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Abstract. The shuffle index has been recently proposed for organizing
and accessing data in outsourcing scenarios while protecting the confi-
dentiality of the data as well as of the accesses to them. In this paper, we
extend the shuffle index to the use of multiple servers for storing data,
introducing a new protection technique (shadow) and enriching the orig-
inal ones by operating in a distributed scenario. Our distributed shuffle
index produces a significant increase in the protection of the system,
with no additional costs.

1 Introduction

Recent years have witnessed an over increasing reliance on external services
for data storage and management, towards the emerging cloud scenario, char-
acterized by a rich and diverse availability of providers offering storage and
computational functionalities. Together with data management functionality,
the research and industrial communities have been investigating different so-
lutions to ensure confidentiality of data whose management is outsourced to
the cloud [8]. Complementing data confidentiality, more recent approaches have
also considered protection of access and pattern confidentiality, which require to
maintain confidential to the server storing the data the fact that a given access
aims at a specific target or that two accesses aim at the same target. Among
these approaches, the shuffle index [5] organizes data in a hierarchical encrypted
data structure and provides access and pattern confidentiality by obfuscating
accesses and dynamically changing the allocation of data to physical blocks, so
to break the correspondence between data and locations where they are stored.
Such a dynamic allocation prevents the server observing sequences of accesses
from withdrawing inferences which could compromise pattern confidentiality and
even break data confidentiality. The advantages of the shuffle index are the abil-
ity to support equality and range predicates in data retrieval, and the limited
performance overhead compared with other access protection solutions [7].
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The availability of different providers for data outsourcing can help in pro-
viding protection in cloud scenarios and has been investigated in some propos-
als, adopting, for example, data fragmentation and slicing at different servers
(e.g., [3, 16]). The intuition is that relying on multiple servers (in contrast to a
single one) for managing data or providing services naturally increases protec-
tion, since it diminishes the knowledge and visibility that each server has on the
data and on accesses to them, and enjoys diversity of risks.

In this paper, we extend the shuffle index to operate with multiple servers for
storing and accessing data. Every data access entails accessing the servers and
shuffling data dynamically changing their allocation even across servers. Since
retrieval of the targeted data may entail traversing the hierarchical structure
across servers (i.e., a parent might be stored at one server and a children at an-
other), we introduce a shadowing technique that ensures protection of this path
information by making observations by each server as if the server was the only
one involved in the access. The distribution of the shuffle index increases protec-
tion for data and accesses, quickly destroying knowledge that servers might have
and effectively preventing the servers from acquiring knowledge by observing
sequences of accesses. Such increased protection comes without impact on the
system performance.

The remainder of the paper is organized as follows. Section 2 recalls the basic
concepts of the shuffle index on which we build. Section 3 extends the index
organization to the adoption of multiple servers. Section 4 introduces shadows
and extends the original protection techniques (covers, cache, and shuffling) to
operate with them. Section 5 describes access execution. Section 6 discusses the
protection offered by our approach illustrating how distributing the shuffle index
provides greater confidentiality guarantees while not impacting performance.
Section 7 illustrates related work. Section 8 concludes the paper.

2 Basic Concepts

A shuffle index [5] organizes the outsourced data as an abstract unchained B+-
tree T a(N a) (i.e., leaves are not connected in a linked list) with fan out F
defined over a candidate key K, with actual data stored in the leaves of the tree.
Each internal node of the index is a pair na = 〈values , children 〉 ∈ N a , where
values is a list of q values with

⌈

F
2

⌉

− 1 ≤ q ≤ F − 1 (the lower-bound does
not apply to the root) ordered from the smallest to the greatest, and children
is a list of q + 1 children. The first child of a node is the root of the subtree
with all values v < values [1 ]; the i-th child is the root of the subtree storing
the values v such that values [i − 1 ] ≤ v < values [i ], i = 2, . . . , q; the last child
is the root of the subtree with all values v ≥ values [q]. Leaf nodes are pairs
na = 〈values , tuples 〉 ∈ N a , where tuples represents the tuples with index value
in values . Figure 1(a) illustrates an example of unchained B+-tree with fan out
3. For simplicity, we refer to the content of a node with a label (e.g., a), instead
of explicitly reporting the values it represents.
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Fig. 1. An example of abstract (a), logical (b), and physical (c) shuffle index
Legend: ! target, • node in cache, ! cover; blocks read and written: chessboard filling,
blocks written: lines filling

