
Ernesto Damiani
University of Milan

Sabrina De Capitani di
Vimercati
University of Brescia

Stefano Paraboschi
Polytechnic of Milan

Pierangela Samarati
University of Milan

Controlling Access to
XML Documents

Access control techniques for XML provide a simple way to

protect confidential information at the same granularity level

provided by XML schemata.

The widespread adoption of the
eXtensible Markup Language has
profoundly changed the nature of

the information and user interaction
styles available on the Web. Unlike HTML,
XML can represent both document struc-
ture and content, offering increased con-
trol of information granularity through
transformation and query languages. The
original XML 1.0 specification used Doc-
ument Type Definitions (DTDs) to describe
document structure; recently, the World
Wide Web Consortium (W3C) issued the
XML Schema Recommendation, which
lets users define XML vocabularies and
complete typespaces. Starting from a doc-
ument-oriented standard, XML is evolv-
ing toward a universal format for infor-
mation interchange.

This evolution is fostering a new gen-
eration of applications that can synthe-
size and exchange XML information tai-
lored to user needs. XML’s new features,
however, envision a complete paradigm
shift from HTML that raises new securi-
ty concerns in the WWW community.
Initially, many practitioners assumed that
XML documents would automatically

benefit from the security standards
already in place to deliver HTML pages
via HTTP. Later, researchers began inves-
tigating XML-specific security measures
that would address its richer data model
and finer granularity control; work is
under way to develop standard XML-
based formats for the resources to be pro-
tected, their associated metadata, and the
policies expressing authorizations (see
the sidebar, “The XACML Standardiza-
tion Effort”). For instance, the adoption
of XML for medical records requires tai-
loring information from XML data
sources to the different needs of physi-
cians and patients, preserving confiden-
tiality and avoiding unnecessary dupli-
cations. In the same scenario, access
control policies themselves should be
easy to process and interchange and
should check for compliance with exter-
nally defined regulations.

In this article, we describe our approach
to these problems and the design guide-
lines that led to our current implementa-
tion of an access control system for XML
information. (See the sidebar, “Related
Work in XML Access Control,” as well.)

2 NOVEMBER• DECEMBER 2001 http://computer.org/internet/ 1089-7801/01/$10.00©20010 IEEE IEEE INTERNET COMPUTING

Fe
at

u
re

The Role of Encryption
Cryptography has given the Web a general-purpose
infrastructure for secure communication. What is its
potential role in providing fine-grained security to
XML documents? Some commercial products are
available (for example, AlphaWorks’ XML Security
Suite; alphaworks.ibm.com/tech/xmlsecuritysuite)
providing fine-grained security features, such as ele-
ment-wise encryption and digital signatures. Dat-
aChannel (www.datachannel.com) has proposed a
coarser solution; their Server product links XML
authentication to directory systems, supporting both
Windows NT and Lightweight Directory Access Pro-
tocol 3 directories. However, encryption-based ap-
proaches unequally split security responsibilities
between the connection protocol, the XML content,
and the application processing the document; in
parallel, the need for access control standardization
for XML data is receiving growing recognition.
Moreover, some encryption-based techniques leave
encrypted private information in the hands of unau-
thorized users, a design choice that might well prove
unwise over time. Recently, a W3C initiative began
dealing with XML Encryption, focusing on how to
make XML content discernible only to the intended
recipients, and opaque to all others. XML Encryp-
tion focuses on how to encrypt XML documents at
the granularity of elements. While there are many
applications for such a specification, including the
protection of payment and transaction information,
the XML Encryption initiative is explicitly not aimed
at controlling access to XML information.

XML Access Control:An Outline
Our approach exploits XML’s own capabilities,
using XML markup to describe access authoriza-
tions to XML elements. The hierarchical structure
of XML documents lets you intuitively specify and
authorization’s definition: authorizations, when
stated for an element, can propagate to the other
elements or attributes included in it, unless a more
specific authorization is stated for them. The main
features of our fine-grained authorizations include

