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Abstract

The balance between privacy and utility is a classical
problem with an increasing impact on the design of modern
information systems. On the one side it is crucial to ensure
that sensitive information is properly protected; on the other
side, the impact of protection on the workload must be
limited as query efficiency and system performance remain
a primary requirement. We address this privacy/efficiency
balance proposing an approach that, starting from a flex-
ible definition of confidentiality constraints on a relational
schema, applies encryption on information in a parsimo-
nious way and mostly relies on fragmentation to protect
sensitive associations among attributes. Fragmentation is
guided by workload considerations so to minimize the cost of
executing queries over fragments. We discuss the minimiza-
tion problem when fragmenting data and provide a heuristic
approach to its solution.

1. Introduction

A medical organization manages a collection of data
recording the medical histories of a community of patients.
Researchers can then access these data and effectively
and efficiently discover behavioral and social patterns that
exhibit correlation with specific pathologies, with a direct
positive impact on medical research. The downside is that a
compromise of the server can disclose patients’ information
and violate their privacy. The owner of an e-commerce Web
site must store the complete description of the financial
data about transactions executed on the site. The Web site
offers a wider choice and lower prices than a brick-and-
mortar store, producing an immediate benefit to consumers
and a considerable positive economic impact. The downside
is that a compromise of the Web server may bring cus-
tomers’ data into the black market, where they can be used
in fraudulent transactions. The two scenarios demonstrate
that, while information and communication technology can

provide important benefits, they inevitably introduce risks
of exposing private information to improper disclosure. The
proposal in this paper aims at reducing the risks introduced
by the management of sensitive information.

The crucial observation behind our approach is that users
of the system may normally need to access the data in a
way that does not introduce risks. For instance, medical
researchers may typically need to access generic and not-
identifying patient data when performing their research. The
owner of the Web site mostly accesses the financial data
about the transactions managed by the Web site with no
need to reference the personal data of the customer. On
the other hand, medical researchers may sometimes need to
evaluate parameters that may lead to the specific identity of
the patient, and the Web site owner may need to retrieve the
complete credit card data when a dispute arises. In addition,
regulations are forcing requirements on the management of
personal information that often explicitly demand the use of
encryption for the protection of sensitive data.

A promising approach to protect sensitive data or sen-
sitive associations among data stored at external parties
is represented by the combined use of fragmentation and
encryption [4]. Fragmentation and encryption provide pro-
tection of data in storage, or when disseminated, ensuring
no sensitive information is disclosed neither directly (i.e.,
present in the database) nor indirectly (i.e., derivable from
other information in the database). With this design, the
data can be outsourced and stored on an untrusted server,
typically obtaining lower costs, greater availability, and more
efficient distributed access. This scenario resembles the
“database-as-a-service” (DAS) paradigm [3], [6] and indeed
the techniques presented in the paper can be considered an
adaptation of this paradigm to a context where only part
of the information stored into the database is confidential
and where the confidentiality of associations among values
is protected by storing them in separate fragments. The
advantage of having only part of the data encrypted is that all
the queries that do not require to reconstruct the confidential
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information will be managed more efficiently and securely.
This approach represents for the real-world database and
security administrators a more interesting solution compared
to the canonical full-encryption DAS scenario, where the
use of the secret key for each access creates a significant
vulnerability.

The combined use of fragmentation and encryption to
protect confidentiality has been initially proposed in [1],
[4]. However, the proposal in [1] assumes information to
be stored on two separate servers and protection relies on
the hypothesis that the servers cannot communicate. This
assumption is clearly too strong in any practical situation.
The proposal in [4] removes this assumption but simply
introduces the problem of computing fragmentations. This
paper presents an approach for the design of a fragmentation
(Section 2) that looks carefully at the performance issues,
particularly important in distributed scenarios, and takes
into account the profile of the query load on the server
(Section 3). We introduce a heuristic algorithm (Section 4)
for producing, given a set of confidentiality constraints to
be satisfied, a fragmentation design exhibiting good per-
formance. The experimental results (Section 5) support the
quality of the solutions produced by the heuristic.

2. Basic concepts

We consider a scenario where, consistently with other
proposals (e.g., [1], [9]), the data to be protected are
represented with a single relation r over a relation schema
R(a1, . . . , an). When clear from the context, we will use R
to denote either the relation schema R or the set of attributes
in R. Privacy requirements are represented by confidentiality
constraints.

