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Abstract. The evolution of the Information and Communication Tech-
nology has radically changed our electronic lives, making information
the key driver for today’s society. Every action we perform requires the
collection, elaboration, and dissemination of personal information. This
situation has clearly brought a tremendous exposure of private and sen-
sitive information to privacy breaches.

In this chapter, we describe how the techniques developed for protecting
data have evolved in the years. We start by providing an overview of the
first privacy definitions (k-anonymity, ¢-diversity, ¢-closeness, and their
extensions) aimed at ensuring proper data protection against identity
and attribute disclosures. We then illustrate how changes in the under-
lying assumptions lead to scenarios characterized by different and more
complex privacy requirements. In particular, we show the impact on pri-
vacy when considering multiple releases of the same data or dynamic data
collections, fine-grained privacy definitions, generic privacy constraints,
and the external knowledge that a potential adversary may exploit for
inferring sensitive information. We also briefly present the concept of
differential privacy that has recently emerged as an alternative privacy
definition.
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1 Introduction

The advancements in the Information and Communication Technology (ICT)
have revolutionized our lives in a way that was unthinkable until few years ago.
We live in the Globalization era, where everything we need to do is available
within “one mouse click”. Global infrastructure, digital infrastructure, digital
society are only few examples of terms used at different times for concisely
referring to our “computer-based” society. The term that better represents the
today’s society is however information society (or information age) since the
information has a key role in the daily life activities of everyone. Every time
we browse Internet, perform an online transaction, fill in forms to, for example,
enter contests or participate in online games, and spend our time online in social



networks, information about us is collected, stored, analyzed, and sometimes
shared with third parties. Furthermore, public and private companies have often
the need of publishing aggregate statistical data (macrodata) as well as detailed
data (microdata) for research or statistical purposes.

The complexity and variety of the today’s information society introduce
therefore new risks and pose new research challenges. In fact, the vast amount of
personal (user-generated) data collected, stored, and processed, the unclear data
ownership, and the lack of control of the users on their own data are creating
unprecedented risks of privacy breaches. The problem of properly protecting the
privacy of the users is clearly not new and has received (and receives) consider-
able attention from the research and development communities. In the past, the
restricted access to information and its expensive processing represented a form
of protection that does not hold anymore. In fact, with the rate at which tech-
nology is developing, it is now becoming easier and easier to access huge amount
of data by using, for example, portable devices (e.g., PDAs, mobile phones) and
ubiquitous network resources. Also, the availability of powerful techniques for
analyzing and correlating data coming from different information sources makes
it simple to infer information that was not intended for disclosure.

It is interesting to observe how the problem of guaranteeing privacy protec-
tion is changing over the years, in line with the evolution of the ICT. Data were
principally released in the form of macrodata, that is, tables (often of two dimen-
sions), where each cell contains aggregate information about users or companies,
called respondents. The macrodata protection techniques were principally based
on the identification and obfuscation of sensitive cells [11]. With the growing im-
portance and use of microdata, the research community dedicated many efforts
in designing microdata protection techniques able to preserve the privacy of the
respondents while limiting the disclosure risks. Traditionally, the disclosure risks
are related to the possibility, for an adversary, to use the microdata for determin-
ing confidential information on a specific individual (attribute disclosure) or for
identifying the presence of an individual in the microdata table itself (identity
disclosure). To limit the disclosure risks, names, addresses, phone numbers, and
other identifying information are removed (or encrypted) from the microdata.
For instance, in the microdata table in Figure 1, which contains medical data,
the names of the patients as well as their Social Security Numbers are removed,
thus obtaining the de-identified medical data in Figure 2(a).

Although a de-identified microdata table apparently protects the identities of
the respondents represented in the table, there is no guarantee of anonymity. The
de-identified microdata may contain other information, called quasi-identifier,
such as birth date and ZIP code that in combination can be linked to publicly
available information to re-identify individuals. As an example, consider the de-
identified medical data in Figure 2(a) and the voter list for the San Francisco
area, publicly released by the local municipality, in Figure 2(b). It is easy to
see that the values of attributes DoB, Sex, and ZIP can be exploited for link-
ing the tuples in the microdata with the voter list, thus possibly re-identifying
individuals and revealing their illnesses. For instance, in the microdata in Fig-



SSN Name DoB Sex ZIP Disease

123-45-6789 Diana Smith 1950/06/02 F 94141 HIN1
234-56-7890 Nathan Johnson 1950/06/20 M 94132 Gastritis
345-67-8901 Eric Williams 1950/06/12 M 94137 Dyspepsia
456-78-9012 Liz Jones 1950/06/05 F 94144 Pneumonia
567-89-0123 John Brown 1940/04/01 M 94143 Peptic Ulcer
678-90-1234 Luke Davis 1940/04/02 M 94142 Peptic Ulcer
789-01-2345 Barbara Miller 1940/04/10 F 94139 Peptic Ulcer
890-12-3456 Fay Wilson 1940/04/20 F 94130 Peptic Ulcer
901-23-4567 Anthony Moore 1940/06/07 M 94130 Broken Leg
012-34-5678 Matt Taylor 1940/06/05 M 94131 Short Breath
134-56-7890 Jane Doe 1958/12/11 F 94142 Pneumonia
245-67-8901 Anna Anderson 1940/06/25 F 94142 Broken Leg
356-78-9012 Carol Thomas 1940/06/30 F 94145 Stomach Cancer
467-89-0123 Gabrielle White 1950/05/02 F 94136 HIN1
578-90-1234 Lorna Harris 1950/05/05 F 94134 Flu
689-01-2345 Rob Martin 1950/05/10 M 94147 Stomach Cancer
M

790-12-3456 Bob Thompson 1950/05/30 94148 Gastritis

Fig.1: An example of microdata table with identifying information

ure 2(a) there is only one female born on 1958/12/11 living in the 94142 area.
This combination, if unique in the external world as well, uniquely identifies the
corresponding tuple in the table as pertaining to Jane Doe, 300 Main St., San
Francisco, revealing that she suffers from Pneumonia. From a study performed
on the data collected for the 2000 US Census, Golle showed that 63% of the US
population can be uniquely identified combining their gender, ZIP code, and full
date of birth [21]. This percentage decreases if the gender is combined with the
County of residence instead of the ZIP code, and with the month/year of birth
(see Figure 3).

In the 1990s, several microdata protection techniques were developed [11].
Such techniques can be classified in two main categories: masking techniques that
transform the original data in a way that some statistical analysis on the orig-
inal and transformed data produce the same or similar results; synthetic data
generation techniques that replace the original data with synthetic data that
preserve some statistical properties of the original data. Among the microdata
protection techniques, k-anonymity [37] is probably one of the most popular,
which has inspired the development of algorithms and techniques for both en-
forcing k-anonymity and for complementing it with other forms of protection
(e.g., ¢-diversity [29], and t-closeness [26]). These techniques are based on the
assumptions that: quasi-identifiers are the only attributes that can be used for
inferring the respondents to whom information refers; the same microdata ta-
ble is published only once; and potential adversaries do not have any external
knowledge. Clearly, such assumptions do not hold anymore in the today’s soci-
ety, where any information can be used to re-identify anonymous data [33]. Two
well-known examples of privacy violations, which testified how ensuring proper
privacy protection is becoming a difficult task, are the America OnLine (AOL)
and Netflix incidents [3,32]. AOL is an Internet services and media company
that in 2006 released around 20 millions of search records of 650,000 of its cus-
tomers. To protect the privacy of its customers, AOL de-identified such records



SSN Name DoB Sex ZIP Disease

1950/06/02 F 94141 HIN1
1950/06/20 M 94132 Gastritis
1950/06/12 M 94137 Dyspepsia
1950/06/05 F 94144 Pneumonia
1940/04/01 M 94143 Peptic Ulcer
1940/04/02 M 94142 Peptic Ulcer
1940/04/10 F 94139 Peptic Ulcer
1940/04/20 F 94130 Peptic Ulcer
1940/06/07 M 94130 Broken Leg
1940/06/05 M 94131 Short Breath
1958/12/11 F 94142 Pneumonia
1940/06/25 F 94142 Broken Leg
1940/06/30 F 94145 Stomach Cancer
1950/05/02 F 94136 HIN1
1950/05/05 F 94134 Flu

1950/05/10 M 94147 Stomach Cancer
1950/05/30 M 94148 Gastritis

(a) De-identified medical data

Name Address City ZI1P DoB Sex Education

Jane Doe 300 Main St. San Francisco 94142 58/12/11 female secondary

(b) Voter list

Fig. 2: An example of de-identified microdata table (a) and of publicly available
non de-identified dataset (b)

Date of Birth
year | month, year | full date
71P 0.2% 4.2% 63.3%
County | 0% 0.2% 14.8%

Fig. 3: Identifiability of the US population in the 2000 US Census data [21]

by substituting personal identifiers with numerical identifiers. A sample of such
data is the following:

116874 thompson water seal 2006-05-24 11:31:36 1 http://www.thompsonwaterseal.com
116874 knbt 2006-05-31 07:57:28

116874 knbt.com 2006-05-31 08:09:30 1 http://www.knbt.com

117020 texas penal code 2006-03-03 17:57:38 1 http://www.capitol.state.tx.us
117020 homicide in hook texas 2006-03-08 09:47:35

117020 homicide in bowle county 2006-03-08 09:48:25 6 http://www.tdcj.state.tx.us

that shows records related to two different users (116874 and 117020) containing
the ID, the term(s) used for the search, the timestamp, whether the user clicked
on a result, and the corresponding visited website. With these data, two reporters
of the New York Times newspaper were able to identify AOL customer no.
4417749 as Thelma Arnold, a 62 yeas old widow living in Lilburn [3]. In the same
year, the on-line movies renting service Netflix publicly released 100 millions



records, showing the ratings given by 500,000 users to the movies they rent.
The records were released within the “Netflix Prize” competition that offered $1
million to anyone who could improve the algorithm used by Netflix to suggest
movies to its customers. Also in this case, records were de-identified by replacing
personal identifiers with numerical identifiers. However, some researchers were
able to de-anonymize the data by comparing the Netflix data against publicly
available ratings on the Internet Movie Database (IMDB). For instance, the
release of her movie preferences damaged a lesbian mother since she was re-
identified, thus causing the disclosure of her sexual orientation [32].

