
 1

Supporting User Privacy Preferences
in Digital Interactions

Sara Foresti and Pierangela Samarati

Dipartimento di Informatica
Università degli Studi di Milano

via Bramante 65, 26013
Crema (CR), Italy

email: sara.foresti@unimi.it, pierangela.samarati@unimi.it

ABSTRACT	
The quick development and widespread adoption of Internet technologies allows
servers to make available their services and resources to possibly unknown users
anywhere any-time. To regulate access to such services in open scenarios, servers
require users to release information about them through the disclosure of digital
certificates. Since digital certificates, as well as access control policies may include
sensitive information, it is necessary to define mechanisms that permit both the client
and the server to specify privacy preferences to be considered in credential and policy
disclosure.

In this chapter, we describe solutions supporting both client privacy preferences, and
server disclosure policies. We illustrate the desiderata that these solutions should
satisfy, and describe recent approaches that take client privacy preferences and server
confidentiality into account in a negotiation process. Finally, we introduce some open
issues that need further investigation.

 2

1. INTRODUCTION	
The advancements in ICT (Information and Communications Technology) allow users
to take more and more advantage of the availability of online services (and resources)
that can be accessed anywhere any-time. In such a scenario, the server providing the
service and the requesting user may be unknown to each other. As a consequence,
traditional access control systems [28] based on the preliminary identification and
authentication of users requesting access to a service cannot be adopted, and are
usually not suited to open scenarios (e.g., [13],[20],[29]). The solutions proposed to
allow servers to regulate access to the services they offer, while not requiring users to
manage a huge number of accounts, rely on attribute-based access control
mechanisms (e.g., [7],[9],[16],[17],[18],[21],[23],[26],[34]). Policies regulating access
to services define conditions that the requesting client must satisfy to gain access to the
service of interest. Upon receiving a request to access a service, the server will not
return a yes/no reply but it will send to the client the conditions that she must satisfy to
be authorized to access the service. To prove to the server the possession of the
attributes required to gain the access, the client releases digital certificates (i.e.,
credentials) signed by a trusted third party, the certification authority, who declares
under its responsibility that the certificate holder possesses the attributes stated in the
certificate. Practically, credentials are the digital representation of paper certificates
(e.g., id card, passport, credit card). The adoption of credentials in access control has
several advantages. First, credential-based access control enables clients to
conveniently access Web services, without the need to remember a different
<username, password> pair for each system with which she wants to interact. Second,
it offers better protection against adversaries interested in improperly acquiring users
access privileges.

The use of credentials to enforce access control restrictions in open environments has
been widely studied in the last fifteen years. Most attention has however been devoted
to the server-side of the problem, proposing a number of novel policy languages, for
specifying access control rules (e.g., [7],[9],[23],[26],[34]); policy engines, for the
evaluation of access requests and the enforcement of policy restrictions
(e.g., [21],[23],[24],[34]); and strategies for communicating access conditions to the
requesting clients, possibly engaging a negotiation protocol
(e.g., [1],[21],[23],[24],[30],[31],[33],[34]). Since the interacting parties are assumed
to be unknown to each other, the client may not known which attributes/credentials to
release to gain access to the service of interest. As a consequence, the server should
send to the client its policy, which may however be considered sensitive and therefore
needs to be adequately protected before being disclosed. Most of the current

 3

approaches implicitly assume that clients adopt an approach symmetric to the one used
by servers for regulating access to the sensitive information certified by their
credentials. Although expressive and powerful, these solutions do not fully support the
specific protection requirements of the clients. In fact, clients are interested in a
solution that is expressive and flexible enough to support an intuitive and user-friendly
definition of the sensitivity/privacy levels that they perceive as characterizing their
data. These preferences are used to choose which credentials to release when more
than one subset of credentials satisfy the access control policy defined by the server
(e.g., to buy a medicine, a patient needs to prove her identity by releasing either her
identity card or her passport).

This chapter provides an overview of the privacy issues arising in open environments,
both from the client and from the server points of view, and illustrates some solutions
proposed to overcome these problems. The remainder of this chapter is organized as
follows. Section 2 introduces basic concepts and describes the desiderata of privacy-
aware access control systems operating in open environments. Section 3, Section 4,
Section 5, and Section 6 illustrate some recent proposals that permit clients to specify
privacy preferences that are then used to determine which credentials to disclose to
gain access to a service of interest. Section 7 focuses on the server side of the problem,
describing approaches that permit to regulate the disclosure of sensitive access control
policies. Section 8 presents some open issues that still need to be addressed. Finally,
Section 9 presents our concluding remarks.

2. BASIC	 CONCEPTS	 AND	 DESIDERATA	
In this section, we describe the concepts at the basis of the proposals that we will
describe in the following, and we discuss the desiderata that an attribute-based access
control system should satisfy to effectively support both client and server privacy
preferences.

2.1. 	 Client	 Portfolio	
The information that a client can provide to a server to gain access to a service are
organized in a portfolio including both credentials signed by third parties and
certifying client properties, and declarations stating uncertified properties uttered by
the client [9]. Each credential 𝑐 in the client portfolio is characterized by: a unique
identifier 𝑖𝑑(𝑐), an issuer 𝑖𝑠𝑠𝑢𝑒𝑟(𝑐), a set of attributes 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑐), and a
credential type 𝑡𝑦𝑝𝑒(𝑐). The type of a credential determines the set of attributes it
certifies. Credential types are traditionally organized in a rooted hierarchy, where
intermediate nodes represent abstractions defined over specific credential types that

 4

correspond to the leaves of the hierarchy [3]. Formally, a hierarchy 𝐻 of credential
types is a pair (𝑇,≤!"#), where 𝑇 is the set of all credential types and abstractions
defined over them, and ≤!"# is a partial order relationship on 𝑇. Given two credential
types 𝑡! and 𝑡!, 𝑡! ≤!"# 𝑡! if 𝑡! is an abstraction of 𝑡!. For instance, photo_id is an
abstraction of credential types id_card and passport (i.e., id_card≤!"#photo_id and
passport≤!"#photo_id). The root of the hierarchy is node *, representing any credential
type. We note that declarations are usually modeled as a type of credentials, signed by
the client herself. Figure 1 illustrates an example of a hierarchy of credential types.

The hierarchy of credential types is a knowledge shared between the client and the
server. In fact, while a client knows exactly the different instances of credential types
composing her portfolio, the server formulates its requests over credential types since
it cannot be aware of the instances composing the client portfolio. We note that a client
may possess different credentials of the same type (e.g., she can have more than one
credit card).

Depending on the cryptographic protocol used for their generation, credentials can be
classified as atomic or non-atomic. Atomic credentials are the most common kind of
credentials used today in distributed systems (e.g., X.509 certificates) and can only be
released as a whole. As a consequence, even if an atomic credential certifies attributes
that are not required to gain access to a service, if the client decides to release it, these
attributes will be disclosed to the server. Non-atomic credentials have recently been
proposed as a successful approach to limit data disclosure (e.g., U-Prove and
Idemix [10],[11]). Credentials generated adopting these technologies permit the client

*

credential declaration

id credit_card

photo_id insurance dialysis

id_card passport

Figure 1 An example of hierarchy of credential types

 5

to selectively release a subset of the attributes certified by the credential (as well as the
existence of the credential itself). Note that the release of an attribute (or a set thereof)
certified by a non-atomic credential entails the disclosure of the existence in the client
portfolio of the credential itself. Clearly, declarations are non-atomic credentials.

Attributes within credentials are characterized by a type, a name, and a value (e.g.,
attribute Name of type Name with value Bob), which can either depend only on the
client or on the specific credential certifying the attribute. In the first case, the attribute
is credential-independent since its value is the same, independently from the credential
certifying it (e.g., Name and DoB are credential-independent attributes). In the second
case, the attribute is credential-dependent since its value depends not only on the
credential holder, but also on the specific instance of the credential certifying it (e.g.,
attribute type CCNum, representing the credit card number, is a credential-dependent
attribute since each credit card has a different number).

𝒊𝒅(𝒄) Atomic 𝒕𝒚𝒑𝒆(𝒄) 𝒂𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆𝒔(𝒄)
MyIdCard ✓ id_card Name, DoB, City
MyPassport passport Name, DoB, Country
MyVISA ✓ credit_card Name, VISANum, VISALimit
MyAmEx ✓ credit_card Name, AmExNum, AmExLimit
MyDialysis dialysis Name, City
MyInsurance ✓ insurance Name, Company, Coverage
MyDecl declaration Name, DoB, City, Country, VISANum,

VISALimit, AmExNum, AmExLimit,
Company, Coverage, e-mail

Table 1 An example of client portfolio

For instance, Table 1 illustrates an example of client portfolio composed of four
atomic and three non-atomic credentials. In the figure, credential-independent
attributes are in roman, while credential-dependent attributes are in italic.

2.2. 	 Disclosure	 Policies	
Attribute-based access control restricts access to server service depending on the
attributes and credentials that the requesting client discloses to the server. The policy
regulating access to services is therefore defined over attributes and credentials
provided by clients. Since the server may not know the requesting client and therefore
ignore the credential instances in her portfolio, the access control policy is defined
considering only the hierarchy of credential types, which represents a common
knowledge to the interacting parties. An access control policy is defined as a Boolean
formula composed of basic conditions 𝑐𝑜𝑛𝑑 of the form (𝑡𝑒𝑟𝑚!𝑜 𝑡𝑒𝑟𝑚!), where 𝑜 is

 6

a predicate operator (e.g., >, <, =), and 𝑡𝑒𝑟𝑚! and 𝑡𝑒𝑟𝑚! are its operands. The
operands of a basic condition can be either constant values, or (certified or declared)
attributes represented by terms of the form 𝑐. 𝑎, where 𝑐 is a variable representing a
credential and 𝑎 is the name of the attribute. For instance, basic condition
Coverage>10,000 USD requires that the coverage offered by insurance is higher than
10,000 USD to access the service. The server may also define restrictions on the type
of credentials that should certify the requested attributes and/or require that a set of
attributes in the policy are certified by the same credential. As an example, policy
(𝑡𝑦𝑝𝑒(𝑐)=insurance) ∧ (𝑐.Company≠‘A’) ∧ (𝑐.Coverage>10,000 USD) requires that
attributes Company and Coverage are certified by the same credential 𝑐, of type
insurance.

2.3. 	 Trust	 Negotiation	
Since clients and servers operating in open environments are assumed to be unknown
to each other, they interact to the aim of building a trust relationship that permits the
client to gain access to a service offered by the server. This trust relationship is built
step by step through the exchange of credentials. Since credentials may certify
sensitive information, their release is often regulated, like for services, by access
control policies. Usually, these conditions require the release by the counterpart of
another credential (or set thereof). As an example, a user agrees to release the
certificate stating her dialysis condition to a server only if the server proves (through a
certificate) to be a medical institution or a pharmacy recognized by the Health
Ministry.

