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ABSTRACT	  
The quick development and widespread adoption of Internet technologies allows 
servers to make available their services and resources to possibly unknown users 
anywhere any-time. To regulate access to such services in open scenarios, servers 
require users to release information about them through the disclosure of digital 
certificates. Since digital certificates, as well as access control policies may include 
sensitive information, it is necessary to define mechanisms that permit both the client 
and the server to specify privacy preferences to be considered in credential and policy 
disclosure. 

In this chapter, we describe solutions supporting both client privacy preferences, and 
server disclosure policies. We illustrate the desiderata that these solutions should 
satisfy, and describe recent approaches that take client privacy preferences and server 
confidentiality into account in a negotiation process. Finally, we introduce some open 
issues that need further investigation. 
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1. INTRODUCTION	  
The advancements in ICT (Information and Communications Technology) allow users 
to take more and more advantage of the availability of online services (and resources) 
that can be accessed anywhere any-time. In such a scenario, the server providing the 
service and the requesting user may be unknown to each other. As a consequence, 
traditional access control systems [28] based on the preliminary identification and 
authentication of users requesting access to a service cannot be adopted, and are 
usually not suited to open scenarios (e.g., [13],[20],[29]). The solutions proposed to 
allow servers to regulate access to the services they offer, while not requiring users to 
manage a huge number of accounts, rely on attribute-based access control 
mechanisms (e.g., [7],[9],[16],[17],[18],[21],[23],[26],[34]). Policies regulating access 
to services define conditions that the requesting client must satisfy to gain access to the 
service of interest. Upon receiving a request to access a service, the server will not 
return a yes/no reply but it will send to the client the conditions that she must satisfy to 
be authorized to access the service. To prove to the server the possession of the 
attributes required to gain the access, the client releases digital certificates (i.e., 
credentials) signed by a trusted third party, the certification authority, who declares 
under its responsibility that the certificate holder possesses the attributes stated in the 
certificate. Practically, credentials are the digital representation of paper certificates 
(e.g., id card, passport, credit card). The adoption of credentials in access control has 
several advantages. First, credential-based access control enables clients to 
conveniently access Web services, without the need to remember a different 
<username, password> pair for each system with which she wants to interact. Second, 
it offers better protection against adversaries interested in improperly acquiring users 
access privileges. 

The use of credentials to enforce access control restrictions in open environments has 
been widely studied in the last fifteen years. Most attention has however been devoted 
to the server-side of the problem, proposing a number of novel policy languages, for 
specifying access control rules (e.g., [7],[9],[23],[26],[34]); policy engines, for the 
evaluation of access requests and the enforcement of policy restrictions 
(e.g., [21],[23],[24],[34]); and strategies for communicating access conditions to the 
requesting clients, possibly engaging a negotiation protocol 
(e.g., [1],[21],[23],[24],[30],[31],[33],[34]). Since the interacting parties are assumed 
to be unknown to each other, the client may not known which attributes/credentials to 
release to gain access to the service of interest. As a consequence, the server should 
send to the client its policy, which may however be considered sensitive and therefore 
needs to be adequately protected before being disclosed. Most of the current 
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approaches implicitly assume that clients adopt an approach symmetric to the one used 
by servers for regulating access to the sensitive information certified by their 
credentials. Although expressive and powerful, these solutions do not fully support the 
specific protection requirements of the clients. In fact, clients are interested in a 
solution that is expressive and flexible enough to support an intuitive and user-friendly 
definition of the sensitivity/privacy levels that they perceive as characterizing their 
data. These preferences are used to choose which credentials to release when more 
than one subset of credentials satisfy the access control policy defined by the server 
(e.g., to buy a medicine, a patient needs to prove her identity by releasing either her 
identity card or her passport). 

This chapter provides an overview of the privacy issues arising in open environments, 
both from the client and from the server points of view, and illustrates some solutions 
proposed to overcome these problems. The remainder of this chapter is organized as 
follows. Section 2 introduces basic concepts and describes the desiderata of privacy-
aware access control systems operating in open environments. Section 3, Section 4, 
Section 5, and Section 6 illustrate some recent proposals that permit clients to specify 
privacy preferences that are then used to determine which credentials to disclose to 
gain access to a service of interest. Section 7 focuses on the server side of the problem, 
describing approaches that permit to regulate the disclosure of sensitive access control 
policies. Section 8 presents some open issues that still need to be addressed. Finally, 
Section 9 presents our concluding remarks. 

2. BASIC	  CONCEPTS	  AND	  DESIDERATA	  
In this section, we describe the concepts at the basis of the proposals that we will 
describe in the following, and we discuss the desiderata that an attribute-based access 
control system should satisfy to effectively support both client and server privacy 
preferences. 

2.1. 	  Client	  Portfolio	  
The information that a client can provide to a server to gain access to a service are 
organized in a portfolio including both credentials signed by third parties and 
certifying client properties, and declarations stating uncertified properties uttered by 
the client [9]. Each credential 𝑐 in the client portfolio is characterized by: a unique 
identifier 𝑖𝑑(𝑐), an issuer 𝑖𝑠𝑠𝑢𝑒𝑟(𝑐), a set of attributes 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑐), and a 
credential type 𝑡𝑦𝑝𝑒(𝑐). The type of a credential determines the set of attributes it 
certifies. Credential types are traditionally organized in a rooted hierarchy, where 
intermediate nodes represent abstractions defined over specific credential types that 
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correspond to the leaves of the hierarchy [3]. Formally, a hierarchy 𝐻  of credential 
types is a pair (𝑇,≤!"#), where 𝑇  is the set of all credential types and abstractions 
defined over them, and ≤!"#  is a partial order relationship on 𝑇. Given two credential 
types 𝑡! and 𝑡!, 𝑡! ≤!"# 𝑡! if 𝑡! is an abstraction of 𝑡!. For instance, photo_id is an 
abstraction of credential types id_card and passport (i.e., id_card≤!"#photo_id and 
passport≤!"#photo_id). The root of the hierarchy is node *, representing any credential 
type. We note that declarations are usually modeled as a type of credentials, signed by 
the client herself. Figure 1 illustrates an example of a hierarchy of credential types.  

 

 

 

 

 

 

  

 

The hierarchy of credential types is a knowledge shared between the client and the 
server. In fact, while a client knows exactly the different instances of credential types 
composing her portfolio, the server formulates its requests over credential types since 
it cannot be aware of the instances composing the client portfolio. We note that a client 
may possess different credentials of the same type (e.g., she can have more than one 
credit card). 

Depending on the cryptographic protocol used for their generation, credentials can be 
classified as atomic or non-atomic. Atomic credentials are the most common kind of 
credentials used today in distributed systems (e.g., X.509 certificates) and can only be 
released as a whole. As a consequence, even if an atomic credential certifies attributes 
that are not required to gain access to a service, if the client decides to release it, these 
attributes will be disclosed to the server. Non-atomic credentials have recently been 
proposed as a successful approach to limit data disclosure (e.g., U-Prove and 
Idemix [10],[11]). Credentials generated adopting these technologies permit the client 

* 

credential declaration 

id credit_card 

photo_id insurance dialysis 

id_card passport 

Figure 1 An example of hierarchy of credential types 
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to selectively release a subset of the attributes certified by the credential (as well as the 
existence of the credential itself). Note that the release of an attribute (or a set thereof) 
certified by a non-atomic credential entails the disclosure of the existence in the client 
portfolio of the credential itself. Clearly, declarations are non-atomic credentials.  

Attributes within credentials are characterized by a type, a name, and a value (e.g., 
attribute Name of type Name with value Bob), which can either depend only on the 
client or on the specific credential certifying the attribute. In the first case, the attribute 
is credential-independent since its value is the same, independently from the credential 
certifying it (e.g., Name and DoB are credential-independent attributes). In the second 
case, the attribute is credential-dependent since its value depends not only on the 
credential holder, but also on the specific instance of the credential certifying it (e.g., 
attribute type CCNum, representing the credit card number, is a credential-dependent 
attribute since each credit card has a different number). 

𝒊𝒅(𝒄) Atomic 𝒕𝒚𝒑𝒆(𝒄) 𝒂𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆𝒔(𝒄) 
MyIdCard ✓ id_card Name, DoB, City 
MyPassport  passport Name, DoB, Country 
MyVISA ✓ credit_card Name, VISANum, VISALimit 
MyAmEx ✓ credit_card Name, AmExNum, AmExLimit 
MyDialysis  dialysis Name, City 
MyInsurance ✓ insurance Name, Company, Coverage 
MyDecl  declaration Name, DoB, City, Country, VISANum, 

VISALimit, AmExNum, AmExLimit, 
Company, Coverage, e-mail 

Table 1 An example of client portfolio 

For instance, Table 1 illustrates an example of client portfolio composed of four 
atomic and three non-atomic credentials. In the figure, credential-independent 
attributes are in roman, while credential-dependent attributes are in italic. 

2.2. 	  Disclosure	  Policies	  
Attribute-based access control restricts access to server service depending on the 
attributes and credentials that the requesting client discloses to the server. The policy 
regulating access to services is therefore defined over attributes and credentials 
provided by clients. Since the server may not know the requesting client and therefore 
ignore the credential instances in her portfolio, the access control policy is defined 
considering only the hierarchy of credential types, which represents a common 
knowledge to the interacting parties. An access control policy is defined as a Boolean 
formula composed of basic conditions 𝑐𝑜𝑛𝑑 of the form (𝑡𝑒𝑟𝑚!𝑜  𝑡𝑒𝑟𝑚!), where 𝑜 is 
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a predicate operator (e.g., >, <, =), and 𝑡𝑒𝑟𝑚! and 𝑡𝑒𝑟𝑚! are its operands. The 
operands of a basic condition can be either constant values, or (certified or declared) 
attributes represented by terms of the form 𝑐. 𝑎, where 𝑐 is a variable representing a 
credential and 𝑎 is the name of the attribute. For instance, basic condition 
Coverage>10,000 USD requires that the coverage offered by insurance is higher than 
10,000 USD to access the service. The server may also define restrictions on the type 
of credentials that should certify the requested attributes and/or require that a set of 
attributes in the policy are certified by the same credential. As an example, policy 
(𝑡𝑦𝑝𝑒(𝑐)=insurance) ∧ (𝑐.Company≠‘A’) ∧ (𝑐.Coverage>10,000 USD) requires that 
attributes Company and Coverage are certified by the same credential 𝑐, of type 
insurance. 

