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Abstract

We present a simple, yet powerful, approach for the spec-
ification and enforcement of authorizations regulating data
release among data holders collaborating in a distributed
computation, to ensure that query processing discloses only
data whose release has been explicitly authorized. Data
disclosure is captured by means of profiles, associated with
each data computation, that describe the information car-
ried by the result. We also present an algorithm that, given
a query plan, determines whether it can be safely executed
and produces a safe execution strategy. The main advan-
tage of our approach is its simplicity that, without impact-
ing expressiveness, makes it nicely interoperable with cur-
rent solutions for collaborative computations in distributed
database systems.

1. Introduction

More and more emerging scenarios require different par-
ties, each withholding large amounts of independently man-
aged information, to cooperate with other parties in a larger
distributed system to the aim of sharing information and
perform distributed computations. Such scenarios range
from traditional distributed database systems, where a cen-
trally planned database design is then distributed to different
locations; to federated systems, where independently devel-
oped databases are merged together; to dynamic coalitions
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and virtual communities, where independent parties may
need to selectively share part of their knowledge towards
the completion of common goals. Regardless of the spe-
cific scenario, a common point of such a merging and shar-
ing process is that it is selective: if on the one hand there
is a need to share some data and cooperate, there is on the
other hand an equally strong need to protect those data that,
for various reasons, should not be disclosed.

The problem calls for a solution that must be expressive to
capture the different data protection needs of the cooper-
ating parties as well as simple and coherent with current
mechanisms for the management of distributed computa-
tions.To this aim and for the sake of concreteness, in this
paper we address the problem with specific consideration to
distributed database systems. This must not be considered
a limitation as relational databases are the core of any Web
service.

We consider a scenario where relations are distributed
at different servers, query execution may require cooper-
ation and data are exchanged among the different servers
involved in the query. Each server is responsible for the
definition of the access policy on its resources. We propose
an authorization model to regulate the view that each server
can have on the data and ensure that query computation ex-
poses to each server only data that the server can view. In
our approach, authorizations regulate not only the data on
which parties have explicit visibility, but also the visibil-
ity of possible associations such data convey. Our simple
authorization form essentially corresponds to generic view
patterns thus nicely meeting both expressiveness and sim-
plicity requirements. A novel aspect of the model is the
definition of distinct access profiles for the users in the sys-
tem, with explicit support for a cooperative management of
queries. This is an important feature in distributed settings,
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Figure 1. Schema of a distributed system

where the minimization of data exchanges and the execu-
tion of steps of the queries in locations where it can be less
costly, is a crucial factor in the identification of an execution
strategy characterized by good performance.

2. Preliminary concepts

We consider a distributed system composed of different
servers, storing different relations. Each relation is charac-
terized as R(Aq, ..., A,), where R is the name of the rela-
tionand A4, ..., A, are its attributes. At the instance level,
arelation is a set of tuples, where each tuple associates with
each attribute in the relation a value in the attribute’s do-
main. The primary key of a relation is the attribute, or set
of attributes, that uniquely identifies each tuple. For the
sake of simplicity, we assume all relations to have distinct
names and all attributes in the different relations to have
distinct names. While simplifying the notation, this as-
sumption does not limit in any way our approach as rela-
tions/attributes with the same name can be made distinct by
using the usual dot notation (server.relation.attribute).

A fundamental operation in the relational model is the
Jjoin (<) between relations. A join combines tuples belong-
ing to two different relations based one specified conditions.
We consider equi-joins, that is, joins whose conditions are
conjunctions of expressions of the form A;=A,., where A; is
an attribute of the relation appearing as left operand and A,
an attribute of the relation appearing as right operand. In the
following, we denote a conjunction of equi-join conditions
simply as a pair (J;, J,.), where J; (J,., resp.) is the list of
attributes of the left (right resp.) operand. Different join op-
erations can be used to combine tuples belonging to more
than two relations. The following definition introduces a
Jjoin path as a sequence of equi-join conditions.

