiving party [15].

— Sanitized policies. They provide filtering functionalities on the response to be
returned to the counterpart to avoid release of sensitive information related
to the policy itself.

Access control policies. Access control policies define authorization rules concern-
ing access to data/services. Authorizations correspond to traditional (positive)
rules usually enforced in access control systems. For instance, an authorization



rule can require the proof of majority age and a credit card number (condition)
to read (action) a specific set of data (object). Also, an obligation can specify
that the credit card number must be deleted at the end of the transaction or
that the server must log any request. When an access request is submitted to
the party, it is first evaluated against the authorization rules applicable to it.
If the conditions for the required access are evaluated to true, access is permit-
ted. If none of the specified conditions that might grant the requested access
can be fulfilled, then the access is denied. Finally, if the current information is
insufficient to determine whether the access request can be granted or denied,
additional information is needed and the client receives an undefined response
with a list of requests that she must fulfill to gain the access. For instance, if
some of the specified conditions can be fulfilled (e.g., by signing an agreement),
then the party prompts the requester with the actions that would result in the
required access.

Release policies. Release policies define the party’s preferences regarding the
release/disclosure of its Personal Identifiable Information (PII). More precisely,
these policies specify to which party, for which purpose/action, and under which
conditions/obligations a particular set of PII can be released/disclosed [2]. For
instance, a release policy can state that credit card information can be disclosed
only in the process of a buy action and upon presentation of a nondisclosure
agreement (condition) by the party. The disclosure of PII may only be performed
if the release policies are satisfied.

Data handling policies. Data handling policies specify how PII is used and pro-
cessed [15]. More precisely, they should regulate how PII will be used (e.g., infor-
mation collected through a service will be combined with information collected
from other services and used in aggregation for market research purposes), how
long PII will be retained (e.g., information will be retained as long as necessary
to perform the service), and so on. Clients use these policies to define how her
information will be used and processed by the counterpart. In this way, user can
manage the information also after its release.

Sanitized policies. Sanitized policies provide filtering functionalities on the re-
sponse to be returned to the counterpart to avoid release of sensitive informa-
tion related to the policy itself (or to the status against which the policy has
evaluated). This happens when an undefined decision together with a list of al-
ternatives (policies) that must be fulfilled to gain the access to the data/service
is returned to the counterpart. For instance, suppose that the policy returned
by the access control is “citizenship=EU”. The party can decide to return to
the user either the policy as it is or a modified policy (obtained by applying
the sanitized policies) simply requesting the user to declare its nationality (then
protecting the information that access is restricted to EU citizens).

In the following, we deal with access control and release policies: data han-
dling and sanitized policies will be added in future work.



CLIENT SERVER

access request

|
|
|
|
|
|
|
1
- ! ACmodule |«—» Resoner Policy editor
l | accessdecision
|
|
|
I
I
I
I
I
I
I
I
I
I
|

AC
policies

Portfolio

Fig. 1. Architecture

3 Scenario and basic elements of the privacy-enhanced
model

We consider parties that interact with each other to offer services (see Figure 1).
As in a usual client/server interaction, a client asks for a service and a server
provides for the service. However, each party can be interchangeably as either
a client or a server at different times, with respect to a specific instance of a
service request. The access request is processed by the Access Control module
(AC module). The AC module interacts with the Reasoner that takes the access
control policies together with the subject, object, and credential ontologies as
input and computes the expanded policies including semantically equivalent ad-
ditional conditions. These conditions, specified in disjunction with the original
ones, allow for increasing the original policy’s expressive power. The AC module
returns to the client a yes, no, or undefined decision. In the latter case, it returns
the information about which conditions need to be satisfied for the access to be
granted. In this last case, the problem of communicating such conditions to the
counterpart arises.

The access control policies are based on generic properties (attributes) as-
sociated with the subjects requesting accesses and the resources (data/services)
subjects interact with. In the following, we illustrate these basic elements of our
model in details.