2.3. 	  Trust	  Negotiation	  
Since clients and servers operating in open environments are assumed to be unknown 
to each other, they interact to the aim of building a trust relationship that permits the 
client to gain access to a service offered by the server. This trust relationship is built 
step by step through the exchange of credentials. Since credentials may certify 
sensitive information, their release is often regulated, like for services, by access 
control policies. Usually, these conditions require the release by the counterpart of 
another credential (or set thereof). As an example, a user agrees to release the 
certificate stating her dialysis condition to a server only if the server proves (through a 
certificate) to be a medical institution or a pharmacy recognized by the Health 
Ministry.  

To gain access to a service, the client and the server must then find a sequence of 
certificates exchange, called strategy, satisfying the access control policies of both 
parties. For instance, with reference to the above example, a successful strategy that 
permits the user to buy the medicine of interest consists of the following steps: i) the 
patient sends her request to the pharmacy; ii) the pharmacy answers with a request for 
a certificate proving that the user has a nephrological disease; iii) the client, in turn, 
asks the pharmacy the certificate proving that it is recognized by the Health Ministry; 
iv) the pharmacy releases to the client the requested certificate; v) the client then 
discloses to the pharmacy her dialysis certificate; vi) finally, the server grants access to 
the service. Different approaches have been proposed in the literature to the aim of 
identifying a successful trust negotiation strategy 
(e.g., [1],[21],[23],[24],[30],[31],[33],[34]) that depends not only on the policies 
defined by the parties and on the credentials at their disposal, but also on their choice 
of disclosure/non-disclosure of their data. As an example, an eager strategy would 
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disclose a credential as soon as the policy regulating its release is satisfied, while a 
more parsimonious strategy permits the release of a credential only if there exists a 
successful strategy that will finally grant the client access to the service. It is 
interesting to note that, given the policies and credentials of the interacting client and 
server, there may exist more than one successful strategy. For instance, with reference 
to the portfolio in Table 1, policy (𝑡𝑦𝑝𝑒(𝑐)=id) ∧ (𝑐.DoB<01/01/1994) can be satisfied 
by the client releasing either credential MyIdCard or credential MyPassport. Although 
all the successful strategies may seem equivalent, this is generally not true. Both the 
client and the server may prefer to release a credential over another one because they 
perceive a different sensitivity level associated with the information that credentials 
certify. For instance, the client may prefer to release her id_card over her passport. 

2.4. 	  Client	  Privacy	  Preferences	  
Given the server request, the client needs to determine which credentials and/or 
attributes to disclose to satisfy it. This task becomes harder if different subsets of 
credentials and/or attributes in the client portfolio can be used to fulfill the server 
policy, since the client needs to choose among them. Ideally, the choice should be 
driven by the sensitivity level that the client perceives for her credentials and 
attributes, as she will be more willing to disclose less sensitive portfolio components. 
It is therefore necessary to provide clients with a flexible and effective system that 
automatically determines the release strategy that better satisfies her privacy 
preferences. To this purpose, a flexible and expressive model for representing privacy 
preferences needs to be defined. We now illustrate the main desiderata that a privacy-
aware access control system should satisfy [5]. 

• Fine-grained preference specification. The privacy preferences associated with 
attributes and credentials in the client portfolio reflect the sensitivity perceived by 
the credential owner for the personal information represented by the 
attribute/credential. The model should support the definition of privacy preferences 
for each instance of attribute and credential in the client portfolio, meaning that 
different instances of the same credential type (and credential-dependent attribute) 
might be associated with different privacy preferences. For instance, with reference 
to the portfolio in Table 1, the client may prefer to release VISA credit card instead 
of AmEx.  

• Inheritance of privacy preferences. To provide flexibility in the definition of 
privacy preferences and a user-friendly mechanism for their specification, the 
model should take advantage of the hierarchy of credential types characterizing the 
client portfolio. When the client portfolio is composed of a huge number of 
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attributes and credentials, it might be difficult for the client to specify a different 
preference value for each credential and attribute. Privacy preferences associated 
with abstractions of credential types could however be inherited by all its 
specifications, if not overwritten by a more specific preference value, thus reducing 
the client overhead. For instance, with reference to the hierarchy of credential types 
in Figure 1 and the portfolio in Table 1, the client may specify a single privacy 
preference associated with credential type photo_id, which is automatically 
inherited by credentials MyIdCard and MyPassport. 

• Partial order relationship and composition operator. The domain of privacy 
preferences should be characterized by a (partial) order relationship ≽ that permits 
to precisely determine whether a given piece of personal information is more or 
less sensitive than another. The domain should also be characterized by a 
composition operator ⊕, which permits to compute the privacy preference value 
characterizing the release of a set of attributes and/or credentials. As an example, if 
the domain of privacy preferences is the set of positive integer numbers, the partial 
order relationship could be the “greater than” relationship (i.e., ≥), while the 
composition operator could be the sum operator (i.e., +). 

• Sensitive associations. In different scenarios, the combined release of a set of 
attributes and/or credentials is considered more (or less) sensitive than the release 
of each portfolio component singularly taken. For instance, with reference to the 
portfolio in Table 1, the client may consider the combined release of attributes DoB 
and City more sensitive than the release of each of the two attributes, since their 
combination could be exploited to infer the identity of the client [27]. On the other 
hand, she may value the release of City and Country less sensitive than the release 
of the two attributes singularly taken, due to the dependency between the values of 
the two attributes. As a consequence, the model should support the definition of a 
privacy preference value for the combined release of a set of attributes and/or 
credentials that is different from the result of the combination of the privacy 
preferences of the items in the set. 

• Disclosure constraints. There are situations where the client needs to specify 
restrictions on the combined release of portfolio components, since she wants to 
keep the association among a subset of attributes and/or credentials confidential, or 
limit their combined release. For instance, with reference to the portfolio in Table 
1, the client may not be willing to release credential MyDialysis together with 
attribute DoB, to prevent the server from exploiting this information for data 
mining purposes (e.g., to analyze the age of people with nephrologic diseases). 
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• Context-based preferences. The privacy preferences associated with attributes and 
credentials may vary depending on the context in which their release is requested 
(i.e., depending on the requested service and/or on the server providing it). For 
instance, the client may be more willing to release her dialysis certificate to a 
pharmacy for buying a medicine than to a hotel for booking a room. 

• History-based preferences. The preference of the client toward disclosing one 
credential (attribute, respectively) over another one may depend on the history of 
past interactions with the server offering the service. As a matter of fact, if the 
server already knows the attributes and credentials released by the client during a 
previous interaction, the client may be more willing to release the same (or a 
different) set of portfolio components. For instance, with reference to the portfolio 
in Table 1, assume that the client released credential MyVISA to a server to buy a 
service. When interacting again with the same server to buy another service, the 
client may prefer to use the same credit card, instead of releasing also credential 
MyAmEx. 

• Proof of possession. Thanks to novel technologies, clients can release proofs of 
possession of certificates and proofs of the satisfaction of conditions 
(e.g., [10],[11]). As a consequence, the model should also permit the client to 
specify privacy preferences associated with proofs (besides attributes and 
credentials on which proofs are defined). For instance, with reference to the 
portfolio in Table 1, the client may consider more sensitive the release of her DoB 
than the release of a proof that she is at least 18. 

• User-friendly preference specification. The definition of privacy preferences 
should be easy for the client, who may not be familiar with access control systems. 
As a consequence, it is necessary to provide clients with interfaces that permit to 
easily define preferences without introducing inconsistencies. 

2.5. 	  Server	  Privacy	  Preferences	  
With attribute-based access control, servers regulate access to their services based on 
the attributes and certificates presented by the requesting client. Upon receiving an 
access request, the server needs to communicate to the client the policy that she should 
satisfy to possibly gain access to the service. The access control policy could however 
be sensitive and the server may not be willing to disclose it completely to the client: 
while the communication of the complete policy favors the privacy of the client (since 
she can avoid disclosing her attributes and credentials if they would not satisfy the 
conditions in the policy), the communication of the attributes involved in the policy 
only favors the privacy of the server (since the specific conditions are not disclosed). 
Also, different portions of the same policy may be subject to different confidentiality 
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requirements. For instance, assume that a pharmacy grants to clients access to the 
online medicine purchase service only if the insurance coverage of the clients is higher 
that 10,000 USD and the insurance company is not in the pharmacy black list. The 
pharmacy might not mind disclosing the fact that only clients with insurance cover 
greater than 10,000 USD can access its services, but it does not want to reveal its black 
list. 

The system managing the disclosure of server policies should satisfy the following 
desiderata. 

• Disclosure policy. The server should be able to define, at a fine-granularity level, 
how policy release should be regulated. 

• Policy communication. The communication of the access control policy regulating 
access to the requested service to the client should guarantee that privacy 
requirements are satisfied and that the client has enough information to determine 
the set of attributes and/or credentials she needs to disclose to possibly gain access 
to the service. It is therefore necessary to define a mechanism that adequately 
transforms the access control policy before communicating it to the client. 