Definition 2.1 (Confidentiality constraint): Given a set A
of attributes, a confidentiality constraint c over A is:

1) a singleton set {a} ⊂ A, stating that the values of the
attribute are sensitive (attribute visibility); or

2) a subset of attributes in A, stating that the association
between values of the given attributes is sensitive
(association visibility).

While simple, the confidentiality constraint construct is
quite powerful, supporting the definition of different privacy
requirements that may need to be expressed.

Example 2.1: Figure 1 shows relation PATIENT and con-
fidentiality constraints over it. Here, c0 states that the list
of SSN of patients is sensitive; c1 and c2 state that the
associations between Name and Occup, and between Name
and Sickness, respectively, are sensitive; c3 states that
the association among Occup, ZIP, and Sickness is
sensitive (the rationale is that Occup and ZIP are a quasi-
identifier [9] and therefore may allow to derive information
on names).

Since the satisfaction of a constraint ci implies the satis-
faction of any constraint cj such that ci⊆cj , we consider

PATIENT

SSN Name Occup Sickness ZIP
123-45-6789 A. Smith Nurse Latex al. 94140
987-65-4321 B. Jones Nurse Latex al. 94141
246-89-1357 C. Taylor Clerk Latex al. 94140
135-79-2468 D. Brown Lawyer Celiac 94139
975-31-8642 E. Cooper Manager Pollen al. 94138
864-29-7531 F. White Designer Nickel al. 94141

(a)

c0={SSN}
c1={Name,Occup}
c2={Name,Sickness}
c3={Occup,Sickness,ZIP}

(b)

Figure 1. A plaintext relation (a) and confidentiality
constraints (b)

a well defined set of constraints C = {c1, . . . , cm}, i.e.,
∀ci, cj ∈ C, i 6= j, ci 6⊂ cj .

Our approach to satisfy confidentiality constraints com-
bines encryption and fragmentation techniques. Encryption
consists in encrypting all the values of an attribute, thus
making them unintelligible to unauthorized users. Fragmen-
tation consists in partitioning attributes in R in subsets
such that only attributes in the same fragment are visible
together. While singleton constraints can only be satisfied
via encryption, all the other constraints can be enforced
either by encrypting at least one of the attributes involved
in the constraint or by splitting the attributes in such a
way that their association cannot be reconstructed. Since the
availability of attributes in the clear makes query execution
efficient, we solve non singleton constraints always via
fragmentation.

In this paper, we specifically address the fragmentation
problem and therefore focus only on the association (non
singleton) constraints Cf ⊆ C and on the corresponding set
Af of attributes to be fragmented, defined as Af = {a | a ∈
R AND {a} 6∈ C}. The term fragment is then used to denote
a subset of a set of attributes and a fragmentation is a set
of fragments defined as follows.

Definition 2.2 (Fragmentation): Given a relation schema
R, a set C of well defined constraints, and a set Af ⊆ R of
attributes to be fragmented, a fragmentation of R on Af is
a set of fragments F={F1, . . . , Fr} such that:

1) ∀F ∈ F , F ⊆ Af ;
2) ∀a ∈ Af , ∃ F ∈ F : a ∈ F;
3) ∀Fi, Fj ∈ F , i 6= j : Fi ∩ Fj = ∅.
Condition 1 ensures that only attributes to be fragmented

are considered in the fragmentation. Conditions 2 and 3
ensure that a fragmentation is a partition of set Af . This
guarantees: maximal visibility (Condition 2), meaning that
any attribute not involved in a singleton constraint appears
in the clear in at least one fragment; un-linkability (Con-
dition 3), meaning that fragments do not have common
attributes that could be exploited for linking.

In the following, we denote with F the set of all pos-
sible fragmentations, and with F j

i the i-th fragment in
fragmentation F j (the superscript will be omitted when the
fragmentation is clear from the context).