3.1 Portfolio

The set of properties associated with subjects and objects are represented by
means of a portfolio [2]. More precisely, a portfolio includes two types of in-
formation: declarations and credentials. A declaration is a statement issued by
the party while a credential is a statement issued and signed (i.e., certified) by
authorities trusted for making the statement [8]. As an example, the driver li-
cense number maintained as a data value at a party and communicated in a



negotiation is a declaration. A digital copy of the driver license, released by the
public administration to the party, and that the party can submit to a server
to prove that it has a driver license or that the administration certifies some
properties (e.g., address), is a credential. At a practical level, we view a cre-
dential as characterized by two elements: i) a signed content, and i) the public
digital signature verification key to verify the signature. We can also imagine the
existence of (meta)information associated with a credential, outside the signed
content. Such information cannot however be trusted as being certified by the
authority that signed the credential. In the following, we consider credentials
such a mean to allow query for specific data, such as name or address in a driver
license, number or expiration date in a credit card. To refer to specific data in a
credential we introduce the concept of credential term.

Definition 1. A credential term is an expression of the form
credential name (predicate_list), where credential name is the name of
the credential, and predicate_list is a possibly empty list of elements of the form
predicate_name (arguments).

Intuitively, a credential term can be used to specify a condition on
credentials (we will elaborate more on this in Sect. 4). Some exam-
ples of credential terms are: driver-license(equal(name, “John Doe”))
and identity-card(greater_than(age,18)). The first term denotes the
driver-license credential where attribute name should be equal to John. The
second term denotes credential identity-card where attribute age should be
greater than 18. Declarations and credentials in a portfolio may be organized into
a partial order. For instance, an identity-document can be seen as an abstrac-
tion for credentials driver-license, passport, and identity-card. Finally,
the functionalities offered by a server are defined by a set of services. Intuitively,
each service can be seen as an application that clients can execute.

3.2 Ontologies and abstractions

Our model provides the support for ontologies that allow to make generic asser-
tions on subjects and objects [13,14]. More precisely, we use three ontologies:
a subject ontology, an object ontology, and a credential ontology. The subject
ontology contains terms that can be used to make generic assertions on subjects
(e.g., in a medical scenario possible terms are Physician, Patient, assists).
The object ontology contains domain-specific terms that are used to describe
the resource content such as Video and shows_how. Finally, the credential on-
tology represent relationships among attributes and credentials (part-of and
is-a relationships) to establish what kind of credentials can be provided to
fulfill a declaration or credential request. For instance, an ontology can state
that attributes birth date and nationality are part_of driver-license,
identity-card, and passport. In this way, the reasoning process can point out
all the credentials that a user, for example, can provide to prove the satisfaction
of a given constraint. To fix ideas and make the discussion clear, suppose that a



user can use an on-line car rental service only if she is an European citizen. The
access is then allowed if the user can prove her nationality and, according to the
credential ontology, this can be done either by showing the driver-license,
identity-card, or passport.

Abstractions can also be defined within the domains of users as well as ob-
jects. Intuitively, abstractions allow to group together users (objects, resp.) with
common characteristics and to refer to the whole group with a name.

4 Privacy-aware language

We are now ready to describe the basic constructs of the language used to define
the privacy policies and the syntax of the language.

4.1 Basic elements of the language
We have identified the following predicates:

— a predicate declaration where the argument is a list of predicates of the

form predicate name (arguments);

— a binary predicate credential where the first argument is a credential term
(see Definition 1) and the second argument is a public key term. Intuitively,
a ground atom credential(c, K) is evaluated to true if and only if there
exists a credential ¢ verifiable with public key K.

— a set of standard binary built-in mathematic predicates, such as equal(),

greater_than(), lesser_than(), and so on.
— a set of non predefined predicates that evaluate information stored at the

site.

The above predicates constitute the basic literals that can be used in access
control and release policies. Note that predicates declaration and credential
have been introduced to distinguish between conditions on data declarations
and conditions on credentials (we will elaborate more on this in the following
sub-section).