• Integration with client mechanisms. The approach designed to regulate policy 
release should be integrated with the one designed to manage the release of 
portfolio components at the client side. 

Note that in a negotiation process, both the client requesting access to a service and the 
server providing it possess a portfolio and regulate the disclosure of credentials and 
attributes composing it according to their access control policy. 

3. COST-‐SENSITIVE	  TRUST	  NEGOTIATION	  
A solution that takes disclosure preferences into consideration in attribute-based access 
control has been introduced in [12]. The authors propose to associate a sensitivity cost 
𝑤(𝑐) with each credential 𝑐 in the client (and server) portfolio, and with each access 
control policy 𝑝 regulating credentials disclosure and access to services. A policy 𝑝 is 
defined as a Boolean formula over the credentials in the counterparty’s portfolio. 
Boolean variable representing credential 𝑐 in policy 𝑝 is true if 𝑐 has already been 
disclosed, it is false otherwise. The sensitivity cost associated with credential 𝑐 (policy 
𝑝, respectively) models how much the credential’s owner (party who defined the 
policy, respectively) values the release of the credential (policy, respectively) and the 
disclosure of the sensitive information that the credential certifies. Intuitively, a client 
(server, respectively) is more willing to disclose credentials (policies, respectively) 
with lower sensitivity cost and, vice versa, she prefers to keep credentials (policies, 
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respectively) with high sensitivity cost confidential. For instance, Table 2 (Table 3, 
respectively) illustrates an example of client portfolio (server portfolio, respectively) . 
For each credential, the table reports the policy regulating its disclosure, the sensitivity 
cost of the credential, and the sensitivity cost of it policy. Constant value TRUE is 
used in policy definition to model the case when the release of a credential is free, that 
is, it is not regulated by a policy. (The portfolio in Table 2 is a simplified version of 
the portfolio in Table 1.) 

𝒊𝒅(𝒄) 𝒘(𝒄) Policy 𝒑 regulating 𝒄 𝒘(𝒑) 
MyIdCard 2 TRUE 0 
MyPassport 4 TRUE 0 
MyCreditCard 10 POS_register 5 
MyDialysis 20 pharmacy_register 10 
MyInsurance 15 pharmacy_register 10 

Table 2 An example of client portfolio and policies regulating its disclosure 

𝒊𝒅(𝒄) 𝒘(𝒄) Policy 𝒑 regulating 𝒄 𝒘(𝒑) 
MyPOSRegister 2 TRUE 0 
MyPharmacyRegister 5 passport ∨ id_card 4 

Table 3 An example of server portfolio and policies regulating its disclosure 

The goal of the client and the server engaging a negotiation protocol is that of 
minimizing the sensitivity cost of the credentials and policies exchanged during a 
successful negotiation strategy. This optimization problem can be formulated as 
follows [12]. 

Problem 1: Minimum Sensitivity Cost problem - Let 𝐶! be the set of server 
credentials and services; 𝑃! be the set of policies regulating the disclosure of server 
credentials and access to services; 𝐶! be the set of client credentials; 𝑃! be the set of 
policies regulating the disclosure of client credentials; 𝑤:  𝐶! ∪ 𝑃! ∪ 𝐶! ∪ 𝑃! → ℝ be the 
sensitivity cost function; and 𝑠 ∈ 𝐶! be the service requested by the client. Find an 
exchange sequence of credentials and policies such that: 

1. 𝑠 is released to the client; 
2. the policy regulating the disclosure of each credential released to the 

counterpart is satisfied before credential release; 
3. the sum of the sensitivity costs of released credentials and policies is minimum. 

The problem of computing a Minimum Sensitivity Cost strategy is NP-hard [12] and 
therefore any algorithm that solves it at optimum has exponential cost in the size of its 
input (i.e., the number of credentials and policies in 𝐶! ∪ 𝑃! ∪ 𝐶! ∪ 𝑃!). In [12] the 
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authors propose two different heuristic approaches for computing a good (although 
non optimal) solution to the problem. These heuristics have polynomial computational 
complexity and can be adopted when policies can be freely disclosed, and when they 
are associated with a sensitivity cost, respectively. 

Non-‐sensitive	   Policies.	   The solution proposed for the simplified scenario where 
policies are not associated with a sensitivity cost (i.e., they can be freely released) is 
based on the definition of a policy graph modeling the policies regulating credential 
disclosure at both the client and server side. A policy graph 𝑮(𝑽,𝑨,𝒘) is defined as a 
weighted graph with:  

• a vertex 𝒗𝒄 for each credential 𝒄 in 𝑪𝒔 ∪ 𝑪𝒄; 
• a vertex 𝑣!  for each service 𝑠 in 𝐶!; 
• a vertex 𝑣! for constant value TRUE;  
• a vertex 𝑣 for each disjunction in the policies regulating credential release; 
• an edge (𝑣! , 𝑣!), with 𝑣! and 𝑣! vertexes representing credentials, if the release 

of the credential represented by 𝑣! is a necessary condition to gain access to the 
credential represented by 𝑣!; 

• an edge (𝑣! , 𝑣!), with 𝑣! a vertex representing a credential and 𝑣! a vertex 
representing a disjunction, if 𝑣! is one of the clauses of the disjunction 
represented by 𝑣!. 

The weight of a vertex representing a credential corresponds to the sensitivity cost 
of the credential it represents, while other vertexes do not have weight. For 
instance, consider the access control policies in Table 2 and Table 3 and service 
MedicineBooking, regulated by policy 𝑝  = dialysis ∨ (id_card ∧ (credit_card ∨ 
insurance)). Figure 2(a) illustrates the policy graph modeling the access control 
policies in the system. 
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(a) 
 

(b) 
Figure 2 Policy graph for the policies in Table 2 and in Table 3 (a), and Minimum Directed Acyclic graph for the 
MedicineBooking service (b) 

The first step of the negotiation process consists in disclosing the policies regulating 
credential release and access to services at the client and at the server side. This 
information permits to correctly build the policy graph. Note that this disclosure is 
permitted thanks to the assumption that policies are not sensitive in this simplified 
scenario. The minimum sensitivity cost problem then translates into the equivalent 
problem of determining a Minimum Directed Acyclic Graph for the policy graph, 
starting at vertex 𝑣! (representing value TRUE) and ending at the vertex 𝑣! 
representing the requested service 𝑠. Formally, a Minimum Directed Acyclic Graph is 
defined as follows. 

Definition 1: Minimum Directed Acyclic Graph - Let 𝐺(𝑉,𝐴,𝑤) be a policy graph, 
𝑣! be the vertex representing value TRUE, and 𝑣! be the vertex representing service 𝑠. 
A directed acyclic graph starting at 𝑣! and ending at 𝑣! is a sub-graph 𝐺’(𝑉’,𝐴’,𝑤) of 
𝐺 such that:  

1. 𝐺’ is acyclic;  
2. 𝑣!,𝑣!∈𝑉’;  
3. ∄ 𝑣! , 𝑣! ∈ 𝐴!, 𝑣! ∈ 𝑉′; 
4. ∄ 𝑣!, 𝑣! ∈ 𝐴!, 𝑣!   ∈ 𝑉′;  
5. ∀  𝑣! ∈ 𝑉!,∃ 𝑣! 𝑣! , where 𝑣! 𝑣!  is a path starting at 𝑣! and ending at 𝑣!; 
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6. ∀  𝑣! ∈ 𝑉!, ∀(𝑣! , 𝑣!) ∈ 𝐴, where 𝑣! represents a credential, (𝑣! , 𝑣!) ∈ 𝐴!, 𝑣! ∈
𝑉′; 

7. ∄𝐺!!(𝑉!!,𝐴!!,𝑤)   that satisfies all the previous conditions and such that 
𝑤(𝑣)!∈!!! <    𝑤(𝑣)!∈!! . 

It is easy to see that a directed acyclic graph starting at 𝑣! and ending at 𝑣! represents 
a successful negotiation strategy for service 𝑠. Therefore, the minimum sensitivity cost 
problem and the problem of computing a minimum directed acyclic graph from vertex 
𝑣! to vertex 𝑣! are equivalent. The heuristic algorithm proposed in [12] is based on a 
variation of the well-known Dijkstra algorithm [14]. In [12] the authors experimentally 
prove that the proposed algorithm computes an optimal solution in most cases. For 
instance, consider the policy graph in Figure 2(a) and assume that the client is 
interested in the MedicineBooking service. Figure 2(b) illustrates a Minimum Directed 
Acyclic Graph for the MedicineBooking service with cost 14, where the vertexes and 
edges in the policy graph that also belong to the Minimum Directed Acyclic Graph are 
in black, while the other vertexes and edge are in gray. 

Sensitive	   Policies.	   The solution proposed in [12] for the more complex scenario 
where both credentials and policies regulating their release are associated with a 
sensitivity cost is based on a greedy strategy that consists of two steps. During the first 
step, the interacting parties adopt an eager strategy (i.e., each party discloses to the 
counterpart the name of a credential as soon as the policy for its release is satisfied) to 
mutually exchange the name and sensitivity cost associated with credentials that could 
be useful for identifying a successful negotiation strategy with minimum cost. If this 
first step finds such a strategy, the client and the server start the second step of the 
protocol, which consists in enforcing the strategy discovered during the first step. For 
instance, with reference to the policy graph in Figure 2(a), the first step consists of the 
sequence of releases illustrated in Figure 3. First, the client and the server reveals to 
each other the name and sensitivity cost of credentials whose release is not regulated 
by a policy, that is, MyIdCard and MyPassport for the client and MyPOSRegister for 
the server. These releases satisfy the policy regulating the release of MyCreditCard at 
the client side and MyPharmacyRegister at the server side, whose names and 
sensitivity costs are disclosed. These releases, in turn, satisfy the policies regulating 
the disclosure of credentials MyInsurance and MyDialysis at the client side and service 
MedicineBooking at the server side. The exchange then represents a successful 
negotiation strategy. Note that the edges in Figure 3 are labeled with the cumulative 
sensitivity cost of the negotiation process (e.g., MyCreditCard is associated with cost 
12 = 𝑤(MyCreditCard) + 𝑤(MyPOSRegister)). The successful negotiation strategy 
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computed by the first step is enforced during the second step of the protocol. 
Therefore, the server first discloses credential MyPOSRegister and the client releases 
MyIdCard. When the client receives the credential from the server, she discloses 
MyCreditCard, thus gaining access to the MedicineBooking service. The overall 
sensitivity cost of the strategy is 14. 