From the discussion, it is clear that the protection of microdata against im-
proper disclosure is a key issue in today’s information society. The main objective
of this chapter is then to provide an overview of how the techniques for protect-
ing microdata releases have evolved in the years, according to the evolution
and complexity of the scenarios considered. We will start with a description of
the first solutions aimed at protecting microdata against identity and attribute
disclosures (Section 2). We will then describe recent approaches that removed
some of the assumptions characterizing the first proposals. In particular, we will
describe novel solutions for supporting: i) multiple data releases and the inser-
tion/removal of tuples into/from the released microdata table (Section 3); i)
the definition of fine-grained privacy preferences by each data respondent (Sec-
tion 4); 4ii) generic sensitive associations among released data that need to be
kept confidential (Section 5); and v) external knowledge by malicious data recip-
ients that may cause information leakage (Section 6). We will finally illustrate a
new privacy notion, called differential privacy, that defines when a computation
is privacy-preserving (Section 7).

2 Privacy in microdata publishing

Goal of this section is to present the privacy models specifically targeted to
the protection of microdata from identity and attribute disclosures (i.e., k-
anonymity [37], (-diversity [29], and t-closeness [26]) that have influenced the
work performed by the research community in the data protection area during
the last two decades. All these privacy models are based on the following as-
sumptions. First, the attributes composing a microdata table are classified in
four categories, as follows.

— Identifiers: attributes that uniquely identify a respondent (e.g., Name and
SSN).

— Quasi-identifiers (QI): attributes that, in combination, can be linked with
external information to re-identify (all or some of) the respondents to whom
information refers, or to reduce the uncertainty over their identities (e.g.,
DoB, Sex, and ZIP).

— Confidential attributes: attributes that represent sensitive information (e.g.,
Disease).

— Non-confidential attributes: attributes that are not considered sensitive by
the respondents and whose release is not harmful (e.g., FavoriteColor).



A microdata table is then protected by applying microdata protection tech-
niques [11] that transform the values of the quasi-identifier attributes. Second,
there is a one-to-one correspondence between tuples in the table and data re-
spondents. Third, a microdata table is released only once. Fourth, each table is
characterized by a unique quasi-identifier.

In the remainder of this section, after a description of k-anonymity, ¢-
diversity, and t-closeness, we also briefly discuss their recent enhancements that
remove some of the assumptions on which they are based.

2.1 k-Anonymity

k-Anonymity has been proposed for protecting microdata from identity disclo-
sure [37]. It captures the well-known requirement, traditionally applied by statis-
tical agencies, stating that any released data should be indistinguishably related
to no less than a certain number of respondents. Basically, it characterizes the
protection degree against re-identification caused by linking the released dataset
with external data sources.

Due to the assumption that linking attacks exploit quasi-identifiers only,
in [37] the general requirement described above has been translated into the
following k-anonymity requirement: Fach release of data must be such that every
combination of values of quasi-identifiers can be indistinctly matched to at least
k respondents. A microdata table then satisfies the k-anonymity requirement
if each tuple in the table cannot be related to less than k respondents in the
population, and each respondent in the population cannot be related to less
than k tuples in the released table.

The k-anonymity requirement assumes that the data holder knows any possi-
ble external source of information that may be exploited by a malicious recipient
for respondents re-identification. This assumption is however limiting and highly
impractical in most scenarios. k-anonymity then takes a safe approach by requir-
ing that each combination of values of the quasi-identifier attributes appears with
at least k occurrences in the released table. The definition of k-anonymity repre-
sents a sufficient (not necessary) condition for the k-anonymity requirement. In
fact, since each combination of values of the quasi-identifier attributes appears
with at least k& occurrences, each respondent cannot be associated with less than
k tuples in the microdata table. Analogously, each tuple in the table cannot
be related to less than k respondents in the population. As a consequence, the
risk of re-identification is reduced by at least a factor k, independently from the
external datasets available to a malicious recipient.

Traditional approaches for guaranteeing k-anonymity transform the values
of the attributes composing the quasi-identifier and leave the sensitive and non-
sensitive attributes unchanged. In particular, k-anonymity relies on generaliza-
tion and suppression, which have the advantage of preserving the truthfulness of
the released information, while producing less precise and less complete tables.
Generalization consists in substituting the original values with more general val-
ues. For instance, the date of birth can be generalized by removing the day, or
the day and the month, of birth. Suppression consists in removing data from



the microdata table. The intuition behind the combined use of generalization
and suppression is that suppression can reduce the amount of generalization
necessary to guarantee k-anonymity. In fact, if a limited number of outliers (i.e.,
quasi-identifier values with less than k occurrences in the table) would force a
large amount of generalization to satisfy k-anonymity, these values can be more
conveniently removed from the table. For instance, consider the microdata table
in Figure 2(a) and assume that the quasi-identifier is attribute DoB only. Since
there is only one person born in 1958, attribute DoB should be generalized to
the decade of birth to guarantee 4-anonymity. Alternatively, removing the date
of birth associated with the eleventh tuple in the table, 4-anonymity can be
achieved by generalizing the date of birth to the month of birth, thus reducing
the information loss. Both generalization and suppression can be applied at dif-
ferent granularity levels. More precisely, generalization can be applied at the cell
or attribute level, while suppression can be applied at the cell, attribute, or tuple
level. The combined use of generalization and suppression at different granularity
levels leads to different classes of approaches for guaranteing k-anonymity [10].
However, most of the solutions proposed in the literature adopt attribute gener-
alization and tuple suppression (e.g., Samarati’s algorithm [37], Incognito [23],
and k-Optimize [4]). The reason is that cell generalization produces a table where
the values in the cells of the same column may be non homogeneous, since they
belong to different domains (e.g., some tuples report the complete date of birth,
while other tuples only report the year of birth). On the other hand, cell gen-
eralization has the advantage of causing a reduced information loss if compared
to attribute generalization. Therefore, recently also solutions adopting cell gen-
eralization have been analyzed (e.g., Mondrian [24]).

Consider the microdata table in Figure 2(a) and assume that the quasi-
identifier is composed of attributes DoB, Sex, and ZIP. Figure 4 illustrates the
4-anonymous table obtained combining tuple suppression (the eleventh tuple
of the table in Figure 2(a) is suppressed) and attribute generalization (DoB has
been generalized removing the day of birth, Sex has been generalized to a unique
value, denoted *, and ZIP has been generalized removing the last two digits).

Since generalization and suppression cause information loss, it is necessary
to compute an optimal k-anonymous microdata table that maximizes the utility
while preserving the privacy of the respondents. The computation of an optimal
k-anonymous table is an NP-hard problem, independently from the granularity
level at which generalization and suppression are applied [1,12,31]. As a conse-
quence, both exact and heuristic algorithms have been proposed [12]. The exact
algorithms have computational time complexity exponential in the number of
quasi-identifying attributes, which is however a small value compared with the
number of tuples in the microdata table.

2.2 /{-Diversity

Although k-anonymity represents an effective solution for protecting respon-
dents’ identities, it has not been designed to protect the released microdata
table against attribute disclosure. Given a k-anonymous table it may then be



SSN Name DoB Sex ZIP Disease

1950/06 * 941** HIN1

1950/06 * 941**  Gastritis
1950/06 *  941** Dyspepsia
1950/06 *  941** Pneumonia
1940/04 *  941** Peptic Ulcer
1940/04 *  941** Peptic Ulcer
1940/04 *  941** Peptic Ulcer
1940/04 *  941** Peptic Ulcer
1940/06  *  941** Broken Leg
1940/06  *  941** Short Breath
1940/06  *  941** Broken Leg
1940/06  *  941** Stomach Cancer
1950/05 * 941** HIN1

1950/05 * 941**  Flu

1950/05 *  941** Stomach Cancer
1950/05 *  941** Gastritis

Fig.4: An example of 4-anonymous table

possible to infer (or reduce the uncertainty about) the value of the sensitive
attribute associated with a specific respondent.