Enc F1

salt enc Name
s1 α A. Smith
s2 β B. Jones
s3 γ C. Taylor
s4 δ D. Brown
s5 ε E. Cooper
s6 ζ F. White

(a)

Enc F2

salt enc Occup
s7 η Nurse
s8 θ Nurse
s9 ι Clerk
s10 κ Lawyer
s11 λ Manager
s12 µ Designer

(b)

Enc F3

salt enc Sickness ZIP
s13 ν Latex al. 94140
s14 ξ Latex al. 94141
s15 π Latex al. 94140
s16 ρ Celiac 94139
s17 σ Pollen al. 94138
s18 τ Nickel al. 94141

(c)

Figure 2. Physical fragments
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Figure 3. Reference scenario

Each fragment Fi∈F is physically stored in a relation,
denoted Enc Fi, called physical fragment, defined on the set
{salt,enc,ai1 , . . . , ain} of attributes, where ai1 , . . . , ain is
the set of attributes in Fi and enc is the attribute representing
the encryption of all attributes in R except ai1 , . . . , ain xor-
ed with the salt, a random value different for each tuple
and used for preventing frequency-based attacks over the
encrypted values. Physical fragments can be distributed at
different servers. Clearly only fragmentations that do not
disclose sensitive associations are acceptable, as captured
by the definition of safe fragmentation.

Definition 2.3 (Safe fragmentation): Given a relation
schema R, a set C of well defined constraints over R, and
a set Af of attributes to be fragmented, a fragmentation F
of R on Af is said to be safe iff ∀F ∈ F ,∀c ∈ C : c 6⊆ F.

A fragmentation is safe if no fragment is a super-
set of any constraint. We call unsafe any fragmentation
that is not safe. Figure 2 illustrates a possible set of
(physical) fragments for the PATIENT relation in Fig-
ure 1(a), which corresponds to the safe fragmentation
F={{Name},{Occup},{Sickness, ZIP}}.

Figure 3 illustrates the basic scenario we consider. The
users that only need to access the cleartext content of a
fragment submit the query directly to the server storing the
fragment and receive the result with standard approaches.
Users authorized to access exact queries involving confi-
dential information submit their query Q, together with the
key k needed for decrypting the data, to a trusted query
mapping component. This component translates query Q
into a query Q′ on a physical fragment composing the
computed fragmentation. The result is returned to the query
mapping component that, if needed, decrypts the tuples and

possibly discards spurious tuples. The final plaintext result
is then returned to the user.

3. Query cost model

Given a fragmentation F of R on Af , any query Q can be
evaluated on each of the fragments composing F because the
corresponding physical fragments contain all the attributes
of R, either in encrypted or in clear form. However, the
execution cost of a query varies depending on the schema of
the physical fragment used for query computation. Overall,
with respect to a given query workload, some fragmentations
can exhibit a lower cost than others. We are then interested in
identifying a safe fragmentation characterized by the lowest
cost. To this purpose, we introduce a query cost model
for query execution on a fragmentation, which considers a
representative set of queries (query workload) as a starting
point for the design of a fragmentation.

We describe a query workload Q as a set {Q1, . . . , Qm}
of queries, where each query Qi, i = 1, . . . , m, is character-
ized by an execution frequency freq(Qi) and is of the form:
“SELECT ai1 , . . . , ain FROM R WHERE

∧n
j=1 (aj IN Vj)”

with Vj a set of values in the domain of attribute aj .
Given a fragment Fl ∈ F and a query Qi ∈ Q, the cost of

executing query Qi over Fl depends on the set of attributes
appearing in Fl and on their selectivity.1 We estimate the
selectivity of query Qi over Fl in terms of the percentage of
tuples in Fl that are returned by the execution of query Qi on
Fl, which in turns depends on the selectivity of each single
condition in query Qi. The selectivity of the j-th condition is
computed as the ratio of the number of tuples in the fragment
such that the value of attribute aj is a value in Vj , over
the number of tuples in Fl (|R|). Since we assume that the
values of different attributes are distributed independently
of each other, the selectivity of

∧n
j=1 (aj IN Vj) in query

Qi on fragment Fl, denoted S(Qi,Fl), is the product of the
selectivity of each single condition. Note that if attribute aj

of the j-th condition does not appear in Fl, the condition
cannot be evaluated on Fl and its selectivity is set to 1.