To gain access to a service, the client and the server must then find a sequence of
certificates exchange, called strategy, satisfying the access control policies of both
parties. For instance, with reference to the above example, a successful strategy that
permits the user to buy the medicine of interest consists of the following steps: i) the
patient sends her request to the pharmacy; ii) the pharmacy answers with a request for
a certificate proving that the user has a nephrological disease; iii) the client, in turn,
asks the pharmacy the certificate proving that it is recognized by the Health Ministry;
iv) the pharmacy releases to the client the requested certificate; v) the client then
discloses to the pharmacy her dialysis certificate; vi) finally, the server grants access to
the service. Different approaches have been proposed in the literature to the aim of
identifying a successful trust negotiation strategy
(e.g., [1],[21],[23],[24],[30],[31],[33],[34]) that depends not only on the policies
defined by the parties and on the credentials at their disposal, but also on their choice
of disclosure/non-disclosure of their data. As an example, an eager strategy would

 7

disclose a credential as soon as the policy regulating its release is satisfied, while a
more parsimonious strategy permits the release of a credential only if there exists a
successful strategy that will finally grant the client access to the service. It is
interesting to note that, given the policies and credentials of the interacting client and
server, there may exist more than one successful strategy. For instance, with reference
to the portfolio in Table 1, policy (𝑡𝑦𝑝𝑒(𝑐)=id) ∧ (𝑐.DoB<01/01/1994) can be satisfied
by the client releasing either credential MyIdCard or credential MyPassport. Although
all the successful strategies may seem equivalent, this is generally not true. Both the
client and the server may prefer to release a credential over another one because they
perceive a different sensitivity level associated with the information that credentials
certify. For instance, the client may prefer to release her id_card over her passport.

2.4. 	 Client	 Privacy	 Preferences	
Given the server request, the client needs to determine which credentials and/or
attributes to disclose to satisfy it. This task becomes harder if different subsets of
credentials and/or attributes in the client portfolio can be used to fulfill the server
policy, since the client needs to choose among them. Ideally, the choice should be
driven by the sensitivity level that the client perceives for her credentials and
attributes, as she will be more willing to disclose less sensitive portfolio components.
It is therefore necessary to provide clients with a flexible and effective system that
automatically determines the release strategy that better satisfies her privacy
preferences. To this purpose, a flexible and expressive model for representing privacy
preferences needs to be defined. We now illustrate the main desiderata that a privacy-
aware access control system should satisfy [5].

• Fine-grained preference specification. The privacy preferences associated with
attributes and credentials in the client portfolio reflect the sensitivity perceived by
the credential owner for the personal information represented by the
attribute/credential. The model should support the definition of privacy preferences
for each instance of attribute and credential in the client portfolio, meaning that
different instances of the same credential type (and credential-dependent attribute)
might be associated with different privacy preferences. For instance, with reference
to the portfolio in Table 1, the client may prefer to release VISA credit card instead
of AmEx.

• Inheritance of privacy preferences. To provide flexibility in the definition of
privacy preferences and a user-friendly mechanism for their specification, the
model should take advantage of the hierarchy of credential types characterizing the
client portfolio. When the client portfolio is composed of a huge number of

 8

attributes and credentials, it might be difficult for the client to specify a different
preference value for each credential and attribute. Privacy preferences associated
with abstractions of credential types could however be inherited by all its
specifications, if not overwritten by a more specific preference value, thus reducing
the client overhead. For instance, with reference to the hierarchy of credential types
in Figure 1 and the portfolio in Table 1, the client may specify a single privacy
preference associated with credential type photo_id, which is automatically
inherited by credentials MyIdCard and MyPassport.

• Partial order relationship and composition operator. The domain of privacy
preferences should be characterized by a (partial) order relationship ≽ that permits
to precisely determine whether a given piece of personal information is more or
less sensitive than another. The domain should also be characterized by a
composition operator ⊕, which permits to compute the privacy preference value
characterizing the release of a set of attributes and/or credentials. As an example, if
the domain of privacy preferences is the set of positive integer numbers, the partial
order relationship could be the “greater than” relationship (i.e., ≥), while the
composition operator could be the sum operator (i.e., +).

• Sensitive associations. In different scenarios, the combined release of a set of
attributes and/or credentials is considered more (or less) sensitive than the release
of each portfolio component singularly taken. For instance, with reference to the
portfolio in Table 1, the client may consider the combined release of attributes DoB
and City more sensitive than the release of each of the two attributes, since their
combination could be exploited to infer the identity of the client [27]. On the other
hand, she may value the release of City and Country less sensitive than the release
of the two attributes singularly taken, due to the dependency between the values of
the two attributes. As a consequence, the model should support the definition of a
privacy preference value for the combined release of a set of attributes and/or
credentials that is different from the result of the combination of the privacy
preferences of the items in the set.

• Disclosure constraints. There are situations where the client needs to specify
restrictions on the combined release of portfolio components, since she wants to
keep the association among a subset of attributes and/or credentials confidential, or
limit their combined release. For instance, with reference to the portfolio in Table
1, the client may not be willing to release credential MyDialysis together with
attribute DoB, to prevent the server from exploiting this information for data
mining purposes (e.g., to analyze the age of people with nephrologic diseases).

 9

• Context-based preferences. The privacy preferences associated with attributes and
credentials may vary depending on the context in which their release is requested
(i.e., depending on the requested service and/or on the server providing it). For
instance, the client may be more willing to release her dialysis certificate to a
pharmacy for buying a medicine than to a hotel for booking a room.

• History-based preferences. The preference of the client toward disclosing one
credential (attribute, respectively) over another one may depend on the history of
past interactions with the server offering the service. As a matter of fact, if the
server already knows the attributes and credentials released by the client during a
previous interaction, the client may be more willing to release the same (or a
different) set of portfolio components. For instance, with reference to the portfolio
in Table 1, assume that the client released credential MyVISA to a server to buy a
service. When interacting again with the same server to buy another service, the
client may prefer to use the same credit card, instead of releasing also credential
MyAmEx.

• Proof of possession. Thanks to novel technologies, clients can release proofs of
possession of certificates and proofs of the satisfaction of conditions
(e.g., [10],[11]). As a consequence, the model should also permit the client to
specify privacy preferences associated with proofs (besides attributes and
credentials on which proofs are defined). For instance, with reference to the
portfolio in Table 1, the client may consider more sensitive the release of her DoB
than the release of a proof that she is at least 18.

• User-friendly preference specification. The definition of privacy preferences
should be easy for the client, who may not be familiar with access control systems.
As a consequence, it is necessary to provide clients with interfaces that permit to
easily define preferences without introducing inconsistencies.

2.5. 	 Server	 Privacy	 Preferences	
With attribute-based access control, servers regulate access to their services based on
the attributes and certificates presented by the requesting client. Upon receiving an
access request, the server needs to communicate to the client the policy that she should
satisfy to possibly gain access to the service. The access control policy could however
be sensitive and the server may not be willing to disclose it completely to the client:
while the communication of the complete policy favors the privacy of the client (since
she can avoid disclosing her attributes and credentials if they would not satisfy the
conditions in the policy), the communication of the attributes involved in the policy
only favors the privacy of the server (since the specific conditions are not disclosed).
Also, different portions of the same policy may be subject to different confidentiality

 10

requirements. For instance, assume that a pharmacy grants to clients access to the
online medicine purchase service only if the insurance coverage of the clients is higher
that 10,000 USD and the insurance company is not in the pharmacy black list. The
pharmacy might not mind disclosing the fact that only clients with insurance cover
greater than 10,000 USD can access its services, but it does not want to reveal its black
list.

The system managing the disclosure of server policies should satisfy the following
desiderata.

• Disclosure policy. The server should be able to define, at a fine-granularity level,
how policy release should be regulated.

• Policy communication. The communication of the access control policy regulating
access to the requested service to the client should guarantee that privacy
requirements are satisfied and that the client has enough information to determine
the set of attributes and/or credentials she needs to disclose to possibly gain access
to the service. It is therefore necessary to define a mechanism that adequately
transforms the access control policy before communicating it to the client.

• Integration with client mechanisms. The approach designed to regulate policy
release should be integrated with the one designed to manage the release of
portfolio components at the client side.

Note that in a negotiation process, both the client requesting access to a service and the
server providing it possess a portfolio and regulate the disclosure of credentials and
attributes composing it according to their access control policy.

3. COST-‐SENSITIVE	 TRUST	 NEGOTIATION	
A solution that takes disclosure preferences into consideration in attribute-based access
control has been introduced in [12]. The authors propose to associate a sensitivity cost
𝑤(𝑐) with each credential 𝑐 in the client (and server) portfolio, and with each access
control policy 𝑝 regulating credentials disclosure and access to services. A policy 𝑝 is
defined as a Boolean formula over the credentials in the counterparty’s portfolio.
Boolean variable representing credential 𝑐 in policy 𝑝 is true if 𝑐 has already been
disclosed, it is false otherwise. The sensitivity cost associated with credential 𝑐 (policy
𝑝, respectively) models how much the credential’s owner (party who defined the
policy, respectively) values the release of the credential (policy, respectively) and the
disclosure of the sensitive information that the credential certifies. Intuitively, a client
(server, respectively) is more willing to disclose credentials (policies, respectively)
with lower sensitivity cost and, vice versa, she prefers to keep credentials (policies,

 11

respectively) with high sensitivity cost confidential. For instance, Table 2 (Table 3,
respectively) illustrates an example of client portfolio (server portfolio, respectively) .
For each credential, the table reports the policy regulating its disclosure, the sensitivity
cost of the credential, and the sensitivity cost of it policy. Constant value TRUE is
used in policy definition to model the case when the release of a credential is free, that
is, it is not regulated by a policy. (The portfolio in Table 2 is a simplified version of
the portfolio in Table 1.)

𝒊𝒅(𝒄) 𝒘(𝒄) Policy 𝒑 regulating 𝒄 𝒘(𝒑)
MyIdCard 2 TRUE 0
MyPassport 4 TRUE 0
MyCreditCard 10 POS_register 5
MyDialysis 20 pharmacy_register 10
MyInsurance 15 pharmacy_register 10

Table 2 An example of client portfolio and policies regulating its disclosure

𝒊𝒅(𝒄) 𝒘(𝒄) Policy 𝒑 regulating 𝒄 𝒘(𝒑)
MyPOSRegister 2 TRUE 0
MyPharmacyRegister 5 passport ∨ id_card 4

Table 3 An example of server portfolio and policies regulating its disclosure

The goal of the client and the server engaging a negotiation protocol is that of
minimizing the sensitivity cost of the credentials and policies exchanged during a
successful negotiation strategy. This optimization problem can be formulated as
follows [12].