At the logical level , nodes are allocated to logical addresses that work as
logical identifiers . Given an abstract unchained B+-tree T a(N a), its logical
representation T is a triple (N , ID ,φ), with N a set of logical nodes, ID
a set of logical identifiers, and φ : N a → ID a bijective function that asso-
ciates a logical identifier with each abstract node. Note that the possible order
among identifiers does not necessarily correspond to the order in which nodes
appear in the value-ordered abstract representation. Each non-leaf abstract node
na = 〈values , children 〉 in N a is represented by a logical node n=〈id , vals , ptrs 〉
in N , with id=φ(na), vals=values , and ptrs [j]=φ(children [j]), j = 0, . . . , q. In
fact, pointers to the children of the nodes in the abstract unchained B+-tree
are translated, at the logical level, into the identifiers of the corresponding child
nodes. Analogously, each abstract leaf node na = 〈values , tuples 〉 in N a trans-
lates into a logical node n=〈id , vals , t 〉 that includes tuples t=tuples instead of
pointers to children. Figure 1(b) illustrates an example of logical representation
of the abstract index in Figure 1(a). Logical identifiers are reported on the top
of each node and, for easy reference, their first digit denotes its level in the tree.

At the physical level , logical identifiers are mapped to physical addresses
and the shuffle index is represented by a set of disk blocks storing the nodes
in the tree. Every node is encrypted by first prefixing it with a random salt
and then applying symmetric encryption in CBC mode. Formally, each non-leaf
node 〈id , vals , ptrs 〉 ∈ N (leaf node 〈id , vals , t 〉 ∈ N , resp.) is stored at block
〈id ,b〉, where b=Ek(salt ||id ||vals ||ptrs ) (b=Ek(salt ||id ||vals ||t ), resp.), with E a
symmetric encryption function, k the encryption key, and salt a nonce generated
for each encryption. Figure 1(c) illustrates the physical representation of the
logical index in Figure 1(b), which corresponds to the view of the server.

The retrieval of the leaf block containing the tuple corresponding to a given
index value (target value) requires an iterative process. Starting from the root
of the tree and ending at a leaf, the client reads from the server the block in the
path to the target, and decrypts the block for retrieving the address of the child
to be read at the next step. To protect the fact that different accesses may aim
at the same content, this iterative process is extended by:



– performing, in addition to the target search, other fake cover searches , guar-
anteeing indistinguishability of target and cover searches and operating on
disjoint paths of the tree (retrieving, at every level of the tree, num cover+1
blocks at the same time);

– maintaining a set of num cache nodes in a local cache for each level of the
tree, but level 0;

– mixing (shuffling) the content of all retrieved blocks as well as those main-
tained in cache, and overwriting them accordingly on the server.

Cover searches protect the confidentiality of accesses by introducing uncer-
tainty on the leaf block target of the access (any of the accessed leaves could
store the searched value). The cache makes searches repeated within a short time
interval not recognizable as such. In fact, if the target of an access is in cache,
the corresponding block is not read from the server (the target is substituted by
an additional cover). Shuffling destroys the correspondence between nodes and
the physical blocks where they are stored. (Note that at every reallocation, a
node is encrypted with a different random salt.) Repeated accesses to the same
block do not then imply repeated accesses to the same node. As an example of
access to the shuffle index in Figure 1, consider a search for c3 that adopts a1 as
cover, and assume that the cache contains the path to b2 . The access visits the
tree level by level. The client has the root r in cache, downloads and decrypts
blocks 102 and 103 from the server, shuffles and encrypts nodes a, b, and c (e.g.,
allocating a to 102, b to 101, and c to 103), and overwrites blocks 101, 102, and
103 at the server. At the leaf level, the client downloads and decrypts blocks 202
and 207, shuffles and encrypts nodes a1 , b2 , and c3 , and overwrites blocks 202,
205, and 207 at the server. Figure 1(c) illustrates the observations on the access
at the server in terms of blocks read and/or written. Note that the root (being
in cache) is only written. The server cannot detect which among the accessed
leaves is the target of the access and how the content of blocks has been shuffled.

3 Distributed Shuffle Index

In a distributed shuffle index , the data owner exploits more than one server for
storing and managing data, enjoying then increased protection of data, access,
and pattern confidentiality by dynamically changing the allocation of the nodes
also across the servers. For simplicity, we illustrate our distributed shuffle index
assuming the use of two servers, with the note that the approach can be easily
extended to the consideration of an arbitrary number of servers. For simplicity
of notation and clarity of the figures, we denote our servers by SG and SY ,
coloring nodes stored at them with Green and Yellow , respectively (in b/w
printouts, Green is the darker color).

The consideration of more than one server for the allocation of an abstract
index and for accesses to it requires revising the shuffle index structure discussed
in Section 2 with the following extensions.