The cost of evaluating query Qi over fragment Fl, denoted
Cost(Qi,Fl), is then estimated by the size of the information
returned, which is computed by multiplying S(Qi,Fl) by the
number of tuples in the fragment (|R|), and by the size in
bytes, denoted size(tl), of the result tuples:

Cost(Qi,Fl) = S(Qi,Fl) · |R| · size(tl)

Note that size(tl) is obtained by summing the size in bytes
of each attribute in the SELECT clause that appears in Fl and
the size in bytes of the enc attribute of the fragment, if the
query requires access to attributes that do not appear in the
clear in the fragment and that therefore need to be retrieved

1. We refer to fragments instead of physical fragments because the
query cost depends on the attributes appearing in the clear in the physical
fragments.



by decrypting attribute enc. The final cost of evaluating
query Qi on F is the minimum among the costs of evaluat-
ing the query on each of the fragments in F . In other words,
given F = {F1, . . . , Fr}, the cost of evaluating query Qi on
F is: Cost(Qi,F) = Min(Cost(Qi,F1),. . . ,Cost(Qi,Fr)).

The cost of fragmentation F with respect to Q is the sum
of the costs Cost(Qi,F) of each single query Qi weighted
by its frequency, as formally stated as follows.

Definition 3.1 (Fragmentation cost): Given a relation
schema R, a set Af of attributes to be fragmented, a
fragmentation F of R on Af , and a query workload
Q={Q1, . . . , Qm} for R, the cost of F with respect to Q is
computed as: Cost(Q,F) =

∑m
i=1freq(Qi) · Cost(Qi,F)

Example 3.1: Consider the fragmentation in Figure 2,
where |R| = 6, and query Q: “SELECT ∗ FROM Patient
WHERE Sickness=‘Latex al.’ AND Occup=‘Nurse’”.
The selectivity of Q on the fragments is: S(Q,F1)=1,
since Sickness and Occup do not belong to F1;
S(Q,F2)=2/6, since Occup belongs to F2 and there are
2 nurses; S(Q,F3)=3/6, since Sickness belongs to F3

and 3 patients suffer from Latex allergy. Suppose that
the size in bytes of the tuples resulting from the eval-
uation of Q on F1, F2, and F3 is always 1, then
Cost(Q,F)=Min(6, 2, 3)=Cost(Q,F2)=2.

We are interested in finding a safe fragmentation F that
minimizes the cost associated with a given query workload.

Problem 3.1 (Minimal fragmentation): Given a relation
schema R, a set C of well defined constraints over R, a set
Af of attributes to be fragmented, and a query workload
Q={Q1, . . . , Qm} for R, find a fragmentation F of R on
Af such that:

1) F is a safe fragmentation of R on Af (Definition 2.3);
and

2) @F ′ satisfying Condition 1 such that
Cost(Q,F ′)<Cost(Q,F).

The minimal fragmentation problem is NP-hard since the
hitting set problem can be reduced to it in polynomial time
by defining an adequate query workload. In the following,
we present a heuristic approach for solving it.

4. Fragmentation design

We first characterize the space of possible fragmentations
and the relationship among them. We then describe the
algorithm for solving Problem 3.1.

4.1. Fragmentation lattice

Since each fragmentation is a partitioning on the set Af

of attributes, the following partial order relationship can then
be defined on fragmentations.

Definition 4.1 (Dominance): Given a relation schema R,
a set C of well defined constraints over R, a set Af ⊆
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Figure 4. A fragmentation lattice

R of attributes to be fragmented, and two fragmentations
F i={F i

1, . . . , F
i
n} and F j={F j

1 , . . . , F j
m} for R on Af , F j

dominates F i, denoted FjºF i, iff ∀a∈Af , the fragment F j
k

containing a is a subset of the fragment F i
l containing a.

By Definition 2.2, the fragments composing a frag-
mentation cannot have common attributes, therefore any
solution F i directly dominated by Fj is obtained by
merging two fragments in F j . For instance, fragmenta-
tion F1={{Name},{Occup, ZIP},{Sickness}} directly
dominates F2={{Name, Occup, ZIP},{Sickness}},
which is obtained by merging {Name} and {Occup, ZIP}.

Definition 4.2 (Fragmentation lattice): Given a relation
schema R, a set C of well defined constraints over R, and a
set Af ⊆ R of attributes to be fragmented, the fragmentation
lattice is a pair (F,º), where F is the set of all fragmen-
tations of R on Af and º is the dominance relationship
among fragmentations as defined in Definition 4.1.