Problem 1: Minimum Sensitivity Cost problem - Let 𝐶! be the set of server
credentials and services; 𝑃! be the set of policies regulating the disclosure of server
credentials and access to services; 𝐶! be the set of client credentials; 𝑃! be the set of
policies regulating the disclosure of client credentials; 𝑤: 𝐶! ∪ 𝑃! ∪ 𝐶! ∪ 𝑃! → ℝ be the
sensitivity cost function; and 𝑠 ∈ 𝐶! be the service requested by the client. Find an
exchange sequence of credentials and policies such that:

1. 𝑠 is released to the client;
2. the policy regulating the disclosure of each credential released to the

counterpart is satisfied before credential release;
3. the sum of the sensitivity costs of released credentials and policies is minimum.

The problem of computing a Minimum Sensitivity Cost strategy is NP-hard [12] and
therefore any algorithm that solves it at optimum has exponential cost in the size of its
input (i.e., the number of credentials and policies in 𝐶! ∪ 𝑃! ∪ 𝐶! ∪ 𝑃!). In [12] the

 12

authors propose two different heuristic approaches for computing a good (although
non optimal) solution to the problem. These heuristics have polynomial computational
complexity and can be adopted when policies can be freely disclosed, and when they
are associated with a sensitivity cost, respectively.

Non-‐sensitive	 Policies.	 The solution proposed for the simplified scenario where
policies are not associated with a sensitivity cost (i.e., they can be freely released) is
based on the definition of a policy graph modeling the policies regulating credential
disclosure at both the client and server side. A policy graph 𝑮(𝑽,𝑨,𝒘) is defined as a
weighted graph with:

• a vertex 𝒗𝒄 for each credential 𝒄 in 𝑪𝒔 ∪ 𝑪𝒄;
• a vertex 𝑣! for each service 𝑠 in 𝐶!;
• a vertex 𝑣! for constant value TRUE;
• a vertex 𝑣 for each disjunction in the policies regulating credential release;
• an edge (𝑣! , 𝑣!), with 𝑣! and 𝑣! vertexes representing credentials, if the release

of the credential represented by 𝑣! is a necessary condition to gain access to the
credential represented by 𝑣!;

• an edge (𝑣! , 𝑣!), with 𝑣! a vertex representing a credential and 𝑣! a vertex
representing a disjunction, if 𝑣! is one of the clauses of the disjunction
represented by 𝑣!.

The weight of a vertex representing a credential corresponds to the sensitivity cost
of the credential it represents, while other vertexes do not have weight. For
instance, consider the access control policies in Table 2 and Table 3 and service
MedicineBooking, regulated by policy 𝑝 = dialysis ∨ (id_card ∧ (credit_card ∨
insurance)). Figure 2(a) illustrates the policy graph modeling the access control
policies in the system.

 13

(a)

(b)
Figure 2 Policy graph for the policies in Table 2 and in Table 3 (a), and Minimum Directed Acyclic graph for the
MedicineBooking service (b)

The first step of the negotiation process consists in disclosing the policies regulating
credential release and access to services at the client and at the server side. This
information permits to correctly build the policy graph. Note that this disclosure is
permitted thanks to the assumption that policies are not sensitive in this simplified
scenario. The minimum sensitivity cost problem then translates into the equivalent
problem of determining a Minimum Directed Acyclic Graph for the policy graph,
starting at vertex 𝑣! (representing value TRUE) and ending at the vertex 𝑣!
representing the requested service 𝑠. Formally, a Minimum Directed Acyclic Graph is
defined as follows.

Definition 1: Minimum Directed Acyclic Graph - Let 𝐺(𝑉,𝐴,𝑤) be a policy graph,
𝑣! be the vertex representing value TRUE, and 𝑣! be the vertex representing service 𝑠.
A directed acyclic graph starting at 𝑣! and ending at 𝑣! is a sub-graph 𝐺’(𝑉’,𝐴’,𝑤) of
𝐺 such that:

1. 𝐺’ is acyclic;
2. 𝑣!,𝑣!∈𝑉’;
3. ∄ 𝑣! , 𝑣! ∈ 𝐴!, 𝑣! ∈ 𝑉′;
4. ∄ 𝑣!, 𝑣! ∈ 𝐴!, 𝑣! ∈ 𝑉′;
5. ∀ 𝑣! ∈ 𝑉!,∃ 𝑣! 𝑣! , where 𝑣! 𝑣! is a path starting at 𝑣! and ending at 𝑣!;

MyPharmacyRegister

MyPassport MyIdCard

MyDialysis

MyPOSRegister

MyCreditCardMyInsurance

MedicineBooking

TRUE

15 20 10

5 2

24

0

v v

MyPharmacyRegister

MyPassport MyIdCard

MyDialysis

MyPOSRegister

MyCreditCardMyInsurance

MedicineBooking

TRUE

15 20 10

5 2

24

0

v v

 14

6. ∀ 𝑣! ∈ 𝑉!, ∀(𝑣! , 𝑣!) ∈ 𝐴, where 𝑣! represents a credential, (𝑣! , 𝑣!) ∈ 𝐴!, 𝑣! ∈
𝑉′;

7. ∄𝐺!!(𝑉!!,𝐴!!,𝑤) that satisfies all the previous conditions and such that
𝑤(𝑣)!∈!!! < 𝑤(𝑣)!∈!! .

It is easy to see that a directed acyclic graph starting at 𝑣! and ending at 𝑣! represents
a successful negotiation strategy for service 𝑠. Therefore, the minimum sensitivity cost
problem and the problem of computing a minimum directed acyclic graph from vertex
𝑣! to vertex 𝑣! are equivalent. The heuristic algorithm proposed in [12] is based on a
variation of the well-known Dijkstra algorithm [14]. In [12] the authors experimentally
prove that the proposed algorithm computes an optimal solution in most cases. For
instance, consider the policy graph in Figure 2(a) and assume that the client is
interested in the MedicineBooking service. Figure 2(b) illustrates a Minimum Directed
Acyclic Graph for the MedicineBooking service with cost 14, where the vertexes and
edges in the policy graph that also belong to the Minimum Directed Acyclic Graph are
in black, while the other vertexes and edge are in gray.

Sensitive	 Policies.	 The solution proposed in [12] for the more complex scenario
where both credentials and policies regulating their release are associated with a
sensitivity cost is based on a greedy strategy that consists of two steps. During the first
step, the interacting parties adopt an eager strategy (i.e., each party discloses to the
counterpart the name of a credential as soon as the policy for its release is satisfied) to
mutually exchange the name and sensitivity cost associated with credentials that could
be useful for identifying a successful negotiation strategy with minimum cost. If this
first step finds such a strategy, the client and the server start the second step of the
protocol, which consists in enforcing the strategy discovered during the first step. For
instance, with reference to the policy graph in Figure 2(a), the first step consists of the
sequence of releases illustrated in Figure 3. First, the client and the server reveals to
each other the name and sensitivity cost of credentials whose release is not regulated
by a policy, that is, MyIdCard and MyPassport for the client and MyPOSRegister for
the server. These releases satisfy the policy regulating the release of MyCreditCard at
the client side and MyPharmacyRegister at the server side, whose names and
sensitivity costs are disclosed. These releases, in turn, satisfy the policies regulating
the disclosure of credentials MyInsurance and MyDialysis at the client side and service
MedicineBooking at the server side. The exchange then represents a successful
negotiation strategy. Note that the edges in Figure 3 are labeled with the cumulative
sensitivity cost of the negotiation process (e.g., MyCreditCard is associated with cost
12 = 𝑤(MyCreditCard) + 𝑤(MyPOSRegister)). The successful negotiation strategy

 15

computed by the first step is enforced during the second step of the protocol.
Therefore, the server first discloses credential MyPOSRegister and the client releases
MyIdCard. When the client receives the credential from the server, she discloses
MyCreditCard, thus gaining access to the MedicineBooking service. The overall
sensitivity cost of the strategy is 14.

Open	 Issues.	 It is interesting to note that, although effective, the model and
algorithms proposed in [12] suffer from some limitations. A first drawback is that the
proposed approach assumes that the disclosure of access control policies does not need
to be regulated, while also policy release may be subject to restrictions. Also, this
solution assumes that the objective of a privacy-aware negotiation protocol is that of
minimizing the overall sensitivity cost of credentials and policies disclosed during the
negotiation process. However, the goal of the two parties may be different. For
instance, with reference to our example, the pharmacy offering the MedicineBooking
service may not be interested in minimizing the sensitivity cost of the policies and
credentials it needs to disclose to offer the service. On the contrary, the patient wants
to minimize the sensitivity cost of the credentials she must disclose to the pharmacy.
We also note that the model in [12] does not satisfy all the desiderata illustrated in
Section 2 to support privacy preferences in attribute-based access control scenarios. In
fact, it only supports the definition of privacy preferences as sensitivity costs, which
have a numerical domain characterized by a total order relationship (i.e., ≥) and by a
composition operator (i.e., +).

Client Server

MyIdCard(2), MyPassport(4)
MyPO

SRegi
ster(2

)

MyCreditCard(12)
MyPh

armac
yRegi

ster(7
)

MyInsurance(22), MyDialysis(27)
Medic

ineBo
oking

(14)

Figure 3 Sequence of exchanges between the client and the server to determine a successful negotiation strategy

 16

4. POINT-‐BASED	 TRUST	 MANAGEMENT	
The problem of minimizing the amount of sensitive information disclosed by a trust
negotiation protocol has been also addressed in [32], where the authors propose a
point-based trust management model. This model assumes that policies regulating
access to services and release of credentials are based on the definition of quantitative
measures. More precisely, the server associates a number 𝑝𝑡 of points with each
credential type 𝑡. This value represents the trustworthiness perceived by the server for
the credential issuer (i.e., credentials issued by a more reliable party will be associated
with a higher number of points and vice versa). To restrict the access to its services,
the server then associates a threshold 𝑡ℎ𝑟 with each service. To gain access to a
service 𝑠, the client must disclose a subset of credentials in her portfolio such that the
sum of the points of the released credentials is higher than or equal to the threshold
fixed by the server for 𝑠. Analogously, the client associates a privacy score 𝑝𝑠 with
each credential in her portfolio, which represents how much she values the release of
the credential to an external server. The higher the privacy value of a credential, the
lower the client willingness in its release. As a consequence, a client who is interested
in accessing a service 𝑠 must determine a subset of credentials in her portfolio that
satisfies the threshold fixed by the server for 𝑠, while minimizing the privacy score of
released credentials. Table 4 illustrates an example of points and privacy scores
associated by the server and the client, respectively, to the credentials composing the
client’s portfolio.

 id_card passport credit_card dialysis insurance
𝒑𝒕 1 1 2 3 2
𝒑𝒔 2 4 10 20 15

Table 4 An example of points 𝒑𝒕 and privacy scores 𝒑𝒔 associated by the server and the client, respectively, to the
credential in the client portfolio

Since the server policy might be considered sensitive, the server does not reveal the
threshold associated with its services to the client. Analogously, the client does not
reveal to the counterpart the privacy scores she associates with the credentials in her
portfolio. As a consequence, when a client requests access to a service, she needs to
identify a subset of the credentials in her portfolio that satisfies the server threshold
(i.e., the access control policy regulating the release of the service) without knowing it
and without revealing to the server credentials’ privacy scores. More formally, the
Credential Selection problem is an optimization problem that can be formulated as
follows [32].