Definition 2.1 (Join path) Given a set of relations
Ry,...,Rn+1 and a sequence of mn join operations
on them, we define a join path as a set of pairs
(JiysIry)s ooy (1, I, ), where (Jy,, ;) are the equi-join
conditions of the i-th join.
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Figure 2. An example of query tree plan

Example 2.1 Figure 1 represents a distributed system
managing medical data. The system is composed
of four relations each stored at a different server:
Insurance stored at server Sy; Hospital stored
at server Sp; Nat_registry stored at server Sy,
and Disease_list, stored at server Sp. Under-
lined attributes denote primary keys, while lines rep-
resent possible joins.  An example of join path is
{(Holder,Patient), (Disease,Illness)}, combining tuples of
relations Insurance, Hospital, and Disease_list
to retrieve the insurance plan of patients using a given treat-
ment.

We consider simple select-from-where queries of the
form: “SELECT A FROM Joined relations WHERE C”,
corresponding to algebra expression 74 (occ(R1 ™yc,
... Xyo, Rny1)), where A is a set of attributes, C' is the
selection conditions, and R; ¢, ... Xyco, Rn41 are
the joins in the FROM clause. Each query execution can be
represented as a binary tree (called query tree plan) where
leaves correspond to the physical relations accessed by the
query (appearing in the FROM clause), each non-leaf node is
a relational operator receiving in input the result produced
by its children and producing a relation as output, and the
root corresponds to the last operation and returns the result
of the query evaluation. To simplify and without loss of
generality, we assume the query plan to satisfy the usual
minimization criteria. In particular, projections are “pushed
down” the tree to eliminate unnecessary attributes as soon
as possible. While usually adopted for efficiency, this as-
sumption is also important for security purposes, as it dis-
closes only the attributes needed for the computation.

Example 2.2 Consider query

SELECT Patient, Physician, Plan, HealthAid
FROM Insurance JOIN Nat_registry
ON Holder=Citizen JOIN Hospital ON Citizen=Patient

corresponding  to  relational
T Patient, Physician,Plan, HealthAid

X Holder= Citizen Nat_registry

algebra  expression
(Insurance

X Citizen= Patient



[ Attributes Join Path Server |
1 | {Holder, Plan} - St
2 | {Holder, Plan, Patient, Physician} {(Holder,Patient) } St
3 | {Holder, Plan, Treatment} {(Holder,Patient), (Disease,Illness) } St
4 | {Patient, Disease, Physician} _ SH
5 | {Patient, Disease, Physician, Holder, Plan} {(Patient,Holder) } Sk
6 | {Patient, Disease, Physician, Citizen, HealthAid} {(Patient,Citizen) } SH
7 | {Patient, Disease, Physician, Holder, Plan, Citizen, HealthAid} ~ {(Patient,Citizen), (Citizen,Holder) } SH
8 | {Citizen, HealthAid} - SN
9 | {Holder, Plan} _ SN
10 | {Patient, Disease} _ SN
11 | {Citizen, HealthAid, Patient, Disease} {(Citizen,Patient) } SN
12 | {Citizen, HealthAid, Holder, Plan} {{Citizen,Holder) } SN
13 | {Patient, Disease, Holder, Plan} {(Patient,Holder) } SN
14 | {Citizen, HealthAid, Patient, Disease, Holder, Plan} {(Citizen,Patient), (Citizen,Holder) } SN

15 [ {Ilness, Treatment} - Sp |

Figure 3. Examples of authorizations for the distributed system in Figure 1

Hospital). Figure 2 illustrates a tree representing
the query execution, where the projection on Patient and
Physician of relation Hospital has been pushed-down.

In the following, given an operation involving a relation
stored at a server, we will use the term operand to refer
independently to the relation or to the server storing it.