The top element F> of the lattice represents a frag-
mentation where each attribute in Af appears in different
fragments. The bottom element F⊥ of the lattice represents a
fragmentation composed of a single fragment containing all
attributes in Af . Figure 4 illustrates the fragmentation lattice
for the example in Figure 1. Here, attributes in Af ={Name,
Occup, Sickness, ZIP} are represented with their initials
(i.e., N , O, S, and Z) and fragments are divided by a vertical
line. Also, safe fragmentations (Definition 2.3) are framed
by solid boxes and unsafe fragmentations by dotted boxes.

An interesting property of the fragmentation lattice is that
given an unsafe fragmentation F j , any fragmentation F i

such that F jºF i is unsafe. Also, the cost of computing
queries is monotonic with respect to the dominance rela-
tionship º.2

Theorem 4.1: Given a fragmentation lattice (F,º),
∀F i,Fj ∈ F, FjºF i, F j unsafe ⇒ F i unsafe.

Theorem 4.2 (Monotonicity): Given a relation schema R,
a set C of well defined constraints over R, a set Af ⊆ R of
attributes to be fragmented, and a query workload Q for R,
∀F i,Fj ∈ F: FjºF i ⇒ Cost(Q,F j)≥Cost(Q,F i).

Our modeling of the problem and our solution can be
used with any cost function that satisfies the monotonicity

2. Proofs of theorems are omitted from the paper for space constraints.



property, which is a reasonable assumption as query cost
should not increase if the number of plaintext attributes in
a fragment increases. From Theorem 4.1 and Theorem 4.2,
it follows that each path in the lattice is characterized by
a locally minimal fragmentation, which is the safe frag-
mentation whose descendants in the path are all unsafe. We
propose a heuristic algorithm that partially visits the lattice,
following a top-down strategy, to compute a locally minimal
fragmentation that, as proved by experimental results, has a
cost near to the minimum.

4.2. Fragmentation tree

Our heuristic algorithm is based on the definition of
a tree spanning the fragmentation lattice, to visit each
fragmentation at most once.

Definition 4.3 (Fragmentation tree): Given a fragmenta-
tion lattice (F,º), a fragmentation tree of the lattice is a
spanning tree of (F,º) rooted in F>.

We now describe a method for building a fragmentation
tree over a given fragmentation lattice. For convenience,
and without loss of generality, we assume set Af to be
totally ordered, according to a relationship, denoted <A, and
assume that in each fragment F attributes are maintained
ordered, from the smallest, denoted F.first, to the greatest,
denoted F.last. We then translate the order relationship
among attributes into an order relationship among fragments
within a fragmentation, by considering fragments to be
ordered according to the order dictated by their smallest
(.first) attribute. Since, within a fragmentation, each attribute
appears in exactly one fragment, the fragments in each
fragmentation are totally ordered. Each fragmentation F
is then a sequence F = [F1, . . . , Fr] of fragments, where
∀i, j = 1, . . . , r : i < j, Fi.first <A Fj .first. In this case, we
say that fragment Fi precedes fragment Fj in fragmentation
F . Given two fragments Fi, Fj with i < j, we say that Fi

fully precedes Fj iff all attributes in Fi are smaller than all
attributes in Fj , that is, Fi.last <A Fj .first. Note that the
full precedence is only a partial ordering.

To avoid computing a fragmentation twice, we associate
with each fragmentation F = [F1, . . . , Fr] a marker Fi

that is the non-singleton fragment such that ∀j > i, Fj

is a singleton fragment. For the root, the marker is its
first fragment. Intuitively, the marker associated with a
fragmentation denotes the starting point for fragments to
be combined to obtain children of the fragmentation (as a
combination with any fragment preceding it will produce
duplicate fragmentations). We then define an order-based
cover for the lattice as follows.

Definition 4.4 (Order-based cover): Given a fragmenta-
tion lattice (F,º), an order-based cover of the lattice,
denoted T (V, E), is an oriented graph, where V = F, and
∀Fp,Fc ∈ V , (Fp,Fc) ∈ E iff, being F p

m the marker of
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Figure 5. A fragmentation tree

Fp, there exists i, j with m ≤ i and F p
i fully preceding F p

j ,
such that:

1) ∀l < j , l 6= i , F c
l = F p

l ;
2) F c

i = F p
i F p

j ;
3) ∀l ≥ j , F c

l = F p
l+1.

