An Access Control System for SVG Documents

E. Damiani' S. De Capitani di Vimercati’? E. Fernidndez-Medina® P. Samarati’
(1) Dip. di Tecnologie dell'Informazione - Universita di Milano - 26013 Crema - Italy
{damiani,samarati}@dti.unimi.it
(2) Dip. di Elettronica per ’Automazione - Universita di Brescia - 25123 Brescia - Italy
decapita@ing.unibs.it
(3) Escuela Superior de Informética - University of Castilla-La Mancha - 13071, Ciudad Real - Spain
Eduardo.FdezMedina@uclm.es

Abstract

Selectively controlling access to images’ features is becoming more and more
essential as modern computing and communications encourage the use of informa-
tion in graphical form. The monolithic nature of traditional raster images makes
controlled dissemination of their internal features a difficult task. Recently, how-
ever, XML-based graphics formats such as the Scalable Vector Graphics (SVG)
standard, are becoming increasingly popular due to their recognized advantages
in terms of application interoperability. In this paper we exploit the XML-based
data model of SVG to present a model and a syntax aimed at selectively con-
trolling access to graphic information on the Internet. Our model explicitly deals
with the basic notions underlying representation of complex objects via vector
graphics, while our enforcement technique efficiently exploits lower level DOM
representation of XML data.

Keywords: Access Control, Multimedia Documents, SVG format, XML documents.

1 Introduction

Vector graphics is a time-honored technique that uses geometrical formulas to represent
images, achieving more flexibility than usual raster graphics relying on bit maps. For
instance, vector-oriented images can be resized and stretched without any loss of image
quality; also, repetitive geometric elements can be defined once and used many times, so
that high-quality vector images often require less memory than lower quality bit-mapped
ones. While in the past vector graphics was confined to computationally intensive design
applications, it is now spreading to new application fields. An increasing amount of the
multimedia information being transmitted over the Internet is in the form of vector
image data, encoded by means of new XML-based standards such as the World Wide
Web Consortium’s Scalable Vector Graphics (SVG) [13], which allows describing two
dimensional vector graphics (specifically vector graphic shapes, images, and text) for

storage and distribution on the Web. In contrast to raster image format such as GIF,
JPEG, and PNG, SVG has many advantages. Specifically:

e SVG documents are plain text, so they can be read and modified easily.

e Being SVG a vector format, SVG images can be resized without loss of quality and
printed at any resolution. Also, graphical objects can be easily grouped, restyled
and transformed.

e Sophisticated interactive and dynamic applications of SVG are made possible by
the Document Object Model (DOM) [14] underlying all XML-based formats. User
interaction is managed via a rich set of event handlers that can be assigned to any
SVG graphical object.

e SVG offers all the advantages of XML, including interoperability, internationaliza-
tion (via its support of the Unicode character sets), XSLT restructuring capabil-
ity (http://www.w3.org/Style/XSL/) and easy manipulation through standard
DOM APIs.

The current trend toward XMIL-based vector graphics is affecting different types
of data, such as technical plans, organizational charts and diagrams, as well as medical
images used in diagnosis and research. While controlling access to text-based documents
has since long been a focus of research activities [12], raster graphic information has been
seldom processed with much concern for access control, mainly because of its monolithic
internal structure: either a user is allowed to see a bitmap image, or she is not. On the
other hand, XML-based vector images present new and challenging feature protection
problems, related to fine-grained access control to their internal structure. Of course,
the feature protection problem could also be solved by storing graphical data in multiple
copies at different levels of detail; but this solution is seldom practical. For instance,
in a hospital, if some MRI-scan images are to be released for research purposes, they
must be duplicated omitting any identifying information, making their distribution slow
and costly [17, 18]. In this paper, we present a novel approach to fine-grained feature
protection of Scalable Vector Graphics (SVG) data, one of the most successful XML
standards for exchanging and representing graphics information. Our approach allows
to selectively transform SVG graphical data according to the user’s profile, releasing
only the features that the user is entitled to see. While leveraging on our proposal for
protecting XML sources [5, 6], the approach presented in this paper exploits the peculiar
characteristics of SVG documents. Also, it provides a simple, yet expressive, solution for
specifying authorization subjects. The paper is organized as follows. Section 2 provides
a concise illustration of SVG and describes the example to which discussions in the paper
will refer. Section 3 presents our authorization model for the specification of protection
requirements on SVG documents together with a language for expressing them. Our
language, called SVG-FPL (SVG Feature Protection Language), provides expressiveness
and flexibility by exploiting XML-based profiles for describing authorization subjects and
by exploiting the basic objects of vector graphics for fine-grained reference to individual
elements in SVG documents. Section 4 illustrates the enforcement process executed
server-side at every access request to obey the stated protection requirements. As a

SVG document

(XML version) (_ pocTyPE) ((SVG tree)

Cdescriptive text) (script) (definitions) (body)

Figure 1: General Structure of an SVG Document

result of the enforcement, the requestor may be returned only a partial view of the
original SVG document containing only the objects and functions that she is entitled to
access. Finally, Section 5 presents our conclusions.

