
CHAPTER 4

XML ACCESS CONTROL SYSTEMS:

A COMPONENT-BASED APPROACH

E. Damiani1 S. De Capitani di Vimercati2 S. Paraboschi3 P. Samarati1

(1) Università di Milano, Polo di Crema, 26013 Crema - Italy

(2) Università di Brescia, 25123 Brescia - Italy

(3) Politecnico di Milano, 20133 Milano - Italy

Abstract We recently proposed an access control model for XML information that
permits the definition of authorizations at a fine granularity. We here
describe the design and implementation of an Access Control Processor
based on the above-mentioned model. We also present the major issues
arising when integrating it into the framework of a component-based
Web server system.

1. INTRODUCTION

XML [2] promises to have a great impact on the way information is exchanged
between applications, going well beyond the original goal of being a replacement for
HTML. Given the ubiquitous nature of XML, the protection of XML information will
become a critical aspect of many security infrastructures. Thus, the investigation of
techniques that can offer protection in a way adequate to the peculiarities of the XML
data model is an important research goal.

Current solutions do not address the peculiarities of the security of XML infor-
mation. Web servers may easily export XML documents, but their protection can
typically be defined only at the file system level. Our proposal, presented in [3, 4],
introduces an access control model for XML data that exploits the characteristics of
XML documents, allowing the definition of access control policies that operate with
a fine granularity, permitting the definition of authorizations at the level of the single
element/attribute of an XML document.

The focus of this paper is the design and implementation of a system offering the
services of our access control model. We first give in Section 2 a brief description
of the approach. Then, in Section 3 we describe the high-level software architecture.
Section 4 presents the IDL interfaces of the classes which implement the services of
the access control system. Finally, Section 5 is dedicated to the integration of the
access control system with Web based systems.

The analysis contained in this paper derives from the experience we gained in the
implementation of the current prototype of the system; our results should be helpful
to those considering the implementation of security mechanisms in the WWW/XML
context.

2. XML ACCESS CONTROL MODEL

The access control model we present is based on the definition of authorizations
at the level of the elements and attributes of an XML document.

A natural interpretation for XML documents is to consider them as trees, where
elements and attributes correspond to nodes, and the containment relation between
nodes is represented by the tree arcs. Authorizations can be local , if the access
privilege they represent applies only to a specific element node and its attributes,
or can be recursive, if the access is granted/denied to the node and all the nodes
descending from it (i.e., the nodes that in the textual representation of an XML
document are enclosed between the start and end tags).

We identified two levels at which authorizations on XML documents can be defined,
instance and DTD (Document Type Definition, a syntax defining the structure of the
document). DTD level authorizations specify the privileges of all the documents
following a given DTD, whereas instance level authorizations denote privileges that
apply only to a specific document. The distinction between the two authorization
types may correspond to the distribution of responsibilities in an organization, as
DTD authorizations may be considered derived from the requirements of the global
enterprise, whereas authorizations on the instance may be the responsibility of the
creator of the document. We also hypothesize that normal DTD authorizations are
dominated by instance level ones (following the general principle that more specific
authorizations win [6, 9] and that an instance level authorization is more specific
than a DTD level one), but we also consider the need for an organization to have
assurance that some of the DTD authorizations are not overruled. Thus, we permit
the definition of hard DTD authorizations, which dominate instance level ones. For
cases where instance level authorizations must be explicitly defined as valid only if
not in conflict with DTD level ones, we designed soft instance level authorizations.

Each authorization has five components: subject , object , type, action and sign.
The subject is composed by a triple that describes the user or the group of users to
which the authorization applies, combined with the numeric (IP) and symbolic (DNS)
addresses of the machine originating the request. This triple can thus permit to define
controls that consider both the user and the location. Wild card character * permits
the definition of patterns for addresses (e.g., 131.* for all IP addresses having 131 as
first component, or *.it for all addresses in the Italian domain). The authorization
applies on the request only if the triple of parameters of the requester is equal or
more specific in all three components of the authorization subject. For example, an
authorization with subject <Student,131.175.*,*.polimi.it> will be applied to a
request from <Ennio,131.175.16.43,pcenn.elet.polimi.it>, if Ennio is a mem-
ber of group Student. The object is identified by means of an XPath [13] expression.
XPath expressions may be used to identify document components in a declarative
way, but they can also use navigation functions, like child, offering a standard and
powerful way to identify the elements and attributes of an XML document. The type
can be one of eight values, arising from the combination of three binary properties:
DTD level or instance level; local or recursive; normal or soft/hard. The eight types,
in order of priority, are: local DTD level hard (LDH), recursive DTD level hard