 

Open	   Issues.	   It is interesting to note that, although effective, the model and 
algorithms proposed in [12] suffer from some limitations. A first drawback is that the 
proposed approach assumes that the disclosure of access control policies does not need 
to be regulated, while also policy release may be subject to restrictions. Also, this 
solution assumes that the objective of a privacy-aware negotiation protocol is that of 
minimizing the overall sensitivity cost of credentials and policies disclosed during the 
negotiation process. However, the goal of the two parties may be different. For 
instance, with reference to our example, the pharmacy offering the MedicineBooking 
service may not be interested in minimizing the sensitivity cost of the policies and 
credentials it needs to disclose to offer the service. On the contrary, the patient wants 
to minimize the sensitivity cost of the credentials she must disclose to the pharmacy. 
We also note that the model in [12] does not satisfy all the desiderata illustrated in 
Section 2 to support privacy preferences in attribute-based access control scenarios. In 
fact, it only supports the definition of privacy preferences as sensitivity costs, which 
have a numerical domain characterized by a total order relationship (i.e., ≥) and by a 
composition operator (i.e., +). 
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Figure 3 Sequence of exchanges between the client and the server to determine a successful negotiation strategy 
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4. POINT-‐BASED	  TRUST	  MANAGEMENT	  
The problem of minimizing the amount of sensitive information disclosed by a trust 
negotiation protocol has been also addressed in [32], where the authors propose a 
point-based trust management model. This model assumes that policies regulating 
access to services and release of credentials are based on the definition of quantitative 
measures. More precisely, the server associates a number 𝑝𝑡 of points with each 
credential type 𝑡. This value represents the trustworthiness perceived by the server for 
the credential issuer (i.e., credentials issued by a more reliable party will be associated 
with a higher number of points and vice versa). To restrict the access to its services, 
the server then associates a threshold 𝑡ℎ𝑟 with each service. To gain access to a 
service 𝑠, the client must disclose a subset of credentials in her portfolio such that the 
sum of the points of the released credentials is higher than or equal to the threshold 
fixed by the server for 𝑠. Analogously, the client associates a privacy score 𝑝𝑠 with 
each credential in her portfolio, which represents how much she values the release of 
the credential to an external server. The higher the privacy value of a credential, the 
lower the client willingness in its release. As a consequence, a client who is interested 
in accessing a service 𝑠 must determine a subset of credentials in her portfolio that 
satisfies the threshold fixed by the server for 𝑠, while minimizing the privacy score of 
released credentials. Table 4 illustrates an example of points and privacy scores 
associated by the server and the client, respectively, to the credentials composing the 
client’s portfolio. 

 id_card passport credit_card dialysis insurance 
𝒑𝒕 1 1 2 3 2 
𝒑𝒔 2 4 10 20 15 

Table 4 An example of points 𝒑𝒕 and privacy scores 𝒑𝒔 associated by the server and the client, respectively, to the 
credential in the client portfolio 

Since the server policy might be considered sensitive, the server does not reveal the 
threshold associated with its services to the client. Analogously, the client does not 
reveal to the counterpart the privacy scores she associates with the credentials in her 
portfolio. As a consequence, when a client requests access to a service, she needs to 
identify a subset of the credentials in her portfolio that satisfies the server threshold 
(i.e., the access control policy regulating the release of the service) without knowing it 
and without revealing to the server credentials’ privacy scores. More formally, the 
Credential Selection problem is an optimization problem that can be formulated as 
follows [32]. 
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Problem 2: Credential Selection problem - Let 𝐶 = {𝑐!,… , 𝑐!} be the set of 
credentials in the client portfolio; 𝑝𝑡(𝑡𝑦𝑝𝑒(𝑐!)) be the points associated by the server 
with credential type 𝑡𝑦𝑝𝑒(𝑐!), 𝑖 = 1,… ,𝑛; 𝑝𝑠(𝑐!) be the privacy score associated by 
the client with credential 𝑐!, 𝑖 = 1,… ,𝑛; 𝑠 be the service requested by the client; and 
𝑡ℎ𝑟 be the release threshold associated with 𝑠. Find a subset 𝐷   ⊆ 𝐶 of credentials such 
that: 

1. 𝑝𝑡(𝑡𝑦𝑝𝑒(𝑐))!∈!   ≥ 𝑡ℎ𝑟; 
2. ∄𝐷! ⊆ 𝐶 s.t. 𝑝𝑡(𝑡𝑦𝑝𝑒(𝑐))!∈!!   ≥ 𝑡ℎ𝑟 and 𝑝𝑠(𝑐)!∈!! < 𝑝𝑠(𝑐)!∈! . 

The first condition states that the subset of credentials in the client portfolio must 
satisfy the server policy, while the second condition states that the sensitive 
information disclosed is minimum. For instance, with reference to the points and 
privacy scores in Table 4, let us assume that the server offering service 𝑠 
(MedicineBooking in our example) defines a threshold 𝑡ℎ𝑟=3. The release of her 
id_card and of her credit_card permits the client to gain access to the service of 
interest (𝑝𝑡(id_card) + 𝑝𝑡(credit_card) = 3 ≥ 𝑡ℎ𝑟), while minimizing the overall 
privacy score of released information (𝑝𝑠(id_card) + 𝑝𝑠(credit_card) = 12). 

Dynamic	  Programming	  Algorithm.	  The Credential Selection problem is NP-hard 
and can be rewritten into a knapsack problem, where each credential 𝑐 can be inserted 
into the knapsack with weight 𝑝𝑡(𝑡𝑦𝑝𝑒 𝑐 ) and value 𝑝𝑠(𝑐) [32]. Since the knapsack 
algorithm maximized the value of the items inserted in the knapsack to satisfy its 
capacity, while the goal of the client is that of minimizing the sensitivity of the 
credentials necessary to reach the threshold of interest, the solution to the credential 
selection problem is computed by inserting in the knapsack those credentials that will 
not be released. Intuitively, the knapsack problem is complementary to our problem 
and therefore the approach in [32] finds the complementary solution to the Credential 
Selection problem by exploiting a known dynamic programming algorithm for the 
knapsack problem [14]. The knapsack capacity 𝐾𝐶 is computed as the complementary 
of the threshold fixed by the server with respect to the clients portfolio, that is, 
𝐾𝐶 = 𝑝𝑡(𝑡𝑦𝑝𝑒(𝑐)!∈! ) − 𝑡ℎ𝑟, which is the difference between the sum of points 
associated with credential types in the client’s portfolio and the threshold fixed by the 
server to gain access to the service. With reference to the example above, 𝐾𝐶 =
1 + 1 + 2 + 3 + 2 − 3 = 6. 

The dynamic programming solution to the knapsack problem is based on the definition 
of a matrix 𝑀 with 𝑛 + 1 rows, where 𝑛 is the number of items that can be inserted 
into the knapsack (i.e., credentials in our scenario), and 𝐾𝐶 + 1 columns. All the cells 
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in the first row and in the first column of the matrix are set to zero (i.e., 𝑀[𝑖, 0] = 0, 
𝑖 = 0,… ,𝑛, and 𝑀[0, 𝑗] = 0, 𝑗 = 0,… ,𝐾𝐶). The value of the other cells in the matrix 
is computed according to the following formula: 

𝑀[𝑖, 𝑗] = 𝑀[𝑖 − 1, 𝑗],                                                                                                                                                            𝑗 < 𝑝𝑡 𝑡𝑦𝑝𝑒(𝑐!)
max  (𝑀 𝑖 − 1, 𝑗 ,𝑀 𝑖 − 1, 𝑖 − 𝑝𝑡 𝑐! + 𝑝𝑠 𝑐! ), 𝑗 ≥ 𝑝𝑡 𝑡𝑦𝑝𝑒(𝑐!)

 

The values of the cells in the matrix are computed, in the order, starting from top to 
bottom and from left to right (i.e., by increasing value of 𝑖 and 𝑗, respectively). Each 
cell in the matrix represents the total value of the knapsack, obtained inserting (a 
subset) of the items preceding the current element in the matrix without exceeding the 
knapsack capacity. It is obtained as the current value of the knapsack either including 
or not including the current element.  

 0 1 2 3 4 5 6 
0 0 0 0 0 0 0 0 
id_card 0 2 2 2 2 2 2 
passport 0 4 6 6 6 6 6 
credit_card 0 4 10 14 16 16 16 
dialysis 0 4 14 20 24 30 34 
insurance 0 4 15 20 29 35 39 

Table 5 An example of dynamic programming matrix for the portfolio in Table 4 

Table 5 illustrates the matrix computed considering points and privacy scores in Table 
4. The first row in the matrix represents an empty knapsack. Cells 
𝑀[id_card,1],…,  𝑀[id_card,6] in the first row model the insertion of credential 
id_card in the empty knapsack. As a consequence, the knapsack has weight 2. Cell 
𝑀[passport,2] is obtained by comparing the solution represented by cell 𝑀[id_card,2] 
(which models a knapsack including only id_card) with the solution 
𝑀[id_card,1]∪{passport} obtained by inserting also credential passport into the 
knapsack. The weight of the two alternative solutions is, respectively, 2 and 2+4=6. 
Since 6>2, 𝑀[passport,2] is set to 6 and it represents a knapsack including credentials 
id_card and passport. The other cells in the matrix are computed in the same way. 