2 A concise overview of SVG

An SVG document has a flexible structure, composed of several optional elements placed
in the document in an arbitrary order. Figure 1 shows the general structure used. Nodes
XML Version and DOCTYPE are common for any XML-based document and specify the
XML version used in the document and information about the type of the document (the
public identifier and the system identifier for SVG 1.0), respectively. Node SVG contains
all the elements specific to SVG documents and is composed of four parts: descriptive
text, script, definitions, and body. The descriptive text includes textual information not
rendered as part of the graphic and is represented by two elements: <title>, usually
appearing only once, and <desc>, appearing several times to describe the content of
each SVG fragment. The script portion contains function definitions. Each function
is associated with an action that can be executed on SVG objects in the document.
Functions have a global scope across the entire document. The definition portion con-
tains global patterns and templates of graphical elements or graphical properties that
can be reused in the body of the SVG document. Each definition is characterized by
a name, which is used in the body of the document to reference the definition, and by
a set of properties. The graphical elements to be rendered are listed after the <defs>
node, according to the order of rendering. Each element can belong to any of the basic
SVG graphics elements, such as path, text, rect, circle, ellipse, line, polyline,
polygon, and image, whose names are self-explanatory. The body of an SVG docu-
ment contains any number of container and graphics elements. A container element can
have graphics elements and other container elements as child elements. Container <g>
is used for grouping together related graphics elements. A graphics element can cause
graphics to be drawn. For instance, the use graphics element references another element
(usually a definition) and indicates that the graphical contents of that element must be
drawn at that specific point in the document. Each SVG element may have its own
properties, modeled by XML attributes. All elements in the document can be uniquely
identified including the special attribute id=‘identifier’. It is also possible to include
user-defined properties, which can be useful for SVG data processing.

ONCOLOGY FLOOR

| | | | |
— | T | [|
Store
e o B oo | Pelo] | [a]a[s || Ma[o] | =)
Pharmacy . : . : Kitchen
WC Room @ Room 7 Room & Room 3 Room 1 fay
Emergency 1 ﬁ
Exit R o
we |]
| B A m B Alr B Alm|B Alm|B A wm|B
Oxygen l Room 10 Room 8 Room 6 Room 4 Room 2
| I I I I I
X-Rays
* Patient Information
1 = Name: John Coffey

lliness: Bone Cancer

Chemotherapy
State: Recovery
Treatment: Chemotherapy Drugs

Y Phone

1 Computer

. Fire Emergency Control
. Electricity Control

Figure 2: Example of an SVG document

2.1 Running example

Figure 2 illustrates the rendering of a sample SVG document, showing the oncology
floor of a hospital, which will be used as a running example throughout the paper. The
document, integrated in a web site, allows the hospital staff to know both details of the
floor (e.g., rooms and equipments location) and recovered patient information.! In par-
ticular, the rectangular appearing at the bottom with the text provides the information
of the patient of bed 1B on which the mouse is currently positioned (moving the mouse
on other beds the corresponding patient will be returned).

Figure 3(a) shows a tree-based representation of the document rendered in Fig-
ure 2, reporting the types associated with the group elements composing its body. In
particular, the body is a group element with oncologyfloor as identifier and with
sub-elements of type outline, information, public area, private area, emergency
and electricity control (the document defines one group for each of them). Group
public areaincludes public aisle, reception, two restroom instances, and ten room
instances. Each room, in turn, is composed of a graphical representation (rectRoom
definition), a name, and two beds. Each bed is composed of a graphical represen-
tation (rectBed definition) and a bed name. Occupied beds further include a group

"'While obviously in a real case there would be much more details, the example already gives the
ideas of graphically representing all details of a building, integrating both graphics and text in order to
have a very powerful interactive query tool.

<?xml version="1.0" standalone="no"?>
< !DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"

Oncology Floor

PublicArea

2

10
N

#rectBed

)

occupied bed information]

I PrivateArea

X-ray room
#computer

chemotherapy room

(a)

#rectOccupiedBed
onmouseover

"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD /svgl0.dtd" >

<svg width="24cm" height="16cm" viewBox="900 400 3600 2200">

<title> Small Fragment of a Oncology Floor </title>

<!-- SCRIPT portion starts here -->

<script type="text/ecmascript">

< ! [CDATAL
function display_information(evt) { }
function hide-information(evt) { }

11>

</script>

<!-- DEFINITION portion starts here -—>

<defs>
<rect id="rectRoom" width="400" height="300" stroke="black" fill="beige"/>
<rect id="rectBed" width="100" height="160" stroke="black" fill="white"/>
<rect id="rectOccupiedBed" width="100" height="60" stroke="black" fill="blue"/>