– Abstract level . The root ra of a distributed shuffle index is extended to have
twice the capacity as the other nodes. Hence, for an index with fan out F , the



root can contain up to 2F−1 values (in contrast to the original F−1 ). In the
translation to the logical level, the abstract root ra = 〈values , children 〉 will
be interpreted as two abstract root nodes, ra0 and ra1 , each storing around
half of the values and children in ra. Formally, ra0 = 〈values0 , children0 〉
and ra1 = 〈values1 , children1 〉 with values0=values [1 , . . . , (q/2)],
values1=values [(q/2) + 2 , . . . , q], children0=children [0 , . . . , (q/2)], and
children1=children [(q/2) + 1 , . . . , q], where q is the number of index val-
ues in the abstract root. (Note that values [(q/2) + 1 ] disappears since it
is no more needed for the index.) The set N a of abstract nodes therefore
becomes N a=N a\{ra}∪{ra0 ,r

a
1}.

– Logical level . The logical identifiers of a distributed shuffle index must take
into consideration logical identifiers (which translate to physical addresses)
at the two servers. We then distinguish, in the set ID of logical identifiers,
two different subsets: IDG, corresponding to addresses at server SG, and
IDY , corresponding to addresses at server SY , with IDG∪IDY = ID . The
result of function φ over an abstract node, determining the logical identifier
of the node, therefore determines also the server at which the abstract node is
stored. Function φ guarantees the natural requirement to store ra0 and ra1 at
different servers. Formally, φ(ra0)∈IDX and φ(ra1)∈IDZ , with X,Z ∈ {Y,G}
and X += Z. In the following, given a node n in the set N of logical nodes,
we will use σ(n.id ) to denote the server at which the node is stored. For-
mally, given n = 〈id , vals , ptrs 〉, with id=φ(na), id∈IDG =⇒ σ(n.id )=SG;
id∈IDY =⇒ σ(n.id )=SY .

– Physical level . It works like in the original shuffle index, storing (according
to allocation function φ defined at the logical level) nodes at each server in
encrypted form as described in Section 2.

Figure 2 illustrates an example of abstract, logical, and physical distributed
shuffle index. For simplicity and easy reference, logical identifiers start with a
letter denoting the server where the corresponding block is stored (G for SG

and Y for SY ) and nodes stored at server SG and SY are color-coded (Green
and Yellow). In the following, without loss of generality, we assume that the
physical address of a block corresponds to the logical identifier of the node it
stores. Also, we use the term node to refer to an abstract content and block to
refer to a specific memory slot in the logical/physical structure. When either
terms can be used, we will use node/block interchangeably.

4 Shadows, Covers, Cache, and Shuffling

The shuffle index entails two types of protections. The first involves obfuscating
the fact that the access aims at a specific block. The second is the shuffling, which
changes the allocation of nodes so to dynamically modify the node/block corre-
spondence. Both these types of protection, provided by cover searches, caching,
and shuffling in the original proposal, are complemented in the distributed shuffle
index with the consideration of shadows . In this section, we introduce shadows
and extend cover searches, cache, and shuffling to operate with them.
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Fig. 2. An example of abstract (a), logical (b), and physical (c) shuffle index, dis-
tributed over two servers

4.1 Shadows

Retrieval of a target key value in a distributed shuffle index entails traversing the
index starting from the root ancestor of the target and following, at every node,
the pointer to the child in the path to the leaf possibly containing the target
value. Such a path can naturally involve nodes stored at any of the servers.
For instance, with reference to the shuffle index in Figure 2 a search for target
value e3 involves access to blocks (G001/Y001;G103;Y205), with G001 and G103
stored at SG, and Y001 and Y205 stored at SY . (For simplicity, we assume both
roots to be always accessed.) Like in the original shuffle index proposal, we
assume each server, which initially knows only the number of blocks it stores,
to potentially have knowledge of the height of the shuffle index and of the level
of the node stored at each of its blocks (which can be acquired by observing
the iterations in the accesses). Combined with such knowledge, discontinuity of
accesses with respect to levels (e.g., for SY ) could leak information to the servers.
To avoid such a leakage, in our approach, every time we need to access a block



at one of the servers, we will also access another block, which we call shadow ,
at the other server. With shadows, each server will observe accesses to blocks
as if it was the only one storing the data structure and involved in the access.
With respect to this aspect, any block at the other server at the same level as
the block for which it works as shadow would do. The choice of the shadow for a
block during a given access, however, needs to take into account the fact that the
shuffle index changes allocation of nodes at every access. Re-allocating a node
n requires changing in its parent the pointer to n, to refer to the block where it
has been moved. Therefore, the nodes involved in an access should always form
a sub-tree. In other words, a shadow at a given level should be child of a node
that is available for the access (i.e., read in the path to the target or to a cover,
or available in cache).

A convenient way to ensure this requirement is to use, as shadow of a node
for a given access, one of its siblings stored at the other server. For each node n,
we call far siblings of n the children of the same parent (i.e., n’s siblings) stored
at a server different from the one where n is stored. We denote with FS (n)
the nodes having such properties at a given time with respect to a node n, as
formally defined in the following.