40

XML Access Control Systems: A Component-Based Approach 41

(RDH), local instance level (L), recursive instance level (R), local DTD level (LD),
recursive DTD level (RD), local instance level soft (LS), recursive instance level soft
(RS). Since currently, most XML applications offer read-only access, the action cur-
rently supported by our prototype is only read .
A positive authorization sign specifies that the authorization permits access, a nega-
tive sign instead forbids it.

Authorizations are then evaluated according to the following principles:

If two authorizations are of a different type, the one with the higher priority
wins (e.g., between LD and LS, LD wins).

If two authorizations have the same type, but the object of one is more spe-
cific, the more specific wins (e.g., a recursive authorization for an element is
dominated by authorizations on its subelements).

If two authorizations have the same type and are on the same object, but the
subject of one is more specific, the more specific wins (e.g., an authorization
for the Public group is dominated by an authorization for the specific user
Ennio).

When none of the above criteria is met, a site-specific general resolution policy
is used (e.g., assuming a closed access control policy, the negative authorization
wins).

We refer to the presentations in [3, 4] for a complete overview of the characteristics
of our solution. In this paper we intend to focus on the design and implementation
of a system for access control.

3. SOFTWARE ARCHITECTURE: AN
OUTLINE

For the access control technique outlined in Section 2 to be of any interest from the
software designer point of view, it must be suitable for clean integration in the frame-
work of XML-based WWW applications. To clarify this point, we shall briefly intro-
duce the use of an XML Access Control Processor (ACP) as a part of a component-
based Web service [5], where a set of reusable components are responsible of processing
user requests.

The sample UML Sequence Diagram shown in Figure 1 gives a general idea of the
internal operation of our processor and of its integration in a Web server system. For
the sake of simplicity, in this Section we shall not deal with the transformation of the
XML document, which is hidden inside a container ACP object. Also, Figure 1 does
not show provisions for persistence management and caching. The ACP object wraps
up entirely the computation of access permissions to individual elements and the final
transformation to be performed on the XML document. The standard operation of
a Web server receiving a HTTP request (1) from a user is represented in Figure 1
by the creation of a transient Connection Handler object (2). Then, a Processor
is activated by the Connection Handler, and an ACP object is instantiated (3). In
turn, ACP creates a Subjects object which fully encapsulates the subjects’ hierarchy
(4). After getting the available data about the user/group of the requestor, together
with the IP address and symbolic name (5), ACP signals to a static Loader/Parser
object to upload the requested XML document (6). The Loader/Parser translates the
document into a low level object data structure based on the Document Object model
(DOM) (not shown in Figure 1) more suitable for modification. Then, the ACP

42 DATA AND APPLICATIONS SECURITY

Acceptor Connection Handler ACP Parse/Loader Autorization subject

1: request

2: create

3: create

4: create

5: get_user_data

6: load_parse

7: is_more_specific

8: unparse

9: server file

User

Figure 1 Sequence diagram

modifies the data structure according to the permissions, using the services of the
transient Subjects object which fully encapsulates the subjects’ hierarchy. Messages
sent to the Subjects object (7) allow the ACP object to position the requestor in the
subjects’ hierarchy. After computing the transformation, the ACP object signals to
the Parser (8) that the data structure can be returned to its text format, ready to be
served to the user by the Connection Handler (9).

From the architectural point of view, it should be noted that our design is fully
server side: all the message exchanges of Figure 1 except the connection itself (1) take
place on the server. Client-side processing strategies (including client-side caching,
and caching proxy servers) have been traditionally used for HTML. However, client-
side solutions have been found to be less apt at XML-based Web services [5], where
the contents to be transferred usually require extra processing. There may well be
cases where negotiation could be envisioned between the client and the server as to the
kinds of XML content transformations that are possible by the server and acceptable
to the client; but it is clear that client-side techniques must be excluded from any
sound implementation of access control. As we will see in Section 4.3, the fictitious
ACP object is indeed a complex object inheriting from Java Servlet class.