Two well-known attacks that may lead to attribute disclosure in a k-
anonymous table are the homogeneity attack [29,37] and the external knowledge
attack [29]. To illustrate the homogeneity attack, consider a k-anonymous table
where all the tuples composing an equivalence class (i.e., all the tuples having
the same value for the quasi-identifying attributes) have the same value also for
the sensitive attribute. If a data recipient knows that an individual is represented
in the microdata table and the value of her quasi-identifier, the recipient can eas-
ily identify the equivalence class representing the target respondent. Under the
above homogeneity assumption, the recipient can also infer the value of the sensi-
tive attribute of the target respondent. For instance, consider the 4-anonymous
table in Figure 4 and suppose that Alice knows that her friend Barbara is a
female living in 94139 area and born on 1940/04/10. Since all the tuples in
the equivalence class with quasi-identifier value equal to (1940/04,*,941**) have
Peptic Ulcer as value for attribute Disease, Alice can infer that her friend suffers
from Peptic Ulcer. The external knowledge attack occurs when the data recip-
ient may reduce her uncertainty about the sensitive attribute value of a target
respondent, exploiting some additional (external) knowledge about the respon-
dent. For instance, consider the 4-anonymous table in Figure 4 and suppose that
Alice knows that her neighbor Carol is a female living in 94145 area and born
on 1940/06/30. Observing the 4-anonymous table, Alice can only infer that her
neighbor suffers either from Short Breath or Stomach Cancer, or has a Broken
Leg. Suppose that Alice sees Carol running every day: as a consequence, Alice
can infer that Carol can neither have broken her leg nor suffer from short breath.
Hence, Alice discovers that Carol suffers from Stomach Cancer.

The definition of /-diversity has been proposed to counteract homogeneity
and external knowledge attacks [29]. ¢-diversity extends k-anonymity requiring



SSN Name DoB Sex ZIP Disease

941**  Gastritis

941** Dyspepsia
941** Stomach Cancer
941**  Gastritis

1940 M 941*%* Peptic Ulcer
1940 M 941*%* Peptic Ulcer
1940 M  941** Broken Leg
1940 M  941** Short Breath
1950 F  941** HIN1
1950 F  941** Pneumonia
1950 F 941** HIN1
1950 F  941*% Flu
1940 F  941** Peptic Ulcer
1940 F  941** Peptic Ulcer
1940 F  941** Broken Leg
1940 F  941** Stomach Cancer

M

M

M

M

Fig.5: An example of 4-anonymous and 3-diverse table

that each equivalence class must be associated with at least £ well-represented
values for the sensitive attribute. In [29], the authors propose different definitions
for “well-represented” values. The simplest formalization of ¢-diversity requires
that each equivalence class includes at least ¢ different values for the sensitive
attribute. Even with this straightforward definition, ¢-diversity counteracts the
homogeneity attack, and reduces the effectiveness of external knowledge attacks,
since the data recipient needs more external knowledge to be able to associate
a single sensitive value with a target respondent. For instance, consider the
microdata table in Figure 5, which is 4-anonymous and 3-diverse and suppose
that Alice knows that her neighbor Carol is a female living in 94145 area and
born on 1940/06/30. Observing the 3-diverse table, Alice can infer that her
neighbor either suffers from Peptic Ulcer, Stomach Cancer, or has a Broken
Leg. Since Alice only knows that Carol does not have a Broken Leg, she cannot
be certain about her neighbor’s disease.

Although any traditional k-anonymity algorithm can be easily adapted to
guarantee ¢-diversity [29], in [44] the authors propose a specific approximation
algorithm. This algorithm is based on cell suppression, and aims at minimizing
the number of suppressed cells in computing a microdata table that satisfies
{-diversity.

2.3 t-Closeness

Even if ¢-diversity represents a first step for counteracting attribute disclosure,
this solution may still produce a table that is vulnerable to privacy breaches. In
fact, the definition of ¢/-diversity does not take into consideration different factors
that might be exploited by a malicious data recipient for attribute disclosure,
such as: i) the frequency distribution of the values in the sensitive attribute
domain; i) the possible semantic relationships among sensitive attribute values;



and ) the different sensitivity degree associated with different values of the
sensitive attribute domain (e.g., HIV is usually considered more sensitive than
Flu).

Two attacks that may cause attribute disclosure in an ¢-diverse table are the
skewness attack and the similarity attack [26]. Skewness attack exploits the possi-
ble difference in the frequency distribution of sensitive attribute values within an
equivalence class, with respect to the frequency distribution of sensitive attribute
values in the whole population (or in the released microdata table). Indeed, a dif-
ference in the distribution may change the probability with which a respondent
in the equivalence class is associated with a specific sensitive value. For instance,
consider the 3-diverse table in Figure 5 and suppose that Alice knows that her
friend Diana is a female living in 94141 area and born on 1950/06,/02. Since two
out of the four tuples in the equivalence class with quasi-identifier value equal
to (1950,F,941**) have value HIN1 for attribute Disease, Alice can infer that
her friend has 50% probability of suffering from this disease, compared to the
12.5% of the whole released table. Also, although ¢-diversity guarantees that
each equivalence class has at least ¢ different values for the sensitive attribute, it
does not impose constraints on their semantics. As a consequence, the sensitive
attribute values within an equivalence class may be different, but semantically
similar, thus causing attribute disclosure. For instance, consider the 3-diverse
table in Figure 5 and suppose that Alice knows that her friend Eric is a male
living in 94137 area and born on 1950/06/12. Observing the 3-diverse table, Al-
ice can infer that her friend suffers from either Gastritis, Dyspepsia, or Stomach
Cancer and, therefore, that Eric suffers from a stomach-related disease.

The definition of ¢-closeness has been proposed to counteract skewness and
similarity attacks [26]. ¢-Closeness extends the definition of k-anonymity, re-
quiring that the frequency distribution of the sensitive attribute values in each
equivalence class has to be close (i.e., with distance less than a fixed threshold
t) to the frequency distribution of the sensitive attribute values in the released
microdata table. In this way, the frequency distribution of sensitive attribute
values in each equivalence class is similar to the frequency distribution charac-
terizing the released microdata table. As a consequence, the knowledge of the
quasi-identifier value for a target respondent does not change the probability for
a malicious recipient of correctly guessing the sensitive value associated with the
respondent. The effect of similarity attacks is also mitigated since the presence
of semantically similar values in an equivalence class can only be due to the
presence, with the same relative frequencies, of these values in the microdata
table.

To determine if a microdata table satisfies the t-closeness property, it is nec-
essary to measure the distance between the frequency distributions of sensitive
attribute values characterizing each equivalence class and the whole microdata
table. In [26], the authors present different techniques to measure the distance be-
tween two frequency value distributions, and propose to adopt the Farth Mover
Distance (EMD) technique.



2.4 Extensions

k-anonymity, ¢-diversity, and t-closeness are based on some assumptions that
make them not always applicable in specific scenarios. Such assumptions can be
summarized as follows.

— FEach respondent is represented by only one tuple in the microdata table. In
many real-world scenarios different tuples in a microdata table may refer to
the same respondent. For instance, consider the relation in Figure 2(a): each
respondent may be associated with as many tuples in the table as the number
of diseases she suffers from. k-anonymity is not suited for these scenarios,
since an equivalence class composed of k tuples may represent less than k
respondents. As a consequence, a k-anonymous table may however violate
the k-anonymity requirement.

— A unique microdata table is released. Data may be stored in different re-
lations, characterized by (functional) dependencies among them. Since dif-
ferent portions of these data may be released at different times (e.g., upon
request) or to different recipients, it is necessary to guarantee that the com-
bined view over all the released pieces of information does not cause privacy
violations. Traditional solutions may not be applicable in these scenarios
since they assume that the data to be released are stored in a unique micro-
data table.

— The microdata table is characterized by one quasi-identifier. Although tra-
ditional solutions assume that the released microdata table is characterized
by a unique quasi-identifier, different data recipients may posses different
external data collections to be linked with the released table. The release
of a different microdata table to each data recipient, anonymized consid-
ering the specific knowledge of the recipient, is however not effective since
collusion among recipients would violate respondents’ privacy. On the other
hand, a solution that considers the quasi-identifier as the union of the quasi-
identifiers of any possible data recipient would cause an excessive information
loss.

— Respondents can be re-identified through a predefined quasi-identifier. As dis-
cussed in Section 1, data respondents can be re-identified through any piece
of information that uniquely (or almost uniquely) pertain to them. As an
example, in transactional data (e.g., AOL and Netflix datasets) a pattern of
items in a transaction (or a set thereof related to the same respondent) may
re-identify a respondent. Traditional anonymization solutions are however
based on a preliminary identification of a quasi-identifier, and are there-
fore not applicable in this scenario, where the information exploited for re-
identification cannot be determined a-priori and may not be represented by
a set of attributes.

In the following, we present a brief overview of some solutions that extend
k-anonymity, ¢-diversity, and t-closeness by removing (some of) the above as-
sumptions (see Figure 6).



(X,Y)- MultiR Butterfly E™-
Privacy | k-anonymity Anonymity
multiple tuples
X X
per respondent
multiple
tables x x
multiple
quasi-identifiers x
non-predefined
quasi-identifiers X

Fig.6: Extended scenarios (rows) and applicable techniques (columns)

(X,Y)-Privacy [39] addresses the problem of protecting the privacy of the
respondents when multiple relations are released and each respondent is possibly
associated with a set of tuples in the released tables. In particular, in [39] the
authors assume that different tables, obtained as the projection of a subset of
attributes of a unique microdata table, are sequentially released. To guarantee
that a data release, either singularly taken or combined with previous releases,
does not compromise the privacy of the respondents, the definitions of (X,Y)-
anonymity and (X,Y)-linkability have been introduced, which are both referred
with the term (X,Y)-privacy. Given a microdata table and two disjoint sets
of attributes X and Y, the microdata table satisfies (X,Y)-anonymity if each
value of X is linked to at least k different values of Y. Note that the definition
of (X,Y)-anonymity is more general than the original k-anonymity requirement.
Indeed, the k-anonymity requirement can be satisfied by a (X,Y)-anonymous
table where X is the set of attributes composing the quasi-identifier and Y is
the set of identifying attributes. For instance, consider the microdata table in
Figure 2(a) and assume that X = {DoB,Sex,ZIP} and Y = {SSN}. A (X,Y)-
anonymous table guarantees that each combination of values for attributes DoB,
Sex, ZIP is associated with at least k different values for attribute SSN. (X,Y)-
linkability states that no value of Y can be inferred from a value of X with
confidence higher than a fixed threshold. To guarantee privacy protection in
sequential releases, the join among all the released tables has to satisfy (X,Y)-
privacy (i.e., it must satisfy both (X,Y’)-anonymity and (X,Y)-linkability).