 17

Problem 2: Credential Selection problem - Let 𝐶 = {𝑐!,… , 𝑐!} be the set of
credentials in the client portfolio; 𝑝𝑡(𝑡𝑦𝑝𝑒(𝑐!)) be the points associated by the server
with credential type 𝑡𝑦𝑝𝑒(𝑐!), 𝑖 = 1,… ,𝑛; 𝑝𝑠(𝑐!) be the privacy score associated by
the client with credential 𝑐!, 𝑖 = 1,… ,𝑛; 𝑠 be the service requested by the client; and
𝑡ℎ𝑟 be the release threshold associated with 𝑠. Find a subset 𝐷 ⊆ 𝐶 of credentials such
that:

1. 𝑝𝑡(𝑡𝑦𝑝𝑒(𝑐))!∈! ≥ 𝑡ℎ𝑟;
2. ∄𝐷! ⊆ 𝐶 s.t. 𝑝𝑡(𝑡𝑦𝑝𝑒(𝑐))!∈!! ≥ 𝑡ℎ𝑟 and 𝑝𝑠(𝑐)!∈!! < 𝑝𝑠(𝑐)!∈! .

The first condition states that the subset of credentials in the client portfolio must
satisfy the server policy, while the second condition states that the sensitive
information disclosed is minimum. For instance, with reference to the points and
privacy scores in Table 4, let us assume that the server offering service 𝑠
(MedicineBooking in our example) defines a threshold 𝑡ℎ𝑟=3. The release of her
id_card and of her credit_card permits the client to gain access to the service of
interest (𝑝𝑡(id_card) + 𝑝𝑡(credit_card) = 3 ≥ 𝑡ℎ𝑟), while minimizing the overall
privacy score of released information (𝑝𝑠(id_card) + 𝑝𝑠(credit_card) = 12).

Dynamic	 Programming	 Algorithm.	 The Credential Selection problem is NP-hard
and can be rewritten into a knapsack problem, where each credential 𝑐 can be inserted
into the knapsack with weight 𝑝𝑡(𝑡𝑦𝑝𝑒 𝑐) and value 𝑝𝑠(𝑐) [32]. Since the knapsack
algorithm maximized the value of the items inserted in the knapsack to satisfy its
capacity, while the goal of the client is that of minimizing the sensitivity of the
credentials necessary to reach the threshold of interest, the solution to the credential
selection problem is computed by inserting in the knapsack those credentials that will
not be released. Intuitively, the knapsack problem is complementary to our problem
and therefore the approach in [32] finds the complementary solution to the Credential
Selection problem by exploiting a known dynamic programming algorithm for the
knapsack problem [14]. The knapsack capacity 𝐾𝐶 is computed as the complementary
of the threshold fixed by the server with respect to the clients portfolio, that is,
𝐾𝐶 = 𝑝𝑡(𝑡𝑦𝑝𝑒(𝑐)!∈!) − 𝑡ℎ𝑟, which is the difference between the sum of points
associated with credential types in the client’s portfolio and the threshold fixed by the
server to gain access to the service. With reference to the example above, 𝐾𝐶 =
1 + 1 + 2 + 3 + 2 − 3 = 6.

The dynamic programming solution to the knapsack problem is based on the definition
of a matrix 𝑀 with 𝑛 + 1 rows, where 𝑛 is the number of items that can be inserted
into the knapsack (i.e., credentials in our scenario), and 𝐾𝐶 + 1 columns. All the cells

 18

in the first row and in the first column of the matrix are set to zero (i.e., 𝑀[𝑖, 0] = 0,
𝑖 = 0,… ,𝑛, and 𝑀[0, 𝑗] = 0, 𝑗 = 0,… ,𝐾𝐶). The value of the other cells in the matrix
is computed according to the following formula:

𝑀[𝑖, 𝑗] = 𝑀[𝑖 − 1, 𝑗], 𝑗 < 𝑝𝑡 𝑡𝑦𝑝𝑒(𝑐!)
max (𝑀 𝑖 − 1, 𝑗 ,𝑀 𝑖 − 1, 𝑖 − 𝑝𝑡 𝑐! + 𝑝𝑠 𝑐!), 𝑗 ≥ 𝑝𝑡 𝑡𝑦𝑝𝑒(𝑐!)

The values of the cells in the matrix are computed, in the order, starting from top to
bottom and from left to right (i.e., by increasing value of 𝑖 and 𝑗, respectively). Each
cell in the matrix represents the total value of the knapsack, obtained inserting (a
subset) of the items preceding the current element in the matrix without exceeding the
knapsack capacity. It is obtained as the current value of the knapsack either including
or not including the current element.

 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
id_card 0 2 2 2 2 2 2
passport 0 4 6 6 6 6 6
credit_card 0 4 10 14 16 16 16
dialysis 0 4 14 20 24 30 34
insurance 0 4 15 20 29 35 39

Table 5 An example of dynamic programming matrix for the portfolio in Table 4

Table 5 illustrates the matrix computed considering points and privacy scores in Table
4. The first row in the matrix represents an empty knapsack. Cells
𝑀[id_card,1],…, 𝑀[id_card,6] in the first row model the insertion of credential
id_card in the empty knapsack. As a consequence, the knapsack has weight 2. Cell
𝑀[passport,2] is obtained by comparing the solution represented by cell 𝑀[id_card,2]
(which models a knapsack including only id_card) with the solution
𝑀[id_card,1]∪{passport} obtained by inserting also credential passport into the
knapsack. The weight of the two alternative solutions is, respectively, 2 and 2+4=6.
Since 6>2, 𝑀[passport,2] is set to 6 and it represents a knapsack including credentials
id_card and passport. The other cells in the matrix are computed in the same way.

The optimal solution to the knapsack problem is represented by the value in cell
𝑀[𝑛,𝐾𝐶], which represents the value of the knapsack obtained trying to insert all the
candidate elements in the knapsack without exceeding its capacity. To determine the
elements that belong to the optimal solution, it is necessary to keep track of which item
has been inserted at each step. For instance, consider the matrix in Table 5, cell
𝑀[insurance,6]=39 is as the sum of the cells in gray in the table, that is, it represent a

 19

solution including credentials passport, dialysis, and insurance. Since the credentials
included in the knapsack are not disclosed, the credentials disclosed by the client to
gain the access are id_card and credit_card that, as already noted, satisfy the threshold
fixed by the server for the MedicineBooking service while minimizing privacy scores.

The traditional dynamic programming algorithm described above for the knapsack
problem assumes that the client knows the points assigned by the server to credential
types (or that the server knows the privacy scores that the client associates with the
credentials in her portfolio). Since this assumption does not hold in the considered
scenario, in [32] the authors propose to enhance the basic algorithm to permit the
client and the server to interact with each other for computing a solution to the
knapsack problem without the need for the client and the server to reveal to each other
their secret parameters. The proposed solution consists of a secure two-party dynamic-
programming protocol, which relies on homomorphic encryption to provide privacy
guarantees to sensitive information [15],[25].

Open	 Issues.	 The model and algorithm introduced in [32] suffer from different
shortcomings. First of all, the client and the server must share, as a common
knowledge, the set of possible credentials on which the negotiation process should be
based. Such knowledge may however put the privacy of the server policy at risk. The
proposed model also assumes that the access control policy defined by the server
consists of a threshold value, but in many real-world scenarios the server needs to
define more expressive policies. Furthermore, the focus of the proposal, as well as the
model in [12], is more on the negotiation process than on the management of the
privacy preferences of the interacting parties. The solution in [32] represents however
an important step towards the definition of a privacy-aware access control model, even
if it does not satisfy all the desiderata described in Section 2. In fact, this approach
only supports the definition of privacy preferences as privacy scores, which have a
numerical domain characterized by a total order relationship (i.e., ≥) and by a
composition operator (i.e., +).

5. LOGICAL-‐BASED	 MINIMAL	 CREDENTIAL	 DISCLOSURE	
The solutions in [12], [32] are based on the assumption that privacy preferences can be
expressed as numerical values, defined over a domain characterized by a total order
relationship and an additive operator. While this assumption permits to easily integrate
privacy preferences with traditional negotiation processes, the usability of the resulting
system may be limited. In fact, it might not be easy for the final user to express her
privacy preferences through numeric values, also because the adoption of numeric
preference values may cause unintended side effects (e.g., dominance relationships are

 20

not explicitly defined, but are implied by the values assigned to the portfolio
components). To overcome these limitations, in [22] the authors propose to adopt
qualitative (instead of quantitative) preference values. The proposed solution is based
on the assumption that credentials are singleton (i.e., certify one attribute only) and
that the policy defined by the server is publicly available. The goal of the approach is
to determine, among the successful negotiation strategies, the one that better suits the
client preferences (i.e., the set of credentials that minimizes the amount of sensitive
information disclosed to the server to gain access to the requested service). When the
number of successful strategies is limited, the client can explicitly choose the one she
prefers. However, when the number of credentials in the client portfolio increases and
the server policy becomes complex, the number of successful trust negotiation
strategies may grow quickly. For instance, assume that the client portfolio is composed
of credentials {Name, DoB, City, VISANum, VISALimit, AmExNum, AmExLimit,
Insurance, InsCoverage, Dialysis}, and that the policy regulating access to the
MedicineBooking service is ((Name ∧ (DoB ∨ City) ∨ Dialysis ∨ Insurance) ∧
((VISANum ∧ VISALimit) ∨ (AmExNum ∧ AmExLimit) ∨ (InsCoverage ∧ DoB)). There
are 12 strategies that satisfy the access control policy. It is therefore necessary to
define a mechanism that permits to exploit qualitative disclosure preferences defined
by the client to limit the number of strategies among which she is explicitly asked to
choose.