� Authorization signs: Authorizations can be
positive, granting access, or negative, denying
access, to an XML element or attribute. The
possibility of specifying negative authoriza-
tions, while increasing our model’s expressive
power, introduces potential conflicts among
authorizations. Our approach solves such con-
flicts by giving priority to authorizations spec-
ified on more specific subjects or objects, and
denying the access (denial takes precedence

policy) for unresolved conflicts.
� Authorization levels: You can add security markup

to XML documents and XML Schemas, to provide
document- and schema-level authorizations with
the granularity of XML elements and attributes.
Schema and document-level authorizations have
complementary roles in increasing access control
flexibility. Intuitively, as XML Schemas specify
structure and content of entire document classes,
schema-level security markup lets you quickly
and effectively state authorizations that apply to
XML elements regardless of the specific document
under consideration (as with a <CONFIDENTIAL>
tag used consistently in a set of documents).
Schema-level authorizations can serve to imple-
ment corporate-wide access control policies on
document classes. Document-level security mark-
up lets you tailor security requirements for each
document, as is required when documents com-
plying with the same XML Schema contain infor-
mation with different protection requirements (for
example, a <CURRENTPROJECTS> tag in the
resumes of researchers pursuing both classified
and public projects).

� Authorization strength: Intuitively, document-
level authorizations usually take precedence

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2001 3

XML Access Control

The research described in this article, together with that described by
Michiharu Kudo and Satoshi Hada,1 underlies a recent standardization
effort on the use of XML-based languages to express and interchange
access control policies.

This effort is organized under a new technical committee within the
Organization for the Advancement of Structured Information Standards,
a nonprofit, international consortium that creates interoperable indus-
try specifications based on public standards such as XML and SGML
(http://www.oasis.org).The OASIS eXtensible Access Control Markup
Language (XACML) technical committee has been organized to define a
standard core schema and corresponding namespace for the expression
of authorization policies in XML against objects that are themselves iden-
tified in XML.The schema will be capable of representing the functional-
ity of most policy representation mechanisms available at the time of
adoption. It should also be extensible to address custom application
requirements and other functions or features not yet included.

The TC charter includes such issues as fine-grained control, the
requestor’s nature, the protocol over which the request is made, content
introspection, and the types of activities authorized. Initial TC members
include Baltimore Technologies, CrossLogix, Hewlett-Packard, IBM, Jam-
cracker,Oblix,Reuters, Sun Microsystems, and webMethods.Other com-
panies and individuals are encouraged to participate in the XACML work
by joining OASIS.

Reference
1. M.Kudo and S.Hada,“XML Document Security Based on Provisional Authorization,Proc.

7th ACM Conf.Computer and Communication Security,ACM Press,New York,2000,pp.87–96.

XACML Standardization Effort

over schema-level ones. When this behavior is
not adequate, you can either define document-
level authorizations as soft (giving them a
lower priority than schema-level ones) or
define schema-level authorizations as hard
(giving them a higher priority). You would use
soft document-level authorizations when the
document owner agrees to accept the policy
stated at the schema level, if existing. In turn,
you would use hard schema-level authoriza-
tions when your organization wants to imple-
ment a system-wide security policy, which
must not be reverted by authorizations at the
specific document level.

� Propagation policies: Whatever its sign or level,
an authorization can be either local (it applies
only to the current element and its attributes)
or recursive (it applies recursively to the cur-
rent element and its subelements).

Authorizations must be specified for the differ-
ent classes of requesters, as identified by user-
group name and physical location. As you would
obviously do not want to list all potential re-
questers individually, our model uses the well-
known technique of defining a subject hierarchy
of requesters based on their identifications. Autho-
rizations stated for a given subject automatically
apply to all subjects below it in the subject hierar-
chy. Every time you request access to XML data,
the joint enforcement of the authorizations that
apply to them at the schema and document level
will produce a custom view on the data, including
only the information that the particular requesters
are entitled to see. This approach, while powerful
enough to define sophisticated access to XML data,
makes the design of a server-side Access Control
Processor (ACP) for XML data sources rather
straightforward.

4 JULY • AUGUST 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

Because HTML tagging is intended primarily
to render Web pages, access control mecha-
nisms currently available for Web sites tend
to be coarse-grained.For instance,the Apache
Web server (www.apache.org) lets you spec-
ify access control lists through a configuration
file (access.conf) containing a list of users,
hosts (IP addresses), or host–user pairs that
are specifically allowed or forbidden connec-
tion to the server.Users are identified by user
and group names and passwords, which are
specified through Unix-style password files.
By specifying a configuration file for each
directory on the Web server‘s disk, you can
define authorizations on a directory basis.The
specification of authorizations at the level of
single files (that is,Web pages) is possible but
a little awkward,whereas it is not possible on
portions of files.This limitation forces pro-
tection requirements to affect data organiza-
tion at the file system level.