MultiR k-anonymity [35] extends the definition of k-anonymity to multiple
relations, while guaranteeing a limited information loss. The considered scenario
is characterized by a set S = {T1,...,T,} of relations that preserves the lossless
join property and that includes a person specific table PT, where each row cor-
responds to a different respondent. The release of a set S of relations satisfies
multiR k-anonymity if each view over the join JT = PT x T X ... x T}, is
k-anonymous, meaning that it includes either 0 or at least k occurrences for each
combination of values for the attributes in the quasi-identifier. In this scenario,
the quasi-identifier is defined as a subset of the attributes of the join relation JT',
which can be exploited to re-identify the respondents in the person specific table



PT. To protect the privacy of the respondents against attribute (besides iden-
tity) disclosure, in [35] the authors propose to extend the definition of ¢-diversity
to the multirelational scenario. A release of a set S of relations satisfies multiR
{-diversity if each view over the join JT = PT x T} X ... x T,, among all the
released relations satisfies ¢-diversity with respect to the considered sensitive
attribute.

Butterfly [36] aims at protecting the privacy of the respondents, while minimiz-
ing information loss, when the microdata table to be released is characterized by
different quasi-identifiers. Traditional approaches consider, as a quasi-identifier,
the set of all the attributes that may be externally available (although not in
combination) to some data recipient. Even if effective, this assumption causes an
excessive information loss that can be reduced if the set of attributes available
to each recipient is considered separately. Indeed, as shown in [36], a table that
is k-anonymous with respect to quasi-identifier QI; and with respect to QI
may not be k-anonymous with respect to QI; U QI>. In [36] the authors then
introduce the k-butterfly principle that allows the anonymization of a microdata
table so that the k-anonymity requirement is satisfied with respect to multiple
quasi-identifiers while reducing the information loss. More precisely, given a mi-
crodata table and two quasi-identifiers QI; and @I, a subset of tuples with the
same value for the attributes in QI; N Q1> satisfies k-butterfly with respect to
QI and QI if the equivalence classes induced by QI \ QIz (QIz \ QI1, resp.)
include at least k tuples each. A microdata relation satisfies k-butterfly if all the
equivalence classes induced by QI; N QI satisfy k-butterfly. It is important to
note that a set of tuples that satisfies k-butterfly with respect to @QI; and QI
is k-anonymous with respect to both QI; and Q1.

k™-Anonymity [38] aims at protecting the privacy of respondents of transac-
tional data, where a subset of the items composing a transaction may represent
a quasi-identifier. For instance, consider a transactional dataset including all the
items purchased in a supermarket and assume that Alice has seen her neighbor
Bob buying parmesan cheese, strawberries, and soy milk. If the supermarket
dataset includes only one transaction with this combination of items, Alice can
find out the complete list of items purchased by Bob, which may be sensitive
(e.g., if it contains a medicine). The k™-anonymity concept solves this problem
by requiring that each combination of at most m items must appear in at least
k transactions, where m is the maximum number of items per transaction that
may be known to a malicious data recipient.

3 Multiple releases and data streams

The proposals described in Section 2 assume that only one instance of the micro-
data is published. There are however many scenarios where data are subject to
frequent changes, due to the insertion, deletion, and update of tuples in the mi-
crodata, and need to be published at a regular basis. For instance, a hospital may
be forced by law to publish an anonymized version of its data every six months.



Data may also be continuously generated and may need to be immediately re-
leased. This happens, for example, when a credit card company outsources to
a third party the transactions generated by its customers whenever they use
their credit cards. Such transactions form a microdata stream that has to be
continuously monitored by the third party to detect possible misbehaviors. In
this section, we first describe the privacy issues that arise in the case of multiple
data releases and data streams, highlighting why the traditional approaches for
protecting microdata are not suitable. We then illustrate some recent approaches
that counteract such privacy issues.

3.1 Problem

The multiple releases of a microdata table whose content is updated over time
may cause information leakage since a malicious data recipient can correlate the
released datasets to gain information about respondents. Also, if a combination
of quasi-identifier values appears in one of the released tables only, it may be
easier for a malicious recipient to correctly associate it with one of those respon-
dents who have been removed from the subsequent releases (possibly exploiting
the information available through external sources). To illustrate, consider the
two subsequent releases of the medical data of the patients of a hospital illus-
trated in Figure 7. Some patients are included in both tables, while others are
represented in one of the two tables only (tuples marked with a bullet in Fig-
ures 7(a) and 7(b)). Both the first and the second release satisfy 4-anonymity
and 3-diversity. However, suppose that Alice knows that her friend Fay, who is
a female living in the 94130 area, born on 1940/04/20, was in the hospital when
both tables have been released. Alice then knows that Fay is represented by a
tuple in the tables of Figure 7, and she can identify the two equivalence classes
to which Fay belongs in the two tables. In particular, in the first release Fay is
included in the third class of the table in Figure 7(a), and hence her disease could
be either Peptic Ulcer, Broken Leg, or Stomach Cancer. Instead, in the second
release Fay is included in the second class of the table in Figure 7(b), and hence
her disease could be either Gastritis, Short Breath, Pneumonia, or Peptic Ulcer.
By comparing the two sets of possible illnesses, Alice can easily infer that Fay
suffers from Peptic Ulcer, since this is the unique disease that appears in both
sets.

When we consider a data stream scenario where only new tuples can be
inserted into the released microdata table, it is not necessary to compute different
releases of the dataset. In fact, it may be more convenient to release only the
new tuples. In this case, traditional approaches cannot be adopted, since they
need the whole dataset that is instead not available in advance. Furthermore, a
data stream is possibly an infinite sequence of tuples, which must be released
as soon as they are available since data utility decreases as time passes. As a
consequence, it is not possible to assume that the whole dataset can be collected
before its publication. For instance, consider a credit card company that releases
the stream of data generated by purchases represented as tuples in a microdata
table. Such data should be immediately published to check, for example, possible



DoB Sex ZIP Disease DoB Sex ZIP Disease

1940 M 941** Peptic Ulcer 1940 * 9414* Peptic Ulcer
1940 M 941** Peptic Ulcer 1940 * 9414* Peptic Ulcer
e 1940 M 941** Broken Leg e 1940 * 9414* Measles
1940 M 941** Short Breath 1940 * 9414* Stomach Cancer
1950 F 941** HIN1 e 1940 * 9413* Gastritis
1950 F 941** Pneumonia 1940 * 9413* Short Breath
1950 F 941*%* H1IN1 e 1940 * 9413* Pneumonia
e 1950 F 941*%* Flu 1940 * 9413* Peptic Ulcer
e 1940 F 941*%* Peptic Ulcer 1950 * 9414* H1IN1
1940 F 941** Peptic Ulcer 1950 * 9414* Pneumonia
e 1940 F 941** Broken Leg e 1950 * 9414* Measles
1940 F 941** Stomach Cancer 1950 * 9414* Gastritis
e 1950 M 941*%* Gastritis e 1950 * 9413* Infract
1950 M 941** Dyspepsia 1950 * 9413* Dyspepsia
e 1950 M 941** Stomach Cancer 1950 * 9413* HIN1
1950 M 941** Gastritis e 1950 * 9413* Thrombosis

(a) (b)

Fig.7: An example of two subsequent releases of a table including the medical
data of a hospital

frauds, while preserving the privacy of the card holders. We note that data
streams may include more than one tuple for each respondent (e.g., a card holder
may perform multiple purchases).

3.2 Solutions

Recently, the scientific community has proposed different approaches addressing
the privacy issues previously discussed. These solutions can be classified in two
categories, depending on whether they consider the re-publication of data or
the publication of data streams. In the following, we summarize some of the
approaches proposed in both scenarios.

Data re-publication (e.g., [39, 43]). Most of the solutions proposed to protect
the privacy of data respondents in data re-publication scenarios only focus on
supporting the insertion of new tuples in the dataset and implicity assume that
no tuple is removed from the microdata table. m-Invariance [43] is the first
technique addressing the problem of data re-publication that takes both insertion
and deletion of tuples into account. The possible removal of tuples from the
dataset can cause information leakage, due to the critical absence phenomenon.
To illustrate, consider the two subsequent releases in Figure 7 and suppose that
Alice knows that Gabrielle is represented in both microdata tables and that she
suffers from either Flu or HINI. The value Flu, however, does not appear in
the second release. As a consequence, Alice can conclude with certainty that
Gabrielle contracted HIN1. It is important to note that this inference can be
drawn independently from how the two released datasets have been generalized
to prevent disclosure. To counteract this privacy breach, in [43] the authors
introduce the m-invariance property. A sequence 71, . .., T;, of released microdata



tables satisfies m-invariance if the following properties hold: i) each equivalence
classin T;, i = 1,...,n, includes at least m tuples; ii) no sensitive value appears
more than once in each equivalence class in T;, i = 1,...,n; and i) for each
tuple t, the equivalence classes to which ¢ belongs in the sequence [T;,T}], 1 <
i1 < j < n, are characterized by exactly the same set of sensitive values. The
rationale of m-invariance is that all the equivalence classes to which a published
tuple ¢ belongs must be associated with exactly the same set of (at least) m
different sensitive values. In this way, the correlation of the tuples in 71, ..., T,
does not permit a malicious recipient to associate less than m different sensitive
values with each respondent in the released datasets. The technique proposed
in [43] to achieve m-invariance is incremental, meaning that the n-th release
T, can be determined taking into account only the previous release T;,_1, and
is based on the possible insertion of counterfeits, when it is needed to prevent
critical absences.