Qualitative	 Preferences.	 Given the set 𝐶 = {𝑐!,… , 𝑐!} of credentials in the client
portfolio, the release of a subset of credentials is modeled as a binary 𝑛-dimension
vector 𝐷, where 𝐷[𝑖] = 1 if 𝑐! is released and 𝐷[𝑖] = 0 otherwise, 𝑖 = 1,…𝑛. For
instance, with reference to the previous example, Table 6 summarizes the subsets of
portfolio credentials satisfying the policy regulating service MedicineBooking.
Disclosure 𝐷! represents the release of {Name, DoB, VISANum, VISALimit}.

 Name DoB City VISANum VISALimit AmExNum AmExLimit Insurance InsCoverage Dialysis
𝑫𝟏 1 1 0 1 1 0 0 0 0 0
𝑫𝟐 1 1 0 0 0 1 1 0 0 0
𝑫𝟑 1 1 0 0 0 0 0 0 1 0
𝑫𝟒 1 0 1 1 1 0 0 0 0 0
𝑫𝟓 1 0 1 0 0 1 1 0 0 0
𝑫𝟔 1 1 1 0 0 0 0 0 1 0
𝑫𝟕 0 0 0 1 1 0 0 0 0 1
𝑫𝟖 0 0 0 0 0 1 1 0 0 1
𝑫𝟗 0 1 0 0 0 0 0 0 1 1
𝑫𝟏𝟎 0 0 0 1 1 0 0 1 0 0
𝑫𝟏𝟏 0 0 0 0 0 1 1 1 0 0
𝑫𝟏𝟐 0 1 0 0 0 0 0 1 1 0

Table 6 Disclosure strategies that satisfy the access control policy of service MedicineBooking

 21

The model proposed in [22] permits to specify privacy preferences at different
granularity levels. Dominance relationship ≻! defines disclosure preferences for
credential 𝑐!. Usually, credential-level preferences state that 0 ≻! 1, 𝑖 = 1,…𝑛,
meaning that the client prefers not to disclose credential 𝑐!. To compare the disclosure
of different subsets of credentials in the client portfolio, credential-level preferences
are composed according to the Pareto composition operator ≻!. A disclosure set 𝐷!
dominates, according to the Pareto composition, a disclosure set 𝐷! if, for each
credential 𝑐! in the portfolio, either 𝐷! 𝑙 ≻! 𝐷! 𝑙 or 𝐷! 𝑙 =! 𝐷! 𝑙 , meaning that 𝐷!
releases a proper subset of the credentials in 𝐷!. For instance, consider the disclosure
sets in Table 6, 𝐷! ≻! 𝐷! since 𝐷! 𝐷𝑜𝐵 ≻!"# 𝐷! 𝐷𝑜𝐵 , that is, 𝐷! = 𝐷! ∪ {DoB}.

The most interesting kind of preferences modeled by the solution in [22] is represented
by amalgamated preferences, which compare the release of sets of credentials that are
not related by a subset-containment relationship. Amalgamated preferences are of the
form 𝑐! ⟶ 𝑐!, meaning that the client prefers to release credential 𝑐! over credential

𝑐!. This preference defines a dominance relationship, denoted ≻{!,!}
(!,!)(!,!), among

disclosure sets. More formally, disclosure set 𝐷! dominates, according to amalgamated
preference 𝑐! ⟶ 𝑐!, disclosure set 𝐷! if 𝐷! 𝑖 = 1, 𝐷! 𝑗 = 0, 𝐷! 𝑖 = 0, 𝐷! 𝑗 = 1,
and 𝐷! 𝑥 = 𝐷! 𝑥 , for all 𝑥 ≠ 𝑖, 𝑥 ≠ 𝑗. For instance, consider the disclosure sets in
Table 6 and amalgamated preference Insurance ⟶ Dialysis, then
𝐷!" ≻{!"#$%&"'(,!"#$%&"&}

(!,!)(!,!) 𝐷! since they both disclose credentials VISANum and
VISALimit, but 𝐷!" releases Insurance while 𝐷! releases Dialysis. Analogously,
𝐷!! ≻{!"#$%&"'(,!"#$%&"&}

(!,!)(!,!) 𝐷! and 𝐷!" ≻{!"#$%&"'(,!"#$%&"&}
(!,!)(!,!) 𝐷!. Note that the binary sub-

vectors on the top of the dominance operator can be any pair of binary sub-vectors of
the same length. Amalgamated preferences can be conveniently represented through a
graph, whose vertexes model credentials and whose edges represent disclosure
preferences among them. Note that, to avoid inconsistencies in the definition of
privacy preferences, the disclosure graph must be acyclic. The model in [22] permits
also to specify conditions associated with preferences, meaning that a dominance
relationship holds only if the associated condition is satisfied (e.g., only if a given
credential has already been disclosed). For instance, the client may prefer to release
credential Insurance over her Name if credential InsCoverage has already been
released (since the server is aware of the fact that the client has subscribed an
insurance). These conditions are graphically represented by labels associated with the
edges of the preference graph. Figure 4 illustrates an example of graph representing
amalgamated preferences for the portfolio in our example. Consider the disclosure sets

 22

in Table 6, according to the preferences in the graph, 𝐷! ≻{!"#,!"#$}
(!,!)(!,!) 𝐷! and

𝐷! ≻{!"#,!"#$}
(!,!)(!,!) 𝐷! since the disclosure of DoB is preferred to the disclosure of City.

Also, 𝐷!" ≻{!"#$%&"'(,!"#$}
(!,!)(!,!) 𝐷! since credential InsCoverage has already been released

and therefore the client prefers to release Insurance instead of Name.

Both the dominance relationship defined by the Pareto composition and the dominance
relationships induced by amalgamated preferences permit to compare disclosure sets
that differ only for the release of the subset of credentials on which the dominance
relationship has been defined. However, it may happen that two disclosure sets cannot
be compared considering one dominance relationship only, but they can be compared
combining two or more disclosure preferences. For instance, consider the graph in
Figure 4 and the disclosure sets in Table 6. Disclosure sets 𝐷! and 𝐷! cannot be
directly compared, but it is immediate to see that 𝐷! dominates 𝐷! by combining
amalgamated preferences VISANum⟶AmExNum and VISALimit⟶AmExLimit. In
fact, 𝐷! discloses the attributes of VISA credit card, while 𝐷! discloses the attributes
of AmEx credit card. In [22] the authors propose to incrementally compose certificate-
level and amalgamated preferences. The transitive closure of all the preferences in the
system permits to define a complete preference relationship, denoted ≻≻, which
summarizes all the preference relationships expressed by the client. As a consequence,
given the access control policy 𝑝 regulating the release of the service requested by the
client, the approach in [22] permits to limit the set of successful disclosure strategies
among which the client needs to choose. In fact, the choice can be restricted to the
optimal disclosure sets, that is, to the sets of credentials in the client portfolio that
satisfy 𝑝 and that are not dominated by another disclosure set that satisfies 𝑝. More
formally, the set of optimal disclosure sets is defined as follows [22].

VISANum

AmExNum

VISALimit

AmExLimit

Dialysis

DoB

Insurance City

Name

InsCover

¬InsCov

Figure 4 An example of a set of amalgamated preferences

 23

Definition 2: Optimal Disclosure Sets - Let 𝐶 = {𝑐!,… , 𝑐!} be the set of credentials
in the client portfolio; 𝑠 be the service requested by the client; 𝑝 be the access control
policy regulating the release of 𝑠; 𝒟 = 𝐷!,… ,𝐷! be the set of disclosure sets that
satisfy 𝑝, with 𝐷! ⊆ 𝐶, 𝑖 = 1,… ,𝑛; and ≻≻ be a complete preference relationship over
𝐶. An optimal disclosure set 𝒟≻≻ of 𝒟 wrt ≻≻ is defined as: 𝒟≻≻ = {𝐷 ∈ 𝒟|∄𝐷! ∈
𝒟,𝐷! ≻≻ 𝐷}.

The disclosure sets in 𝒟≻≻ are optimal and cannot be compared with respect to the
disclosure preferences defined by the client (i.e., they are equivalent according to
client preferences). To finally decide which set of credentials to disclose to the server,
the client needs to choose, among the negotiation strategies in 𝒟≻≻, the one she prefers
to disclose. For instance, with reference to the disclosure sets in Table 6 and the
preferences in Figure 4, 𝒟≻≻ = {𝐷!,𝐷!",𝐷!"}.

Open	 Issues.	 The solution proposed in [22] has the great advantage over the
approaches discussed in Section 2 and in Section 3 of modeling and managing
qualitative preferences. In fact, it permits to specify privacy preferences at the attribute
granularity, and it defines a partial order relationship and different composition
operators over the domain of privacy preferences, therefore resulting easy to use for
the client. However, it still needs to be enhanced to comply with all the desiderata that
a privacy-aware access control system should satisfy (see Section 2). The main
shortcoming from which the proposal in [22] suffers is that it requires the client
intervention in the choice of the set of credentials to disclose among the successful
strategies in the optimal set. Also, the proposed model assumes that each credentials in
the client portfolio certifies one attribute only, while often credentials include a set of
attributes that cannot be singularly released (i.e., atomic credentials).

6. PRIVACY	 PREFERENCES	 IN	 CREDENTIAL-‐BASED	 INTERACTIONS	
The first solution that formally models the client portfolio to permit the client to
specify fine-grained privacy preferences, as well as constraints on the disclosure of
portfolio components, has been proposed in [3]. One of the main advantages of the
portfolio modeling in [3] is that it permits to represent both atomic and non-atomic
credentials, declarations, and the attributes composing them, clearly distinguishing
between credential-dependent and credential-independent attributes. As a
consequence, this modeling permits to easily associate privacy preferences with each
credential and attribute in the client portfolio. More precisely, the client portfolio is
modeled as a bipartite graph 𝐺(𝑉! ∪ 𝑉!,𝐸!") with a vertex for each credential and
each attribute in the portfolio and an edge connecting each credential to the attributes it

 24

certifies. It is important to note that each credential-independent attribute is
represented by a vertex in 𝐺, while each credential-dependent attribute is represented
by several vertexes (one for each credential certifying it). For instance, Figure 5
illustrates the graph representing the portfolio in Table 1, where we distinguish atomic
credentials by attaching all the edges incident to the vertex representing the credential
to a black semi-circle. The label of vertexes representing credentials is of the form
id:type, where id is the identifier of the credential and type is its type. The label of
vertexes representing attributes is of the form name:value.