3. Security model

We first present our simple, while expressive, authoriza-
tions, regulating how data can be released to each server.
We then introduce the concept of relation profile that char-
acterizes the information content of a relation.

3.1. Authorizations

Consistently with standard security practice, we assume
a “closed” policy, where data can be made visible only to
parties explicitly authorized for that.!

Definition 3.1 (Authorization) An authorization is a rule
of the form [Attributes, Join Path]—Server where: 1) At-
tributes is a set of attributes belonging to one or more re-
lations. 2) Join Path is a join path including (at least) all
relations with attributes in Attributes, i.e., whose release
is authorized; the join path can be empty when all the at-
tributes in Attributes belong to the same relation. 3) Server
is a server in the distributed system.

The semantics is that Server can be released (i.e., is au-
thorized to view) the set of Attributes for which the join

"While we assume a closed policy, we note that our approach can be
adapted to an “open policy” scenario, where data are visible by default and
negative rules specify restrictions on the visibility that parties may have on
the data [17].

operations of the involved relations satisfy the conditions
given in the Join Path.

Note how the simple form of authorizations above, with
the specification of the join path as a separate element,
proves quite expressive. In particular, the join path may also
include relations that do not have any attribute appearing in
the set Attributes. This may be due to either:

e connectivity constraints, where these relations are
needed to build a correct association among the at-
tributes of other relations (i.e., the relations are in the
join path). For instance, in authorization 3 in Figure 3
Hospital appears in the join path to establish the
association between insurance holders and their treat-
ments, but none of its attributes are released. Note
how the authorization allows the Insurance company
(server S7) to view the treatment of its subscribers
without need of knowing their illness.

e instance-based restrictions, where the relations are
needed to restrict the values of attributes to be released
to only those values appearing in tuples that can be as-
sociated with such relations. For instance, authoriza-
tion 5 in Figure 3 allows server Sy to view the insur-
ance plans of all the patients of the Hospital (i.e., tuples
in Insurance satisfying Patient=Holder condition)
but not of those insurance holders who are not treated
at the Hospital. Note how instance-based restrictions
can also be used to support situations where some in-
formation can be released only if explicit input is re-
quested (the input is viewed in this case as a relation to
be joined). For instance, providing the patients’ SSN,
the hospital can retrieve the plan.

It is important to note that the presence of a join path in
an authorization, implies the release of fewer tuples (only
those for which the conditions in the join path are satisfied),
but it does not imply the release of less information. In-
deed, releasing a tuple implicitly gives information on the



fact that the tuple satisfies the join path, i.e., that its values
have an association with another relation (possibly not re-
leased). For instance, authorization 2 in Figure 3 gives Sy
not only the values of attribute Physician for its subscribers,
but also the additional information about the fact that the
subscriber has been hospitalized. We will come back to this
observation when discussing access control evaluation.

3.2. Profiles and authorized views

Authorizations restrict the data (view) that can be re-
leased to each server. To determine whether a release should
be authorized or not, we first need to capture the information
content of a relation, either base or computed by a query. To
this purpose, we introduce the concept of relation profile.

Definition 3.2 (Relation profile) Given a relation R, the
relation profile of R is a triple [R™, R™, R°|, where: R™
is the set of attributes in R (i.e., R’s schema); R™ is the,
possibly empty, join path used in the definition/construction
of R; R? is a, possibly empty, set of attributes involved in
selection conditions in the definition/construction of R.

According to the definition above, the relation profile
of a base relation R(A1,...,4,) is [{41,...,An}, 0,01
Also, according to the semantics of the relational opera-
tors, the profile resulting from a relational operation, sum-
marized in Figure 4, is as follows.

e Projection (m). It returns a subset of the attributes of
the operand. Hence, R™ and R of the resulting rela-
tion R are the same as the ones of the operand, while
R™ contains only those attributes being projected.

e Selection (o). It returns a subset of the tuples of the
operand. Hence, R™ and R™ of the resulting relation
R are the same as the ones of the operand, while R
needs to include also the attributes appearing in the se-
lection condition.

e Join (). It returns a relation that contains the associa-
tion of the tuples of the operands, thus capturing the in-
formation in both operands as well as the information
on their association (conditions in the join). Hence,
R? and R™ of the resulting relation R are the union
of those of the operands, while R™ is the union of the
join paths of the operands and the one of the operation.