Data streams (e.g., [25,40,45]). One of the most important requirements
when releasing data as a stream is timeliness, since these data are usually time
critical and need to be published in a timely fashion to be useful for the recipients.
The proposed solutions mainly aim at satisfying the k-anonymity requirement.
To this purpose, they rely on generalization and on the introduction of a limited
delay in data publication. The first solution in this direction has been proposed
in [45] and is based on the principle that all the tuples in an equivalence class
must be published at the same time. Therefore, the data holder locally main-
tains a set of equivalence classes, which are all initially empty. As a new tuple is
generated by the stream, it is inserted into a suitable equivalence class, if such
class exits; a new equivalence class suitable for the tuple is generated, otherwise.
We note that each equivalence class can include at most one tuple for each re-
spondent. As soon as one of the equivalence classes includes k tuples that, by
construction, are related to k different respondents, these tuples are generalized
to the same quasi-identifier value and published. This technique, although sim-
ple, guarantees privacy protection and a timely data publication, at the price
of a possibly high information loss. To limit this information loss, in [45] the
authors introduce an improvement of their technique that makes a probabilistic
estimation of the tuples that will be generated by the data stream, to choose the
most convenient generalization strategy. An alternative approach for protecting
the privacy of respondents in data streams has recently been proposed in [40],
where the authors assume that data are generated and published as “snapshots”
(i.e., sets of records available at a given moment of time) of d tuples each. This
technique combines generalization and tuple suppression with tuple relocation to
guarantee ¢-diversity. Relocation consists in moving a tuple from one snapshot
to a more recent one, if this delay in data publishing could be useful to satisfy
the ¢-diversity principle. The approach illustrated in [40] guarantees that win-
dow queries (i.e., queries that need to be evaluated only on the data released
in a specific time window) evaluated on the released dataset produce the same
result as if they were evaluated on the original data stream. Another approach
for protecting data streams has been illustrated in [25]. This approach is based



on noise addition and therefore is not suitable for all those scenarios that require
truthfulness of released data.

4 Fine-grained privacy preferences

The privacy-aware publishing techniques illustrated in previous sections guar-
antee the same amount of privacy to all the respondents represented in the
released microdata table. Privacy requirements may however depend on respon-
dents’ preferences, or on the sensitivity of the released values. In the following of
this section, we illustrate both the issues that may arise when enforcing the same
protection degree to all the respondents, and the advantages of solutions that
permit a fine-grained specification of privacy preferences. We also describe some
recent approaches supporting fine-grained privacy preference specifications.

4.1 Problem

Privacy is an individual concept [27], since each individual may have her own
privacy needs that may be different from the requirements of another individual.
However, traditional privacy protection techniques provide all the data respon-
dents with the same amount of privacy, without considering their preferences.
For instance, the k-anonymity requirement demands that each tuple in a released
table cannot be associated with less than k respondents in the population, and
viceversa. The anonymity threshold k is fixed by the data holder, without con-
sidering the specific privacy requirements of the respondents. As a consequence,
this value may be adequate for some respondents and inadequate for others.
For instance, consider the 4-anonymous microdata table in Figure 4 and assume
that Gabrielle is a female born on 1950/05/02 and living in the 94136 area, who
suffers from HINI1. A data recipient knowing her quasi-identifier can infer that
Gabrielle suffers from either HINI1, Flu, Stomach Cancer, or Gastritis, being
these values all equally likely (25% of probability each). Although the micro-
data table satisfies 4-anonymity, Gabrielle may not want people to know, with
a probability of 25%, that she suffers from HINI. On the other hand, Lorna,
born on 1950/05/05 and living in the 94134 area and suffering from Flu, may
agree to release her disease without the need to protect the corresponding tu-
ple in the table. Therefore, the 4-anonymous table in Figure 4 does not protect
Gabrielle’s privacy, while it over-protects Lorna’s sensitive value. ¢-diversity, t-
closeness, m-invariance, and all the other approaches illustrated in the previous
sections suffer from this problem, since they are based on a unique protection
threshold that is adopted to guarantee the privacy of all the respondents. As a
consequence, these techniques cannot be adopted for supporting the following
privacy requirements.

— Value-specific privacy: different values of the sensitive attribute should en-
joy a different protection degree. For instance, consider the medical micro-
data table in Figure 2(a). Stomach Cancer is usually considered more sensi-
tive than Flu. As a consequence, tuples representing patients suffering from



Stomach Cancer should be more carefully protected than tuples of patients
suffering from Flu.

— Respondent-specific privacy: different respondents may have a different per-
ception of their privacy, independently from the values of the sensitive at-
tribute. As a consequence, respondents may be willing to specify a different
threshold for the protection of their data. As an example, consider two pa-
tients suffering from the same disease. A patient may consider the protection
offered by a 3-diverse table adequate, while the other patient may require at
least a 5-diverse table.

— Sensitive presence: the presence of a respondent in the microdata table may
violate her privacy. For instance, consider a microdata table representing
patients suffering from rare diseases. Even the fact that an individual is
represented in the table may violate her privacy.

To satisfy the privacy requirements of all the respondents, the privacy pa-
rameter used by the techniques previously discussed should be fixed to the most
restrictive threshold (e.g., to the highest value of & among the preferences of the
respondents), thus causing an excessive information loss.

4.2 Solutions

Recently, different solutions supporting fine-grained privacy specifications have
been proposed. In the following, for each of the privacy requirements described
above, we illustrate a specific protection technique addressing it.

Value-specific privacy (e.g., [18]). To permit the data holder to specify
different privacy thresholds for different values of the domain of the sensitive
attribute, in [18] the authors propose (v, 5;)-closeness. («;, B;)-closeness is an
extension of the ¢-closeness principle that, instead of adopting a unique threshold
value t, associates a range [a;, 3;] with each value s; in the domain of the sensitive
attribute. An equivalence class satisfies (o, 3;)-closeness if, for each sensitive
value s;, the percentage of tuples in the class with value s; for the sensitive
attribute is in the range [a;, 5;]. A microdata table satisfies («;, 8;)-closeness if
each equivalence class in the table satisfies (v, 3;)-closeness. («;, 5;)-closeness
presents different advantages over t-closeness. First, («a;, 8;)-closeness is flexible,
since it defines a different threshold for each sensitive value. As a consequence,
only the values that are considered highly sensitive are associated with a small
range, while the frequency of non-sensitive values is possibly not bounded, thus
better preserving data utility. Second, («;, 3;)-closeness is easy to check, since it
does not require to compute the distance between two frequency distributions,
but only to evaluate the number of tuples in the equivalence class associated with
each sensitive value. Finally, («;, 3;)-closeness is easy to use, since the definition
of a range [«y, ;] for each sensitive value is more intuitive than the choice of the
maximum distance ¢ from a known frequency distribution. («;, 5;)-closeness is
enforced by applying generalization at the level of attributes [18]. In particular,
the authors propose to enforce the («a;, 3;)-closeness requirement by extending
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Fig.8: An example of partial taxonomy tree for attribute Disease

traditional algorithms used for solving the k-anonymity problem (see Section 2)
and, in particular, the Incognito algorithm [23].

Respondent-specific privacy (e.g., [42]). In [42] the authors observed that
different respondents may have different privacy requirements, independently
from the value of the sensitive attribute associated with them. As a consequence,
the adoption of a unique privacy protection threshold to the whole dataset may
result in over-protecting or under-protecting respondents. To overcome this issue,
in [42] the authors introduce the concept of personalized anonymity that aims at
releasing as much information as possible, while satisfying the specific privacy
requirement defined by each respondent. Personalized anonymity is based on
the definition of a taxonomy tree over the domain of each sensitive attribute in
the microdata table. The tree has a leaf for each value in the sensitive attribute
domain, and each internal node summarizes the specific values in its subtree. For
instance, Figure 8 illustrates an example of a partial taxonomy tree for attribute
Disease in the microdata table in Figure 2(a). Each respondent specifies her
privacy preference by choosing a guarding node along the path from the root
of the taxonomy tree to the leaf node representing the respondent’s sensitive
attribute value.

The technique proposed in [42] for enforcing the privacy preferences of the
respondents relies on the application of generalization, performed in two steps.
In the first step, the attributes composing the quasi-identifier are generalized
following traditional generalization schemes [37]. In the second step, each equiv-
alence class generated in the first step is further modified to respect the privacy
level required by each respondent. In particular, for each tuple in an equivalence
class, the value of the sensitive attribute is generalized (based on the taxonomy
tree defined for the attribute) if needed to respect the guarding node chosen by
the tuple respondent. A table to be released satisfies personalized anonymity if,
for each respondent, a malicious recipient cannot infer with probability higher
than p that the respondent is associated with a specific value in the subtree
rooted at the guarding node chosen by the respondent herself. The value of p
represents the maximum confidence with which a recipient is allowed to infer
sensitive attribute values and is set by the data holder. For instance, consider
the taxonomy tree in Figure 8 and suppose that Carol, who suffers from Stomach



Cancer, chooses Stomach-Related disease as her guarding node. Carol’s privacy
is violated if a data recipient can infer with probability higher than p that Carol
suffers from a disease among Peptic Ulcer, Stomach Cancer, and the other values
children of the Stomach-Related node in the taxonomy tree. Another respondent,
Matt, who suffers from Short Breath, does not consider a privacy violation the
release of his disease. As a consequence, he sets his guarding node as 0 (i.e., a
special guarding node denoting that a respondent believes that the release of her
sensitive attribute value does not violate her privacy).