John Linn and Magnus Nyströmpropose
a model for authorizations that reference
portions of a file.1 However, the model does
not support semantic context similar to that
provided by XML and so remains limited.
The Enterprise Integrated Technologic
Secure HTTP scheme (www.homeport.org/
~adam/shttp.html) represents authorizations
within HTML documents through security-
related tags. Every document can include
security (meta)tags describing its access

authorizations.Again, because of HTML lim-
itations, even this proposal cannot take
information semantics into account.

Recently, several research groups pro-
posed access control techniques expressed
through XML-based languages or aimed at
XML data.2,3 We developed the approach
here from work presented at the 2000
International Conference on Extending
Database Technology (EDBT2000).4

A related line of research was pursued by
The Tokyo IBM Research Labs by developing
a processor that lets users to specify and
enforce fine-grained authorization policies.5

They have proposed XrML (www.xrml.org/),
a commercial product designed to serve as
an open architecture for digital content
rights management.

Our model presents similarities with
some access control models for object-ori-
ented DBMSs; in particular,authorizations can
propagate along the document structure and
conflict resolution must consider authoriza-
tion strength.6 However, the object-oriented
context differs significantly from XML,which
was born as a textual representation format:

� In XML, the main form of relationship
between nodes is in the form of node
containment (which is similar but not
identical to part-of composition in
object-oriented models);

� XML does not offer inheritance, poly-
morphism, or typing of references.

You must consider all these aspects
when designing an access control model for
XML, making it inconvenient to apply an
object-oriented access control model to
XML information.

References
1. J. Linn and M.Nyström,“Attribute Certification:An

Enabling Technology for Delegation and Role-Based

Controls in Distributed Environments,” Proc. 4th

ACM Workshop on Role-based Access Control, ACM

Press, New York, 1999, pp. 121–130.

4. E. Damiani et al.,“Securing XML documents,” Proc.

2000 Int’l Conf. Extending Database Technology

(EDBT2000),Springer Verlag,Berlin,2000,pp.121–135.

2. E. Bertino, S.Castano, and E. Ferrari,“Securing XML

Documents with Author-X,” IEEE Internet Comput-

ing,Vol. 5, No. 3, May–June, 2001, pp. 21–31.

3. A.Gabillon and E.Bruno,“Regulating Access to XML

Documents,” Proc. 15th Ann. IFIP WG 11.3 Working

Conf. on Database and Application Security, Kluwer,

2001, pp. 311–328.

5. M. Kudo and S. Hada, “XML Document Security

Based on Provisional Authorization,” Proc. 7th ACM

Conf. Computer and Communication Security (CCS

2000),ACM Press, New York, 2000, pp 87–96.

6. S. Jajodia et al.,“Flexible Support for Multiple Access

Control Policies,” ACM Trans. Database Systems,

2001; to appear.

Related Work in XML Access Control

The specification of the access control system
we’ve just outlined requires a detailed definition of
objects (the resources against which authorizations
must be specified) and subjects (the system’s users).

Identifying Authorization Objects via Path
Expressions
Our model identifies the objects to which fine-
grained access authorizations apply using XPath
(XML Path Language; www.w3.org/TR/xpath)
expressions, which return a set of nodes within a
document. XPath is a W3C standard well known to
potential users and supported by several tools that
can be easily reused to produce a functioning sys-
tem. A simple example of XPath expression is a
sequence of element names separated by a slash; for
instance, path expression /catalog/category/
merchant denotes the nodes of the merchant ele-
ment, which are children of category elements, which
are children of catalog elements. Path expressions
can terminate with an attribute name (prefixed with
the special character @), add conditions in the navi-
gation, and also use special functions. Overall, XPath
is a powerful language and its capabilities match
quite well the access control model’s needs.

Identifying Authorization Subjects
Usually, most approaches identify authorization sub-
jects by their identity or the location from which their
requests originate. In turn, locations can be expressed
through IP addresses (150.100.30.8, for example)
or symbolic names (such as tweety.admin.com). Our
model combines all these features. In it, we charac-
terize subjects requesting access by a triple 〈user-
id,IP-address,sym-address〉, where user-id is
the login name the user used in connecting to the
server, IP-address is the client machine’s address,
and sym-address is the machine’s name.