<symbol id="computer" viewBox="0 0 20 20"> </symbol>
<symbol id="phone" viewBox="0 0 20 20"> </symbol>
<linearGradient id="MyGradient"> </linearGradient>
</defs>
<!-- BODY portion starts here -->

<g id="oncologyfloor">
<g id="information">
<g id="title">
<text x="1920" y="700" font-size="80"> ONCOLOGY FLOOR </text>
</g>
<g id="window-data">
<rect id="data" fill="url(#MyGradient)" x="1500" y="1500"
width="1600" height="400" stroke="black" />
<text x="2020" y="1470" font-size="60"> Patient Information </text>

<text x="1700" y="1570" font-size="60"> Name: </text>
<text x="1700" y="1670" font-size="60"> Illness: </text>
<text x="1700" y="1770" font-size="60"> State: </text>
<text x="1700" y="1870" font-size="60"> Treatment: </text>
</g>
</g>

<g id="rooml" typeElement="room" >
<use x="2700" y="300" xlink:href="#rectRoom" />
<g typeElement=‘content’>
<text x="2800" y="550" font-size="60"> Room 1 </text>
<use x="2870" y="400" width="60" height="60" xlink:href="#phone" />
<g id="A" typeElement="bed" >
<use x="2750" y="320" xlink:href="#rectBed" />
<text x="2775" y="440" font-size="70" > A </text>
</g>
<g id="B" typeElement="bed" >
<use id="1B" x="2950" y="320" xlink:href="#rectBed" />
<text x="2975" y="440" font-size="70" > B </text>
<g id="bed1B" typeElement="occupiedBedInforamtion">
<use id="1B" x="2950" y="320" xlink:href="#rectOccupiedBed"
onmouseover="display_information(evt)" onmouseout="hide_information(evt)"/>
<g id="patientBed1B" typeElement="infoPatient" visibility="hidden">
<text typeElement="name" x="1900" y="1570" font-size="60">
John Coffey
</text>
<text typeElement="illness" x="1910" y="1670" font-size="60">
Bone Cancer
</text>
<text typeElement="state" x="1880" y="1770" font-size="60">
Recovery
</text>
<text typeElement="treatment" x="2010" y="1870" font-size="60">
Chemotherapy Drugs
</text>
</g>
</g>
</g>
</g>
</g>
<g id="room2" typeElement="room" > </g>

</g>

</svg>

(b)

Figure 3: Tree-based graphical representation (a) of an SVG document (b)

Users

MedicalStaff NonMedicalStaff
Doctors Nurses Administrative Maintenance

Oncology Oncology Alice Bob Dave
CaI/ \a.m Eve

Figure 4: An example of user/group hierarchy

with a new graphic element (rectOccupiedBed definition) and information on the oc-
cupying patient. The graphical representation of an occupied bed has two procedu-
ral attributes, namely onmouseover=‘display_information(evt)’ and onmouseout=
‘hide_information(evt)’, which show and hide respectively the patient information
as the mouse pointer is positioned over the bed or moved out.

Figure 3(b) gives a portion of the SVG document rendered in Figure 2 reporting its
XML version, DOCTYPE, and part of its SVG tree with portions of its definitions, scripts,
and body. The definition element (<defs>) includes the definition of several abstract
objects (symbols, in the SVG terminology) like computer and phone, and different auzil-
1ary objects like rectRoom and rectBed, which will be used as graphical interface for the
objects of type ‘room’ and ‘bed’, respectively. Element script includes the definition
of functions display_information and hide information, which are triggered by the
onmouseover or onmouseout events to show and hide information on a patient occu-
pying a given bed. The body includes the definition of all the groups composing it (as
illustrated in Figure 3(a)). The chunk reported in Figure 3(b) illustrates the definition
of the information element and of room roomil.

3 The feature protection model

We now present our approach to regulating access to SVG documents. Our approach
is based on the use of authorization rules that are themselves expressed with an XML-
based language. Each authorization rule specifies the subject to which the rule applies,
the object to which the authorization refers, the action to which the rule refers, and
the sign describing whether the rule states a permission (sign = ‘+’) or a denial (sign
= ‘) for the access. The complete XML schema of authorization rules supported by
SVG-FPL is reported in Appendix A. Here, for the sake of simplicity, we assume action
to be the request to render the document (intuitively the read operation). This is not
limiting as reference to specific actions defined on the document (e.g., rotate) can be
regulated by allowing (or not allowing) access to the corresponding element. Given this,
we can now focus on subjects and objects of our rules.