According to the semantics of authorizations and of pro-
files, the visibility on the different relations by a server is
regulated as follows.

Definition 3.3 (Authorized view) Given a set A of autho-
rizations, a relation R with profile [R™, R™, R’], and

2For the sake of simplicity, with a slight abuse of notation, in the table
we write o x (R) as a short hand for any expression o o, dition (R ), where
X is the set of attributes of R involved in condition.

Profile

Operation || R™ ] R™ | R ]
R = nx(R) X R Ry
R =ox(R) RT R R7UX
R =Rp<;R, || RfURT | RFURXU; | RYURY

Figure 4. Profiles resulting from operations

a server S, we say that S is authorized to view R iff 3
[A, J]—S € A such that both the following conditions hold:
1) RTUR? C A, and?2) R™ = J.

According to the definition above, a relation can be re-
leased to a server only if there is an authorization permit-
ting the release of (at least) all the attributes, either ex-
plicitly contained in the relation or appearing in the se-
lection condition in its definition, and which has exactly
the same join path as the relation. The reason for the
subset in the first condition is that clearly an authoriza-
tion to view a superset of attributes implies the authoriza-
tion to view a subset of them. Note that a similar im-
plication (an authorization containing a join path autho-
rizing all relations that include the path) cannot hold. In
fact, while decreasing the set of tuples belonging to the re-
sult, any additional join condition adds information on the
fact that the tuples join with (i.e., have values appearing
in) other tuples of relations whose content should not be
released. For instance, consider the relation obtained as
“SELECT lIllness, Treatment FROM Disease_list JOIN
Hospital ON lllness=Disease”, characterized by profile
[{lllness,Treatment},{ (Iliness=Disease) },]. Sp cannot ac-
cess such a relation because its authorization for the at-
tributes (authorization 15) does not have the join path that
appears in the relation profile. While including only some
of the tuples of the Disease_list relation, the query re-
sult bears also the information of which illnesses have a cor-
respondence in the Hospital relation, which Sp is not
authorized to view.

While we check each data release with respect to indi-
vidual authorizations, we note that a server should be au-
thorized to view some data in the case where, even if not
explicitly authorized for the specific data view, it holds the
authorizations for all the underlying relations and therefore
would be able to independently compute the view. For in-
stance, with reference to the example just mentioned, sup-
pose Sp has, besides authorization 15 allowing it to view re-
lation Disease_l1ist, also the authorization to view rela-
tion Hospital. The two authorizations clearly imply the
authorization for the query above, which represents a view
on them. We assume authorizations are closed with respect
to such derivations by means of a “chase” procedure [2] that
derives all the authorizations implied directly or indirectly
by those explicitly specified. For space reasons, we do not
further discuss such a process.
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Figure 5. Execution of operations and required views with corresponding profiles