Sensitive presence (e.g., [34]). In [34], the authors propose J-presence as
a metric to evaluate the risk that a data recipient can identify the presence
of an individual in the released table. The released dataset includes a subset
of the tuples of a larger data collection D. The released microdata table T,
obtained by generalizing (at the level of attributes) T' C D, satisfies d-presence
if Opnin < P(t € T|T*) < dpnaa, for allt € D, where P(t € T|T*) is the probability
that a data recipient correctly guesses that tuple ¢ belongs to the released dataset,
observing the released microdata table T*. If the released dataset satisfies 6-
presence, a malicious recipient cannot determine the inclusion of a respondent
in T* with probability lower than d,,;, or higher than §,,,,. We note that, by
tuning the values of ,,,;,, and 6,44, it is possible to find a good trade-off between
data utility and privacy of the released generalized microdata table T*. In fact,
a small [0pmin,0maqz] Tange favors privacy, while a large [0min,0maz] range favors
data utility.

5 Group-based approaches for protecting sensitive
associations

The approaches described in the previous sections typically apply generalization
and suppression for guaranteeing k-anonymity, ¢-diversity, t-closeness, or other
(more enhanced) privacy requirements. Generalization and suppression, however,
cause information loss that could be reduced by adopting different protection
techniques. In the following of this section, we highlight the disadvantages caused
by generalization and illustrate an alternative approach that overcomes these
shortcomings, while protecting sensitive data against disclosure.

5.1 Problem

The adoption of well-known generalization and suppression techniques results in
tables that are less complete and less detailed than the original microdata tables.
In fact, the released table is composed of a set of equivalence classes, including all
the tuples that have been generalized to the same value for the quasi-identifier.
The values of the quasi-identifier in the released table are then less precise than
the values in the original data collection, thus destroying the correlation among
the values of the quasi-identifying attributes and the sensitive attribute. The
generalization-based approaches are therefore not suitable for those publishing



scenarios where the precision of aggregate queries is of paramount importance
and the exact distribution of the values of the quasi-identifier must be released.
For instance, if the correlation existing among Sex, ZIP, and Disease is impor-
tant for the analysis of the impact of an infectious disease, the release of the
4-anonymous table in Figure 4 is of limited utility for the final recipient, since
both Sex and ZIP have been generalized to a unique value.

5.2 Solutions

An alternative technique to generalization that permits the release of the ex-
act distribution of the quasi-identifier values, while guaranteeing to preserve
the privacy of the respondents, is fragmentation. Basically, fragmentation con-
sists in splitting the original microdata table in vertical fragments, such that
the attributes composing the quasi-identifier and the sensitive attribute are not
represented in the same fragment. In the following, we illustrate two different
solutions adopting a group-based approach to protect the privacy of the respon-
dents.

Anatomy [41] is a group-based proposal addressing the issue of guaranteing ¢-
diversity in microdata release without resorting to generalization. Anatomy first
partitions the tuples in the microdata table in groups that satisfy the ¢-diversity
principle (i.e., each group includes at least ¢ well-represented values for the sen-
sitive attribute). Each group is then associated with a unique group identifier
and the microdata table is split into two fragments, F; and F5, including the at-
tributes composing the quasi-identifier and the sensitive attribute, respectively.
For each tuple, both F} and F5 report the identifier of the group to which it be-
longs. For simplicity, each group in the fragment storing the sensitive attribute
has a tuple for each sensitive value appearing in the group, and reports the fre-
quency with which the value is represented in the group. For instance, consider
the microdata table in Figure 2(a) and assume that the data holder is interested
in releasing a 3-diverse table. Figure 9 illustrates the two fragments F} and Fj
obtained by partitioning the tuples in the table in Figure 2(a) in groups that
satisfy 3-diversity. Although a malicious recipient may know the quasi-identifier
value of a target respondent, she can only infer that the respondent belongs to
one group (say, ¢1) in F1, and that the sensitive value of the target respondent
is one of the values in the group in F, that is in relation with g;. To illustrate,
assume that Alice knows that her friend Barbara is a female living in 94139 area
and born on 1940/04/10. Alice can easily infer that her friend is represented
by the ninth tuple of the table in Figure 9(a). However, since the tuples in the
third group in Figure 9(a) are in relation with the tuples in the third group
in Figure 9(b), Alice can only infer that Barbara suffers from either Peptic Ul-
cer, Broken Leg, or Stomach Cancer. Note that the privacy guarantee offered
by Anatomy is exactly the same offered by traditional generalization-based ap-
proaches. In fact, a malicious data recipient cannot associate less than ¢ different
sensitive values with each respondent in the released table. On the other hand,
by releasing the exact distribution of the values of the attributes composing the
quasi-identifier, the evaluation of aggregate queries can be more precise [41].



DoB Sex ZIP GrouplID GrouplID Disease Count

1940/04/01 M 94143 1 1 Peptic Ulcer 2
1940/04/02 M 94142 1 1 Broken Leg 1
1940/06/07 M 94130 1 1 Short Breath 1
1940/06/05 M 94131 1

1950/06/02 F 94141 2 2 HIN1 2
1950/06/05 F 94144 2 2 Pneumonia 1
1950/05/02 F 94136 2 2 Flu 1
1950/05/05 F 04134 2

1940/04/10 F 94139 3 3 Peptic Ulcer 2
1940/04/20 F 94130 3 3 Broken Leg 1
1940/06/25 F 94142 3 3 Stomach Cancer 1
1940/06/30 F 94145 3

1950/06/20 M 94132 4 4 Gastritis 2
1950/06/12 M 904137 4 4 Dyspepsia 1
1950/05/10 M 94147 4 4 Stomach Cancer 1
1950/05/30 M 904148 4

(a) Fu (b) F»

Fig.9: An example of two fragments satisfying 3-diversity obtained adopting
the Anatomy approach

Loose associations [15] represent a more flexible solution to guarantee pri-
vacy in data publication without adopting generalization. Loose associations
have been proposed to protect generic sensitive associations among the at-
tributes in a data collection. For instance, consider the microdata table in Fig-
ure 1 and suppose that attribute Treatment is also represented in the table. A
possible set of sensitive associations defined among attributes {SSN,Name,DoB,
Sex,ZIP,Disease,Treatment} could include: i) both the association between the
values of attributes SSN and Disease, and the association between the values
of attributes Name and Disease; i) the association between the values of quasi-
identifying attributes DoB, Sex, ZIP and the values of sensitive attribute Disease;
iii) the association between the values of attributes Disease and Treatment.
Given a set of sensitive associations defined among the attributes included in a
microdata table, they are broken by publishing a set of different fragments. It is
easy to see that the problem of protecting the association of a sensitive attribute
with the respondents’ quasi-identifier can be modeled through the definition
of a sensitive association among the sensitive attribute and quasi-identifying at-
tributes. Like Anatomy, the original microdata table can then be split in different
fragments in such a way that the sensitive attribute is not stored together with
all the attributes composing the quasi-identifier. It is in fact sufficient to store
a subset of the quasi-identifying attributes in a fragment Fj, and all the other
quasi-identifying attributes in another fragment F5, together with the sensitive
attribute. For instance, consider the microdata table in Figure 2(a). A fragmen-
tation that would protect against identity and attribute disclosures could be
composed of the following two fragments: Fj(DoB,Sex,ZIP) and F5(Disease).
Note that a fragmentation is not unique: F(DoB,Sex) and F5(ZIP,Disease) is



1950/06/02 | F [ 94141 Peptic Ulcer
1950/06/20 | M| 94132 }{ }{ HINT
1950/06/12 | M| 94137 Gastritis
1950,/06/05 | F | 94144 }{ }{ Dyspepsia
1940/04/01 | M[ 94143 Peptic Ulcer
1940/06/07 | M| 94130 }{ }{ Pneumonia
1940/04/10 | F [ 94139 Broken Leg
1940/06/30 | F [ 94145 }{ }{ Stomach Cancer
1940/04/02 | M| 94142 Peptic Ulcer
1940/06/05 | M| 94131 }{ }{ HINT
1940/06/25 | F [ 94142 Short Breath
1040/04/20 | ¥ | 94130 }{ }{ Broken Log
1950/05/02 | F [ 94136 Peptic Ulcer
1950/05/05 | F [ 94134 }{:><:}{ Stomach Cancer
1950/05/10 | M| 94147 Flu

1050/05/30 | M| 94148 }{.—.}{ Gastritis

Fig.10: An example of loose association defined on the table in Figure 2(a)

another solution that still protects the association between the sensitive attribute
and the quasi-identifier.