Our model lets you consider remote identities
trusted by the server (using a Certification Author-
ity or any other secure infrastructure) as well. So
that authorizations can apply to sets of users or
machines, our model also supports groups and
location patterns. Groups are sets of users defined
at the server; they need not be disjoint and can be
nested. On the other hand, a location pattern is an
expression identifying a set of physical locations,
referencing either their symbolic names or IP
addresses. Our model uses the wild card character *
to specify patterns. For instance, 151.100.*.*
denotes all the machines belonging to network
151.100. Similarly, *.it denotes all the machines
in the Italy domain. (See the sidebar, “Dealing with
Roles.”)

For each XML data source, users and groups
linked by their membership relationship, IP
addresses with patterns, and symbolic names with
patterns form three distinct hierarchies. As the
same user can belong to more than one group, the
user-group hierarchy is a direct acyclic graph
(DAG), while IP addresses’ and, as you would
expect, symbolic names’ hierarchies are trees. Fig-
ure 1 shows an example of such hierarchies. You
can define a general authorization subject hierar-
chy ASH by combining user and group, symbolic
names, and IP address hierarchies as follows: a
subject sj is dominated by another subject si (that
is, sj ≤ si) if each of sj’s components (namely user-
group, IP address, and symbolic name) are domi-
nated by the corresponding component of si.

While our model conceptually identifies autho-
rization subjects by triples of the general hierarchy,
it can detect relationships between address (and
symbolic names) patterns in a straightforward man-
ner; therefore, only the usual user-group hierarchy
need be explicitly defined and stored at the server.
It can specify access authorizations for any of ASH’s
elements, propagating the authorizations to all sub-
jects that lie below it in the hierarchy. More formal-
ly, authorizations specified for subject sj ∈ ASH are
applicable to all subjects si such that si ≤ sj.

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2001 5

XML Access Control

The application scenario we describe in this article envisions an access
control server dealing with locally defined users and groups.While such
an approach might well suffice for a number of Intranet-based applica-
tions, Internet services often require access control decisions not to be
identity-based. On the global Net, the way users can exercise an access
right (which we characterize as a role) tends to be more important than
a particular user’s identity. For instance, browsing an on-line library cata-
log might require that a user subscribe to the library (user‘s identity can
be relevant only for accounting purposes or not at all).We use roles to
deal with access requests coming from previously unknown parties.

Our model readily extends to cover this eventuality by considering
roles as an additional component characterizing authorization subjects.
It lets you model subjects requesting access as a 4-tuple 〈user-id, IP-
address, sym-address, role-id〉,where role-id is a set of roles activated by
attaching appropriate accreditation (or attribute) certificates with a
request.1,2 An authorization’s subject can be either a user, group, or role,
possibly restricted with respect to a request’s originating location.

References
1. J. Linn and M. Nyström,“Attribute Certification:An Enabling Technology for Delegation

and Role-Based Controls in Distributed Environments,” Proc. 4th ACM Workshop on Role-

based Access Control, ACM Press, New York, 1999, pp. 121–130.

2. J.S.Park,R.Sandhu,and G.-J.Ahn,“Rolle-Based Access Control on the Web,” ACM Trans Infor-

mation and System Security,Vol. 4,No.1, Feb. 2001, pp. 37–71.

Dealing with Roles

A Closer Look at Fine-Grained
Authorizations
To illustrate our model’s expressiveness, consider
the following example. An electronic company,
called OnlineMall, wants to create an online cata-
log so potential customers can search and browse
the catalog and purchase items. The catalog is
encoded in XML and its structure is defined by the
XML Schema in Figure 2a.

OnlineMall collects information about products
and services of several merchants such as
MyItems. For accounting purposes, besides cata-
log information, each merchant maintains profiles
of its customers. Customer profiles, described by
the XML Schema in Figure 2B, include such per-
sonal customer information as name, address, date
of birth, and sex, and general information such as
age, preferences, and hobbies.

Here, we present some examples of protection
requirements for the XML document depicted in Fig-
ure 3, complying with the XML Schema in Figure 2b,
which is stored at the Web site of merchant MyItems.
The letters between square brackets in the list iden-

tify the authorizations in Figure 4. Note that the hor-
izontal line between authorizations [e] and [f] sepa-
rates schema-level authorizations ([a] through [e])
from document-level authorizations ([f] through [k]).