3.1 Authorization subjects

While subjects are not the main focus of our work, where we try to exploit the XML-
based representation of SVG documents to provide fine-grained access control, for com-

<user_profile id=‘Carl’> <user_profile id=‘Dave’> <user_profile id=‘Sam’>

<name value=‘Carl’/> <name value=‘Dave’/> <name value=‘Sam?’/>

<address value=‘California Ave.’/> <address value=‘Forest Ave.’/> <address value=‘Manchester Rd’/>

<citizenship value=‘US’/> <job value=‘maintenance worker’/> <citizenship value=‘EU’/>

<job value=‘doctor’/> <level value=‘senior’/> <job value=‘doctor’/>

<specialization value=‘oncology’/> <building value=‘ADM125°/> <specialization value=‘oncology’/>
</user_profile> <office value=‘33"/> </user_profile>

</user_profile>

(@ () ©
Figure 5: Examples of XML user profiles

pleteness we also provide treatment for subjects. The specification of subjects in access
control rules has often two apparently contrasting requirements [12]. On the one side
subject reference must be simple, to allow for efficient access control and for exploiting
possible relationships between subjects in resolving conflicts between the authorizations
(e.g., most specific relationships between groups and sub-groups). On the other side,
one would like to see more expressiveness than the simple reference to user identities and
groups, providing support of profile-dependent authorizations whose validity depend on
properties associated with users (e.g., age, citizenships, or field-of-specialization) [2, 3].
Our solution nicely encounters both requirements by supporting both user groups and
user profiles. As usual, groups are sets of users hierarchically organized: groups can
be nested and need not be disjoint [9]. Figure 4 reports an example of a user-group
hierarchy. In addition, for each user, a profile may be maintained specifying the values
of properties such as the name, address, and nationality that our model can exploit
to characterize them. The profile is modeled as a semi-structured document and can
then be referenced by means of XPath expressions [15]. Figure 5 illustrates three XML
documents defining the profiles for three users (all documents will be instances of an
XML schema where all the used properties have been defined as optional). A path ez-
pression is a sequence of element names or predefined functions separated by character
/ (slash): 11/ls/.../l,, and is used to identify the elements and attributes within a
document. For instance, XPath expression user_profile//[./citizenship[@value =
‘EU’] AND [./jobl[@value=‘doctor’]] returns element user_profile of profiles of
EU citizens who work as doctors. In particular, such an expression, evaluated on the
profiles in Figure 5 would return the profile of user Sam.
Therefore, the subject component of our authorization rules includes two parts:

e an identity, whose value can be a user or a group identifier;

e a subject expression which is an XPath expression on users’ profiles.

Note that the purpose of using path expressions in our context is not to retrieve
elements and attributes satisfying certain criteria, but to determine whether a given
profile (that of the requestor) satisfies the criteria. Intuitively, the authorization rule
should apply only if the profile of the requestor satisfies the constraints expressed in
the XPath expression. Given this, we ignore the result of a path expression and simply
consider whether it is satisfied (meaning its result is not empty) or not.

Authorization subjects are then defined as XML-elements of the form:

<subject>
<id value=‘user/group-id’/>
<subj-expr>zpath-expr</subj-expr>
</subject>

For instance, subject element:
<subject>
<id value=‘MedicalStaff’/>
<subj-expr>user_profile//[./citizenship[@value=‘EU’]|</subj-expr>

</subject>
denotes European users belonging to group MedicalStaff.

Again, with reference to the the group hierarchy in Figure 4 and the profiles in Fig-
ure 5, the subject expression will evaluate to true for Sam and therefore an authorization
rule using this subject will be considered applicable to him. By contrast, the authoriza-
tion rule will not be applicable to Dave (who does not belong to MedicalStaff), or to

Carl (who does not satisfy the constraint on citizenship).

3.2 Authorization objects

According to the description in Section 2, we identify three kinds of protection objects:
definitions (<defs>), groups (<g>), and SVG elements. SVG elements can be graphical
or textual elements, such as rect or circle, or can be element referencing the definitions
(e.g., element use in Figure 3(b)). As our authorization model is fine-grained, we allow
the association of authorizations with any of such specific elements within an SVG
document. As SVG is XML-based, generic XPath expressions on the SVG document can
be used to specify the elements to which an authorization applies [6]. For instance, with
respect to the document in Figure 3(a), the path expression defs/rect[position() =
1] identifies the first rect child of the defs element (corresponding to the definition of
the perimeter of a room). Such an expression can then be used in an authorization rule to
grant or deny access to that specific element. Although generic XPath expressions are
sufficient to provide fine-grained authorization specification, their only support result
limiting from the point of view of the authorization administration. While verbose,
these path expressions refer to the syntax and are detached from the semantics of the
elements in the SVG document. As a result, the translation of high-level protection
requirements into corresponding path expressions on the document is far from being
trivial. It is therefore important to provide a higher level support for the specification of
authorization objects. Providing higher level support for the definition of authorization
objects translates into solving two problems:

e object identification: how we identify the portion (element) of the SVG document
to which an authorization refers;

e condition support: how we specify conditions that the identified element/s have to
satisfy.