The optimal solution to the knapsack problem is represented by the value in cell 
𝑀[𝑛,𝐾𝐶], which represents the value of the knapsack obtained trying to insert all the 
candidate elements in the knapsack without exceeding its capacity. To determine the 
elements that belong to the optimal solution, it is necessary to keep track of which item 
has been inserted at each step. For instance, consider the matrix in Table 5, cell 
𝑀[insurance,6]=39 is as the sum of the cells in gray in the table, that is, it represent a 
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solution including credentials passport, dialysis, and insurance. Since the credentials 
included in the knapsack are not disclosed, the credentials disclosed by the client to 
gain the access are id_card and credit_card that, as already noted, satisfy the threshold 
fixed by the server for the MedicineBooking service while minimizing privacy scores. 

The traditional dynamic programming algorithm described above for the knapsack 
problem assumes that the client knows the points assigned by the server to credential 
types (or that the server knows the privacy scores that the client associates with the 
credentials in her portfolio). Since this assumption does not hold in the considered 
scenario, in [32] the authors propose to enhance the basic algorithm to permit the 
client and the server to interact with each other for computing a solution to the 
knapsack problem without the need for the client and the server to reveal to each other 
their secret parameters. The proposed solution consists of a secure two-party dynamic-
programming protocol, which relies on homomorphic encryption to provide privacy 
guarantees to sensitive information [15],[25]. 

Open	   Issues.	   The model and algorithm introduced in [32] suffer from different 
shortcomings. First of all, the client and the server must share, as a common 
knowledge, the set of possible credentials on which the negotiation process should be 
based. Such knowledge may however put the privacy of the server policy at risk. The 
proposed model also assumes that the access control policy defined by the server 
consists of a threshold value, but in many real-world scenarios the server needs to 
define more expressive policies. Furthermore, the focus of the proposal, as well as the 
model in [12], is more on the negotiation process than on the management of the 
privacy preferences of the interacting parties. The solution in [32] represents however 
an important step towards the definition of a privacy-aware access control model, even 
if it does not satisfy all the desiderata described in Section 2. In fact, this approach 
only supports the definition of privacy preferences as privacy scores, which have a 
numerical domain characterized by a total order relationship (i.e., ≥) and by a 
composition operator (i.e., +). 

5. LOGICAL-‐BASED	  MINIMAL	  CREDENTIAL	  DISCLOSURE	  
The solutions in [12], [32] are based on the assumption that privacy preferences can be 
expressed as numerical values, defined over a domain characterized by a total order 
relationship and an additive operator. While this assumption permits to easily integrate 
privacy preferences with traditional negotiation processes, the usability of the resulting 
system may be limited. In fact, it might not be easy for the final user to express her 
privacy preferences through numeric values, also because the adoption of numeric 
preference values may cause unintended side effects (e.g., dominance relationships are 
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not explicitly defined, but are implied by the values assigned to the portfolio 
components). To overcome these limitations, in [22] the authors propose to adopt 
qualitative (instead of quantitative) preference values. The proposed solution is based 
on the assumption that credentials are singleton (i.e., certify one attribute only) and 
that the policy defined by the server is publicly available. The goal of the approach is 
to determine, among the successful negotiation strategies, the one that better suits the 
client preferences (i.e., the set of credentials that minimizes the amount of sensitive 
information disclosed to the server to gain access to the requested service). When the 
number of successful strategies is limited, the client can explicitly choose the one she 
prefers. However, when the number of credentials in the client portfolio increases and 
the server policy becomes complex, the number of successful trust negotiation 
strategies may grow quickly. For instance, assume that the client portfolio is composed 
of credentials {Name, DoB, City, VISANum, VISALimit, AmExNum, AmExLimit, 
Insurance, InsCoverage, Dialysis}, and that the policy regulating access to the 
MedicineBooking service is ((Name  ∧ (DoB ∨ City) ∨ Dialysis ∨ Insurance) ∧ 
((VISANum ∧ VISALimit) ∨ (AmExNum ∧ AmExLimit) ∨ (InsCoverage ∧ DoB)). There 
are 12 strategies that satisfy the access control policy. It is therefore necessary to 
define a mechanism that permits to exploit qualitative disclosure preferences defined 
by the client to limit the number of strategies among which she is explicitly asked to 
choose. 

Qualitative	  Preferences.	  Given the set 𝐶 = {𝑐!,… , 𝑐!} of credentials in the client 
portfolio, the release of a subset of credentials is modeled as a binary 𝑛-dimension 
vector 𝐷, where 𝐷[𝑖] = 1 if 𝑐! is released and 𝐷[𝑖] = 0 otherwise, 𝑖 = 1,…𝑛. For 
instance, with reference to the previous example, Table 6 summarizes the subsets of 
portfolio credentials satisfying the policy regulating service MedicineBooking. 
Disclosure 𝐷! represents the release of {Name, DoB, VISANum, VISALimit}. 

 Name DoB City VISANum VISALimit AmExNum AmExLimit Insurance InsCoverage Dialysis 
𝑫𝟏 1 1 0 1 1 0 0 0 0 0 
𝑫𝟐 1 1 0 0 0 1 1 0 0 0 
𝑫𝟑 1 1 0 0 0 0 0 0 1 0 
𝑫𝟒 1 0 1 1 1 0 0 0 0 0 
𝑫𝟓 1 0 1 0 0 1 1 0 0 0 
𝑫𝟔 1 1 1 0 0 0 0 0 1 0 
𝑫𝟕 0 0 0 1 1 0 0 0 0 1 
𝑫𝟖 0 0 0 0 0 1 1 0 0 1 
𝑫𝟗 0 1 0 0 0 0 0 0 1 1 
𝑫𝟏𝟎 0 0 0 1 1 0 0 1 0 0 
𝑫𝟏𝟏 0 0 0 0 0 1 1 1 0 0 
𝑫𝟏𝟐 0 1 0 0 0 0 0 1 1 0 

Table 6 Disclosure strategies that satisfy the access control policy of service MedicineBooking 
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The model proposed in [22] permits to specify privacy preferences at different 
granularity levels. Dominance relationship ≻! defines disclosure preferences for 
credential 𝑐!. Usually, credential-level preferences state that 0 ≻! 1, 𝑖 = 1,…𝑛, 
meaning that the client prefers not to disclose credential 𝑐!. To compare the disclosure 
of different subsets of credentials in the client portfolio, credential-level preferences 
are composed according to the Pareto composition operator ≻!. A disclosure set 𝐷! 
dominates, according to the Pareto composition, a disclosure set 𝐷! if, for each 
credential 𝑐! in the portfolio, either 𝐷! 𝑙 ≻! 𝐷! 𝑙  or 𝐷! 𝑙 =! 𝐷! 𝑙 , meaning that 𝐷! 
releases a proper subset of the credentials in 𝐷!. For instance, consider the disclosure 
sets in Table 6, 𝐷! ≻! 𝐷! since 𝐷! 𝐷𝑜𝐵 ≻!"# 𝐷! 𝐷𝑜𝐵 , that is, 𝐷! = 𝐷! ∪ {DoB}. 

The most interesting kind of preferences modeled by the solution in [22] is represented 
by amalgamated preferences, which compare the release of sets of credentials that are 
not related by a subset-containment relationship. Amalgamated preferences are of the 
form 𝑐! ⟶    𝑐!, meaning that the client prefers to release credential 𝑐! over credential 

𝑐!. This preference defines a dominance relationship, denoted ≻{!,!}
(!,!)(!,!), among 

disclosure sets. More formally, disclosure set 𝐷! dominates, according to amalgamated 
preference 𝑐! ⟶    𝑐!, disclosure set 𝐷! if 𝐷! 𝑖 = 1, 𝐷! 𝑗 = 0, 𝐷! 𝑖 = 0, 𝐷! 𝑗 = 1, 
and 𝐷! 𝑥 = 𝐷! 𝑥 , for all 𝑥 ≠ 𝑖, 𝑥 ≠ 𝑗. For instance, consider the disclosure sets in 
Table 6 and amalgamated preference Insurance ⟶ Dialysis, then 
𝐷!" ≻{!"#$%&"'(,!"#$%&"&}

(!,!)(!,!) 𝐷! since they both disclose credentials VISANum and 
VISALimit, but 𝐷!" releases Insurance while 𝐷! releases Dialysis. Analogously, 
𝐷!! ≻{!"#$%&"'(,!"#$%&"&}

(!,!)(!,!) 𝐷! and 𝐷!" ≻{!"#$%&"'(,!"#$%&"&}
(!,!)(!,!) 𝐷!. Note that the binary sub-

vectors on the top of the dominance operator can be any pair of binary sub-vectors of 
the same length. Amalgamated preferences can be conveniently represented through a 
graph, whose vertexes model credentials and whose edges represent disclosure 
preferences among them. Note that, to avoid inconsistencies in the definition of 
privacy preferences, the disclosure graph must be acyclic. The model in [22] permits 
also to specify conditions associated with preferences, meaning that a dominance 
relationship holds only if the associated condition is satisfied (e.g., only if a given 
credential has already been disclosed). For instance, the client may prefer to release 
credential Insurance over her Name if credential InsCoverage has already been 
released (since the server is aware of the fact that the client has subscribed an 
insurance). These conditions are graphically represented by labels associated with the 
edges of the preference graph. Figure 4 illustrates an example of graph representing 
amalgamated preferences for the portfolio in our example. Consider the disclosure sets 
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in Table 6, according to the preferences in the graph, 𝐷! ≻{!"#,!"#$}
(!,!)(!,!) 𝐷! and 

𝐷! ≻{!"#,!"#$}
(!,!)(!,!) 𝐷! since the disclosure of DoB is preferred to the disclosure of City. 