OnlineMall’s Policy. Specified at the schema level—
applicable to all merchants:

[a] Catalog information is public.
[b] Personal information about merchants can-

not be accessed by customers. (This autho-
rization forbids access only to the textual
content of pinfo’s children, so that cus-
tomers can still see the element names.)

[c] Information about tobacco and wine prod-
ucts can be accessed only by customers who
are not minors.

[d-e] Information about customers cannot be
accessed without the customer‘s consent.

MyItems’ Policy. Specified at the document level
by the MyItems merchant to complement or over-
ride the OnlineMall‘s policy:

[f] Information about customers cannot be ac-
cessed, unless otherwise stated at the
schema level.

[g] Information about name and address of all
customers can be accessed by members of
the AdmMI group connected from network
130.*.

[h] Customer identifiers can be accessed by the
administrative staff.

[i] General information about customers can be
accessed by members of ProdManager group.

[j] Information about birth date and sex of all
customers can be accessed by members of
ProdManagerMI group when connected
from hosts with domain *.it.

Computing the Requester’s View
on XML Documents
In our model, you compute each subject’s view on
each XML document by combining local and
propagated authorizations at schema and docu-
ment levels. This computation’s first stage is a sim-
ple labeling procedure. To explain the procedure’s
operation, we employ a widely used graphical rep-
resentation of XML documents.1 It represents XML
documents as labeled trees containing a node for
each attribute and element. Elements are repre-
sented as circles and attributes as squares. There is
an arc between an element and an element or
attribute belonging to it.

6 JULY • AUGUST 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

Figure 1.Sample hierarchies: (a) user-group, (b) IP,and (c) symbolic name.

Figure 3 illustrates the tree representation of an
XML document complying with the schema in
Figure 2b. When you request a document, the
analysis of all the authorizations holding for you
produces an access decision (yes or no, depicted as
+ or –) on each node to which some authorization

applies. To obtain this outcome, we associate with
each note a list of signs, corresponding to autho-
rizations of different types. Namely, our tree-label-
ing process associates to each element or attribute
node n an 8-tuple 〈LXHn; RXHn; Ln; Rn; LXn; RXn; LSn;
RSn〉, whose content reflects the authorizations

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2001 7

XML Access Control

Figure 2.Two examples of XML Schema: (a) catalog structure, (b) customer profiles.

specified on the node. In other words, the 8-tuple
elements contain the signs of the authorizations of
types Local for the XML Schema Hard; Recursive
for the XML Schema Hard; Local; Recursive; Local
for the XML Schema; Recursive for the XML
Schema Local Soft; and Recursive Soft; holding for
each node n. The eight types arise from the com-
bination of three properties: propagation (local or
recursive), level (document or schema), and
strength (normal and soft or hard).

An element’s order in the 8-tuple reflects its pri-
ority, from the highest to the lowest, in determin-
ing the access decision. Each element in the tuple
can assume one of three values: + for permission,
– for denial, and ε for no authorization. Local

authorizations holding for each node propagate to
its attributes, while propagating authorizations
also propagate to its subelements. You can over-
ride authorizations according to a most specific
object takes precedence principle, which guaran-
tees that authorizations on a node take precedence
over those on its ancestors. This principle operates
together with the denial takes precedence policy
we discussed earlier.

Thus, you can obtain a document’s labeling by
starting from its root and, proceeding downwards
with a preorder visit, updating the 8-tuple of a
node n depending on its values and the values of
the 8-tuple of node p parent of n in the tree. At the
visit’s end, for each node n of the document tree,
the authorization valid on n will be the not null
one with the highest priority. The decision value is
set to the null value ε when no authorizations have
been specified nor can be derived for n. You can
interpret value ε as either a negation or a permis-
sion, corresponding to the enforcement of the
closed or the open policy.2 We act conservatively,
choosing the closed policy.

Document Transformation
After the labeling process, the requester can access
all the elements and attributes whose label is pos-
itive. For elements with a negative or undefined
label that have a descendant with a positive label,
start and end tags will also be included in the doc-
ument portion visible to the requester. You can
obtain the document view by pruning from the
original document tree all the subtrees containing
only nodes labeled negative or undefined. You per-
form this pruning using a postorder visit on the
document removing any leaf labeled – or ε.