4.2 Policy components
Syntactically, an access control rule (release rule, resp.) has the following form:

subject WITH subject-expression CAN action FOR purpose ON object WITH
object-expression IF conditions FOLLOW obligations

where:

— subject (object) identifies the subject (object) to which the rule refers;

— subject-expression (object-expression) is an expression that allows the refer-
ence to a set of subjects (objects) depending on whether they satisfy given
conditions that can be evaluated on the user’s portfolio (object’s profile);

— action is the action to which the rule refers (e.g., read, write, and so on)!

! Note that abstractions can also be defined on actions, specializing actions or grouping
them in sets.



— purpose is the purpose (e.g., scientific) to which the rule refers and rep-
resents how the data is going to be used by the recipient;

— conditions is a boolean expression of generic conditions that an access request
to which the rule applies has to satisfy;

— obligations is a boolean expression of obligations that the server must follow
when manage the information/data/PII.

We now look at the different components in the rule.

Subject expression. These expressions allow the reference to a set of subjects
depending on whether they satisfy given conditions that can be evaluated on the
subject’s portfolio. Note that the conditions specified through these expressions
are very similar to generic conditions. The difference is that while the subject
expression is evaluated on the user of the request, generic conditions specify
generic constraints that are not evaluated on the requester. More precisely, a
subject expression is a boolean formula of terms of the form:

— declaration(predicate_list) , where predicate_list is a possibly empty list of
elements of the form predicate name (arguments). Intuitively, a declaration
predicate is evaluated to true if each predicate specified in the predicate_list
is evaluated to true.

— credential (credential_term,K), where credential_term is defined as
credential name (predicate_list) (see Definition 1). Intuitively, a credential
predicate is evaluated to true if there exists credential credential name for
which each predicate predicate (arguments) in predicate_list is evaluated
to true and credential name is verifiable with public key K.

Note that the predicates specified as arguments of the declaration and
credential predicates can be: i) location-based predicates, i) the standard
built-in mathematic predicates, and 74) the non predefined predicates that eval-
uate information stored at the server.

To make it possible to refer to the user of the request being evaluated without
the need of introducing variables in the language, we introduce the keyword user,
whose appearance in a conditional expression is intended to be substituted with
the actual parameters of the request in the evaluation at access control time.

Ezample 1. The following are examples of subject expressions:

— declaration(equal (user.name,Bob),greater_than(user.age,18)) denot-
ing requests made by a user whose name is Bob with age greater than 18;

— credential (passport (equal (user.job,professor) ), K1) denoting requests
made by users who are professors. This property should be certified by show-
ing the passport credential verifiable with public key K3



Object expression. These expressions allow the reference to a set of objects de-
pending on whether they satisfy given conditions that can be evaluated on the
object’s profile. Note that the conditions specified through these expressions are
very similar to generic conditions. The difference is that while the object expres-
sion evaluated on the object (or associated profile) to which the request being
processed refers, generic conditions specify generic constraints that are not eval-
uated on the requested object. More precisely, an object expression is a boolean
formula of terms of the form:

— declaration(predicate_list) , where predicate_list is a possibly empty list of
elements of the form predicate_name (arguments). Intuitively, a declaration
predicate is evaluated to true if each predicate specified in the predicate_list
is evaluated to true.

Note that the predicates specified as arguments of the declaration predicate
can be: 1) the standard built-in mathematic predicates, and 4) the non predefined
predicates that evaluate information stored at the server.

Like for subjects, to make it possible to refer to the object to which the
request being processed refers, without need of introducing variables in the lan-
guage, we introduce the keyword object, whose appearance in a conditional
expression is intended to be substituted with the actual parameters of the re-
quest in the evaluation at access control time.

Ezample 2. The following are examples of object expressions:

— declaration(equal (object.creator,user)) denoting all objects created
by the requester;

— declaration(lesser_than(object.creation date,1971)) denoting all
objects created before 1971.

Conditions. We assume that the type of conditions that can be specified in the
conditions element are only conditions that can be brought to satisfactions at
run-time processing of the request. These conditions can be related to agreement
acceptance, payment fulfillment, or registration. Conditions can be associated
with data at different levels (i.e., attribute, credentials’ attributes and creden-
tials) and can be certified or uncertified. More precisely, conditions are boolean
formula of terms of the form:

— predicate name (arguments).