4. THE XML-AC PACKAGE

The interface offered by the XML-AC system can be represented by a set of classes
modeling the entities and concepts introduced by the access control model. Two major
class families are used: one constitutes an extension of the DOM Interface defined by
the W3C, the other describes all the concepts on which the ACP system is based.

4.1. ARCHITECTURAL OBJECTS: THE
SECUREDOM HIERARCHY

Our system, like most XML applications, internally represents XML documents
and DTDs as object trees, according to the Document Object Model (DOM) specifica-
tion [12]. DOM provides an object-oriented Application Program Interface (API) for
HTML and XML documents. Namely, DOM defines a set of object definitions (e.g.,

XML Access Control Systems: A Component-Based Approach 43

Element, Attr, and Text) to build an object-oriented representation which closely
models the document structure. While DOM trees are topologically equivalent to
XML trees, they represent element containment by means of the object-oriented part-
of relationship. For example, a document element is represented in DOM by an
Element object, an element contained within another element is represented as a
child Element object, and text contained in an element is represented as a child Text

object. The root class of the DOM hierarchy is Node, which represents the generic
component of an XML document and provides basic methods for insertion, deletion
and editing; via inheritance, such methods are also defined for more specialized classes
in the hierarchy, like Element, Attr and Text. Node also provides a powerful set of
navigation methods, such as parentNode, firstChild and nextSibling. Navigation
methods allow application programs to visit the DOM representation of XML doc-
uments via a sequence of calls to the interface. Specifically, the NodeList method,
which returns an array containing all the children of the current node, is often used
to explore the structure of an XML document from the root to the leaves.

We extended the DOM hierarchy associating to the members of the class hierarchy
a Secure variant. Each Secure variant extends the base class with references to all
the authorizations which can be applied to the node. Internally, each class separates
the references to authorizations into 8 containers, depending on the authorization
type. Each container internally keeps a list of positive and negative authorizations
of the type. The IDL interface common to all Secure classes, written in IDL, the
OMG-CORBA standard Interface Definition Language, is:

interface Secure{
void addAuthorization (in Authorization AuthToAdd);

AuthorizationLabel defineFinalLabel

(in AuthorizationLabel FatherAuthRecHard,

in AuthorizationLabel FatherAuthRec,

in AuthorizationLabel FatherAuthRecDTD,

in AuthorizationLabel FatherAuthRecSoft);

void prune();}

From this interface is possible to define the interfaces of each Secure variant of
the DOM classes, using multiple inheritance in IDL definitions. For example, the
definition of the SecureNode class is interface SecureNode: Node, Secure {}.

The extension imposes a limited increase in the cost of the document representa-
tion. Indeed, the containers can be implemented with dynamic structures, occupying
space only when authorizations are actually associated with the node. The node con-
tains references to the full description of the authorizations, kept in a separate area of
memory. In this way, there are no redundancies and, since in the evaluation of access
control authorizations must not be modified, the use of references is fully adequate.

4.2. APPLICATION OBJECTS: THE ACCESS
CONTROL CLASSES

We describe here the main classes of the Access Control Processor: UserGroup,
User, AuthorizationLabel, AuthorizationType, AuthorizationSubject and finally
Authorization.

Class UserGroup describes the features common to a user and a group: both have a
name and appear in the user/group hierarchy. The services offered by the class are the
storage of the hierarchy on users/groups, method addDescendent that permits to add
a new user/group in the hierarchy, and method isEqualOrMoreSpecific that permits
to determine if a user/group belongs, directly or indirectly, to another user/group.