The pruned document might not conform with
the original schema. This will happen, for instance,
when required attributes are deleted because the
requester is not entitled to receive them. Typically,
this is not a problem and it is sufficient for the XML
document to be well-formed. If the document must
be validated at the client side, you can apply a loos-
ening transformation to the schema, defining as
optional all the elements and attributes marked as
required in the original schema. Schema loosening
also prevents users from detecting whether infor-
mation was hidden by the security enforcement or
simply missing in the original document.

A Sample Transformation
We now provide a step-by-step example based on
the XML document in Figure 3, using the set Auth
of authorizations depicted in Figure 4 and the

8 JULY • AUGUST 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

Figure 3.A valid XML document conforming to the XML schema in
Figure 2b.

user-group hierarchy shown in Figure 1.
Consider two requests to read the document, the

first submitted by user Sam connected from host
130.89.56.8with symbolic name nf3lab.staff.it
and the second from user Trent connected from host
130.100.50.5 with symbolic name u20.staff.it.
Trent is a product manager of the FurnitureSup-
pliermerchant, a member of company OnlineMall.
According to the authorizations stated by the com-
pany and by the MyItems, because Sam is a member
of the AdmMI group, he can only access all informa-
tion about customers who give a positive consent,
and names and addresses of all other customers. But,
because Trent is a member of OnlineMall’s Prod-
Manager group, he can access general information
about customers but not personal information.

Figure 5 shows the resulting view of Sam and
Trent. Sam view is restricted to administrative
information, while Trent view is restricted to gen-
eral marketing information. Neither Sam nor Trent
have a full view on the document.

Designing and Implementing an
Access Control Processor for XML
We implemented a prototype of the system to
demonstrate how our access control technique can
be smoothly integrated with existing XML-based
solutions.

As one of our first decisions in implementing
the prototype, we decided to use the Java platform.
This is a natural choice in the current XML con-
text, where Java-based solutions are quite com-
mon. We first focused our prototype design efforts
on demonstrating the access control model’s inter-
nal mechanisms. Then, we refined it using a num-
ber of different server-side solutions: simple CGI
architectures, Java servlets, and JSP pages. We
also integrated the prototype with an XSL pro-
cessing tool (the Cocoon environment produced by
the Apache Software Foundation) and verified the
use of an SSL implementation as a transport layer,

a solution that would probably be used in secure
environments. All these experiments demonstrat-
ed the model’s applicability and flexibility.

Incidentally, we could have implemented the pro-
totype with XSLT, defining a set of templates that,
considering the requesting user and existing autho-
rizations, would transform the XML document to
remove the protected parts. The XSLT solution does
not require a complex programming environment
nor a Java Virtual Machine, whereas XSLT engines
are already available in many XML processing envi-
ronments, without requiring a complex program-
ming environment nor a Java Virtual Machine.
However, the XSLT language is designed to describe
local XML transformations, so it is quite cumber-
some for use in realizing an implementation of our
access control model, which requires propagation of
authorizations and conflict resolution among posi-
tive and negative authorizations. XSLT would be an
interesting option for implementing an access con-
trol model simpler than the one we describe here.

Use of the System
Our system manages documents internally by rep-
resenting them as object trees, according to the
Document Object Model specification (www.w3org/
TR/REC-DOM-Level-1). We chose DOM as the
internal data representation format because it pro-
vides an object-oriented API for HTML and XML
documents.

Our prototype is based on the definition of a set
of Java classes describing users, groups, autho-
rizations, and security labels. We do not detail the
design and organization of classes, but in this con-
text only provide an example of use of our proto-
type. The fragment of Java program in Figure 6
uses six parameters: three String variables rep-
resenting the user name, IP address and symbolic
address, and three File parameters representing
the user–group hierarchy, the authorizations to
apply, and the document requested by the user.

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2001 9

XML Access Control

Figure 4. Examples of authorizations.