An order-based cover for (F,º) is a graph with the
same vertices as (F,º). Each edge (Fp,Fc) in the graph
represents a dominance relationship FpºFc, where the
fragments F p

i and F p
j merged to obtain Fc follow the marker

F p
m and are such that all the attributes in F p

i precede all
the attributes in F p

j . As an example, consider the order-
based cover in Figure 5, where <A is the lexicographic
order, built on the fragmentation lattice in Figure 4. The
underlined fragments are the markers. Given fragmentations
Fp=[N|O|S|Z] and Fc=[N|OS|Z], edge (Fp,Fc) belongs to
T since for i = 2 and j = 3 we have that F c

1 =F p
1 =N;

F c
2 =F p

2 F p
3 =OS; and F c

3 =F p
3+1=Z. The order-based cover so

defined corresponds to a fragmentation tree for the lattice,
as stated by the following theorem.

Theorem 4.3: The order-based cover T of a lattice (F,º)
is a fragmentation tree for (F,º) with root F>.

A straightforward solution to Problem 3.1 consists in
visiting the fragmentation tree T built over the set Af of
attributes to be fragmented. This solution, while ensuring a
non-redundant evaluation of fragmentations, remains expo-
nential in the number of attributes. While this may not be
an issue for small schemas, it may make the algorithm not
applicable for complex schemas. We then propose a heuristic
algorithm working in polynomial time.

4.3. Heuristic Search

Figure 6 shows our heuristic algorithm for computing a
minimal fragmentation. The algorithm takes as input the
set Af of attributes to be fragmented, the set Cf of well
defined non-singleton constraints, the set Q of queries along
with their frequencies, two parameters d and ps limiting the
fragmentations computed by the algorithm, and returns as
output a locally minimal fragmentation Min.

Basically, the algorithm performs a complete visit on
subtrees of depth d, covering only a subset of the vertices in
the lattice, as shown in Figure 7. The fragmentation lattice



INPUT
Af = {a1, . . . , an} /* attributes to be fragmented */
Cf = {c1, . . . , cm} /* well defined non-singleton constraints */
Q = {Q1, . . . , Qq} /* queries in the system */
freq(Q1),. . .,freq(Qq) /* relative frequencies of queries */
d /* depth of the subtree completely explored */
ps /* number of subtrees explored at each recursive call */
OUTPUT
Min /* resulting fragmentation */

MAIN
for each ai∈Af do F>i :={ai} /* root of the search tree F> */
marker[F>] := 1 /* next fragment to be merged */
Min := F> /* current minimal fragmentation */
MinCost := Cost(Q,Min)
nextqueue := NULL /* priority queue of promising solutions */
currentqueue := NULL /* queue containing the best ps solutions */
/* compute the best ps solutions within d levels from F> */
insert(nextqueue,〈Min,MinCost〉)
while nextqueue 6=NULL do

i := 1
while (i≤ps)AND(nextqueue 6=NULL) do

i := i+1
enqueue(currentqueue,extractmin(nextqueue))

nextqueue := NULL
while currentqueue 6=NULL do
F := dequeue(currentqueue)
marker[F ] := 1
Bsm(F ,d)

BSM(Fp,dist) /* Bounded Search Min */
localmin := true /* minimal safe fragmentation */
for i=marker[Fp]. . . (|Fp|-1) do

for j:=(i+1). . . |Fp| do
if F p

i .last<AF p
j .first then /* F p

i fully precedes F p
j */

for l=1. . . |Fp| do
case:

(l<j AND l 6=i): F c
l := F p

l
(l>j): F c

l−1 := F p
l

(l=i): F c
l := F p

i F p
j

marker[Fc] := i
if SatCon(F c

i ) then
localmin := false
if dist= 1 then insert(nextqueue,〈Fc,Cost(Q,Fc)〉)
else Bsm(Fc,dist−1) /* recursive call */

if localmin then
cost := Cost(Q,Fp)
if cost<MinCost then

MinCost := cost
Min := Fp

SATCON(F)
for each c∈Cf do if c⊆F then return(false)
return(true)