To provide the data recipient with some information on the associations
between the quasi-identifier and the sensitive attribute values existing in the
original relation, provided a given privacy degree of the association is respected,
in [15] the authors propose to publish a loose association between the tuples
composing F} and F5. The tuples in F} and in F5 are independently partitioned
in groups of size at least k; and ks, respectively. Each group in F; and in F;
is then associated with a different group identifier. For each tuple, both F; and
F5 report the identifier of the group to which the tuple belongs. The group-level
relationships between the tuples in F; and in F> are represented by an additional
table A that includes, for each tuple ¢ in the original microdata table, a tuple
modeling the relationship between the group where ¢ appears in F; and the
group where t appears in F,. For instance, Figure 10 represents two fragments
Fy and F; for the microdata table in Figure 2(a). Both the fragments have been
partitioned into groups of 2 tuples each and the lines between the tuples in F}
and Fy represent their relationships in the original microdata table. Figure 11
illustrates the three relations, Fy, A, and F, that are released instead of the
original microdata. It is easy to see that, even if a malicious recipient knows the
quasi-identifier of a respondent, she can only identify the tuple related to the
target respondent in Fi, but not the corresponding Disease in Fs. For instance,
assume that Alice knows that her friend Barbara is a female living in 94139 area
and born on 1940/04/10. By looking at the released tables, Alice discovers that
her friend is represented by the seventh tuple in Fj, which belongs to group
dsz4. However, since group dsz/ is associated in A with two different groups in
F, (i.e., df and d5) Alice cannot identify the illness Barbara suffers from, since
it could be either Peptic Ulcer, Broken Leg, Stomach Cancer, or HINI1.

The partitioning of the tuples in the two fragments should be carefully de-
signed to guarantee an adequate protection degree. In fact, a loose association
enjoys a degree k of protection if every tuple in A indistinguishably corresponds



F A Fy

DoB Sex ZIP G G; G2 Disase G
1950/06/02 F 94141 dszl dszl d1 HIN1 d1
1950/06/20 M 94132 dszl dszl d2 Gastritis d2
1950/06/12 M 94137 dsz2 dsz2 d2 Dyspepsia d2
1950/06/05 F 94144 dsz2 dsz2 d3 Pneumonia d3
1940/04/01 M 94143 dsz3 dsz3 d1 Peptic Ulcer d1
1940/04/02 M 94142 dsz5 dsz3 d4 Peptic Ulcer d3
1940/04/10 F 94139 dsz4 dsz4 d5 Peptic Ulcer d5
1940/04/20 F 94130 dsz6 dsz4 d4 Peptic Ulcer d7
1940/06/07 M 94130 dsz3 dsz5 d3 Broken Leg d4
1940/06/05 M 94131 dszb dsz5 d6 Short Breath de6
1940/06/25 F 94142 dsz6 dsz6 d7 Broken Leg de6
1940/06/30 F 94145 dsz4 dsz6 d6 Stomach Cancer d4
1950/05/02 F 94136 dsz7 dsz7 d5 HIN1 d5
1950/05/05 F 94134 dsz7 dsz7 d8 Flu ds8
1950/05/10 M 94147 dsz8 dsz8 d7 Stomach Cancer d7
1950/05/30 M 94148 dsz8 dsz8 d8 Gastritis ds

(a) (b) (c)

Fig.11: An example of 4-loose association

to at least k distinct associations among tuples in the two fragments (i.e., it
could have been generated starting from & different tuples in the microdata ta-
ble). The release of Fy, F5, and A satisfies k-looseness, with k < ky - ko, if for
each group ¢; in Fy (group gs in Fy, respectively), the union of the tuples in all
the groups with which ¢ (g2, respectively) is associated in A is a set of at least
k different tuples.

Figure 11 represents an example of a 4-loose association. This implies that
it is not possible, for a malicious data recipient, to associate with each quasi-
identifier value in Fj less than 4 different diseases in F5.

6 Microdata publishing with adversarial external
knowledge

Another source of complication for the protection of microdata is the external (or
background) knowledge that an adversary may exploit for inferring information
about the respondents represented in the microdata. The research community
has recently dedicated many efforts for counteracting this problem whose diffi-
culty lies in the fact that the data holder is unaware of the type of knowledge an
adversary may have. In this section, we illustrate the privacy problems that may
arise due to the adversarial external knowledge, and we present recent protection
techniques specifically designed to consider such knowledge.

6.1 Problem

When publishing a microdata table it is necessary to take into consideration
the fact that a malicious recipient may exploit, besides the released table, also
additional information to infer the sensitive attribute value associated with a



target respondent. This knowledge can be obtained by similar data collections
released by other organizations or competitors, by social networking sites, or
by personal knowledge. For instance, consider the microdata table in Figure 5
and suppose that Alice knows that her neighbor Gabrielle is a female born on
1950/05/02 and living in the 94136 area. If Alice does not have any additional
knowledge, by looking at the released microdata table she can only infer that
her friend suffers from either HI1N1, Pneumonia, or Flu. However, Alice can
improve this inference by exploiting external sources of information. For instance,
Alice is a close friend of Liz (who appears in the same equivalence class as
Gabrielle in the table in Figure 5) and therefore knows that she suffers from
Pneumonia. As a consequence, Alice can infer that Gabrielle either suffers from
Flu or HIN1. However, Gabrielle’s sister Hellen has been recently hospitalized
for having contracted HINI, and she posted it on her Facebook profile. Since
HINT is a contagious disease, Alice can infer with high probability that also
Gabrielle contracted HINT.

The problem of protecting released data against malicious recipients exploit-
ing external knowledge has been acknowledged since the first introduction of pro-
posals addressing privacy issues in microdata release (see Section 2). However,
traditional approaches only consider a few specific types of external knowledge.
For instance, k-anonymity assumes that data recipients only know publicly avail-
able datasets associating the identity of respondents with their quasi-identifier.
(-diversity considers also the fact that a recipient may have additional (personal)
knowledge about a subset of the respondents, which permits her to discard a
subset of the sensitive values in the equivalence class of a target respondent.

Taking external knowledge into consideration when releasing a microdata
collection requires the definition of an adequate modeling of the knowledge that
a malicious recipient may possess. This task is complicated by the fact that it
is not realistic to assume that data holders have complete knowledge of all the
data available to recipients. Furthermore, information is collected and publicly
released every day and, consequently, the external information that could be
exploited for re-identifying respondents is continuously changing. The external
knowledge modeling should therefore be flexible enough to possibly capture any
kind of information that might be available to the data recipient.

6.2 Solutions

We summarize some of the most important results modeling the external knowl-
edge of an adversary.

(¢, k)-Safety [30] introduces a formal modeling of external knowledge assuming
a worst case scenario, where the malicious recipient knows the set of respondents
represented by a tuple in the published microdata table, and the values of both
quasi-identifying and non-sensitive attributes associated with each respondent.
Besides this identification information, a malicious recipient may also possess
additional information modeled with the concept of basic unit of knowledge. A
basic unit of knowledge is defined as an implication formula (A;A4;) — (V;B;),



where A; and B, are atoms of the form ¢,[S] = s that represent the fact that
respondent p is associated with value s for sensitive attribute S. For instance,
suppose that Alice knows that Bob and Carol, who are married, are both sick.
Since Flu is highly contagious, Alice knows that if Bob has Flu also Carol suffers
from the same disease. This knowledge can be modeled through the following
basic unit: tgen[Disease]|=Flu—tcarol[Disease|=Flu. To avoid unrealistic sce-
narios where the malicious recipient has unbounded external knowledge, in [30]
the authors assume that the knowledge available to a data recipient is composed
of at most k basic units of knowledge. Therefore, the overall external knowl-
edge of a recipient is represented as the conjunction ¢ of all her basic units
of knowledge. Given the released microdata table T' (either obtained using a
generalization-based or a group-based approach), the mazimum disclosure risk
to which the released table is exposed can be computed as the maximum prob-
ability that a data recipient with knowledge ¢ can infer that respondent p is
associated with value s for sensitive attribute S. More formally, the maximum
disclosure of table T is defined as maz P(t,[S] = s|T A ¢), computed on the
tuples t, of table T' that are consistent with external knowledge ¢, and that
take value s in the domain of S. A released table T satisfies (c, k)-safety if the
maximum disclosure risk of 7" is lower than a threshold 0 < ¢ < 1 fixed by the
data holder, assuming that malicious recipients have at most k basic units of
external knowledge. Given a microdata table, the goal is therefore to determine
a corresponding (c, k)-safety microdata table that minimizes the loss of infor-
mation due to the adoption of generalization-based or group-based approaches.
In [30] the authors note that traditional algorithms proposed to guarantee k-
anonymity can be easily adapted to guarantee (c, k)-safety, since the maximum
disclosure is monotonic with respect to generalization. The authors also note
that Anatomy [41] can be easily adapted to guarantee (c, k)-safety, since the
disclosure decreases merging the groups of tuples in the fragments.

Privacy skyline [6] introduces a more intuitive and usable approach than (c, k)-
safety to measure the external knowledge available to a data recipient. In fact,
the definition of an adequate value of & modeling the adversarial knowledge
is not intuitive. Also, (c, k)-safety is based on the assumption that each data
respondent is associated with a unique sensitive value and that all the values
in the sensitive attribute domain are equally sensitive. Privacy skyline tries to
overcome these limitations. The basic idea is that external knowledge can be
seen as composed of several categories, which need to be quantified adopting
different measures. As a consequence, the disclosure risk cannot be a numeric
value, but it is decomposed according to the external knowledge components
that are considered relevant for the specific scenario. In [6], the authors classify
the external knowledge in the following three categories:

— the knowledge about a target individual (e.g., Alice knows that Bob does
not suffer from Cancer);

— the knowledge about individuals other than the target individual (e.g., Alice
knows that Carol, who is also a respondent of the considered microdata
table, suffers from HINT);



— the knowledge about same-value families that model the fact that a group
(or family) of respondents have the same value for the sensitive attribute
(e.g., Alice knows that David and Hellen are married and, therefore, if any
of them suffers from Flu, it is highly probable that also the other person
suffers from Flu).