Note that the predicates specified in the conditions element can be: i) trusted-
based conditions stating that, for example, the requester should use a trusted
platform, 4i) the standard built-in mathematic predicates, and i) the non pre-
defined predicates that evaluate information stored at the server.

Ezample 3. The following is a simple example of condition.

— £ill_in form(user,form1) checks if the requester has filled in form formlI.



Obligations. They establish how the released PII must be managed by the coun-
terpart. For instance, obligations may state that some data should be deleted
after three time accessed, the owner of some data should be notified after every
access to the data, some data should be obfuscated or deleted after 3 months,
and so on. Obligations can be attached to a particular instance of release data
in order to give to the counterpart some rules that must be follow in the PII
management.

5 An example

We now present an example of policy (other examples are omitted here for space
constraints) and a possible way of expressing policies by using an XML-based
syntax.

We define two namespaces: xmlns:pol is the namespace of the policy and
xmlns:ont is the namespace for the ontology statements. Every policy can con-
tain more than one rule combined through the combine-rule attribute. Each rule
has three main components:

— pol:target is the target of the policy (subject, object, action, purpose);

— pol:condition includes generic conditions (neither related to subject nor
object) such as assurance/trust conditions;

— pol:obligation includes further steps that the party must take in account
when the access is granted.

We now analyze the target component more in details. The target in-
cludes the pol:subject tag corresponding to the subject field described
in Section 4. Associated with the subject, there is the subject expression
(pol:subject-expression) that contains boolean operators (and, or) and a
set of constraints (pol:constraint). Every constraint has a type and is of the
form “left-value operator right-value”. The operator is a matching function, the
left-value (ont:datatype) have to be a class referencing an ontology structure
and the right-value (ont:instanceref) can be another class, an instance class,
or a literal (e.g., in the rule below the constrain is user.job = “doctor”). The
object and object expression have the same structure of the subject and subject
expression, respectively. Finally, the target includes an action (pol:action) and
a purpose (pol:purpose).

When a request is submitted to the system, the AC module selects all the
applicable policies by using the subject, object, action, and purpose specified in
the access request and then checks the (expanded) conditions inside the policies
to determine the access result (yes/no/undefined).

Example 4. Suppose that an access control policy stated that “A registered user
who works as a doctor, can read for research purposes data patientData with
the agreement of the patient”. This policy is expressed as follows.

registeredUsers WITH declaration(equal (user.work, "doctor")) CAN read FOR
research ON patientDatawithdeclaration(equal (object.patient_agreement,yes))
IF no-condition FOLLOW no-obligation



10

<pol:policy type="accessControl" combine-rule="first-grant"
xmlns:pol="http://example.com/policy-namespace"
xmlns:ont="http://example.com/ontology-namespace">
<pol:rule>
<pol:target>
<pol:subject>registeredUsers</pol:subject>
<pol:subject-expression>
<pol:constraint type="declaration">
<pol:function type="equal">
<ont:datatype>
<ont:user/> <ont:job/>
</ont:datatype>
<ont:instanceref>
<ont:user/> <ont:job/>
<ont:value>doctor</ont:value>
</ont:instanceref>
</pol:function>
</pol:constraint>
</pol:subject-expression>
<pol:object>patientData</pol:object>
<pol:object-expression>
<pol:constraint type="declaration">
<pol:function type="equal">
<ont:datatype>
<ont:object/> <ont:patient/> <ont:agreement/>
</ont:datatype>
<ont:value type="xsd:string">yes</ont:value>
</pol:function>
</pol:constraint>
</pol:object-expression>
<pol:action>read</pol:action>
<pol:purpose>research</pol:purpose>
</pol:target>
<pol:condition/>

<pol:obligation> ... </pol:obligation>
</pol:rule>
<pol:rule> ... </pol:rule>

</pol:policy>

Fig. 2. A simple example of policy

Figure 2 illustrates the policy expressed by using the XML syntax described
above. Note that our access control system operates also when the users want
to remain anonymous or disclosure only some attributes about themselves, pro-
tecting users privacy.