Definition 1 (Far siblings and shadow). Let T(N , IDG, IDY ,φ) be a logical
index, and n be a non-root node in N . The far siblings of node n, denoted FS (n),
are defined as FS (n) = {ni ∈ N : parent(ni) = parent(n) and σ(ni .id ) +=
σ(n.id )}. As particular cases, FS (r0 ) = {r1} and FS (r1 ) = {r0}.
The shadow of a node for a given access is one of its far siblings selected for the
specific access.

For instance, with reference to the shuffle index in Figure 2(b), FS (e) =
{f , h}, and FS (e3 )={e2}. Assuming to choose h and e2 as shadows for e and
e3 , respectively, the search for key value e3 will translate into accessing blocks
(G001;G103;G202) at SG and blocks (Y001;Y104;Y205) at SY .

Note that the far siblings relationship is dynamic as every re-allocation of
nodes, which will operate across servers, changes it. Also, the shadow relationship
is dynamic as, at any given access to a node, any of its far siblings can be
dynamically selected to serve as shadow. Although in principle nodes can be
randomly allocated to servers, distributing allocation uniformly provides better
protection and has the advantage that the set FS (n) of a node n can never be
empty. We then require uniform distribution between the two servers among the
children of each node (storing half of the node’s children at one server and half
at the other). The allocation function φ must enforce a balanced allocation of
nodes’ children to the servers, satisfying the following property.

Property 1 (Balanced allocation). Let T(N , IDG, IDY ,φ) be a logical index.
T satisfies the balanced allocation property iff:

1. σ(r0 .id ) += σ(r1 .id ) (i.e., the two roots are stored at a different server);
2. ∀〈id , vals , ptrs 〉∈N : |card(ptrsG) − card(ptrsY )|≤ 1,

with ptrsG={id i∈ptrs : id i∈IDG} and ptrsY ={id i∈ptrs : id i∈IDY }.



The first condition in the property states that the two roots are stored at
different servers. The second condition states that, for each node, half of its
children are stored at server SG and the other half at server SY . Property 1
guarantees that every node n, child of a node with k children, has at least

⌊

k
2

⌋

far siblings. It is easy to see that the distributed shuffle index in Figure 2 obeys
to the balanced allocation property.

4.2 Covers

As in the original proposal, cover searches are fake searches executed in parallel
with the search for the target value to the aim of hiding the target request
within a group of other requests. The fact that the shuffle index is distributed
has two effects with respect to covers: one is the extension of the definition of
cover search, the other is the application of shadows to covers.

As in [5], the only constraint on covers chosen for an access is that they actu-
ally act as such, that is, they should be indistinguishable from actual searches,
and their paths should not intersect or intersect the path to the target. The first
aspect is already guaranteed from [5], the latter aspect simply requires extending
the definition of cover searches to the consideration of the fact that the root is
split, and therefore the constraint that paths of the covers have only the root in
common translates into requiring that their paths have nothing in common but
- possibly - any of the roots, as formally stated by the following definition.

Definition 2 (Cover searches). Let T(N , IDG, IDY ,φ) be a logical in-
dex built on candidate key K with domain D, and v0 be a value in D.
A set {v1, . . . , vnum cover} ⊆ D is a set of cover searches for v0 iff
∀pathi,pathj∈{path0 , . . . , pathnum cover}, i += j: (pathi ∩ pathj)\{r0,r1} =∅,
where pathi is the set of nodes in the path from r0 or r1 to the leaf where vi is
possibly stored.

Note that the nodes in the paths to covers can be indifferently stored at
one of the two servers. This does not create any problem in our approach. In
fact, just like the target, covers will also be shadowed and for every node to be
accessed in the path to a cover at a server, one of its far siblings will be accessed
at the other server. In particular, for each level in the shuffle index, if a node nc

in the path to a cover is actually stored at a different server from the node nt in
the path to the target, nc will act as a protection of nt’s shadow and nc’s shadow
will act as a protection for nt, respectively, at the two servers. The application
of shadows to nodes in the path to covers nicely provides a symmetric behavior
at the two servers, regardless of where these nodes are stored. In fact, a server
will observe access to num cover + 1 different blocks for each level, but level 0.

As an example, consider the distributed shuffle index in Figure 2(b), and a
search for e3 (path (r1;e;e3 )), using a2 as cover (path (r0;a;a2 )). Assuming
to choose, in the set of its far siblings, h as shadow for e, c for a, e2 for e3 ,
and a1 for a2 , the accessed blocks are (G001;G102,G103;G202,G207) at SG and
(Y001;Y103,Y104;Y205,Y213) at SY .



4.3 Cache

Caching works essentially like in the original proposal, maintaining a copy of the
last num cache target searches (where for each target search all nodes in the
path to the target leaf are maintained). In addition to the actual targets, in our
distributed scenario, we also store, in association with every node n in the path
to the target, the node n′ that acted as n’s shadow last time n was accessed.