44 DATA AND APPLICATIONS SECURITY

interface UserGroup{
attribute string Name;

void addChild (in UserGroup ChildToAdd);

boolean isEqualOrMoreSpecific (in UserGroup UserGroupToCompare);}

Class User is a specialization of class UserGroup and extends it with all the in-
formation specific to users, like the real person name. Method checkPassword im-
plements the cryptographic function that determines if the password returned by the
user corresponds to the stored value.

interface User: UserGroup{
attribute string FirstName;

attribute string LastName;

boolean checkPassword(in string PasswordToCheck);

void setPassword(in string NewPassword);}

Class AuthorizationLabel contains an enumerative type that describes the three
values (positive, negative, and undefined) of the security label that can be assigned
to a node, after the evaluation of the existing authorizations. Its methods permit to
set and retrieve the value.

interface AuthorizationLabel{
enum Label t (positive, negative, undefined);

attribute Label t label;

void setPositive();

void setNegative();

void setUndefined();

boolean isPositive();

boolean isNegative();

boolean isUndefined();}

Class AuthorizationType describes the possible types of authorization. Its meth-
ods permit to set and to retrieve the authorization type (local or recursive, on the
document or on the DTD, and hard or soft).

interface AuthorizationType{
enum AuthType t (LDH, RDH, L, R, LD, RD, LS, RS);

void setLocal();

void setRecursive();

void setOnInstance();

void setOnInstanceSoft();

void setOnDTD(); }
void setOnDTDHard(); }
boolean isLocal();

boolean isRecursive();

boolean isOnInstance();

boolean isOnInstanceSoft();

boolean isOnDTD();

boolean isOnDTDHard(); }

Class AuthorizationSubject describes the triple 〈user-group, IP address, symbolic
address〉 that identifies the subjects to which the authorizations must be applied. The
class offers methods to get and assign the components of the addresses and a method
isEqualOrMoreSpecific to determine if one subject is equal or more specific than
another subject.

interface AuthorizationSubject{
void setUserGroup(in UserGroup userGroupToSet);

UserGroup getAuthUser();

void setIpAddress(in string IPAddrToSet);

XML Access Control Systems: A Component-Based Approach 45

string getIpAddress();

void setSnAddress(in string SymbAddrToSet);

string getSnAddress();

boolean isEqualOrMoreSpecific(in AuthorizationSubject AuthSubjToCmp);}

Class Authorization represents the authorizations that are defined on the system.
Each authorization is characterized by a subject (class AuthorizationSubject), an
object (represented by an XPath expression, managed by classes defined in an external
XSL implementation), the sign (represented by an AuthorizationLabel component
for which value undefined is not admitted), the action (currently a simple string), and
finally the type (represented by a component of class AuthorizationType).

interface Authorization{
attribute AuthorizationSubject subject;

attribute XPathExpr object;

attribute AuthorizationLabel sign;

attribute AuthorizationType type;

attribute string action; }

4.3. DEPLOYING THE PACKAGE

We implemented the above classes in Java and used them to realize a prototype of
the Access Control Processor with a Java servlet solution. Java servlets, designed by
Sun and part of the Java environment, appear as a set of predefined classes that offer
services that are needed for the exchange of information between a Web server and a
Java application. Examples of these classes are HttpSession and HttpRequest. Java
servlets constitute a simple and efficient mechanism for the extension of the services
of a generic Web server; the Web server must be configured to launch the execution of
a Java Virtual Machine when a request for a URL served by a servlet arrives, passing
the parameters of the request with a specified internal protocol.

The Java classes we implemented can also be used in a different framework, us-
ing a solution like JSP (Java Server Pages). Actually, JSP is internally based on
servlets, but it offers an easier interface to the programmer, requiring the definition
of HTML/XML templates which embed the invocation of servlet services. We have
already demonstrated the use of the prototype inside a JSP server.

There are several other architectures that could be used and whose applicability
we plan to investigate in the future. Since we gave an IDL description of the classes
that constitute the implementation of our system, it is natural to envision a solution
based on the distributed object paradigm, using protocols like RMI/IIOP (for the
Java implementation) or the services of a generic CORBA broker (where the services
are implemented by objects written in a generic programming language).

5. INTEGRATION WITH WEB-BASED
SYSTEMS

We are now ready to describe how our access control system can be integrated in
a Web-based framework for distribution and management of XML information. This
architecture needs to include a number of components and a careful study of their
interaction with access control is of paramount importance to achieve an efficient
implementation.