Also, 𝐷!" ≻{!"#$%&"'(,!"#$}
(!,!)(!,!) 𝐷! since credential InsCoverage has already been released 

and therefore the client prefers to release Insurance instead of Name. 

 

 

 

 

 

 

 

Both the dominance relationship defined by the Pareto composition and the dominance 
relationships induced by amalgamated preferences permit to compare disclosure sets 
that differ only for the release of the subset of credentials on which the dominance 
relationship has been defined. However, it may happen that two disclosure sets cannot 
be compared considering one dominance relationship only, but they can be compared 
combining two or more disclosure preferences. For instance, consider the graph in 
Figure 4 and the disclosure sets in Table 6. Disclosure sets 𝐷! and 𝐷! cannot be 
directly compared, but it is immediate to see that 𝐷! dominates 𝐷! by combining 
amalgamated preferences VISANum⟶AmExNum and VISALimit⟶AmExLimit. In 
fact, 𝐷! discloses the attributes of VISA credit card, while 𝐷! discloses the attributes 
of AmEx credit card. In [22] the authors propose to incrementally compose certificate-
level and amalgamated preferences. The transitive closure of all the preferences in the 
system permits to define a complete preference relationship, denoted ≻≻, which 
summarizes all the preference relationships expressed by the client. As a consequence, 
given the access control policy 𝑝 regulating the release of the service requested by the 
client, the approach in [22] permits to limit the set of successful disclosure strategies 
among which the client needs to choose. In fact, the choice can be restricted to the 
optimal disclosure sets, that is, to the sets of credentials in the client portfolio that 
satisfy 𝑝 and that are not dominated by another disclosure set that satisfies 𝑝. More 
formally, the set of optimal disclosure sets is defined as follows [22]. 

VISANum 

AmExNum 

VISALimit 

AmExLimit 

Dialysis 

DoB 

Insurance City 

Name 

InsCover 

¬InsCov

Figure 4 An example of a set of amalgamated preferences 
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Definition 2: Optimal Disclosure Sets - Let 𝐶 = {𝑐!,… , 𝑐!} be the set of credentials 
in the client portfolio; 𝑠 be the service requested by the client; 𝑝 be the access control 
policy regulating the release of 𝑠; 𝒟 = 𝐷!,… ,𝐷!  be the set of disclosure sets that 
satisfy 𝑝, with 𝐷! ⊆ 𝐶, 𝑖 = 1,… ,𝑛; and ≻≻ be a complete preference relationship over 
𝐶. An optimal disclosure set 𝒟≻≻ of 𝒟 wrt ≻≻ is defined as: 𝒟≻≻ = {𝐷 ∈ 𝒟|∄𝐷! ∈
𝒟,𝐷! ≻≻ 𝐷}. 

The disclosure sets in 𝒟≻≻ are optimal and cannot be compared with respect to the 
disclosure preferences defined by the client (i.e., they are equivalent according to 
client preferences). To finally decide which set of credentials to disclose to the server, 
the client needs to choose, among the negotiation strategies in 𝒟≻≻, the one she prefers 
to disclose. For instance, with reference to the disclosure sets in Table 6 and the 
preferences in Figure 4, 𝒟≻≻ = {𝐷!,𝐷!",𝐷!"}. 

Open	   Issues.	   The solution proposed in [22] has the great advantage over the 
approaches discussed in Section 2 and in Section 3 of modeling and managing 
qualitative preferences. In fact, it permits to specify privacy preferences at the attribute 
granularity, and it defines a partial order relationship and different composition 
operators over the domain of privacy preferences, therefore resulting easy to use for 
the client. However, it still needs to be enhanced to comply with all the desiderata that 
a privacy-aware access control system should satisfy (see Section 2). The main 
shortcoming from which the proposal in [22] suffers is that it requires the client 
intervention in the choice of the set of credentials to disclose among the successful 
strategies in the optimal set. Also, the proposed model assumes that each credentials in 
the client portfolio certifies one attribute only, while often credentials include a set of 
attributes that cannot be singularly released (i.e., atomic credentials). 

6. PRIVACY	  PREFERENCES	  IN	  CREDENTIAL-‐BASED	  INTERACTIONS	  
The first solution that formally models the client portfolio to permit the client to 
specify fine-grained privacy preferences, as well as constraints on the disclosure of 
portfolio components, has been proposed in [3]. One of the main advantages of the 
portfolio modeling in [3] is that it permits to represent both atomic and non-atomic 
credentials, declarations, and the attributes composing them, clearly distinguishing 
between credential-dependent and credential-independent attributes. As a 
consequence, this modeling permits to easily associate privacy preferences with each 
credential and attribute in the client portfolio. More precisely, the client portfolio is 
modeled as a bipartite graph 𝐺(𝑉! ∪ 𝑉!,𝐸!") with a vertex for each credential and 
each attribute in the portfolio and an edge connecting each credential to the attributes it 
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certifies. It is important to note that each credential-independent attribute is 
represented by a vertex in 𝐺, while each credential-dependent attribute is represented 
by several vertexes (one for each credential certifying it). For instance, Figure 5 
illustrates the graph representing the portfolio in Table 1, where we distinguish atomic 
credentials by attaching all the edges incident to the vertex representing the credential 
to a black semi-circle. The label of vertexes representing credentials is of the form 
id:type, where id is the identifier of the credential and type is its type. The label of 
vertexes representing attributes is of the form name:value. 

	  

Sensitivity	  Labels.	  The client can define her privacy preferences at a fine-granularity 
level by associating a sensitivity label with each credential and attribute (or 
combinations thereof) in her portfolio. These labels represent how much the client 
values the disclosure of the portfolio components. The domain Λ of sensitivity labels 
can be any set of values characterized by a partial order relationship ≽, and a 
composition operator ⊕. This generic definition of sensitivity labels captures different 

Figure 5 Portfolio graph of the portfolio in Table 1 
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methods for expressing preferences. For instance, sensitivity labels could be positive 
integer values, where the order relationship ≽ is the traditional ≥ relationship and the 
composition operator can either be the sum (i.e., +) or the maximum. In the example, 
for simplicity, we will consider numerical sensitivity labels. Labeling function 𝜆 
associates a sensitivity label in Λ with each credential 𝑐, with each attribute 𝑎 in the 
client portfolio, and possibly with subsets thereof. Figure 6 illustrates the portfolio 
graph in Figure 5, extended by associating each vertex with its sensitivity label and by 
including new vertexes that represent associations and disclosure constraints. The 
semantics of the sensitivity labels associated with portfolio components can be 
summarized as follows. 

• 𝜆(𝑎): defines the sensitivity of attribute 𝑎 singularly taken and reflects how 
much the client values its disclosure. For instance, with reference to the 
portfolio graph in Figure 6, 𝜆(VISANum) ≥   𝜆(DoB) since the client considers 
the number of her VISA more sensitive than her date of birth. 

• 𝜆(𝑐): defines the sensitivity of the existence of credential 𝑐. This label reflects 
how much the client values the additional information carried by the credential 
itself, independently from the attributes it certifies. For instance, with reference 
to the portfolio graph in Figure 6, 𝜆(MyDialysis) reflects the sensitivity 
associated by the client with the credential certifying her nephrological disease, 
independently from the fact that this credential also certifies attributes Name 
and City. Clearly, the existence of the credential itself has a sensitivity that goes 
beyond the demographical information it certifies. 

The sensitivity label associated with the combined release of a set of credentials and 
attributes generally corresponds to the composition through operator ⊕ of the 
sensitivity labels of each portfolio component in the released set. For instance, the 
release of atomic credential MyIdCard has sensitivity label 𝜆(MyIdCard) ⊕ 𝜆(Name) 
⊕ 𝜆(DoB) ⊕ 𝜆(City). There are however cases where the combined release of some 
portfolio components may cause a higher or lower information disclosure than the 
sensitivity label obtained composing the labels of the released credentials and 
attributes. To capture these situations, the model in [3] permits the client to specify 
sensitivity labels for subsets of portfolio components, representing how much the 
client values the release of the association of their values. The sensitivity labels of 
associations must then be considered when composing the sensitivity labels of the 
attributes and/or credentials in the association. Graphically, associations are 
represented by additional vertexes in the portfolio graph, connected to the attributes 
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and/or credentials composing the associations. In particular, the following two kinds of 
associations are modeled. 

• Sensitive views model situations where the combined release of a set of 
portfolio components carries more information than the composition of the 
sensitive labels of its components. For instance, with reference to the portfolio 
graph in Figure 6, 𝜆({DoB,City})=4 models the additional sensitivity carried by 
the combined release of the two attributes. 

• Dependencies model situations where the combined release of a set of portfolio 
components carries less information than the composition of the sensitive labels 
of its components. For instance, with reference to the portfolio graph in Figure 
6, 𝜆({City,Country})=-2 represents the sensitivity to be removed when the two 
attributes are released together, since the knowledge of the City where a user 
leaves permits to easily infer her Country. The sensitivity label associated with 
a dependency 𝒜 = 𝑐! ,… , 𝑐! , 𝑎! ,… , 𝑎!  can assume any value, provided the 
sensitivity label of the combined release of all the credentials and attributes in 
𝒜 dominates the sensitivity label of the most sensitive element in 𝒜 (i.e., 

Figure 6 Portfolio graph in Figure 5 extended with sensitivity labels, associations, and constraints 
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𝜆 𝑐! ⊕ …⊕ 𝜆 𝑐! ⊕ 𝜆 𝑎! ⊕ …⊕ 𝜆 𝑎! ⊕ 𝜆 𝒜 ≽ max  (𝜆 𝑥 , 𝑥 ∈ 𝒜)). 