	

Sensitivity	 Labels.	 The client can define her privacy preferences at a fine-granularity
level by associating a sensitivity label with each credential and attribute (or
combinations thereof) in her portfolio. These labels represent how much the client
values the disclosure of the portfolio components. The domain Λ of sensitivity labels
can be any set of values characterized by a partial order relationship ≽, and a
composition operator ⊕. This generic definition of sensitivity labels captures different

Figure 5 Portfolio graph of the portfolio in Table 1

MyDialysis:dialysis

MyIdCard:id_card

MyDecl:declaration

MyInsurance:insurance

MyPassport:passport

AmExNum:5643..2

VISANum:4353..1

City:NY

Name:BobSmith

Country:US

AmExLimit:5000

VISALimit:2000

Company:A

MyVISA:credit_card

MyAmEx:credit_card

DoB:1973/04/03

Coverage:10K

e-mail:bs@a

 25

methods for expressing preferences. For instance, sensitivity labels could be positive
integer values, where the order relationship ≽ is the traditional ≥ relationship and the
composition operator can either be the sum (i.e., +) or the maximum. In the example,
for simplicity, we will consider numerical sensitivity labels. Labeling function 𝜆
associates a sensitivity label in Λ with each credential 𝑐, with each attribute 𝑎 in the
client portfolio, and possibly with subsets thereof. Figure 6 illustrates the portfolio
graph in Figure 5, extended by associating each vertex with its sensitivity label and by
including new vertexes that represent associations and disclosure constraints. The
semantics of the sensitivity labels associated with portfolio components can be
summarized as follows.

• 𝜆(𝑎): defines the sensitivity of attribute 𝑎 singularly taken and reflects how
much the client values its disclosure. For instance, with reference to the
portfolio graph in Figure 6, 𝜆(VISANum) ≥ 𝜆(DoB) since the client considers
the number of her VISA more sensitive than her date of birth.

• 𝜆(𝑐): defines the sensitivity of the existence of credential 𝑐. This label reflects
how much the client values the additional information carried by the credential
itself, independently from the attributes it certifies. For instance, with reference
to the portfolio graph in Figure 6, 𝜆(MyDialysis) reflects the sensitivity
associated by the client with the credential certifying her nephrological disease,
independently from the fact that this credential also certifies attributes Name
and City. Clearly, the existence of the credential itself has a sensitivity that goes
beyond the demographical information it certifies.

The sensitivity label associated with the combined release of a set of credentials and
attributes generally corresponds to the composition through operator ⊕ of the
sensitivity labels of each portfolio component in the released set. For instance, the
release of atomic credential MyIdCard has sensitivity label 𝜆(MyIdCard) ⊕ 𝜆(Name)
⊕ 𝜆(DoB) ⊕ 𝜆(City). There are however cases where the combined release of some
portfolio components may cause a higher or lower information disclosure than the
sensitivity label obtained composing the labels of the released credentials and
attributes. To capture these situations, the model in [3] permits the client to specify
sensitivity labels for subsets of portfolio components, representing how much the
client values the release of the association of their values. The sensitivity labels of
associations must then be considered when composing the sensitivity labels of the
attributes and/or credentials in the association. Graphically, associations are
represented by additional vertexes in the portfolio graph, connected to the attributes

 26

and/or credentials composing the associations. In particular, the following two kinds of
associations are modeled.

• Sensitive views model situations where the combined release of a set of
portfolio components carries more information than the composition of the
sensitive labels of its components. For instance, with reference to the portfolio
graph in Figure 6, 𝜆({DoB,City})=4 models the additional sensitivity carried by
the combined release of the two attributes.

• Dependencies model situations where the combined release of a set of portfolio
components carries less information than the composition of the sensitive labels
of its components. For instance, with reference to the portfolio graph in Figure
6, 𝜆({City,Country})=-2 represents the sensitivity to be removed when the two
attributes are released together, since the knowledge of the City where a user
leaves permits to easily infer her Country. The sensitivity label associated with
a dependency 𝒜 = 𝑐! ,… , 𝑐! , 𝑎! ,… , 𝑎! can assume any value, provided the
sensitivity label of the combined release of all the credentials and attributes in
𝒜 dominates the sensitivity label of the most sensitive element in 𝒜 (i.e.,

Figure 6 Portfolio graph in Figure 5 extended with sensitivity labels, associations, and constraints

MyDialysis:dialysis

MyIdCard:id_card

MyDecl:declaration

MyInsurance:insurance

MyPassport:passport

AmExNum:5643..2

VISANum:4353..1

City:NY

Name:BobSmith

Country:US

AmExLimit:5000

VISALimit:2000

Company:A

MyVISA:credit_card

MyAmEx:credit_card

DoB:1973/04/03

Coverage:10K

e-mail:bs@a

2

 4

 8

 12

 20

 15

 0

 5

 3

 5

 2

 10

 15

 12

 18

 5

 15

 2

 2

 4

 -2

 10

2

 27

𝜆 𝑐! ⊕ …⊕ 𝜆 𝑐! ⊕ 𝜆 𝑎! ⊕ …⊕ 𝜆 𝑎! ⊕ 𝜆 𝒜 ≽ max (𝜆 𝑥 , 𝑥 ∈ 𝒜)).

In addition to sensitivity labels associated with credentials, attributes, and subsets
thereof, the client may need to specify disclosure constraints that cannot be expressed
through sensitivity labels. To this purpose, in [4] the authors extend the original model
introduced in [3] with the following two kinds of constraints.

• Forbidden views represent subsets of portfolio components whose combined
release is prohibited. For instance, with reference to the portfolio graph in
Figure 6, forbidden view {DoB,MyDialysis} prevents the combined release of
attribute DoB and credential MyDialysis and is graphically represented by a
cross-shaped vertex connected with the attribute and credential in the
constraint.

• Disclosure limitations represent subsets of portfolio components characterized
by restrictions of the form at most n elements in the set can be jointly disclosed.
For instance, with reference to the portfolio graph in Figure 6, disclosure
limitation {Name,City,Country,e-mail}2 permits to release at most two attributes
in the set and is graphically represented by a cross-shaped vertex with label 2
and connected with all the attributes in the set.

Disclosure.	 Given the client portfolio, it is important to note that not all the subsets of
portfolio components represent a valid disclosure, that is, not all the sets of credentials
and attributes can be communicated to the server to gain access to the requested
service. First of all, a subset 𝐷 of portfolio components represents a disclosure only if
it satisfies the following three conditions.

1. Certifiability: each disclosed attribute is certified by at least a credential, whose
existence is disclosed as well (i.e., ∀𝑎 ∈ 𝐷,∃𝑐 ∈ 𝐷 𝑠. 𝑡. 𝑎 ∈ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑐)).

2. Atomicity: if an attribute certified by an atomic credential is disclosed, all the
attributes in the credential are disclosed (i.e., ∃𝑐 ∈ 𝐷 𝑠. 𝑡. 𝑐 is atomic,
∀𝑎 ∈ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑐 , 𝑎 ∈ 𝐷).

3. Association exposure: if all the attributes and/or credentials composing an
association are disclosed, then the association itself is disclosed (i.e.,
∀𝑥 ∈ 𝒜, 𝑥 ∈ 𝐷 then 𝒜 ∈ 𝐷).

These conditions permit to easily take into account both atomic and non-atomic
credentials, as well as associations, in the computation of the sensitivity label
characterizing the disclosure of a set of credentials and attributes. For instance,
consider the portfolio graph in Figure 6. An example of disclosure 𝐷 is represented in

 28

Figure 7(a), where released elements are reported in black while non-released elements
are reported in gray. Figure 7(b) represents instead a subset of the portfolio
components that does not represent a disclosure, since it violates the above properties.
The sensitivity of a disclosure 𝐷 is computed by composing the sensitivity label of all
the credentials, attributes, and associations composing it. For instance, the sensitivity
of the disclosure in Figure 7(a) is 𝜆 𝐷 = 𝜆(MyPassport) + 𝜆(MyVISA) + 𝜆(MyDecl) +
𝜆(Name) + 𝜆(DoB) + 𝜆(VISANum) + 𝜆(VISALimit) + 𝜆(e-mail) + 𝜆({Name,DoB}) = 4
+ 8 + 0 + 5 + 3 + 10 + 15 + 2 + 2 = 49. A disclosure is said to be valid if it does not
violate disclosure constraints. Only valid disclosures can be released. For instance, the
disclosure in Figure 7(a) is valid, while the one in Figure 7(c) is not valid since it
violates forbidden view {DoB,MyDialysis}.

Given the server policy 𝑝 regulating the disclosure of the service of interest, it is
necessary to determine a minimum disclosure (i.e., a valid disclosure with minimum
sensitivity label) satisfying 𝑝. In [3], the authors assume that server policies are
formulated as Boolean formulas composed of terms of the form 𝑡. {𝑎! ,… , 𝑎!} in
disjunctive normal form. A clause 𝑡. {𝑎! ,… , 𝑎!} in the server policy requires the
disclosure of a credential 𝑐 of type 𝑡 that certifies attributes {𝑎! ,… , 𝑎!}. A valid
disclosure 𝐷 satisfies a term 𝑡. {𝑎! ,… , 𝑎!} if ∃𝑐 ∈ 𝐷 𝑠. 𝑡. 𝑡𝑦𝑝𝑒 𝑐 ≤!"# 𝑡 and
{𝑎! ,… , 𝑎!} ⊆ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑐 . For instance, assume that the policy regulating access to
the MedicineBooking service is id.{Name} ∧ credit_card.{Name,Number,Limit} ∧
*.{DoB,e-mail}. The disclosure in Figure 7(a) satisfies the policy and grants the client
access to the requested service: term id.{Name} is satisfied by the release of attribute
Name from credential MyIdCard; term credit_card.{Name,Number,Limit} is satisfied
by the release of atomic credential MyVISA; and term *.{DoB,e-mail} is satisfied by
the release of attribute DoB from credential MyIdCard and by the declaration of
attribute e-mail. Formally, the minimum disclosure problem can then be formulated as
follows.