Object identification To provide an expressive authorization language, we exploit
the free format of SVG documents by assuming that semantics aware tags and good

design techniques can defined and exploited. In particular, as illustrated in Section 2,
each SVG element can have an identifier (attribute id). Identifiers provide useful as
they permit explicit reference to specific elements (e.g., room1) based on their name.
However, identifiers are not sufficient as listing explicit elements may in some situation
result inconvenient (e.g., to protect all rooms of the floor we will have to specify one
authorization for each room identifiers). Also, support for distinguishing the shape of
an object from its content seems to be needed (e.g., to support cases where a user
can see the existence of a room - and then its shape - but cannot see what is inside the
room). We address these two requirements as follows. First, in addition to the identifier,
we allow each element to have an attribute typeElement, that defines the conceptual
type of the element (e.g., room, bed, telephone, computer). The type element can be
exploited to allow reference to all objects of a given type (e.g., all rooms) in a single
expression. Second, if the shape of an element is conceptually meaningful we assume
a good design of the element where the shape (i.e., the drawing instructions) appears
at the first level and the content appear in a nested element group.? Our predefined
function perimeter () identifies the shape (i.e., the drawing instructions) of an element
(referenced via its identifier or type).
Summarizing an object can then be referenced via any of the following:

a path expression resolving in the object;

its object identifier (value of its attribute id);

its type (value of its attribute typeElement);

the application of function perimeter to any of the above.

To distinguish which of the above means is used in the specification of an autho-
rization object, we use a dot notation prefixing the object with either id., type., or
path.. For instance, value ‘type.room’ indicates objects with typeElement equal to
room while value ‘id.room1’ denotes the room with id’s value rooml. Analogously,
perimeter (type.room) identifies the perimeter of all the rooms, and perimeter (id.room1)
identifies the perimeter of room roomi.

Condition support To provide a way for referencing all elements satisfying specific
semantically rich conditions, we allow the specification of object conditions that identify
a set of objects satisfying specific properties. For instance, we may need to define
an access rule stating that “a doctor can see computers only if they are in the same
room as (i.e., together with) diagnostic machines”. In our model, conditions are boolean
expressions that can make use of the following predicates:

e inside(obj). It returns the object in the authorization rule if it is inside an
element whose identifier, type, or name is obj.

2Note that we are not forcing documents to obey this structure: if the structure is obeyed it can be
exploited for the specification of authorizations.

e together with(obj). It returns the object in the authorization rule if it is a child
of an element together with an object whose identifier, type, or name is 0bj.

e number of (obj,n). It returns the object in the authorization rule if there are n
instances of the object whose identifier, type, or name is obj.

Authorization objects in our model are then defined as:
<object>
<refer value=°‘object-id’/>
<cond>pred-expr</cond>
</object>
where element refer provides the object identification and element cond specifies
additional conditions.

Some examples of object expressions are as follows:

® <refer value=‘type.phone’/> <cond>together_with(type.computer)</cond>

denotes all ‘phones’ that are in the same room as (together with) a ‘computer’.
With respect to our example in Figure 2, it denotes the phones in the ‘Pharmacy’,
‘X-Rays’, ‘Chemotherapy’, ‘Kitchen’, and ‘Reception’ rooms.

® <refer value=‘perimeter (type.room)’/> <cond>inside (type.oncologyfloor)</cond>

denotes all the graphical elements (the use elements referencing the rectRoom
definition) that draw the perimeter of the rooms of the oncology floor.

Summarizing our authorization rules (whose schema is reported in the Appendix)
allow the specification that specific users or groups thereof satisfying specific properties
can (if sign="4") or cannot (if sign="‘—") access given objects (referred by means of their,
identity, type, or path expressions as well as of conditions that they satisfy). With this
expressive way of referring to subjects and objects, it worth noticing how the combined
use of positive and negative authorizations result convenient for the specification of dif-
ferent constraints, providing an additive or subtractive way of defining authorized views.
In particular, one could start from the empty map and add positive authorizations spec-
ifying the objects that may be released, or specifying a global positive authorization and
further (more specific) negative authorizations for the objects that cannot be released.
Of course, the two approaches can be combined as they best fit the application.

3.3 An example

We present some examples of protection requirements and corresponding authorizations
to regulate access to the graphic introduced in Section 2. The user groups used and the
properties used in the authorizations refer to the user group hierarchy in Figure 4 and
the users’ profiles in Figure 5.