4. Safe query planning

To determine whether and how an operation can be exe-
cuted, we need first to determine the data releases that the
execution entails, so that only executions implying autho-
rized releases are performed. Since we can assume each
server to be authorized to view the relation it holds, each
unary operation (projection and selection) can be executed
by the server itself, while a join operation can be executed
if all the data communications correspond to authorized re-
leases. Figure 5 summarizes the operations and data ex-
changes needed to perform a relational operation reporting,
for every data communication, the profile of the relation
being communicated (and hence the information exposure
implied by it); data access by a server on its own relation is
implicit. For each operation/communication we also show,
before the ““:”, the server executing it. For join operations,
we first note that a join operation R;>y, R,, where R; and
R, represent the left and right input relations, respectively,
can be executed either as a regular join or a semi-join. We
call master the server in charge of the join computation and
slave the server that cooperates with the master during the
computation. We then distinguish four different cases re-
sulting from whether the join is executed as a regular join
or as a semi-join and from which operand serves as master
(slave, respectively). The assignment is specified as a pair,
where the first element is the operand that serves as master
and the second the operand that serves as slave. We discuss
the cases where the left operand serves as master (denoted
[S;,NULL] for the regular join and [$,S,.] for the semi-join),
with the note that the cases where the right operand serves
as master ([S,,NULL] and [S,.,S;]) are symmetric.

e [S;,NULL]: in the regular join processed by S;, server

S, sends its relation to §;, and §; computes the join.
For execution, S; needs to be authorized to view R,.,
which has profile [RT,R>, R7].

o [S5:,5,-]: the semi-join requires a longer sequence of
five steps. 1) S; computes the projection R of the
attributes in its relation R; participating in the join. 2)
S; sends Ry, to S,; this operation entails a data release
characterized by the profile of R, which (according
to Definition 3.2) is [J;,R;*,R]]. 3) S, locally com-
putes I, as the join between R, and its relation R,..
4) S, sends Ry, to S;; this operation entails a data
release characterized by the profile of R;,,, namely
[JJUR] ,RPURUJ;, R7URY]. 5) S; computes the
natural join between R ;,, and its own relation R;.

Semi-joins are usually more efficient than regular joins
as they minimize communication, which also benefits secu-
rity: the slave server needs only to send those tuples that
participate in the join, instead of its complete relation.

For instance, consider the query in Example 2.2. If the
join at node no in the tree is executed as a regular join, Sy
sends the whole Nat_registry relation to Sy (or, vice
versa, S; sends the whole Insurance relation to Sy). If
the join is executed as a semi-join where Sy acts as a master,
Sr sends to S the projection of Insurance on Holder.
S then sends back to S; Nat_registry joined with the
list of values of Holder received from S;.

We assign to each node of a query tree plan a server or
a pair of servers (called executor) responsible for the exe-
cution of the algebraic operation represented by the node.
To formally capture this intuitive idea, the definition of the
executor assignment function A is introduced as follows.

Definition 4.1 (Executor assignment) Given a query tree
plan T(N,E), an executor assignment function Ap : N —
S x {SUNULL} assigns to each node a pair of servers such
that:
1. each leaf node (corresponding to a base relation R)
is assigned the pair [S,NULL], where S is the server
where R is stored;



2. each non-leaf node n, corresponding to unary oper-
ation op on operands R; (left child) at server S, is
assigned a pair [S;,NULL].

3. each non-leaf node n, corresponding to a join on
operand Ry (left child) at server S; and R, (right child)
at server Sy, is assigned a pair [master,slave] such that
master € {S;,S,}, slave € {S;,S,,NULL}, and mas-
ter=slave.

Given a query plan, our algorithm determines an assign-
ment of the computation steps to different servers, in such a
way that the execution given by the assignment entails only
views allowed by the authorizations.

Definition 4.2 (Safe assignment) Given a query tree plan
T(N,E) and an executor assignment function A\, Ar(n) is
said to be safe if one of the following conditions hold: 1)
n is a leaf node; 2) n corresponds to a unary operation;
3) n corresponds to a join and all the views derived by the
assignment are authorized.

A is said to be safe iff Vin € N, Ap(n) is safe.

A query plan is then feasible iff there exists a safe as-
signment for it.

Definition 4.3 (Feasible query plan) A query plan T(N,E)
is said to be feasible iff there exists an executor assignment
function A\ on T such that \r is safe.

We can now state the problem as follows.

Problem 4.1 Given a query plan T(N,E) and a set of au-
thorization rules A: 1) determine if T is feasible and 2)
retrieve a safe assignment \ for it.