Formally, the cache of a distributed shuffle index is defined as follows.

Definition 3 (Cache). Let T(N , IDG, IDY ,φ) be a logical index with height
h. A cache of size num cache for T is a layered structure of h+1 sets
Cache0 , . . . ,Cacheh of pairs of nodes where:

1. Cache0 contains pair 〈r i,r j〉 with i, j ∈ {0, 1} and i += j;
2. Cache l , l = 1 , . . . , h, contains num cache pairs of nodes 〈ni,nj〉 s.t. ni and

nj belong to the l-th level of T , with ni and nj far siblings one of the other
(cache balancing);

3. ∀〈ni,nj〉∈Cache l , l = 1 , . . . , h, the node parent of ni and nj in the shuffle
index belongs to Cache l−1 (path continuity).

Note how the path continuity requirement (Condition 3 in the definition),
requesting that the parent of a cached node be also in cache and here extended to
the consideration of shadows, does not impose any complication to the approach.
As a matter of fact, the choice of the shadows among the far siblings of target
nodes included in the cache nicely guarantees that their parent (being a target)
is already in the cache by construction.

A nice advantage of including shadows in cache is that Cache l , l = 1 , . . . , h,
contains 2num cache nodes, half of which are stored at SG and the others are
stored at SY . This will provide a symmetric behavior of the access at the two
servers, with each of them operating with a view as if it was the only one involved
in the access (see Section 5). After the search illustrated in Section 4.2 for value
e3 over the distributed shuffle index in Figure 2(b), the cache includes the nodes
in the path to e3 and their shadows (i.e., 〈r1,r0〉, 〈e,h〉, and 〈e3 ,e2 〉).

4.4 Shuffling

Shuffling aims at destroying the one-to-one correspondence between blocks and
nodes stored in them. The idea is to randomly re-allocate all nodes available in
an access (i.e., accessed as targets, covers, shadows or in cache) so to break the
otherwise static relationship between nodes and blocks where they are stored.
Shuffling is formally defined as follows.

Definition 4 (Shuffling). Given a set ID ⊆ IDG ∪ IDY of logical identifiers,
a shuffling, denoted by π, over ID is a random permutation π: ID → ID.

The effect of a shuffling π: ID → ID over shuffle index T (N ,IDG,IDY ,φ)
is that the corresponding abstract index remains unchanged while the allocation



of some nodes (and the pointers to them in their parents) is changed. More
precisely, each node 〈id , vals , ptrs 〉 is updated as follows: id=π(id ) if id∈ID , it
remains unchanged otherwise; and ∀i = 0, . . . , q with q the number of values in
vals , ptrs [i]=π(ptrs [i]) if ptrs [i]∈ID, it remains unchanged otherwise.

Like in the original (non-distributed) shuffle index, shuffling is performed only
within levels and not cross-levels, due to complications that would otherwise arise
for updating pointers to children.

Also, in our distributed shuffle index, where nodes (accessed because in the
paths to the target or to a cover, or present in cache) are always accompanied
by a shadow, we need to ensure that shuffling does not compromise the balanced
allocation of the index. We then require the shuffling to ensure balancing, as
captured by the following property.

Property 2 (Balanced shuffling). Let T(N , IDG, IDY ,φ) be a logical index, and
P = {〈n1, n′

1〉, . . . , 〈nm, n′
m〉} be a set of pairs of nodes in N s.t. ∀〈ni, n′

i〉 ∈ P ,
σ(ni.id ) +=σ(n′

i.id ). A shuffling π over IDP={id : ∃〈ni, n′
i〉 ∈ P with id=ni.id

or id=n′
i.id } is balanced iff ∀〈ni, n′

i〉 ∈ P , σ(π(ni.id )) +=σ(π(n′
i.id )).

Balanced shuffling essentially guarantees that pairs of nodes provided as input
and stored at different servers before the shuffling remain stored at different
servers after the shuffling. Since we operate shuffling on pairs of nodes that are
far siblings one of the other, balanced shuffling ensures that these pairs of nodes
will remain as such after the shuffling (indeed, shuffling does not change the
‘being child of’ relationship over the abstract index). Note that this does not
mean that the two nodes in a pair can only be swapped one with the other as
shuffling can actually change the blocks to which they are allocated; the only
constraint is that the two nodes do not end up being stored at the same server.
It is then easy to see that a balanced shuffling guarantees that the shuffling does
not compromise the balanced allocation of the shuffle index (Property 1).