Rule 1 Everybody can see the emergency exits
<subject><id value=‘Users’/></subject>
=

<object><refer =‘type.emergencyexit’/></object>
<sign value=‘+’/>

10

Rule 2 Everybody can see the content of any room in the public area
<subject><id value=‘Users’/></subject>
<object><refer =‘id.PublicArea’/></object>
<sign value=‘+’/>

Rule 3 Everybody can see the perimeter of any room in the private area
<subject><id value=‘Users’/></subject>
<object>
<refer =‘g[@id=‘oncologyfloor’]//g’/> <cond>inside (id.PrivateArea)</cond>
</object>
<sign value=‘+’/>

Rule 4 Only members of the NonMedicalStaff whose job is ‘maintenance worker’ can
see the fire emergency and electricity controls

<subject>
<id value=‘NonMedicalStaff’ /><cond>job[@value=‘maintenance worker’]</cond>
</subject>
<object><refer =‘type.electricitycontrol’/></object>
<sign value=‘+’/>

<subject>
<id value=‘NonMedicalStaff’ /><cond>job[@value=‘maintenance worker’] </cond>
</subject>
<object><refer =‘type.fire emergency’/></object>
<sign value=‘+’/>

Rule 5 Medical staff can see the content of any room in the private area
<subject><id value=‘MedicalStaff’/></subject>
<object><refer =‘id.PrivateArea’/></object>
<sign value=‘+’/>

Rule 6 Doctors with specialty ‘oncology’ can read patient information; everybody else
is explicitly forbidden.
<subject>
<id value=‘Doctors’/><cond>specialty[@value="‘oncology’]</cond>
</subject>
<object><refer =‘type.patientinformation’/></object>
<sign value=‘+’/>

<subject><id value=‘Users’/>

</subject>

<object><refer =‘type.patientinformation’/></object>
<sign value=‘—’/>

Figure 6 illustrates the views that will be returned to oncology doctors and mainte-
nance workers respectively based on the specified authorizations. Notice in particular,

11

that the doctors’ view does not include fire emergency and electricity control information
(as the authorizations in Rule 4 are not applicable to them). The maintenance work-
ers’ view, while containing fire emergency and electricity control information is clearly
missing many details, such as hospital’s machines and patient details, whose access is
restricted to physicians. Next Section illustrates the process for obtaining such views.

4 Policy enforcement

The enforcement algorithm consists of two main phases: node labeling (steps 1-4) and
tree transformation (steps 5-6). Node labeling takes as input a user request and the DOM
tree of the SVG document. Then, it evaluates the authorization rules to be enforced and
selectively assigns a plus or minus sign to the nodes of the DOM tree. Subsequently, the
tree transformation phase takes the labeled DOM tree as input and transforms it into
another valid DOM tree. The result is a view of the SVG document containing only the
elements that the requestor is entitled to access. The main steps of the algorithm are
listed below:?

1. Determine the set Applicable_authorizations of authorizations applicable to the
requestor. These are all the authorizations for which the requestor is a member
(possibly proper) of the subject identity (<id>) and for which requestor’s profile
satisfies the subject expression (<subj-expr>).

2. Evaluate the object expressions in every authorization in Applicable_authorizations
(e.g., resolving them into suitable XPath queries), and label the corresponding
SVG elements with the authorization subject identity (<id>) and the sign of the
authorization.

3. If an element has more than one label eliminate all labels whose subject identity is a
super-group of the subject identity in another label (most-specific take precedence).

4. If an element remains with more than one label, if all labels are of the same sign
assume that sign for the element. If labels are of different sign assume ‘—’ (denials
take precedence on remaining conflicts).

5. Starting from the root, propagate each label on the DOM tree as follows:

(a) one step upward to the father node, provided the father node is a <g> element
while the current node is not.

(b) downward to descendants. Unlabeled descendants take the label being prop-
agated and propagate it to their children, while unlabeled ones discard the
label being propagated and propagate their own to their children (most spe-
cific take precedence).

3For the sake of simplicity, here we assume that conflicts between subjects (i.e., conflicts of autho-
rization referred to a same element and with disjoint subjects) are solved by applying a most specific
take precedence principle (i.e., the authorization with the subject more specific with respect to the user
group hierarchy prevails) and the denials take precedence principle for remaining conflicts (i.e., conflicts
between authorizations whose subjects are incomparable).

12

6. Discard from the document all subtrees rooted at a node with a negative label.
7. Discard from the document all subtrees whose nodes are all unlabeled nodes.