In the next section we illustrate an algorithm for the so-
lution of such a problem.

5. Algorithm

To minimize the cost of computation, we follow two ba-
sic principles in the determination of a safe assignment: i)
we favor semi-joins (in contrast to regular joins); ii) if more
servers are candidate to safely execute a join operation, we
prefer the server that is involved in a higher number of join
operations. To this aim, we associate with each candidate
server a counter that keeps track of the number of join op-
erations for which the server is a candidate.

The algorithm receives in input the set of authorizations
and the query plan T'(N, E), where each leaf node (base
relation R) is already assigned executor [server,NULL],
where server is the server storing the relation. Each node
of the tree is associated with a set of variables: n.left
and n.right are the left and right children; n.operator and

/% Input: T(N,E), A; Output: A7 (n) as n.executor */

MAIN
Find_candidates(root(7"))
Assign_ex(root(7T), NULL)
return(7)

FIND_CANDIDATES(n)
[ := n.left; r := n.right
if / #NULL then Find_candidates(/)
if » #NULL then Find_candidates(r)
case n.operator of
T N o= nparameter; n.X = 1. n.o = l.o
for c in [.candidates do Add [c.server, left, c.count] to n.candidates
o n.w= Ly na =L n.o = l.o U n.parameter
for c in [.candidates do Add [c.server, left, c.count] to n.candidates
>4 nor =L Urar na = 0L U . U nparameter; n.o = l.o U r.o
right_slave_view := [Jy, l.0<, l.0]
left_slave_view := [Jr, .}, 7.0]
right_master_view := [l.7t U Jp, [.0< U 7.0 U n.parameter, l.oc U r.0]
left_master_view = [J; U r.7, [.>) U 7.0 U n.parameter, .o U r.0]
right_full_view = [l.7, 1.}, [.0]
left_full_view := [r.m, r.I}, 7.0]
/* check case [S,,NULL] and [S,,S;] */
n.leftslave := NULL
¢ := GetFirst(l.candidates)
while (n.leftslave=NULL)AND(c#NULL) do
if CanView(left_slave_view, c.server) then n.leftslave := ¢
¢ := c.next
for ¢ in r.candidates do
if n.leftslaveANULL then
if CanView(right_master_view, c.server) then
Add [c.server, right, c.count+1] to n.candidates
else if CanView(right_full_view, c.server) then
Add [c.server, right, c.count+1] to n.candidates
/* check case [S;,NULL] and [S;,S] */
n.rightslave := NULL
¢ := GetFirst(r.candidates)
while (n.rightslave=NULL)AND(c#NULL) do
if CanView(right_slave_view, c.server) then n.rightslave := ¢
c = c.next
for c in l.candidates do
if n.rightslaveANULL then
if CanView(left_master_view, c.server) then
Add [c.server, left, c.count+1] to n.candidates
else if CanView(left_full_view, c.server) then
Add [c.server, left, c.count+1] to n.candidates
if n.candidates=NULL then exit(n) /* node cannot be executed */

CAN_VIEW (profile,S)
for each [A, J] €view(S) do

if ((profile. mUprofile.c)C A) AND (profile.r<i=J) then return(TRUE)
return(FALSE)

ASSIGN_EX(n, from_parent)
if from_parentNULL then chosen := Search(from_parent, n.candidates)
else chosen := GetFirst(n.candidates)
n.executor.master ‘= chosen.server
case chosen.fromchild of
left: n.executor.slave = n.rightslave  /* case [S;,NULL], [S;,S»] */
if n.leftANULL then Assign_ex(n.left, n.executor.master)
if n.rightANULL then Assign_ex(n.right, n.executor.slave)
right: n.executor.slave = n.leftslave  /* case [S»,NULL], [Sr,S;] */
if n.leftANULL then Assign_ex(n.left, n.executor.slave)
if n.rightANULL then Assign_ex(n.right, n.executor.master)

Figure 6. Pseudo-code of the algorithm



n.parameter are the operation and its parameters; n.leftslave
and n.rightslave are the left and right slaves; n.candidates is
a list of records of the form [server fromchild,counter] stat-
ing candidate servers, the child (left, right) it comes from,
and the number of joins for which the server is candidate in
the subtree; and n.executor.master and n.executor.slave are
the executor assignment; [n.7,n.<,n.0] is the profile of the
node.