In addition to sensitivity labels associated with credentials, attributes, and subsets 
thereof, the client may need to specify disclosure constraints that cannot be expressed 
through sensitivity labels. To this purpose, in [4] the authors extend the original model 
introduced in [3] with the following two kinds of constraints. 

• Forbidden views represent subsets of portfolio components whose combined 
release is prohibited. For instance, with reference to the portfolio graph in 
Figure 6, forbidden view {DoB,MyDialysis} prevents the combined release of 
attribute DoB and credential MyDialysis and is graphically represented by a 
cross-shaped vertex connected with the attribute and credential in the 
constraint.  

• Disclosure limitations represent subsets of portfolio components characterized 
by restrictions of the form at most n elements in the set can be jointly disclosed. 
For instance, with reference to the portfolio graph in Figure 6, disclosure 
limitation {Name,City,Country,e-mail}2 permits to release at most two attributes 
in the set and is graphically represented by a cross-shaped vertex with label 2 
and connected with all the attributes in the set.  

Disclosure.	  Given the client portfolio, it is important to note that not all the subsets of 
portfolio components represent a valid disclosure, that is, not all the sets of credentials 
and attributes can be communicated to the server to gain access to the requested 
service. First of all, a subset 𝐷 of portfolio components represents a disclosure only if 
it satisfies the following three conditions. 

1. Certifiability: each disclosed attribute is certified by at least a credential, whose 
existence is disclosed as well (i.e., ∀𝑎 ∈ 𝐷,∃𝑐   ∈ 𝐷  𝑠. 𝑡.    𝑎 ∈ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑐)). 

2. Atomicity: if an attribute certified by an atomic credential is disclosed, all the 
attributes in the credential are disclosed (i.e., ∃𝑐 ∈ 𝐷  𝑠. 𝑡.    𝑐 is atomic, 
∀𝑎 ∈ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑐 , 𝑎 ∈ 𝐷). 

3. Association exposure: if all the attributes and/or credentials composing an 
association are disclosed, then the association itself is disclosed (i.e., 
∀𝑥 ∈ 𝒜, 𝑥 ∈ 𝐷 then  𝒜 ∈ 𝐷). 

These conditions permit to easily take into account both atomic and non-atomic 
credentials, as well as associations, in the computation of the sensitivity label 
characterizing the disclosure of a set of credentials and attributes. For instance, 
consider the portfolio graph in Figure 6. An example of disclosure 𝐷 is represented in 
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Figure 7(a), where released elements are reported in black while non-released elements 
are reported in gray. Figure 7(b) represents instead a subset of the portfolio 
components that does not represent a disclosure, since it violates the above properties. 
The sensitivity of a disclosure 𝐷 is computed by composing the sensitivity label of all 
the credentials, attributes, and associations composing it. For instance, the sensitivity 
of the disclosure in Figure 7(a) is 𝜆 𝐷  = 𝜆(MyPassport) + 𝜆(MyVISA) + 𝜆(MyDecl) + 
𝜆(Name) + 𝜆(DoB) + 𝜆(VISANum) + 𝜆(VISALimit) + 𝜆(e-mail) + 𝜆({Name,DoB}) = 4 
+ 8 + 0 + 5 + 3 + 10 + 15 + 2 + 2 = 49. A disclosure is said to be valid if it does not 
violate disclosure constraints. Only valid disclosures can be released. For instance, the 
disclosure in Figure 7(a) is valid, while the one in Figure 7(c) is not valid since it 
violates forbidden view {DoB,MyDialysis}. 

Given the server policy 𝑝 regulating the disclosure of the service of interest, it is 
necessary to determine a minimum disclosure (i.e., a valid disclosure with minimum 
sensitivity label) satisfying 𝑝. In [3], the authors assume that server policies are 
formulated as Boolean formulas composed of terms of the form 𝑡. {𝑎! ,… , 𝑎!} in 
disjunctive normal form. A clause 𝑡. {𝑎! ,… , 𝑎!} in the server policy requires the 
disclosure of a credential 𝑐 of type 𝑡 that certifies attributes {𝑎! ,… , 𝑎!}. A valid 
disclosure 𝐷 satisfies a term 𝑡. {𝑎! ,… , 𝑎!} if ∃𝑐 ∈ 𝐷  𝑠. 𝑡.    𝑡𝑦𝑝𝑒 𝑐 ≤!"# 𝑡 and 
{𝑎! ,… , 𝑎!}   ⊆ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑐 . For instance, assume that the policy regulating access to 
the MedicineBooking service is id.{Name} ∧ credit_card.{Name,Number,Limit} ∧ 
*.{DoB,e-mail}. The disclosure in Figure 7(a) satisfies the policy and grants the client 
access to the requested service: term id.{Name} is satisfied by the release of attribute 
Name from credential MyIdCard; term credit_card.{Name,Number,Limit} is satisfied 
by the release of atomic credential MyVISA; and term *.{DoB,e-mail} is satisfied by 
the release of attribute DoB from credential MyIdCard and by the declaration of 
attribute e-mail. Formally, the minimum disclosure problem can then be formulated as 
follows. 
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(a) 

 
(b) 

 
(c) 

Figure 7 An example of valid disclosure (a), arbitrary subset of portfolio elements (b), and non valid disclosure (c) 
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credentials in the client portfolio; 𝐴 = 𝑎!,… , 𝑎!  be the set of attributes in the client 
portfolio; 𝑇,≤!"#  be the hierarchy of credential types; 𝔸 be the set of sensitive 
associations; 𝔽 be the set of forbidden views; 𝕃 be the set of disclosure limitations; 𝜆 
be the labeling function; and 𝑝 be the server policy. Find a subset 𝐷 ⊆ 𝐶 ∪ 𝐴 such 
that: 
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1. ∀𝑎 ∈ 𝐷,∃𝑐   ∈ 𝐷  𝑠. 𝑡.    𝑎 ∈ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑐) (certifiability);  
2. ∃𝑐 ∈ 𝐷  𝑠. 𝑡.    𝑐 is atomic, ∀𝑎 ∈ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑐 , 𝑎 ∈ 𝐷 (atomicity); 
3. ∀𝑥 ∈ 𝒜, 𝑥 ∈ 𝐷 then  𝒜 ∈ 𝐷(association exposure); 
4. ∀𝑓 ∈ 𝔽, 𝑓 ⊈ 𝐷 (forbidden views satisfaction); 
5. ∀𝑙! ∈ 𝕃,∄𝑙! ⊆ 𝐷  𝑠. 𝑡.     𝑙! ≥ 𝑖, with 𝑖 the threshold fixed by constraint 𝑙! 

(disclosure limitation satisfaction); 
6. ∃ a clause 𝑡!. 𝑎!!,… , 𝑎!! … 𝑡! . 𝑎!" ,… , 𝑎!"  in 𝑝 such that for each term 

𝑡. 𝑎! ,… , 𝑎!  in the clause, ∃𝑐 ∈ 𝐷  𝑠. 𝑡. 𝑡𝑦𝑝𝑒 𝑐 ≤!"# 𝑡 and {𝑎! ,… , 𝑎!}   ⊆
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑐  (policy satisfaction); 

7. ∄𝐷′ satisfying all the conditions above and such that 𝜆 𝐷 ≻ 𝜆 𝐷! . 

For instance, the disclosure in Figure 7(a) represents a minimal disclosure for our 
example.  

The problem of computing a minimal disclosure is NP-hard [3]. In [3] the authors 
propose a graph-based heuristic algorithm to compute a minimal disclosure (i.e., a 
disclosure that, although not minimal, has a low sensitivity label). In [4] the authors 
define a modeling of the problem as an instance of the Max-SAT problem, and use 
Max-SAT solvers to compute an optimum solution in a limited computational time. 

The model in [3] has been extended in [6] to permit the client to complement her 
privacy preferences with context-based restrictions that limit the disclosure of 
credentials on the basis of the context of her request. In the same paper, the authors 
also propose to take the history of past interactions into account in the choice of the set 
of credentials and attributes to disclose for gaining access to the requested service. 

Open	  Issues.	  The modeling of the client portfolio proposed in [3] permits the client to 
specify sensitivity labels at the attribute granularity level and to take advantage of new 
constructs for taking sensitive associations and disclosure constraints into 
consideration in the choice of the set of portfolio components to disclose. This 
approach leaves however space to further improvements. Sensitivity labels modeling 
privacy preferences may not be easy to define for final users. In fact, as already noted 
in [22], it is hard to associate a quantitative value with each portfolio component (and 
possible subset thereof), while it would be easier to define a partial order relationship 
between subsets of portfolio components. 

7. FINE-‐GRAINED	  DISCLOSURE	  OF	  SENSITIVE	  ACCESS	  POLICIES	  
In [2], the authors address the problem of regulating the disclosure of access control 
policies, by proposing a model that permits the server to specify a disclosure policy 
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regulating if and how an access control policy should be communicated to the client. 
To this purpose, the approach in [2] models access control policies as policy trees. 
Policy tree 𝑇(N) representing policy 𝑝 has a node for each operator, attribute, and 
constant value in 𝑝. The internal nodes of the tree represent operators, whose operands 
are represented by the sub-trees rooted at its children. For instance, Figure 8 represents 
the policy tree of 𝑝 = (𝑡𝑦𝑝𝑒(𝑐!) = credit_card ∧ 𝑐!.Limit > 1,000) ∨ (𝑡𝑦𝑝𝑒(𝑐!) = 
insurance ∧ 𝑐!.Company ≠ ‘A’ ∧ 𝑐!.Company ≠ ‘B’). 