It is important to note that the composition of a same-value family is value
specific, meaning that the relationship among users may be different depending
on the specific sensitive value s considered. For instance, the same-value family
for an infectious disease may be composed of colleagues and people leaving in
the same house, while the same-value family for HIV may only include a married
couple. The external knowledge available to a malicious recipient is expressed
as a triple (¢,k,m) that quantify, for each of the categories illustrated above,
the amount of knowledge held by the recipient for each sensitive value s. A
triple (¢,k,m) indicates that the recipient knows: ¢ sensitive values that the
target respondent does not have; the sensitive value associated with k individuals
different from the target respondent; and m individuals in the same-value family
of the target respondent. For instance, suppose that, with respect to respondent
Ron and sensitive value H1N1, Alice knows that Ron does not suffer from Ovarian
Cancer and Measles (£ = 2). Also, suppose that Alice already knows the diseases
of other three respondents represented in the table where Ron is represented
(k = 3). Finally, suppose that Alice knows that other five people work in Ron’s
office (m = 6). As a consequence, the triple expressing such external knowledge
of Alice is (2,3,6).

The release of a microdata table T is safe if the maximum probability that a
data recipient can infer that an arbitrary respondent p is associated with sensi-
tive value s in the original dataset is lower than a threshold c fixed by the data
holder, assuming the recipient’s external knowledge to be bounded by (¢, k, m).
For instance, assume that the external knowledge of a malicious recipient for
an arbitrary target respondent p and sensitive value HINI is represented by
the triple (2,5,1) and that ¢=0.5. A released table is considered safe if the mali-
cious recipient cannot determine with probability higher than 0.5 that p suffers
from HINI, provided the malicious user knows: at most 2 sensitive attribute
values that p does not have; the sensitive value of at most 5 respondents other
than p; and at most 1 member in the same-value family as p. To provide the
data holder with a more flexible privacy measure, in [6] the authors propose to
bound the external knowledge not through a unique triple (¢,k,m), but through
a set of triples (representing incomparable points in the three-dimensional space
(€,k,m)) that form a skyline. The release of a microdata table T, protected ap-
plying generalization or group-based techniques, is safe if the probability that the
malicious recipient violates the privacy of the respondents is lower than thresh-
old ¢, assuming that the external knowledge of the recipient is bounded by the
skyline (e.g., the grey area in Figure 12, depicted in only two dimensions for
simplicity, represents the area in which the external knowledge of the recipient
is bounded). In [6] the authors extend their definition of safe release to take
into account the fact that each respondent may be associated with more than
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Fig.12:  An example of privacy skyline obtained fixing three points
{(1,1,4),(1,3,3),(1,5,1)}

one sensitive attribute value (e.g., a respondent that suffers from more than one
disease).

e-Privacy [28] is aimed at defining a realistic adversarial model. Indeed, tra-
ditional approaches either assume that the adversary has a very limited knowl-
edge, or an infinite knowledge. Both these assumptions are however unrealistic.
To overcome this issue, in [28] the authors propose to measure the privacy de-
gree offered to a respondent p as the difference in the recipient’s belief about
the respondent’s sensitive attribute value when p belongs to the released table
and when p does not belong to the same. This measure is based on the observa-
tion that looking at the released dataset, a data recipient can learn information
about the sensitive value of a respondent p, even if the tuple representing p is not
released [22]. Therefore, it is necessary to consider this unavoidable gain of infor-
mation when evaluating the quality of a released table. In particular, e-privacy
states that the release of a table T" obtained through generalization exposes the

privacy of a respondent if the ratio ]f::t is greater than a threshold e fixed by

the data holder, where p™ (p°“, respectively) is the probability that a recipient
infers the sensitive value associated with an arbitrary respondent p when p is
not represented in T' (belongs to T', respectively). To compute p™ and p°“, the
authors consider two different kinds of external knowledge: ¢) full information
on a subset of the tuples in T'; and i) information on the distribution of the sen-
sitive attribute values in the dataset. We note that, although both (c, k)-safety
and privacy skyline consider the first kind of external knowledge, they do not
make any assumption on the second kind of knowledge modeled by e-privacy.

7 Differential privacy

The proposals described so far typically measure the disclosure risk associated
with the release of a microdata table as the increase of the probability that an



adversary may correctly guess the identity or the values of sensitive attributes
of a respondent represented in the table. Such approaches do not consider that
the microdata table can also be exploited for inferring information of respon-
dents that are not represented in the table. In the remainder of this section,
we first illustrate in more details such a privacy issue, and then briefly describe
differential privacy, a recent privacy notion that is becoming popular in the data
protection community.

7.1 Problem

One of the first definitions of privacy in data publishing scenarios states that:
anything that can be learned about a respondent from the statistical database
should be learnable without access to the database [13]. Although this definition
has been thought for statistical databases, it is also well suited for the microdata
publishing scenario. Unfortunately, this definition of ideal privacy cannot be
achieved by any privacy-aware microdata publication technique that is aimed
at preserving data utility. In fact, as proved in [16], only an empty dataset can
guarantee absolute disclosure prevention. This is also due to the fact that the
release of a dataset may violate the privacy of any respondent, independently of
whether the respondent is represented in the dataset. For instance, suppose that
the released dataset permits to compute the average annual income of people
living in city A for each ethnic group, and suppose that this information is
not publicly available (and therefore a malicious recipient can only gain this
information by looking at the released table). Assume also that Alice knows
that Bob’s annual income is 1,000$ more than the average annual income of
Asian people living in city A. Although this piece of information alone does not
permit Alice to gain any information about Bob’s annual income, if combined
with the released dataset, it allows Alice to infer Bob’s annual income. It is
important to note that the disclosure of Bob’s annual income does not depend
on his representation in the released dataset.

The solutions proposed in the literature for protecting microdata tables im-
plicitly assume that the privacy of individuals not included in the dataset is
not at risk. As a consequence, they cannot be adopted to prevent the attack
described above.

7.2 Solution

Differential privacy [16] is a novel privacy notion whose goal is to guarantee that
the release of a microdata table does not disclose sensitive information about
any individual, represented or not by a tuple in the table. In particular, a data
release is considered safe if the inclusion in the dataset of tuple ¢,, related to
respondent p, does not change the probability that a malicious recipient can
correctly identify the sensitive attribute value associated with p. More formally,
given two datasets T' and T differing only for one tuple ¢,, an arbitrary ran-
domized function K operating on the dataset satisfies e-differential privacy if
and only if P(K(T') € S) < exp(e) - P(K(T") € S), where S is a subset of the



possible outputs of function K and € is a public privacy parameter. Intuitively,
e-differential privacy holds if the removal (insertion, respectively) of one tuple
tp from (into, respectively) the dataset does not significatively affect the result
of the evaluation of function IC. As an example, consider an insurance company
that consults a medical dataset to decide whether an individual p is eligible for
an insurance contract. If differential privacy is satisfied, the presence or absence
of tuple t, representing p in the dataset does not significantly affect the final
decision by the insurance company. It is also important to note that the external
knowledge that an adversary may possess cannot be exploited for breaching the
privacy of individuals. In fact, the knowledge that the recipient gains looking
at the released dataset is bounded by a multiplicative factor exp(e), for any
individual either represented or not in the released microdata table.

Differential privacy is applicable to both the non-interactive publishing sce-
nario (i.e., public release of a dataset) and the interactive publishing scenario
(i.e., evaluation of queries over a private dataset). The techniques proposed in
the literature to guarantee e-differential privacy are based on the addition of
noise, and therefore do not preserve data truthfulness. To achieve differential
privacy, by definition, it is necessary to hide the presence (or absence) of the
tuple associated with an individual. Therefore, considering simple count queries,
the query result returned to the requesting recipient may differ by at most one
(0 if the tuple is not removed; 1 otherwise) from the result computed on the
original dataset. To compute the query result, the solution proposed in [17]
consists in adding random noise to the query result evaluated on the original
dataset. The distribution considered for the random noise is the Laplace distri-
bution Lap(A(f)/€) with probability density function P(z|b) = exp(—|z|/b)/2b,
where b = A(f)/e and A(f) is the maximum difference between the query result
evaluated over T and over T” (which is equal to 1 for count queries, since T and
T’ differ for one tuple). The addition of independently generated noise, with dis-
tribution Lap(A(f)/e), to the query result guarantees e-differential privacy [17].
This strategy can also be adopted in a non-interactive scenario, where the data
holder releases the frequency matrix representing the dataset and each cell in
the matrix is the result of a count query. The frequency matrix has a dimension
for each attribute in the table and the entries in each dimension are labeled with
the values in the attribute domain. Each cell in the matrix reports the number
of tuples in the table with value, for each attribute, equal to the label of the
corresponding entry in the frequency matrix.

8 Conclusions

The public and semi-public release of large microdata collections is becoming
increasingly popular, thanks to the high availability of computational power at
low prices, which makes data analysis an easy task for most data recipients.
Although microdata collections represent a valuable resource for data recipients,
the release of fine-grained information related to single individuals may put the
privacy of respondents at risk. In this chapter, we first illustrated the traditional



approaches designed for preventing identity and attribute disclosure in microdata
publishing. We then discussed the privacy risks that may arise when changing
the underlying assumptions, and described some techniques recently proposed
in the literature to overcome these privacy risks.
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