The algorithm performs two traversals of the tree query
plan. The first traversal (procedure Find_candidates) vis-
its the tree in post-order. At each node, the profile of the
node is computed (as in Figure 4) based on the profile of
the children and of the operation associated with the node.
Also, the set of possible candidate assignments for the node
is determined based on the set of possible candidates for its
children as follows. If the node is a unary operation, the
candidates for the node are all the candidates for its child.
If the node is a join operation, procedure Find_candidates
calls function CanView whenever it is necessary to verify
if a particular server can act as master, slave, or can calcu-
late a regular join. CanView takes as input the profile of
the views that should be made visible in the execution of an
operation and a server; it returns true if the result is autho-
rized. The algorithm considers candidates of the left child
in decreasing order of join counter (GetFirst) and stops at
the first candidate found that can serve as left slave (insert-
ing it into local variable leftslave). The algorithm proceeds
examining all the candidates of the right child to determine
if they can work as master for a semi-join (if a left slave
was found) or as a regular join (if no left slave was found).
Note that while we need to determine all servers that can
act as master, as we need to consider all possible candi-
dates for propagating them upwards in the tree, it is suffi-
cient to determine one slave (a slave is not propagated up-
ward in the tree). For each of such server candidates a triple
[server,right,counter] is added to the candidates list, where
counter is the counter that was associated with the server in
the right child of the node incremented by one (as candidate
also for the join of the father, the server would execute one
additional join compared to the number it would have exe-
cuted at the child level). Then, the algorithm proceeds sym-
metrically to determine whether there is a candidate from
the right child (considering the candidates in decreasing or-
der of counter) that can work as slave, and then determining
all the left candidates that can work as master, adding them
to the set of candidates. At the end of this process, list can-
didates contains all the candidates coming from either the
left or right child that can execute the join in any of the ex-
ecution modes of Figure 5. If no candidate was found, the
algorithm exits returning the node at which the process was
interrupted (i.e., for which no safe assignment exists) sig-
naling that the tree is not feasible.’

3We note that a safe assignment could exist in case of a third party

Find_candidates Assign_ex

Node|Candidates [Slave| (Node|\7(n) Calls to Assign_ex

ng |([S7,-,0]* no ([Sg,NULL] |(n1,SH)

ns |[Sn, -, 0] n1 |[Sg,Sn]  |(n2,Sn) (03, SH)
na |[Sn,right, 1] na2 |[Sn, NULL] |(n4, NULL) (ns5, Sn)
ne |[SH, -, 0]* ng |[S7, NULL]*

n3 |[Sy, left, 0] ns |[Sn, NULL]*

n1 |[Sq,right, 1]|Sn n3 ([Sg, NULL] [(ne, Sg)

no |[Sy, left, 1] ne |[Sg, NULL]*

Figure 7. Algorithm execution

If Find_candidates completes successfully, the algo-
rithm proceeds with the second traversal of the query tree
plan. The second traversal (procedure Assign_ex) recur-
sively visits the tree in pre-order. At the root node, if
more assignments are possible, the candidate server with the
highest join count is chosen. Hence, the chosen candidate is
pushed down to the child from which it was derived in the
post-order traversal. The other child (if existing) is pushed
down the recorded candidate slave. If no slave was recorded
as possible (i.e., rightslavel/leftslave=NULL) a NULL value
is pushed down. At each children, the master executor is
determined as the server pushed down by the parent (if it
is not NULL) or the candidate server with the highest join
count and the process is recursively repeated, until a leaf
node is reached.