We realize a balanced shuffling by: i) randomly shuffling the nodes allocated
at each of the two servers separately; and ii) possibly swapping the allocation of a
node and its shadow. The random shuffling (step i)) does not move nodes from
SG to SY or vice versa. The controlled swapping (step ii)) operates between
pairs of nodes stored at the two servers: whenever a node allocated at SG is
moved to SY , its shadow (which by definition is at SY ) is moved from SY to
SG, and vice versa. More precisely, our shuffling works as follows.

– Consider a logical index T(N , IDG, IDY ,φ), a set P =
{〈n1, n′

1〉, . . . , 〈nm, n′
m〉} of pairs of nodes in N , and the set IDP={id :

∃〈ni, n′
i〉 ∈ P with id=ni.id or id=n′

i.id } of their identifiers.
– Define an intra-server shuffling over IDP , π1 : IDP → IDP , such that

∀id ∈ IDP , σ(π1(id )) = σ(id ).
– Randomly select a subset S of pairs of nodes in P for inter-server swapping.
– Return π over IDP such that ∀〈ni, n′

i〉 ∈ P :

• if 〈ni, n′
i〉 ∈ S =⇒ π(ni.id ) = π1 (n ′

i .id ) and π(n′
i.id ) = π1 (ni .id );

• if 〈ni, n′
i〉 +∈ S =⇒ π(ni.id ) = π1 (ni .id ) and π(n′

i.id ) = π1 (n ′
i .id ).



Note that, while guaranteeing balancing, our shuffling can move a node to
any block on which the shuffling is operating (either at the same or at a different
server). This provides for a fast degradation of the correspondences between
nodes and blocks, ensuring the protection of access and pattern confidentiality
(see Section 6).

As an example, consider the shuffle index in Figure 2(b), reported in Fig-
ure 3(a) for the reader’s convenience, and the set P = {〈r0,r1〉; 〈e,h〉, 〈a,c〉,
〈b,d〉; 〈e3 ,e2 〉, 〈a2 ,a1 〉, 〈b1 ,b2 〉} of pairs of nodes accessed by the search for
value e3 illustrated above. Figures 3(b) and (c) illustrate an example of intra-
server shuffling π1 over IDP and of inter-server swapping, with S={〈r0,r1〉;
〈a,c〉,〈e,h〉;〈a1,a2〉}, respectively. It is easy to see that the resulting shuffling
π satisfies the balancing property (e.g., σ(r0 .id )=SG and σ(r1 .id )=SY ). Fig-
ure 3(d) illustrates the shuffle index after the shuffling.

5 Access Execution

The application of shadows, covers, cache, and shuffling when performing an ac-
cess works in combination to ensure two kinds of protection: i) obfuscating the
fact that the access aims at a specific block (shadows, covers, and cache); and ii)
changing the allocation of nodes so to dynamically modify the node/block corre-
spondence and therefore provide protection for future accesses. Access execution
with our protection techniques works as follows.

Given a search for a target value v, we first choose a set of num cover+1
cover searches for v (Definition 2), where the additional one is to be used if a
node in the path to v is in cache. For each level l of the distributed shuffle index,
we identify the blocks in the paths to covers and target and choose a shadow
(Definition 1) for each of them. Like covers, shadows are chosen in such a way
to ensure block diversity, meaning that they should not appear in the paths to
the target and to covers, and should not be stored in Cache l . Intuitively, block
diversity guarantees that all the techniques play a role in providing protection
as they will not end up clashing over the same blocks.

Enforcement of block diversity also on shadows, and application of shadows
to both the target and cover searches, as well as availability of shadows in cache,
provide a nice symmetric behavior of the access at the two servers, with each of
them observing num cover + 1 reads and num cover + num cache + 1 writes
for each level of the shuffle index (but level 0). In other words, each server will
observe a pattern of (read/write) accesses to blocks as if it was the only server
storing the data and managing the access. Note that this does not cause any
performance overhead with respect to the single server solution while enjoying
significant higher protection (see Section 6).

For instance, consider the shuffle index in Figure 3(a). Figure 4 illustrates,
step by step, a search for value e3 that adopts a2 as cover and that assumes that
the local cache has size one and contains the path to b1 (e.g., 〈r0,r1〉, 〈b,d〉 and
〈b1 ,b2 〉, with d and b2 the shadows for b and b1 chosen in a previous search).
Among its far siblings, h is chosen as shadow for e, c for a, e2 for e3 , and a1
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Fig. 3. Evolution of the shuffle index for our running example
Legend: ! target and " its shadow; • node in cache and ◦ its shadow; ! cover and " its
shadow

for a2 . The columns of the table represent: the visited level of the shuffle index
(l); the content of the cache (Cache l in Retrieved nodes) and the nodes read
from the servers (Read in Retrieved nodes); the balanced shuffling (shuffle);
the nodes in the cache (Cache l in Shuffled nodes) and read (Non Cached in
Shuffled nodes) after the shuffling; the nodes written on the server that are also
kept in cache (Cache l−1 in Written nodes) or that are only stored at the server
(Non Cached P in Shuffled nodes). Note that column Cache l−1 inWritten nodes



l Retrieved nodes Shuffle Shuffled nodes Written nodes
Cachel Read Cachel Non Cached Cachel−1 Non Cached P