8. Render the resulting document.

While steps 1-3 solve the problem of determining labels to be given to nodes ac-
cording to applicable authorizations, step 4 of the enforcement algorithm deals with
completing the labeling phase by propagating initial labels on the SVG document’s
DOM tree; such step is specific to the SVG data model and deserves some comments.
In a well-behaved SVG document (Section 3), <g> groups includes a typeElement at-
tribute. Also, they contain only two children nodes: a definition of their perimeter and a
subgroup for the rest of their content. If the perimeter of a well-behaved group node gets
a minus label, our upward propagation ensures that the whole group subtree is pruned;
if the minus label affects the subgroup node, the empty perimeter is preserved. On the
other hand, if the <g> node content is a flat list of SVG elements (a situation which
is discouraged but not prevented by current SVG specifications), upward propagation
ensures that a minus on each contained node will make the group disappear completely,
including the perimeter.* Suppose for instance a protection to deal with an ill-behaved
SVG object like the following:

<svg>

<g typeElement="room">

<desc>Simplified room: a perimeter rectangle with two rectangles inside</desc>
<rect style="&st0;" x="81.081" y="149.514" width="162.681" height="144.195"/>
<rect style="&st0;" x="109.427" y="175.395" width="29.578" height="23.416"/>
<rect style="&st0;"x="109.427" y="175.395" width="29.578" height="23.416"/>
</g>

</svg>

In this case, pruning one of the <rect> children of the group <g> could result in
deleting the room’s "walls” while leaving its content, thus conveying an incorrect view
of the graphical data. In order to stay on the safe side, our single upward propagation
step would take away the whole group. This way consistency of the view is preserved
(i.e., our algorithm will not produce non-sense views, where for instance a door shows
up in an empty area).

Of course, intelligent coordinates-based checking could solve the problem by distin-
guishing objects lying ”inside” and ”outside” other objects, but this would require our
enforcement engine to provide complex query computing capabilities. While such ca-
pabilities may well turn out to be important in the long run, we chose not to include
them in the present version of our system. Note also that non-group nodes (satisfying
the FPL language predicates, if any) will be simply pruned together with their subtrees;
no guarantee is offered in this case that the image semantics will be preserved.

4 Alternatively, a log event could be generated instead to alert the application enforcing the policy.

13

ONCOLOGY FLOOR

Emergency
Exit

s %)

Room 10
il
1

Patient Informaticn

‘Y Phone
B computer

Oncology doctors' view

ONCOLOGY FLOOR

Emergency
Exit

Patient Information

‘' Phone
1 Computer
@ Fire Emergency Control
P C - 1
@ Electricity Control Maintenance workers' view

Figure 6: Example of a views on the SVG document in Figure 2

14

4.1 Implementation Guidelines

From the implementation point of view, SVG tree labeling may be performed equally
well pragmatically (e.g. writing Java code) or using the XPath query engine of a server-
side XSL transformer before releasing the SVG data to the client. For instance, all
the room groups of our example can be easily selected via a single XPath, namely
root/.../gl@type=‘room’]. The same holds true for named definitions: labeling all
instances of a given SVG definition def would cost a single XPath query. It should
however be noted that inside, number_of and together with predicates of FPL limit
the scope of labeling and may introduce a performance burden on the enforcement algo-
rithm, as they require linear scanning the XPath result node-set. Their execution goes
as follows: for each node in the node set retrieved by the main XPath query identifying
potential objects, an auxiliary XPath query is executed to extract all the node’s sib-
lings and check whether they satisfy the predicate; if this is the case, the current node
gets labeled, otherwise it does not. On the other hand, single unnamed objects must
be labeled by following the unique XPath leading to each of them. After labeling has
been completed, the transformation phase will be performed on all nodes having a sign
attribute; again, XSLT or Java code can be used.

5 Concluding remarks

We have presented a technique for fine-grained feature protection of XML-based formats.
While we developed this technique mainly for controlled dissemination of graphical in-
formation representing confidential or sensitive data (e.g. about industrial plants or
transportation and utility networks), other interesting potential applications of feature
protection techniques are currently under discussion. XML-based standard graphical
formats are considered by many the natural successors of current proprietary formats
for high volume distribution of graphical content, such as Macromedia Flash. High vol-
ume distribution of graphics over the Internet presents a host of problems of its own,
mainly related to digital rights management. Interestingly, however, some intellectual
property protection problems can be straightforwardly mapped into feature protection
ones. For instance, it is customary that distribution graphics does not include informa-
tion about layers, scenes, and other authoring-specific information, leaving only essential
content for fast download and, more importantly, for theft prevention. Experience has
shown that regardless of its low-level format, graphics whose semantic information has
been stripped out is less easily hacked and modified by unauthorized persons. While
there is no way to make graphics intellectual content completely safe from theft, feature
protection is a promising tool in order to eliminate the need of keeping "smart” images
used in creation and editing (i.e., graphics fully equipped with semantics-aware infor-
mation) separate from their dumb copied used for distribution. This issue promise to
be an interesting direction in which to extend the proposal presented in this paper.

15

References

1]

2]

[10]

[11]

[12]

E. Bertino, S. Castano, and E. Ferrari. Securing XML documents with Author-X.
IEEE Internet Computing, 5(3):21-31, May/June 2001.

P. Bonatti, E. Damiani, S. De Capitani di Vimercati, and P. Samarati. An access
control system for data archives. In 16th International Conference on Information
Security, Paris, France, June 2001.