Disclosure	   Policy.	  The disclosure policy regulating the release of a policy 𝑝 to a 
client regulates the visibility of each node in the policy tree 𝑇(N). The disclosure 
policy is formally defined as a coloring function 𝛾:𝑁 → {𝑔𝑟𝑒𝑒𝑛,𝑦𝑒𝑙𝑙𝑜𝑤, 𝑟𝑒𝑑} that 
associates with each node 𝑛 in the policy tree a color in the set {𝑔𝑟𝑒𝑒𝑛,𝑦𝑒𝑙𝑙𝑜𝑤, 𝑟𝑒𝑑}, 
thus obtaining a colored policy tree 𝑇(N, 𝛾). The semantics of the colors, with respect 
to the client visibility of a node, can be summarized as follows:  

• 𝑔𝑟𝑒𝑒𝑛: the node is released; 
• 𝑦𝑒𝑙𝑙𝑜𝑤: the label of the node is removed (i.e., the operator, attribute, or 

constant value it represents) before its release, while its presence in the tree and 
its children are preserved; 

• 𝑟𝑒𝑑: the label of the node is removed and possibly also its presence in the tree. 

As an example, Figure 9 illustrates a possible coloring regulating the disclosure of the 
policy tree in Figure 8. In the figure, 𝑔𝑟𝑒𝑒𝑛  nodes are white, 𝑦𝑒𝑙𝑙𝑜𝑤 nodes are gray, 
and 𝑟𝑒𝑑 nodes are black. 

Λ

V

Λ

=

credit_card

> =

type(c1)

=

1,000c1.Limit insurancetype(c2) Ac2.Company Bc2.Company
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Figure 8 An example of policy tree 
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Although the server can decide to associate an arbitrary color with each node in the 
tree, a disclosure policy is well defined if it is meaningful. More precisely, a disclosure 
policy is well defined if it satisfies the following conditions. 

1. If a leaf node representing a constant value is 𝑔𝑟𝑒𝑒𝑛, then its sibling (which 
represents an attribute) is 𝑔𝑟𝑒𝑒𝑛 and its parent (which represents an operator) is 
not 𝑟𝑒𝑑. 

2. If a node representing an operator is 𝑔𝑟𝑒𝑒𝑛, at least one of its children must be 
either 𝑔𝑟𝑒𝑒𝑛 or 𝑦𝑒𝑙𝑙𝑜𝑤. 

3. The nodes in a sub-tree representing a condition on credential type must be 
either all 𝑔𝑟𝑒𝑒𝑛 or all 𝑟𝑒𝑑. 

Figure 10 illustrates an example of non well defined coloring for the policy tree in 
Figure 8. In fact, since only node ‘A’ is 𝑔𝑟𝑒𝑒𝑛 in the sub-tree representing condition 
𝑐!.Company ≠ ‘A’, the server would disclose value ‘A’ instead of the condition. 
Analogously, only node > is 𝑔𝑟𝑒𝑒𝑛 in the sub-tree of condition 𝑐!.Limit > 1,000, the 
server would disclose the operator > only to the client. Finally, node insurance is 
𝑦𝑒𝑙𝑙𝑜𝑤 in the sub-tree of condition 𝑡𝑦𝑝𝑒(𝑐!) = insurance, while the other nodes are 
𝑔𝑟𝑒𝑒𝑛. The disclosed condition would then only release operand 𝑡𝑦𝑝𝑒(𝑐!) and 
operator =, which does not give to the client any information to possibly gain access to 
the service. 

Figure 9 An example of coloring for the policy tree in Figure 8 
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Figure 10 An example of non well defined colored policy tree 

Policy	  Communication.	  When the client sends a request for accessing a service to 
the server, the server transforms its access control policy into a client policy view 
according to the disclosure policy. The colored policy tree 𝑇(N, 𝛾) regulating policy 
disclosure is therefore transformed into an equivalent client policy tree view by: i) 
removing the label of 𝑦𝑒𝑙𝑙𝑜𝑤 and 𝑟𝑒𝑑 nodes; ii) removing unnecessary 𝑟𝑒𝑑 leaves; 
and iii) collapsing internal 𝑟𝑒𝑑 nodes in a parent-child relationship in a single 𝑟𝑒𝑑 
node. To this purpose, the server visits the tree following a post-order strategy and 
applies, in the order, the following three classes of transformation rules. 

• Prune rules. These rules remove unnecessary leaf nodes. Two kinds of prune 
rules can be applied on an internal node 𝑛 whose children are leaf nodes. 

o Red predicate rule. If 𝑛 is 𝑟𝑒𝑑, all its 𝑟𝑒𝑑 children are removed. For 
instance, consider the colored policy tree in Figure 9, according to this 
rule node representing constant value 1,000 is removed. 

o Red children rule. If all the children of 𝑛 are 𝑟𝑒𝑑, they are removed and 
the color of node 𝑛 is set to 𝑟𝑒𝑑. For instance, consider the colored 
policy tree in Figure 9, according to this rule the nodes representing 
attribute Company and constant value ‘A’ in condition (𝑐!.Company ≠ 
‘A’) are removed. Also, the color of the node representing operator ≠ is 
set to red. 

• Collapse rule. This rule operates on internal 𝑟𝑒𝑑 nodes and removes their non-
leaf 𝑟𝑒𝑑 children. For instance, consider the colored policy tree in Figure 9, the 
node representing operator ≠ in condition (𝑐!.Company ≠ ‘A’) is removed 
since its parent (i.e., the second child of the root node) is 𝑟𝑒𝑑. 

• Hide label rule. This rule removes the labels of 𝑦𝑒𝑙𝑙𝑜𝑤 and 𝑟𝑒𝑑 nodes. 

Figure 11 illustrates the client policy tree view obtained applying the transformation 
rules described above to the colored policy tree in Figure 9. 
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The disclosure of a client policy tree view may be meaningless for the client, since it 
may not represent in a “fair way” the server access control policy [2]. Intuitively, a 
client policy tree view fairly represents the server policy if it includes at least a subset 
of attributes that permit the access control policy evaluation. In fact, in this case, the 
client can decide whether to release the requested attributes to possibly gain access to 
the service of interest. Clearly, the server should disclose only fair policies. For 
instance, the policy view represented by the tree in Figure 11 is fair, since all the 
attributes and credential types in the original policy are preserved in the client view. 
The client can decide whether to release either one of her credit cards or her insurance 
to possibly gain access to the MedicineBooking service. 

Open	   Issues.	   The solution proposed in [2] to protect the confidentiality of access 
control policies, while permitting the client-server interaction in open environments, is 
effective and permits the definition of disclosure restrictions at a fine granularity level. 
However, this proposal represents only a first step in the definition of an effective 
system regulating policy disclosure. In fact, the proposed model permits to check 
whether a disclosure policy generates a fair client policy tree view but it does not 
propose an approach for possibly revising the disclosure policy when the client policy 
tree view is not fair (and therefore prevents the definition of a successful negotiation 
strategy). Also, the model could be extended to consider the disclosure of proofs of 
possession and/or proofs of satisfaction of condition. 

8. OPEN	  ISSUES	  
The enforcement of access privileges in open environments taking into account both 
client privacy preferences and policy confidentiality requirements still present 
different open issues that need to be addressed. 

• Inheritance of privacy preferences. Most of the solutions proposed in the 
literature assume that the client associates a preference with each credential 

Figure 11 Policy tree view of the colored policy tree in Figure 9 
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and/or attribute in her portfolio. Although the solution in [3] uses the hierarchy 
of credential types for checking whether the disclosure of a subset of the 
portfolio components satisfies a given server request, it does not consider this 
hierarchy in the definition of privacy preferences. An interesting open issue 
consists in exploiting the hierarchy of credential types to make the definition of 
privacy preferences more user-friendly. 

• Proof of possession. The values modeling privacy preferences are traditionally 
associated with credentials and/or attributes and express how much their owner 
values their release. Recent technologies however permit to release proofs of 
possession of credentials and proofs of satisfaction of conditions defined on 
attributes. The release of a proof is usually considered less sensitive than the 
release of the credential/attribute on which the proof is based. This different 
disclosure risk should therefore be adequately modeled. 

• Shared knowledge. Attribute-based access control solutions traditionally 
assume that the hierarchy of credential types and attribute names represent a 
common knowledge for the server and the client. However, this assumption 
does not always hold in real-life scenarios, where there may be mismatches due 
also to the fact that servers refer to credential and attribute types while clients 
refer to their instances. Access control models should be extended to handle this 
problem. 

• Integration. Both the solutions developed to support client privacy preferences 
and the solutions proposed to protect the confidentiality of server policies do 
not consider the privacy requirements of the counterpart. It is therefore 
important to study new models that consider both the client and the server 
privacy needs. 

• The approaches proposed in the literature for the support of client privacy 
preferences present advantages and disadvantaged complementary to each 
other. For instance, the solution in [22] has the advantage of usability, while the 
approach in [3] supports sensitive associations and disclosure constraints. An 
interesting open issue is therefore the definition of a model that combines the 
advantages of all the proposed approaches.  

9. SUMMARY	  
We have analyzed the privacy issues that may arise in open scenarios, where the client 
accessing a service and the server offering it may be unknown to each other and need 
to exchange information to build a trust relationship. We have illustrated both the 
problem of taking client privacy preferences into account in credential disclosure, and 
the problem of maintaining the confidentiality of server access control policies. For 
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each of these problems, we have described some recent approaches for their solution 
and illustrated some open issues that still need to be addressed. 
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