46 DATA AND APPLICATIONS SECURITY

5.1. LINKING XAS TO XML DOCUMENTS
AND DTDS

As XASs contain access control information for XML documents and DTDs, links
must be provided allowing the system, upon receipt of a HTTP request for an XML
document, to locate the XAS associated with both the document itself and its DTD.
In current XML practice, association between XML documents and their DTDs is
made by either direct inclusion (the DTD is embedded in the XML document) or by
hypertext link (the XML document contains the URL of its DTD). Neither technique
seems appropriate for linking documents and DTDs to XASs as they would interfere
with the normal processing of XML documents, and pose the problem of managing
access control for legacy documents not linked to any XAS specification. Luckily
enough, we can rely on the abstract nature of XML XLink specification to define out-
of-line links that reside outside the documents they connect, making links themselves
a viable and manageable resource. The repertoire of out-of-line links defining access
control mappings is itself an XML document, easily managed and updated by the
system manager; nonetheless it is easily secured by standard file-system level access
control. We propose to set up a suitable namespace, called AC, which is for the time
being aimed at reserving the standard tag name <XAS> to denote off-line links between
documents, DTDs and XASs. The DTD of the documents containing the mappings
from XML documents to DTDs and to XASs can be written as follows:

<!ENTITY % xlink " type CDATA # FIXED ‘arc’

role CDATA ‘access control’

title CDATA ‘access control’

actuate CDATA # FIXED ‘auto’

from CDATA # REQUIRED

to CDATA # REQUIRED">

<!ELEMENT XAS EMPTY>

<!ATTLIST XAS % xlink

xmlns:xlink CDATA ‘http://www.w3.org/TR/xlink’ >

Note that, in the private documents specifying link sets for each site and at the
DTD level, the name of the XAS element will be preceded by the mention of the
AC namespace in order to avoid ambiguity. In the above DTD definition, we rely on
a reusable XML entity to group the attributes needed to set up an out-of-line link
between a document and its access control information. Namely, out-of-line links are
identified by the type attribute being set to "arc", and by the presence of required
from and to attributes instead of the usual href used for embedded links. The
actuate attribute is set to "auto", meaning that the traversal of the link will be
automatically made by the system and not revealed to the user. Finally, the role

and title attributes are used primarily for descriptive purposes and are therefore not
mandatory.

5.2. XML-AC SUPPORT FOR SESSIONS

In the current prototype, sessions are managed by class HttpSession, a component
of the Java servlet environment. Class HttpSession keeps track of the series of
requests originating from the same user. Using the services of HttpSession it is
possible to ask only once to the user to declare his identity and password. The
implementation of class HttpSession permits to manage sessions in two modes, with
or without cookies. When the client has cookies enabled, HttpSession may store a

XML Access Control Systems: A Component-Based Approach 47

session identifier in the client cookies and use it to identify the request; if cookies are
not enabled, sessions are identified by storing the session identifier as a parameter of
the requests that are embedded into the page which is returned to the user. Since
users often do not enable cookies, it is important to be able to manage sessions
independently.

We observe that the solution we implemented, based on the services of class
HttpSession, is adequate for our context, where the goal was a demonstration of
the capabilities of the access control model. An environment with strong security
requirements should probably plan a different implementation of the session manage-
ment services, using adequate cryptographic techniques to protect the connection.

5.3. A MULTITHREADED SERVER
FRAMEWORK

To guarantee efficient and effective integration of access-control in the framework
of Web-based systems, two basic problems must be solved:

Quality of Service The emergence of the World Wide Web as a mainstream tech-
nology has highlighted the problem of providing a high quality of service (QoS) to
application users. This factor alone cautioned us about the risk of increasing sub-
stantially the processing load of Web server.

Seamless Integration A second point to be mentioned regards how to provide XML
access control as seamlessly as possible, without interfering with the operation of other
presentation or data-processing services. Moreover, the access control service should
be introduced on existing servers with minimal or no interruption of their operation.