11

6 Conclusions

This paper has presented the preliminary results of our ongoing activity in the
framework of the PRIME project. Issues to be investigated include the filtering
and renaming of policies and the addition of obligations. As discussed previously,
since access control does not return only a “yes” or “no” access decision, but
it returns the information about which conditions need to be satisfied for the
access to be granted (“undefined” decision), the problem of communicating such
conditions to the counterpart arises. The system should then provide meta-
policies for protecting the policy when communication requisites.

7 Acknowledgments

This work was supported in part by the European Union within the PRIME
Project in the FP6/IST Programme under contract IST-2002-507591 and by the
Italian MIUR within the KIWI and MAPS projects.

References

1. Bonatti, P., Damiani, E., De Capitani di Vimercati, S., Samarati, P.: A Component-
based Architecture for Secure Data Publication. Proc. of the 17th Annual Computer
Security Applications Conference (2001), New Orleans, Louisiana.

2. Bonatti, P., Samarati, P.: A Unified Framework for Regulating Access and Informa-
tion Release on the Web. Journal of Computer Security (2002), vol. 10, 241-272.

3. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise Privacy
Authorization Language (EPAL 1.1). IBM Research Report (2003), http://wuw.
zurich.ibm.com/security/enterprise-privacy/epal.

4. Samarati, P., De Capitani di Vimercati, S.: Access Control: Policies, Models, and
Mechanisms. Foundations of Security Analysis and Design LNCS 2171 (2001),
Springer-Verlag.

5. eXtensible Access Control Markup Language (XACML) Version 1.1. OA-
SIS, 2003, http://wuw.oasis-open.org/committees/xacml/repository/
cs-xacml-specification-1.1.pdf.

6. Ardagna, C.A., Damiani, E., De Capitani di Vimercati, S., Samarati, P.. A Web
Service Architecture for Enforcing Access Control Policies. Proc. of the First Inter-
national Workshop on Views On Designing Complex Architectures (VODCA 2004),
Bertinoro, Italy.

7. Ardagna, C.A., Damiani, E., De Capitani di Vimercati, S., Samarati, P.: XML-based
Access Control Languages. Information Security Technical Report, (2004), vol. 9.

8. Gladman, B., Ellison, C., Bohm, N.: Digital signatures, certificates and electronic
commerce, http://www.clark.net/pub/cme/html/spki.html.

9. Bettini, C., Jajodia, S., Sean Wang, X., Wijesekera, D.: Provisions and Obligations
in Policy Management and Security Applications. In Proc. 28th Conf. Very Large
Data Bases (VLDB’02), (2002), citeseer.ist.psu.edu/bettiniO2provisions.
html.

10. Park, J., Sandhu, R.: The UCONabc Usage Control Model. ACM Transactions on
Information and System Security (TISSEC), (2004), vol. 7, no. 1.



12

11. World Wide Web Consortium: Semantic Web. http://www.w3.org/2001/sw/.

12. Privacy and Identity Management for FEurope (PRIME). http://www.

prime-project.eu.org/.

13. Damiani, E., De Capitani di Vimercati, S., Fugazza, C., Samarati, P.: Semantics-
aware Privacy and Access Control: Motivation and Preliminary Results. 1st Italian
Semantic Web Workshop, (2004), Ancona, Italy.

14. Damiani, E., De Capitani di Vimercati, S., Fugazza, C., Samarati, P.: Extending
Policy Languages to the Semantic Web. Proc. of the International Conference on
Web Engineering, (2004), Munich, Germany.

15. Cranor, L., Langheinrich, M., Marchiori, M., Presler-Marshall, M., Reagle, J.: The
Platform for Privacy Preferences 1.0 (P3P1.0) Specification. http://www.w3.org/
TR/P3P/.

16. Ardagna, C.A., Damiani, E., De Capitani di Vimercati, S., Fugazza, C., Samarati,
P.: Offline Expansion of XACML Policies Based on P3P Metadata (to appear).
ICWE 2005, 5th International Conference on Web Engineering, Sydney, Australia.