Figure 6. Heuristic search algorithm

is then logically partitioned into
⌈

n
d

⌉
bands, where n is the

cardinality of Af , each containing d levels of vertices. The
first subtree of depth d is built considering as root node the
top element F> of the lattice. At level i·d the algorithm
starts ps visits, building a subtree rooted at each of the ps
best solutions found at such a level. These visits artificially
stop at level (i+1)·d , where the best ps solutions are chosen
as the root for the next in-depth visits of the solution space.
To implement this strategy, the algorithm uses two queues:
currentqueue, containing the best ps fragmentations at level
(i−1)·d that represent the roots of the subtrees to be visited;
and nextqueue, containing, in increasing cost order, the safe
fragmentations at level i·d computed by the visits of the
subtrees rooted at the solutions in currentqueue.

In addition, the algorithm uses variables: marker[F],
representing the position of the marker within fragmentation

heuristic search
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d


2d


3d
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Figure 7. Depiction of the search spaces

F ; Min, representing the current minimal fragmentation;
MinCost, representing the cost of Min.

The algorithm first initializes marker [>] to 1, Min to F>,
MinCost to the cost of F>, currentqueue and nextqueue
to NULL, and inserts Min into nextqueue. At each iteration
of the outermost while loop, the algorithm copies the
first ps solutions in nextqueue into currentqueue, and re-
initializes nextqueue to NULL. For each F in currentqueue,
the algorithm moves the marker of F to the first fragment
and calls procedure Bsm (Bounded Search Min) on F .
The re-initialization of the marker implies that, for the root
fragmentation F of each subtree, all the fragmentations that
represent a child of F in the lattice are re-evaluated. We note
that this strategy could compute more than once the same
fragmentation. However, the maximum number of times
that a fragmentation can be generated is ps. The algorithm
terminates when, at the end of an iteration of the outermost
while loop, variable nextqueue is NULL.

Procedure Bsm receives as input a fragmentation Fp and
parameter dist and iteratively computes the children of Fp

according to Definition 4.4. For each Fc, child of Fp, the
procedure verifies whether Fc satisfies all the constraints
(i.e., function SatCon returns true). If Fc satisfies the
constraints and dist is equal to 1, then Fc is one of the
solutions at level i·d and is inserted in nextqueue. Otherwise,
if Fc is a safe fragmentation and dist is not equal to 1,
procedure Bsm is recursively called on fragmentation Fc

and distance dist-1. Note that for efficiency reasons, the
procedure exploits the monotonicity of the cost function
(Theorem 4.2) and computes the cost of fragmentation Fp

only if Fp does not have safe children. In this case, if
Cost(Q,Fp) is less than the current minimal cost MinCost,
Min is set to Fp and MinCost to Cost(Q,Fp). When all
the recursive calls to Bsm terminate, nextqueue contains the
safe fragmentations at level i·d , which will be the roots of
subtrees visited in the next iteration of the outermost while
loop of the algorithm.

The computational time of the proposed heuristic is
O(ps

d · n2d+2 · |Cf |), since the number of partitions in the
fragmentation tree (and therefore of iterations of the while
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Figure 8. An execution of the heuristic algorithm
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Figure 9. Summary of the experimental results

loop) is O(n
d ), in each partition the number of subtrees vis-

ited (i.e., the number of times Bsm is called) is O(ps), and
for each partition the heuristic visits O(n2d) fragmentations,
each of which contains n attributes and is compared with
all the constraints in Cf .

Example 4.1: Figure 8 illustrates the execution, step by
step, of function Bsm applied to the example introduced
in Section 2, assuming d = 1 and ps = 2. The columns
of the table in Figure 8(a) represent the call to Bsm with
its parameter Fp; the fragments F p

i and F p
j merged; the

resulting fragmentation Fc; the value of SatCon on F c
i ;

the possible recursive call to Bsm(Fc,dist); the cost of
Fp, when computed; the updates to Min; and nextqueue.
Figure 8(b) illustrates the portion of the fragmentation
tree visited by the algorithm. At the beginning variable
Min is initialized to [N|O|S|Z], which is the fragmenta-
tion representing the root of the tree, the cost MinCost is
initialized to 20, and nextqueue is initially empty. First,
function Bsm is called on [N|O|S|Z], with dist= 1. Since
dist is 1, the fragmentations generated from [N|O|S|Z] and
satisfying constraints do not cause a recursive call to Bsm,
but they are inserted in nextqueue after the evaluation of their
cost. Then, Bsm is called on the first two fragmentations
extracted from nextqueue, that is, [N|O|SZ] and [N|OZ|S].
The final fragmentation computed by the heuristic algorithm
is [N|O|SZ], which has cost 5 and is represented by the

relations in Figure 2.