[a] <<Public,*,*>, /catalog, read, +, RX>
[b] <<Customers,*,*>, /catalog//pinfo//text(), read, –, RXH>
[c] <<Minors,*,*>, //product[.//description[contains(text(),'tobacco')

or contains(text(),'wine')]], read, –, R>
[d] <<Public,*,*>, /cprofiles, read, –, RX>
[e] <<Public,*,*>, /cprofiles/customer[./consent[@val='yes']], read, +, RX>
[f] <<Public,*,*>, /cprofiles/, read, –, RS>
[g] <<AdmMI,130.*,*>, /cprofiles//info/node()[position()=1

or position()=2], read, +, L>
[h] <<AdMI,*,*>, /cprofiles/customer/@id, read, +, L>
[i] <<ProdManager,*,*>, /cprofiles//ginfo, read, +, L>
[j[<<ProdManagerMI,*,*.it>, /cprofiles//pinfo/node()[position()=3

or position()=4], read, +, L>

Statement 1 initializes variable ugRep, instance
of class UserGroupRepository, which represents
in the internal memory format of the prototype the
user–group hierarchy described in the XML file
usersAndGroupsFile. Variable user is created in
statement 2, initialized to the object in ugRep iden-
tified by the name appearing in parameter user-
Name. In statement 3, an instance authSubj of
class AuthorizationSubject is created, using as
parameters symbName, ipAddr, and the user vari-
able created in the previous statement. The three
parameters fully characterize the subject with
respect to the identification of the authorizations
that should be applied.

Statements 4 to 6 build an instance of DocInfo,

a support class that binds the document with the
authorization files applicable to it; the XML docu-
ment the user wants to access is in file document-
File and the authorizations are in XML file autho-
rizationsFile. Statement 7 creates the instance
factory of class SecureDocumentFactory; this class
is responsible of creating the pruned document,
receiving as parameter the UserGroupRepository
on which authorization subjects should be evaluat-
ed; statement 8 associates variable factory with
the document and its authorizations, as represent-
ed in variable docInfo. In statement 9, the ACP is
finally invoked, by method getDocumentForUser,
using as parameter the authSubj object; the method
returns the pruned document, which is assigned to
variable prunedDocument.

The ACP follows three steps when it is invoked
by method getDocumentForUser.

� Parsing. The parsing step consists in the syn-
tax check of the requested document with
respect to the associated XML Schema and its
compilation to obtain an object-oriented docu-
ment graph according to the DOM format. In
the prototype this task is realized by Apache
Software Foundation’s Xalan tool.

� Tree labeling. The labeling step involves the
propagation of the labeling of the DOM tree

10 JULY • AUGUST 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

Figure 5.The views of user Sam (a) and user Trent (b) on the document in Figure 3b.

The XML Access Control Prototype—http://sansone.crema.unimi.it/
~xml-sec

XML—http://www.w3.org/TR/REC-xml
XML Schema—http://www.w3.org/TR/xmlschema-2
XPath—http://www.w3.org/TR/xpath
XQuery—http://www.w3.org/TR/xquery
XSLT—http://www.w3.org/TR/xslt
DOM—http://www.w3.org/TR/REC-DOM-Level-1

URLs

according to the authorizations associated with
the document. If the current user satisfies the
pattern represented by the authorization‘s sub-
ject, the authorization is added to the nodes
described by the authorization‘s object.

� Transformation. The transformation phase is the
pruning of the DOM tree, described earlier. A
visit on the document tree first evaluates in pre-
order the label of the current node, considering
all authorizations defined on the node and recur-
sive authorizations coming from the parent
node. If the node has a negative label and it has
an empty set of children, the node is removed
from the document, pruning the DOM tree. The
resulting DOM structure then returns as result.

Evolving the Prototype
Despite the access model’s capabilities, the fine
granularity on which accesses can be granted, and
the use of nontrivial algorithms, the major source
of complexity lies in the interpretation of the XPath
expressions that identify the nodes. If all autho-
rization objects are represented by an XPointer, the
system characteristically has a linear complexity in
the size of the document and the authorizations. In
other words, our model does not introduce any
fundamental increase in complexity. Moreover,
several optimization techniques will speed up
access control, including low-level refinements (for
example, the use of a compiled language instead
of Java), as well as a few high-level strategies.

A first strategy consists in the prelabeling of
documents, to associate authorizations with the
nodes of XML documents in anticipation of user
requests. A further strategy involves the definition
of auxiliary structures that permit to reduce the
labeling procedure’s granularity (for example, if
an authorization defined on a node n is not over-
ridden by any other authorization on its subnodes,
the labeling procedure can deal with the subtree
whose root is n as a unity).