Example 5.1 Consider the query plan in Figure 2, and
the set of authorizations in Figure 3. Figure 7 illustrates
the working of procedures Find_candidates and Assign_ex
reporting the nodes in the order they are considered by
them and the candidates/executors determined. Candi-
dates/executors with a “*” are those of the leaf nodes (al-
ready given in input). To illustrate the working, let us look
at some sample calls. Consider call Find_candidates(nz).
Among the candidates of the children (Sy from left child
ng and St from right child ns) only the left child candi-
date Sy survives as candidate for the join, which needs to
be executed as a regular join since the only candidate from
the right child cannot serve as slave. When Assign_ex is
called, the set of candidates at each node is as shown in the
table summarizing the results of Find_candidates. Starting
at the root node, the only possible choice assigns to ng ex-
ecutor [S,NULL], where Sy was recorded as coming from
the left (and only) child n1, to which S is then pushed with
a recursive call. At ny the master is set as Sy and, combin-
ing this with the slave field, the executor is set to [S,SN].
Hence, Sy is further pushed down to the right child (from
where it was taken by Find_candidates) ns, while Sy is
pushed down to the left child no.

acting either as a proxy for one of the two operands or as a coordinator for
them. Due to space restrictions, we omit the discussion on how to integrate
the use of a third party in the query execution.



We conclude this section with a note regarding the in-
tegration of our approach with existing query optimizers.
Optimization of distributed queries often operates in two-
steps [12]. First, the query optimizer identifies a good plan;
second, it assigns operations to the servers in the system.
Our algorithm nicely fits in such a two phase structure.

6. Related work

Previous work is related to classical proposals on the
management of queries in centralized and distributed sys-
tems [3, 5, 6, 12, 14, 18] that describe how efficient query
plans can be obtained, but do not take into account con-
straints on attribute visibility for servers. Also, a significant
amount of research has recently focused on the problem
of processing distributed queries under protection require-
ments [4, 9, 10, 11, 13, 15]. These works are typically based
on the definition of an access pattern associated with each
relation/view that defines how it can be accessed. Here,
the main goal is the identification of the classes of queries
that a given set of access patterns can support; a secondary
goal is the definition of query plans that match the profiles
of the involved relations, while minimizing some cost pa-
rameter (e.g., the number of accesses to data sources [4]).
While our proposal can be considered a natural extension of
the approach normally used to describe database privileges
in a relational schema, access patterns describe authoriza-
tions as special formulas in a logic programming language
for data access. The model we propose is certainly easier
to integrate with the mechanisms and approaches that are
used by current database servers. Also, our model explic-
itly manages a scenario with different independent subjects
who may cooperate in the execution of a query, whereas the
work done on access patterns only considers two actors, the
owner of the data and a single user accessing it. Sovereign
joins [1] are an alternative solution based on a secure copro-
cessor, which is involved in query execution, and exploits
cryptography thus bearing a high computational cost. Other
related work is represented by approaches merging secu-
rity specifications coming from different independent data
sources (e.g., [7, 8]). Such approaches however mostly fo-
cus on the merging of specifications, and possible solving
inconsistencies among them, towards the establishment of a
common security policy for regulating the federated system.

7. Conclusions

Adequate support for the integration of information
sources detained by distinct parties is an important require-
ment for future information systems. A crucial issue in this
respect is the definition of integration mechanisms that cor-
rectly satisfy the commercial and business policies of the
organizations owning the data. To solve this problem, we

propose a new model based on the characterization of ac-
cess privileges for a set of servers on the components of a
relational schema. Compared to other proposals, the model
promises to be more directly applicable to current infras-
tructures and presents a greater compatibility with the basic
features of current DBMSs, which are at the heart of all
modern information systems.
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