5. Experimental results

We implemented our algorithm as well as a complete
search algorithm for solving Problem 3.1 and compared
their results and performances. We considered a health
management context and the following configuration: a rela-
tional schema of 19 attributes, 12 confidentiality constraints,
and 14 queries. The experiments start with a configuration
composed of 2 attributes and progressively adds an attribute
to the schema. At every step, the experiments consider
all and only the constraints and queries that refer to the
attributes included in the schema up to that point.

The results of the experiments in terms of query cost are
represented in Figures 9(a)(b). Figure 9(a) compares the cost
of the solution obtained by a complete search algorithm with
the cost of the solution produced by the algorithm in Figure 6
in two configurations: (d = 1, ps = 1) and (d = 3, ps =
1). The graph shows that even the simplest configuration
(d = 1, ps = 1) guarantees good-quality fragmentations.
Figure 9(b) shows the cost of the solutions produced by
the heuristic with d = 1 and varying ps (i.e., 1, 3, and
5). It is sufficient to use ps = 5 to obtain near-optimum
fragmentations.

Figure 9(c) presents the time required for a complete
search over the lattice and for our heuristic and shows



that, as expected, the complete search algorithm becomes
soon unfeasible (a configuration with 15 attributes requires
more than 30 minutes). On the other hand, the time re-
quired by the heuristics increases exponentially with the
increase in d and linearly with the increase in ps, always
showing a limited time for configuration (d=1, ps=1). It is
therefore possible to apply a dynamic approach in solving
Problem 3.1, which starts with the most efficient heuristic
(d=1, ps=1) and progressively increases d according to
the available resources. Parameter ps becomes particularly
interesting for the implementation of the heuristics on a
multi-core architecture, where each core can manage the
exploration of one of the alternatives. Overall, the quality
of the solutions produced by the heuristic algorithm shows
that, even if the problem is computationally hard, it can be
managed in real systems.

6. Related work

The outsourced data paradigm has been widely stud-
ied [3], [6], [10]. All these works are based on the assump-
tion that data are entirely encrypted and aim at designing
techniques for efficient query evaluation. In [1] the authors
first introduce a technique for storing plaintext data, while
enforcing privacy constraints. Data are split over two non-
communicating servers and resorts to encryption any time
two fragments are not sufficient for enforcing the constraints.
In [4] the authors overcome the assumption that the servers
storing data cannot communicate with each other and pro-
pose a model that splits the data over different fragments.
The main difference between the work in [4] and the work
proposed in this paper is that we take into consideration
query evaluation cost during the fragmentation process and
address the problem of computing a fragmentation that
minimizes such a query cost.

The problem of computing a vertical fragmentation that
maximizes query efficiency has been addressed in classical
distributed databases (e.g., [8]), without taking into account
confidentiality constraints. Therefore, these solutions are not
applicable to our problem.

Other related proposals can be found in [2], [5], [7] that
share with our problem the common goal of enforcing con-
fidentiality constraints on data. However, they are concerned
with retrieving a data classification (according to a multilevel
mandatory policy) that ensures sensitive information is not
disclosed: the consideration of fragmentation and encryption
makes the problem completely different.

7. Conclusions

Future information systems are going to show a continu-
ous increase in the level of integration among heterogeneous
sources, accessibility from outside actors, and exposure to
adversarial behaviors. In this scenario, it is crucial to develop

solutions for ensuring that information is properly protected.
The formalization of confidentiality constraints, together
with the design of an approach for its integration within
a database-centered information processing environment,
enables the actual enforcement of different privacy require-
ments that may need to be respected in data storage and
dissemination. It therefore promises to become a powerful
addition to the collection of tools of the security designer.
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