To deal with these problems, we chose an integrated (yet modular) approach, that
supports reuse allowing for different deployment solutions according to implementa-
tion platforms’ performance profiles. In fact, besides being deployed as a single-thread
servlet invoked by the Connection Handler, as in our current prototype, our processor
can be easily interfaced to a Dispatcher registered with an Event Handler . Dispatcher-
based multi-threading can be managed synchronously , according to the well known
Reactor/Proactor design pattern [7] or asynchronously , as in the Active Object pat-
tern. In this section we shall focus on the former choice, as it facilitates integration of
our XML access control code in the framework of existing general-purpose server-side
transformers based on the same design pattern like Cocoon [1]. Figure 2 depicts the
Reactor-based multi-threading technique.

In order to avoid being a potential bottleneck for the server operation, our Access
Control system needs to manage effectively a high number of concurrent requests.
Multi-threaded designs are currently the preferred choice to implement Web-based,
high-concurrency systems. This is also our design choice for our components. How-
ever, it must be noted that no Java-based design of multi-threading components has
full control on thread management: when running on an operating system that sup-
ports threads, the Java Virtual Machine automatically maps Java threads to native
threads [8], while when no native thread support is available, the JVM has to emulate
threads. In the latter case, the emulation technique chosen by the JVM implementors
can make significant difference in performance. In the sequel, we shall briefly describe
the Java thread management technique used for the implementation of our processor,
providing full synchronization between threads when accessing the same DOM and
AuthorizationSubject objects. To clarify the synchronization problem associated
with multi-threading, consider two access control tasks that need to be executed in

48 DATA AND APPLICATIONS SECURITY

Figure 2 Cocoon-style multi-threading technique

(a)

(b)

Figure 3 Two AC tasks to be executed in parallel (a) and their subdivision into four
atomic sub-tasks (b)

parallel (see Figure 3(a)). For the sake of simplicity both tasks are naturally subdi-
vided into four atomic non-interruptible sub-tasks, loosely corresponding to actions
from (4) to (7) of Section 3. In a “naive” multi-threaded implementation of our
processor, each task would be executed on its own thread. However, the only way to
preserve atomicity using this technique would be to explicitly synchronize threads by
means of semaphores. Fortunately, the additional complexity and overhead involved
in explicit synchronization can be easily avoided in our case.
Synchronous dispatching A synchronous dispatcher can be used to solve the syn-
chronization problem by simulating multi-threading within a single Java thread. To
illustrate the evolution of our design from a single task divided into portions to a syn-
chronous dispatcher, consider first the subdivision of each task of Figure 3(a) into four
independent sub-tasks, depicted in Figure 3(b). From the Java implementation point
of view, each sub-task can now be straightforwardly defined as the run() method of a
Runnable object [10]. Then, the objects can be stored into an array, and a scheduler
module can be added executing the objects one at a time. Sleep() or yield() calls
mark the transition between sub-tasks.

As anticipated, this code is a simple implementation of Schmidt’s Reactor design
pattern [7]. The effect is essentially the same as several threads waiting on a single
ordered binary semaphore that is set to true by an event. Here, the programmer

XML Access Control Systems: A Component-Based Approach 49

Runnable[] task = new Runnable[]

{
new Runnable(){ public void run(){ /* execute sub-task 1 */ } },
new Runnable(){ public void run(){ /* execute sub-task 2 */ } },
new Runnable(){ public void run(){ /* execute sub-task 3 */ } },
new Runnable(){ public void run(){ /* execute sub-task 4 */ } },

};
for(int i = 0; i < task.length; i++)

{task[i].run();
Thread.getCurrentThread().yield();

}

Figure 4 Sample Java code for the synchronous dispatcher

Runnable[] two tasks = new Runnable[]

{
new Runnable(){ public void run(){ /* execute task 1, sub-task 1 */ } },
new Runnable(){ public void run(){ /* execute task 2, sub-task 1 */ } },
new Runnable(){ public void run(){ /* execute task 1, sub-task 2 */ } },
new Runnable(){ public void run(){ /* execute task 2, sub-task 2 */ } },
new Runnable(){ public void run(){ /* execute task 1, sub-task 3 */ } },
new Runnable(){ public void run(){ /* execute task 2, sub-task 3 */ } },
new Runnable(){ public void run(){ /* execute task 1, sub-task 4 */ } },
new Runnable(){ public void run(){ /* execute task 2, sub-task 4 */ } },

};
for(int i = 0; i < two task.length; i++)

{ two tasks[i].run();

Thread.getCurrentThread().yield();

}

Figure 5 The interleaving dispatcher

retains full control over the sequence of subtask execution after the event. In our AC
processor, however, a slightly more complex technique should be used, as we need to
execute complex transformation tasks concurrently, each of them being subdivided
into atomic sub-tasks. To deal with this problem, the synchronous dispatcher of
Figure 4 can be easily modified [10] to provide interleaving (Figure 5).