Yue Wang and Kian-Lee Tan describe an ACP
built starting from our prototype, which tries to
improve system performance by avoiding the DOM
construction and relying on a relational storage to
compute access only to the fraction of data that
the user is authorized to see.3 This is an interesting
solution, which is applicable in certain contexts
(in particular, when authorizations severely restrict
the portion of XML information that a user can
access) and which can exploit the results of
research on relational storage of XML information.

Conclusions
One of the evident features of our proposed sys-
tem is its richness, which lets you define sophisti-
cated security requirements, but also might require
the authorization designer to carefully consider
each authorization’s implications. Also, the system
reads authorizations in an XML format, which the
designer might find difficult to manage if the XML
representation must be created with a text editor
or an unspecialized XML tool. To solve both prob-
lems, we implemented a tool in Java offering a
graphical interface to the ACP, supporting the def-
inition of user–group hierarchies and authoriza-
tions and their rapid interactive evaluation on the
XML repository.

References

1. J. Siméon and K. Smaga, “Your Mediators Need Data Con-

version,” Proc. ACM SIGMOD Int’l Conf. Management of

Data, ACM Press, New York, 1998, pp. 177–188.

2. S. Jajodia et al. “Flexible Support for Multiple Access Con-

trol Policies,” ACM Trans. Database Systems, 2001; to

appear.

3. Y. Wang and K.-L. Tan, “A Scalable XML Access Control

System,” Poster Proc. 10th Int’l World Wide Web Conf.,

Elsevier, Dordrecht, The Netherlands, 2001, pp. 150–151.

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2001 11

XML Access Control

Figure 6. Fragment of Java program using the prototype implementation.

(1) UserGroupRepository ugRep = UserGroupRepository.getInstance(usersAndGroupsFile);

(2) UserGroup user = ugRep.userGroupByName(userName);

(3) AuthorizationSubject authSubj = new AuthorizationSubject(symbName,ipAddr,user);

(4) DocInfo docInfo = new DocInfo();

(5) docInfo.setXmlFile(documentFile);

(6) docInfo.addAuthDocuments(authorizationsFile);

(7) SecureDocumentFactory factory = SecureDocumentFactory.getInstance(ugRep);

(8) factory.setTargetDocument(docInfo);

(9) Document prunedDocument = factory.getDocumentForUser(authSubj);

Ernesto Damiani is an associate professor at the Department

of Information Technology of the University of Milan. His

research interests include distributed and object-oriented

systems, semistructured information processing and soft

computing. He holds a Laurea in electrical engineering

from the University of Pavia and a PhD in computer sci-

ence from the University of Milan. He is the vice-chair of

ACM SIGAPP and the general chair of the International

Conference on Knowledge-Based Engineering Systems.

Sabrina De Capitani di Vimercati is an assistant professor at

the Department of Electronics for Automation at the Uni-

versity of Brescia. She received her Laurea and PhD in

computer science from the University of Milan. Her

research interests are in information security, databases,

and information systems. She has been an international

fellow in the Computer Science Laboratory at SRI. She is

co-recipient of the ACM-PODS‘99 Best Newcomer Paper

Award. Her Web page is http://www.ing.unibs.it/~decapita.

Stefano Paraboschi is an associate professor at the Department

of Electronics and Information at the Milan Politechnic. He

received the Laurea in electrical engineering and a PhD in

informatics from Milan Politechnic. His main research

interests are in databases, with a focus on active databas-

es, data warehouses, and the construction of data-inten-

sive Web sites. He is the coauthor of Database Systems:

Concepts, Languages and Architectures (McGraw-Hill

1999).

Pierangela Samarati is a professor at the Department of Infor-

mation Technology at the University of Milan. Her main

research interests are in data and application security,

information system security, access control policies, mod-

els and systems, and information protection in general. She

has been a computer scientist in the Computer Science Lab-

oratory at SRI. She is co-author of Database Security (Addi-

son-Wesley, 1995) and is co-recipient of the ACM-PODS‘99

Best Newcomer Paper Award. Her Web page is

http://seclab.crema.unimi.it/~samarati.

Readers may contact the authors at damiani@dti.unimi.it,

samarati@dti.unimi.it, decapita@ing.unibs.it, and para-

bosc@elet.polimi.it.

12 NOVEMBER • DECEMBER 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

Put half-page fill here