P. Bonatti, E. Damiani, S. De Capitani di Vimercati, and P. Samarati. A
component-based architecture for secure data publication. In 17th Annual Com-
puter Security Applications Conference, New Orleans, Louisiana, December 2001.

T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler. Extensible Markup Lan-
guage (XML) 1.0 (Second Edition). World Wide Web Consortium (W3C), October
2000. http://www.w3.org/TR/REC-xml.

E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Con-
trolling access to xml documents. IEEE Internet Computing, 5(6):18-28, Novem-
ber /December 2002.

E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. A
fine-grained access control system for XML documents. ACM Transactions on
Information and System Security (TISSEC), 2002. (to appear).

Eduardo B. Fernandez, Ehud Gudes, and Haiyan Song. A model for evaluation and
administration of security in object-oriented databases. TKDE, 6(2):275-292, 1994.

A. Gabillon and E. Bruno. Regulating access to XML documents. In Proc. of
the 15th Annual IFIP WG 11.3 Working Conference on Database and Application
Security, Niagara on the Lake, Ontario, Canada, July 2001.

S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian. Flexible support for
multiple access control policies. ACM Transactions on Database Systems, 26(2):18—
28, June 2001.

M. Kudo and S. Hada. XML document security based on provisional authorization.
In Proc. of the Tth ACM Conference on Computer and Communication Security
(CCS 2000), Athens, Greece, November 2000.

S. Osborn, B. Thuraisingham, and P. Samarati. Panel on XML and security. In
M. Olivier and D. Spooner, editors, Database and Application Security XV. Kluwer,
2002.

P. Samarati and S. De Capitani di Vimercati. Access control: Policies, models,
and mechanisms. In R. Focardi and R. Gorrieri, editors, Foundations of Security
Analysis and Design, LNCS 2171. Springer-Verlag, 2001.

16

[13]

[14]

[15]

[16]
[17]

[18]

World Wide Web Consortium. Scalable Vector Graphics (SVG) 1.0 Specification,
September 2001.

World Wide Web Consortium (W3C). Document Object Model (DOM).
http://www.w3.org/DOM/.

World Wide Web Consortium (W3C). XML Path Language (XPath) 2.0, December
2001. http://www.w3.org/TR/xpath20.

Xml schema. http://www.w3.org/XML/Schema.

J. Ze Wang, M. Bilello, and G. Wiederhold. Textual information detection
and elimination system for secure medical image distribution. In Proc. of the
1997 American Medical Informatics Association (AMIA’97) Annual Fall Sym-
posium (formerly SCAMC), Nashville, Tennessee, October 1997. http://www-
db.stanford.edu/ wangz/project/meditext/AMIA9T/.

J. Ze Wang and G. Wiederhold. System for efficient and secure distribution of
medical images on the internet. In Proc. of the 1998 American Medical Informatics
Association (AMIA’98) Annual Fall Symposium, Orlando, Florida, November 1998.
http://www-db.stanford.edu/ wangz/project/meditext/AMIA9S/.

17

A Authorization rule syntax: SVG-FPL Schema

<schema
xmlns=‘http://www.w3.org/2000/10/XMLSchema’
targetNamespace=‘http://www.w3.org/namespace/’ >
<element name=‘rules’>
<complexType>
<sequence maxOccurs=‘unbounded’>
<element ref=‘rule’/>
</sequence>
<attribute name=‘about’ type=‘string’ use=‘required’/>
</complexType>
</element>
<element name=‘rule’>
<complexType>
<sequence>
<element ref=‘subject’/>
<element ref=‘object’/> <element ref=‘sign’/>
</sequence>
<complexType>
<attribute name=°‘value’ type=°‘string’ use=°‘required’/>
</complexType>
</element>
<element name=‘subject’>
<complexType>
<sequence>
<element ref=‘id’ minOccurs=‘0’ maxOccurs=‘1’/>
<element ref=‘subj-expr’ minOccurs=‘0’ maxOccurs=‘1’/>
</sequence>
</complexType>
</element>
</element>
<element name=‘object’>
<complexType>
<sequence>
<element ref=‘refer’ minOccurs=‘0’ maxOccurs=‘1’/>
<element ref=‘cond’ minOccurs=‘0’ maxOccurs=‘1’/>
</sequence>
</complexType>
</element>
<element name=‘sign’>
<complexType>
<attribute name=°‘value’ use=‘required’>
<simpleType>
<restriction base=‘string’>
<enumeration value=‘+’/>
<enumeration value=‘-’/>
</restriction>
</simpleType>
</attribute>
</complexType>
</element>
<element name=‘refer’ >
<complexType>

18

<attribute name=‘value’ type=‘string’ use=‘required’/>

</complexType>
</element>
<element name=‘subj-expr’ type=‘string’>
</element>
</schema>

19