0 Y001 r0 Y001→G001 G001 r0
[Y103,G104,G102,Y102] [Y103,G104,G102,Y102]

G001 r1 G001→Y001 Y001 r1
[G103,Y101,G101,Y104] [G103,Y101,G101,Y104]

1 G104 b • G104→G102 G102 b • Y001 r1
[Y203,G210,G204,-] [Y203,G210,G204,-] [Y102,Y101,G101,G104]

Y102 d ◦ Y102→Y103 Y103 d ◦ G001 r0
[Y204,G205,G209,Y207] [Y204,G205,G209,Y207] [G103,G102,Y104,Y103]

G103 e # G103→Y102 Y102 e !

[Y206,G202,Y205,-] [Y206,G202,Y205,-]

Y104 h " Y104→G104 G104 h "

[Y202,Y209,G208,-] [Y202,Y209,G208,-]

Y103 a ! Y103→G103 G103 a !

[G207,Y213,Y201,-] [G207,Y213,Y201,-]

G102 c " G102→Y104 Y104 c "

[Y210,G206,G212,-] [Y210,G206,G212,-]
2 Y203 b1 • Y203→G202 G202 b1 • Y102 e !

[Y206,G207,Y213,-]

G210 b2 ◦ G210→Y205 Y205 b2 ◦ G104 h "

[Y202,Y209,G208,-]

Y205 e3 ! Y205→Y213 Y213 e3 ! G102 b •
[G202,Y205,G204,-]
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[Y204,G205,G209,Y207]

Y213 a2 ! Y213→G210 G210 a2 ! G103 a !

[Y203,G210,Y201,-]

G207 a1 " G207→Y203 Y203 a1 " Y104 c "

[Y210,G206,G212,-]

Y213 e3 ! G202 b1 •

G207 e2 " Y205 b2 ◦

G210 a2 !

Y203 a1 "

Fig. 4. An example of access to the distributed shuffle index in Figure 2 searching for
e3 , with a2 as cover
Legend: ! target and " its shadow; • node in cache and ◦ its shadow; ! cover and " its
shadow

represents the status of the local cache at the end of the access. The evolution
of the shuffle index for the search in Figure 4 is illustrated in Figure 3.

Figure 5 shows the observations of the servers in terms of blocks read and
written by the access in Figure 4. The different blocks read provide confusion to
each of the server with respect to which is the target of the access (as a matter
of fact, the observations of a server might even not include the target but its
shadow); the different blocks written provide confusion over what is stored in the
blocks after the access (as a matter of fact, even the set of nodes stored at each
server might have changed), thus practically destroying any possibility for the
servers to correlate observations over different access requests (see Section 6).

6 Discussion and Evaluation of the Approach

We discuss the protection guarantees and the performance of our distributed
shuffle index, in particular comparing it with the original proposal [5] adopting
a single server.
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Protection. Like in [5], we focus the analysis on leaf nodes, which are more
exposed than the internal ones. Indeed, internal nodes are clearly involved in
shuffling operations more often than leaf nodes. Also, while in the analysis we
assume the servers not to collude, we note that a possible collusion can cause
a slight decrease of protection but does not cause critical breaches because the
distributed shuffle index would remain protected as in the case of a shuffle index
employing 2num cover + 1 covers and a double cache size. We start by noting
that access confidentiality naturally increases with the use of two servers. In fact,
even if no cover was to be applied, the server could have just a 50% confidence
that its observations refer to blocks in the path to a target as they could just refer
to their shadows. Shadows provide then a natural increase to the protection when
covers are applied. The fact that shuffling operates across servers also provide
a natural protection since, again, every node has 50% probability of remaining
on the same server after a shuffling is applied. (Note that encryption with a
different salt at every re-allocation prevents servers from making any inference
on the shuffling performed.)

To study the protection offered by shuffling, we model the knowledge of a
server on the fact that a node n is stored at a given block id as a probability
value P(n, id), expressing the confidence in such a knowledge, with P(n, id) = 1
corresponding to certainty and P(n, id) = 1

|N ′| , with N ′ the set of leaf nodes
in N , corresponding to complete absence of knowledge. We assume the worst
starting case where a server knows the exact correspondence between nodes
and blocks (i.e., P(n, id) = 1 when n is allocated at block id, P(n, id) = 0
otherwise) and evaluate the knowledge degradation of the server due to the
shuffling performed at every access.