 29

(a)

(b)

(c)

Figure 7 An example of valid disclosure (a), arbitrary subset of portfolio elements (b), and non valid disclosure (c)

Problem 3: Minimum Disclosure problem - Let 𝐶 = {𝑐!,… , 𝑐!} be the set of
credentials in the client portfolio; 𝐴 = 𝑎!,… , 𝑎! be the set of attributes in the client
portfolio; 𝑇,≤!"# be the hierarchy of credential types; 𝔸 be the set of sensitive
associations; 𝔽 be the set of forbidden views; 𝕃 be the set of disclosure limitations; 𝜆
be the labeling function; and 𝑝 be the server policy. Find a subset 𝐷 ⊆ 𝐶 ∪ 𝐴 such
that:

MyDialysis:dialysis

MyIdCard:id_card

MyDecl:declaration

MyInsurance:insurance

MyPassport:passport

AmExNum:5643..2

VISANum:4353..1

City:NY

Name:BobSmith

Country:US

AmExLimit:5000

VISALimit:2000

Company:A

MyVISA:credit_card

MyAmEx:credit_card

DoB:1973/04/03

Coverage:10K

e-mail:bs@a

2

 4

 8

 12

 20

 15

 0

 5

 3

 5

 2

 10

 15

 12

 18

 5

 15

 2

 2

 4

 -2

 10

2

MyDialysis:dialysis

MyIdCard:id_card

MyDecl:declaration

MyInsurance:insurance

MyPassport:passport

AmExNum:5643..2

VISANum:4353..1

City:NY

Name:BobSmith

Country:US

AmExLimit:5000

VISALimit:2000

Company:A

MyVISA:credit_card

MyAmEx:credit_card

DoB:1973/04/03

Coverage:10K

e-mail:bs@a

2

 4

 8

 12

 20

 15

 0

 5

 3

 5

 2

 10

 15

 12

 18

 5

 15

 2

 2

 4

 -2

 10

2

MyDialysis:dialysis

MyIdCard:id_card

MyDecl:declaration

MyInsurance:insurance

MyPassport:passport

AmExNum:5643..2

VISANum:4353..1

City:NY

Name:BobSmith

Country:US

AmExLimit:5000

VISALimit:2000

Company:A

MyVISA:credit_card

MyAmEx:credit_card

DoB:1973/04/03

Coverage:10K

e-mail:bs@a

2

 4

 8

 12

 20

 15

 0

 5

 3

 5

 2

 10

 15

 12

 18

 5

 15

 2

 2

 4

 -2

 10

2

 30

1. ∀𝑎 ∈ 𝐷,∃𝑐 ∈ 𝐷 𝑠. 𝑡. 𝑎 ∈ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝑐) (certifiability);
2. ∃𝑐 ∈ 𝐷 𝑠. 𝑡. 𝑐 is atomic, ∀𝑎 ∈ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑐 , 𝑎 ∈ 𝐷 (atomicity);
3. ∀𝑥 ∈ 𝒜, 𝑥 ∈ 𝐷 then 𝒜 ∈ 𝐷(association exposure);
4. ∀𝑓 ∈ 𝔽, 𝑓 ⊈ 𝐷 (forbidden views satisfaction);
5. ∀𝑙! ∈ 𝕃,∄𝑙! ⊆ 𝐷 𝑠. 𝑡. 𝑙! ≥ 𝑖, with 𝑖 the threshold fixed by constraint 𝑙!

(disclosure limitation satisfaction);
6. ∃ a clause 𝑡!. 𝑎!!,… , 𝑎!! … 𝑡! . 𝑎!" ,… , 𝑎!" in 𝑝 such that for each term

𝑡. 𝑎! ,… , 𝑎! in the clause, ∃𝑐 ∈ 𝐷 𝑠. 𝑡. 𝑡𝑦𝑝𝑒 𝑐 ≤!"# 𝑡 and {𝑎! ,… , 𝑎!} ⊆
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑐 (policy satisfaction);

7. ∄𝐷′ satisfying all the conditions above and such that 𝜆 𝐷 ≻ 𝜆 𝐷! .

For instance, the disclosure in Figure 7(a) represents a minimal disclosure for our
example.

The problem of computing a minimal disclosure is NP-hard [3]. In [3] the authors
propose a graph-based heuristic algorithm to compute a minimal disclosure (i.e., a
disclosure that, although not minimal, has a low sensitivity label). In [4] the authors
define a modeling of the problem as an instance of the Max-SAT problem, and use
Max-SAT solvers to compute an optimum solution in a limited computational time.

The model in [3] has been extended in [6] to permit the client to complement her
privacy preferences with context-based restrictions that limit the disclosure of
credentials on the basis of the context of her request. In the same paper, the authors
also propose to take the history of past interactions into account in the choice of the set
of credentials and attributes to disclose for gaining access to the requested service.

Open	 Issues.	 The modeling of the client portfolio proposed in [3] permits the client to
specify sensitivity labels at the attribute granularity level and to take advantage of new
constructs for taking sensitive associations and disclosure constraints into
consideration in the choice of the set of portfolio components to disclose. This
approach leaves however space to further improvements. Sensitivity labels modeling
privacy preferences may not be easy to define for final users. In fact, as already noted
in [22], it is hard to associate a quantitative value with each portfolio component (and
possible subset thereof), while it would be easier to define a partial order relationship
between subsets of portfolio components.

7. FINE-‐GRAINED	 DISCLOSURE	 OF	 SENSITIVE	 ACCESS	 POLICIES	
In [2], the authors address the problem of regulating the disclosure of access control
policies, by proposing a model that permits the server to specify a disclosure policy

 31

regulating if and how an access control policy should be communicated to the client.
To this purpose, the approach in [2] models access control policies as policy trees.
Policy tree 𝑇(N) representing policy 𝑝 has a node for each operator, attribute, and
constant value in 𝑝. The internal nodes of the tree represent operators, whose operands
are represented by the sub-trees rooted at its children. For instance, Figure 8 represents
the policy tree of 𝑝 = (𝑡𝑦𝑝𝑒(𝑐!) = credit_card ∧ 𝑐!.Limit > 1,000) ∨ (𝑡𝑦𝑝𝑒(𝑐!) =
insurance ∧ 𝑐!.Company ≠ ‘A’ ∧ 𝑐!.Company ≠ ‘B’).

Disclosure	 Policy.	 The disclosure policy regulating the release of a policy 𝑝 to a
client regulates the visibility of each node in the policy tree 𝑇(N). The disclosure
policy is formally defined as a coloring function 𝛾:𝑁 → {𝑔𝑟𝑒𝑒𝑛,𝑦𝑒𝑙𝑙𝑜𝑤, 𝑟𝑒𝑑} that
associates with each node 𝑛 in the policy tree a color in the set {𝑔𝑟𝑒𝑒𝑛,𝑦𝑒𝑙𝑙𝑜𝑤, 𝑟𝑒𝑑},
thus obtaining a colored policy tree 𝑇(N, 𝛾). The semantics of the colors, with respect
to the client visibility of a node, can be summarized as follows:

• 𝑔𝑟𝑒𝑒𝑛: the node is released;
• 𝑦𝑒𝑙𝑙𝑜𝑤: the label of the node is removed (i.e., the operator, attribute, or

constant value it represents) before its release, while its presence in the tree and
its children are preserved;

• 𝑟𝑒𝑑: the label of the node is removed and possibly also its presence in the tree.

As an example, Figure 9 illustrates a possible coloring regulating the disclosure of the
policy tree in Figure 8. In the figure, 𝑔𝑟𝑒𝑒𝑛 nodes are white, 𝑦𝑒𝑙𝑙𝑜𝑤 nodes are gray,
and 𝑟𝑒𝑑 nodes are black.

Λ

V

Λ

=

credit_card

> =

type(c1)

=

1,000c1.Limit insurancetype(c2) Ac2.Company Bc2.Company

=

Figure 8 An example of policy tree

 32

Although the server can decide to associate an arbitrary color with each node in the
tree, a disclosure policy is well defined if it is meaningful. More precisely, a disclosure
policy is well defined if it satisfies the following conditions.

1. If a leaf node representing a constant value is 𝑔𝑟𝑒𝑒𝑛, then its sibling (which
represents an attribute) is 𝑔𝑟𝑒𝑒𝑛 and its parent (which represents an operator) is
not 𝑟𝑒𝑑.

2. If a node representing an operator is 𝑔𝑟𝑒𝑒𝑛, at least one of its children must be
either 𝑔𝑟𝑒𝑒𝑛 or 𝑦𝑒𝑙𝑙𝑜𝑤.

3. The nodes in a sub-tree representing a condition on credential type must be
either all 𝑔𝑟𝑒𝑒𝑛 or all 𝑟𝑒𝑑.

Figure 10 illustrates an example of non well defined coloring for the policy tree in
Figure 8. In fact, since only node ‘A’ is 𝑔𝑟𝑒𝑒𝑛 in the sub-tree representing condition
𝑐!.Company ≠ ‘A’, the server would disclose value ‘A’ instead of the condition.
Analogously, only node > is 𝑔𝑟𝑒𝑒𝑛 in the sub-tree of condition 𝑐!.Limit > 1,000, the
server would disclose the operator > only to the client. Finally, node insurance is
𝑦𝑒𝑙𝑙𝑜𝑤 in the sub-tree of condition 𝑡𝑦𝑝𝑒(𝑐!) = insurance, while the other nodes are
𝑔𝑟𝑒𝑒𝑛. The disclosed condition would then only release operand 𝑡𝑦𝑝𝑒(𝑐!) and
operator =, which does not give to the client any information to possibly gain access to
the service.

Figure 9 An example of coloring for the policy tree in Figure 8

 33

Figure 10 An example of non well defined colored policy tree

Policy	 Communication.	 When the client sends a request for accessing a service to
the server, the server transforms its access control policy into a client policy view
according to the disclosure policy. The colored policy tree 𝑇(N, 𝛾) regulating policy
disclosure is therefore transformed into an equivalent client policy tree view by: i)
removing the label of 𝑦𝑒𝑙𝑙𝑜𝑤 and 𝑟𝑒𝑑 nodes; ii) removing unnecessary 𝑟𝑒𝑑 leaves;
and iii) collapsing internal 𝑟𝑒𝑑 nodes in a parent-child relationship in a single 𝑟𝑒𝑑
node. To this purpose, the server visits the tree following a post-order strategy and
applies, in the order, the following three classes of transformation rules.

• Prune rules. These rules remove unnecessary leaf nodes. Two kinds of prune
rules can be applied on an internal node 𝑛 whose children are leaf nodes.

o Red predicate rule. If 𝑛 is 𝑟𝑒𝑑, all its 𝑟𝑒𝑑 children are removed. For
instance, consider the colored policy tree in Figure 9, according to this
rule node representing constant value 1,000 is removed.

o Red children rule. If all the children of 𝑛 are 𝑟𝑒𝑑, they are removed and
the color of node 𝑛 is set to 𝑟𝑒𝑑. For instance, consider the colored
policy tree in Figure 9, according to this rule the nodes representing
attribute Company and constant value ‘A’ in condition (𝑐!.Company ≠
‘A’) are removed. Also, the color of the node representing operator ≠ is
set to red.

• Collapse rule. This rule operates on internal 𝑟𝑒𝑑 nodes and removes their non-
leaf 𝑟𝑒𝑑 children. For instance, consider the colored policy tree in Figure 9, the
node representing operator ≠ in condition (𝑐!.Company ≠ ‘A’) is removed
since its parent (i.e., the second child of the root node) is 𝑟𝑒𝑑.

• Hide label rule. This rule removes the labels of 𝑦𝑒𝑙𝑙𝑜𝑤 and 𝑟𝑒𝑑 nodes.