The behavior of the code in Figure 5 allows for a multi-threading cooperative sys-
tem (in which threads explicitly yield control to other threads). Of course, this syn-
chronous dispatching technique is aimed at native multi-threaded operating systems,
where all the subtasks are executing on a single operating system-level thread. In this
case, there is no synchronization overhead at all, and no expensive context switch into
the host operating system’s kernel. It should be noted that several dispatchers could
be used, each running on its own thread (as in Sun’s green thread model [11]), so
that cooperative and preemptive threads may share the same process.

6. CONCLUSION

In this paper we presented the major results of the study we did before the im-
plementation of the processor for the proposed access control model for XML data.
Most of the considerations we present are not specific to our system, but can be of
interest in any context where services for the security of XML must be implemented.

50 DATA AND APPLICATIONS SECURITY

There are several directions where our work can be extended and that offer inter-
esting opportunities. For instance, we focused on multi-threading techniques to obtain
efficient concurrent execution of access control tasks. However, synchronization over-
head is obviously not the only performance problem. Other techniques rather than
round-robin interleaving could be adopted: e.g., the XML access-control service could
adaptively optimize itself to provide higher priorities for smaller requests. These tech-
niques combined could potentially produce a system highly responsive and with an
adequate throughput. The next release of the ACP plans to implement the prioritized
strategy.

Acknowledgments

The authors wish to thank Daniel Menasce’ for interesting discussions about XML
processing performance issues.

References

[1] Apache Software Foundation. Cocoon, a Java publishing framework.
http://xml.apache.org/cocoon, 2000.

[2] T. Bray et.al. (ed.). Extensible Markup Language (XML) 1.0. World Wide Web
Consortium (W3C), February 1998. http://www.w3.org/TR/REC-xml.

[3] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Design
and implementation of an access control processor for XML documents. In Proc.
of the Ninth Int. Conference on the World Wide Web, Amsterdam, May 2000.

[4] E. Damiani, S. De Capitani Di Vimercati, S. Paraboschi, and P. Samarati. Secur-
ing XML documents. In Proc. of EDBT 2000, Konstanz, Germany, March 2000.

[5] J. Hu, I. Pyarale, and D. Schmidt. Applying the proactor pattern to high perfor-
mance web services. In Proc. of the 10th International Conference on Parallel and
Distributed Computing, Las Vegas, Nevada, October 1998.

[6] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A Logical Language for Ex-
pressing Authorizations. In Proc. of the IEEE Symposium on Security and Privacy,
pages 31–42, Oakland, CA, May 1997.

[7] R. G. Lavender and D. Schmidt. Reactor: A object behavioral pattern for con-
current programming. In J. Vlissides, D. Coplien, and M. Kerth, editors, Pattern
Languages of Program Design 2. Addison Wesley, 1995.

[8] D. Lea. Concurrent Programming in Java. Addison Wesley, 1996.

[9] T.F. Lunt. Access Control Policies for Database Systems. In C.E. Landwehr,
editor, Database Security, II: Status and Prospects, pages 41–52. North-Holland,
Amsterdam, 1989.

[10] B. Marchant. Multithreading in java.
http://www.javacats.com/US/articles/multithreading.html, 1996.

[11] M. L. Powell, S. Kleiman, S. Barton, D. Shah, D. Stein, and M. Weeks. SunOS
Multi-thread Architecture. Sun Microsystems, 1998.

[12] World Wide Web Consortium (W3C). Document Object Model (DOM) Level
1 Specification Version 1.0, October 1998. http://www.w3.org/TR/REC-DOM-
Level-1.

[13] World Wide Web Consortium (W3C). XML Path Language (XPath), November
1999. http://www.w3.org/TR/xpath.