Figure 11 illustrates the client policy tree view obtained applying the transformation
rules described above to the colored policy tree in Figure 9.

 34

The disclosure of a client policy tree view may be meaningless for the client, since it
may not represent in a “fair way” the server access control policy [2]. Intuitively, a
client policy tree view fairly represents the server policy if it includes at least a subset
of attributes that permit the access control policy evaluation. In fact, in this case, the
client can decide whether to release the requested attributes to possibly gain access to
the service of interest. Clearly, the server should disclose only fair policies. For
instance, the policy view represented by the tree in Figure 11 is fair, since all the
attributes and credential types in the original policy are preserved in the client view.
The client can decide whether to release either one of her credit cards or her insurance
to possibly gain access to the MedicineBooking service.

Open	 Issues.	 The solution proposed in [2] to protect the confidentiality of access
control policies, while permitting the client-server interaction in open environments, is
effective and permits the definition of disclosure restrictions at a fine granularity level.
However, this proposal represents only a first step in the definition of an effective
system regulating policy disclosure. In fact, the proposed model permits to check
whether a disclosure policy generates a fair client policy tree view but it does not
propose an approach for possibly revising the disclosure policy when the client policy
tree view is not fair (and therefore prevents the definition of a successful negotiation
strategy). Also, the model could be extended to consider the disclosure of proofs of
possession and/or proofs of satisfaction of condition.

8. OPEN	 ISSUES	
The enforcement of access privileges in open environments taking into account both
client privacy preferences and policy confidentiality requirements still present
different open issues that need to be addressed.

• Inheritance of privacy preferences. Most of the solutions proposed in the
literature assume that the client associates a preference with each credential

Figure 11 Policy tree view of the colored policy tree in Figure 9

 35

and/or attribute in her portfolio. Although the solution in [3] uses the hierarchy
of credential types for checking whether the disclosure of a subset of the
portfolio components satisfies a given server request, it does not consider this
hierarchy in the definition of privacy preferences. An interesting open issue
consists in exploiting the hierarchy of credential types to make the definition of
privacy preferences more user-friendly.

• Proof of possession. The values modeling privacy preferences are traditionally
associated with credentials and/or attributes and express how much their owner
values their release. Recent technologies however permit to release proofs of
possession of credentials and proofs of satisfaction of conditions defined on
attributes. The release of a proof is usually considered less sensitive than the
release of the credential/attribute on which the proof is based. This different
disclosure risk should therefore be adequately modeled.

• Shared knowledge. Attribute-based access control solutions traditionally
assume that the hierarchy of credential types and attribute names represent a
common knowledge for the server and the client. However, this assumption
does not always hold in real-life scenarios, where there may be mismatches due
also to the fact that servers refer to credential and attribute types while clients
refer to their instances. Access control models should be extended to handle this
problem.

• Integration. Both the solutions developed to support client privacy preferences
and the solutions proposed to protect the confidentiality of server policies do
not consider the privacy requirements of the counterpart. It is therefore
important to study new models that consider both the client and the server
privacy needs.

• The approaches proposed in the literature for the support of client privacy
preferences present advantages and disadvantaged complementary to each
other. For instance, the solution in [22] has the advantage of usability, while the
approach in [3] supports sensitive associations and disclosure constraints. An
interesting open issue is therefore the definition of a model that combines the
advantages of all the proposed approaches.

9. SUMMARY	
We have analyzed the privacy issues that may arise in open scenarios, where the client
accessing a service and the server offering it may be unknown to each other and need
to exchange information to build a trust relationship. We have illustrated both the
problem of taking client privacy preferences into account in credential disclosure, and
the problem of maintaining the confidentiality of server access control policies. For

 36

each of these problems, we have described some recent approaches for their solution
and illustrated some open issues that still need to be addressed.

ACKNOWLEDGMENTS	
We would like to thank Sabrina De Capitani di Vimercati for suggestions and
comments on the chapter organization and presentation. This work was partially
supported by the Italian Ministry of Research within the PRIN 2008 project
“PEPPER” (2008SY2PH4).

REFERENCES	
[1] C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, S. Foresti, and P.

Samarati, “Trust Management,” in M. Petkovic, W. Jonker (Eds.), Security,
Privacy and Trust in Modern Data Management, Springer-Verlag, 2007.

[2] C. A. Ardagna, S. De Capitani di Vimercati, S. Foresti, G. Neven, S. Paraboschi,
F.-S. Preiss, P. Samarati, M. Verdicchio, “Fine-grained disclosure of access
policies,” in Proc. of ICICS 2010, Barcelona, Spain, December 2010.

[3] C. A. Ardagna, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, P. Samarati,
“Minimizing disclosure of private information in credential-based interactions: A
Graph-based approach,” in Proc. of PASSAT 2010, Minneapolis, MN, USA,
August 2010.

[4] C. A. Ardagna, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, P. Samarati,
“Supporting privacy preferences in credential-based interactions,” in Proc. of
WPES 2010, Chicago, IL, USA, October 2010.

[5] C. A. Ardagna, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, P. Samarati,
“Supporting user privacy preferences on information release in open scenarios,” in
Proc. of the W3C Workshop on Privacy and Data Usage Control, Cambridge, MA,
USA, October 2010.

[6] C. A. Ardagna, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, P. Samarati,
“Minimising disclosure of client information in credential-based interactions,” in
IJIPSI, 1(2/3): 205-233, 2012.

[7] C. A. Ardagna, S. De Capitani di Vimercati, S. Paraboschi, E. Pedrini, P. Samarati,
M. Verdicchio, “Expressive and deployable access control in open Web service
applications,” in IEEE TSC, 4(2):6-109, April-June 2011.

[8] A. Armando, A. Contento, D. Costa, M. Maratea, “Minimum disclosure as Boolean
optimization: New results,” in Proc. of the 19th International Workshop on
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial
Explosion, Rome, Italy, June 2012.

 37

[9] P. Bonatti, P. Samarati, “A uniform framework for regulating service access and
information release on the Web,” in JCS, 10(3):241-272, 2002.

[10] S. Brands, “Rethinking public key infrastructure and digital certificates -
building in privacy,” MIT Press, 2000.

[11] J. Camenisch, A. Lysyanskaya, “An efficient system for non-transferable
anonymous credentials with optional anonymity revocation,” in Proc. of
EUROCRYPT 2001, Innsbruck, Austria, May 2001.

[12] W. Chen, L. Clarke, J. Kurose, D. Towsley, “Optimizing cost-sensitive trust-
negotiation protocols,” in Proc. of INFOCOM 2005, Miami, FL, USA, March
2005.

[13] S. Cimato, M. Gamassi, V. Piuri, R. Sassi, F. Scotti, “Privacy-aware
biometrics: Design and implementation of a multimodal verification system,” in
Proc. of ACSAC 2008, Anaheim, CA, USA, December 2008.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, “Introduction to
algorithms,” Second edition, MIT Press, 2001.

[15] I. Damgrad, M. Jurik, “A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system,” in Proc. of PKC 2001, Cheju Island,
Korea, February 2001.

[16] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, G. Psaila, P.
Samarati, “Integrating trust management and access control in data-intensive web
applications,” in ACM TWEB, 6(2): 6:1-6:43 , May 2012.

[17] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, P. Samarati, “Access control
policies and languages in open environments," in T. Yu, S. Jajodia (Eds.), Secure
Data Management in Decentralized Systems, Springer-Verlag, 2007.

[18] S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, P. Samarati, “Trust
management services in relational databases," in Proc. of ASIACCS 2007,
Singapore, March 2007.

[19] S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati, “Access
control,” in H. Bidgoli (Ed.), The Handbook of Computer Networks, Wiley, 2008.

[20] M. Gamassi, V. Piuri, D. Sana, F. Scotti, “Robust fingerprint detection for
access control,” in Proc. of RoboCare 2005, Rome, Italy, May 2005.

[21] K. Irwin, T. Yu, “Preventing attribute information leakage in automated trust
negotiation,” in Proc. of ACM CCS 2005, Alexandria, VA, USA, November 2005.

[22] P. Kärger, D. Olmedilla, W.-T. Balke, “Exploiting preferences for minimal
credential disclosure in policy-driven trust negotiations,” in Proc. of SDM 2008,
Atlanta, GA, USA, August 2008.

[23] A. J. Lee, M. Winslett, J. Basney, V. Welch, “The Traust authorization
service,” in ACM TISSEC, 11(1):1-33, February 2008.

[24] J. Li, N. Li, and W.H. Winsborough, “Automated trust negotiation using
cryptographic credentials,” in Proc. of ACM CCS 2005, Alexandria, VA, USA,
November 2005.

 38

[25] P. Paillier, “Public-key cryptosystems based on composite degree residuosity
classes,” in Proc. of EUROCRYPT 1999, Prague, Czech Republic, May 1999.

[26] T. Ryutov, L. Zhou, C. Neuman, T. Leithead, K.E. Seamons, “Adaptive trust
negotiation and access control,” in Proc. of SACMAT 2005, Stockholm, Sweden,
June 2005.

[27] P. Samarati, “Protecting respondents’ identities in microdata release," in IEEE
TKDE, 13(6): 1010-1027, November/December, 2001

[28] P. Samarati, S. De Capitani di Vimercati, “Access control: Policies, models,
and mechanisms,” in R. Focardi, R. Gorrieri (Eds.), Foundations of Security
Analysis and Design, Vol. 2171 of LNCS, Springer-Verlag, 2001.

[29] R. Sandhu, P. Samarati, “Authentication, access control and intrusion
detection,” in A. Tucker (Ed.), CRC Handbook of Computer Science and
Engineering, CRC Press Inc., 1997.

[30] K. E. Seamons, M. Winslett, T. Yu, “Limiting the disclosure of access control
policies during automated trust negotiation,” in Proc. of NDSS 2001, San Diego,
CA, USA, April 2001.

[31] W. Winsborough, K. E. Seamons, V. Jones, “Automated trust negotiation,” in
Proc. of DISCEX 2000, Hilton Head Island, SC, USA, January 2000.

[32] D. Yao, K. B. Frikken, M. J. Atallah, R. Tamasia, “Private information: To
reveal or not to reveal,” in ACM TISSEC, 12(1):1-27, October 2008.

[33] T. Yu, M. Winslett, “A unified scheme for resource protection in automated
trust negotiation,” in Proc. of the IEEE Symposium on Security and Privacy 2003,
Berkeley, CA, USA, May 2003.

[34] T. Yu, M. Winslett, K. E. Seamons, “Supporting structured credentials and
sensitive policies trough interoperable strategies for automated trust,” in ACM
TISSEC, 6(1):1-42, February 2003.