Let ID′
G ⊆ IDG and ID′

Y ⊆ IDY be the sets of identifiers of the m leaf blocks
accessed at servers SG and SY , respectively. Consider also a leaf node n ∈ N
and suppose that server SG knows that n is stored at one of the m accessed
blocks (the same discussion applies to server SY ). After the access, two cases
can occur: i) n is still stored at server SG, or ii) n has been moved to server SY .

In the first case, for all idG ∈ID′
G, we have that P(n, idG) =

∑

idG∈ID′
G

P(n,idG)
2m

since there is a 50% chance for node n to remain at server SG and there are m
possible blocks where the node can be stored. In the second case, node n can
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Fig. 6. Evolution of the entropy for values of γ equal to 0.5 (a) and 0.25 (b).
Every access request directed to a server has num cover=3 and num cache=1

be moved to any of the m blocks accessed at server SY . However, server SG

does not know which are the m leaf blocks accessed at server SY . Then, for all

idY ∈ IDY we have that P (n, idY ) =
1−

∑
idG∈IDG

P(n,idG )

|IDY | .

We performed a set of experiments for studying the degradation of the knowl-
edge of a server at the aggregate level. These experiments evaluate the entropy
of the server knowledge under different configurations (i.e., varying the number
of covers and the size of the cache) with different access profiles, where access
profiles have been simulated by randomly generating sequences of accesses fol-
lowing a self-similar4 probability distribution with skewness γ in the range [0.25,
0.5]. We then evaluated the increase of entropy at the increase of the number of
accesses for three scenarios where: 1) the shuffle index is distributed over two
servers; 2) the shuffle index is distributed over two servers but the two servers
collude; 3) the shuffle index is stored at a single server. Note that the second
scenario has a double role, representing two different cases: 2.1) when the two
servers collude (exchanging all the knowledge they have on the initial allocation
as well as the knowledge on every subsequent observation); 2.2) when a single
server is applied but with the use of 2num cover + 1 covers and with a cache
of size 2num cache. Figure 6 illustrates the experimental results using 3 covers
and a cache with size 1 for every access request directed to a server, considering
a logical shuffle index with 1000 leaves, skewness γ equal to 0.5 and 0.25, and
varying the number of accesses. (Experiments with different configurations pre-
sented a similar behavior.) As it is visible in the figures, in the scenario where the
shuffle index is distributed over two servers (scenario 1, solid line), the entropy
increases much faster than in the scenario of a single server subject to a similar
workload (scenario 3, dotted line). The dashed line, reporting the entropy evolu-
tion in case of collusion (scenario 2), with respect to the other two lines tells us
that: i) collusion among servers implies a slower knowledge degradation (as the
servers combine their knowledge), but does not cause confidentiality breaches
(since entropy remains high); ii) the use of two servers, even when such servers

4 Given a domain of cardinality d, a self-similar distribution with skewness γ provides
a probability equal to 1−γ of choosing one of the first γd domain values.



collude, enjoys a faster entropy increase and hence, protection guarantees, over
the case when a single server is used but with the application of 2num cover +1
covers and with a double size of the cache.

System Performance. The performance of the distributed shuffle index is based
on the response time experienced by the client when submitting an access re-
quest. Among the different factors contributing to the response time, in our ex-
perimental evaluation, we observed that the latency of the network is the factor
with the greatest impact in a large-bandwidth WAN scenario (which is the most
interesting and natural environment for data outsourcing applications [5, 6]).

To assess the system performance, we considered a data set of 2 GiB stored
in the leaves of a shuffle index with 3 levels with nodes of 8 KiB. To properly
configure the network environment, we adopted a professional-grade tool suite
(i.e., Traffic Control and Network Emulation, for Linux systems) and we chose a
representative WAN configuration suitable for interactive traffic, with LAN-like
bandwidth and round-trip time modeled as a normal distribution with mean
of 100 ms and standard deviation of 2.5 ms . Then, we compared the average
response time in two different scenarios: i) our distributed shuffle index where
each request accessesm leaf blocks at each of the two servers; and ii) the original
(non-distributed) shuffle index where each request accesses 2m leaf blocks. The
experiments considered a variety of configurations, with different values for m.
The average response time in the distributed scenario is approximately 5% lower
than the one obtained in the original scenario. As an example, fixing m = 3,
the average response time is 380 ms in the distributed scenario and 405 ms
in the original one. Our experiments also show that, in both the original and
distributed scenario, the costs of adopting one additional cover search (cache
element, respectively) is 1.18% (0.6%, respectively) of the average response time.

7 Related Work

Previous related works proposed different indexing techniques for the evaluation
of queries over encrypted data (e.g., [4, 13, 14, 18–20]). These solutions however
aim at protecting data confidentiality only. Traditional approaches for protecting
access and pattern confidentiality are based on PIR protocols (e.g., [2,10]), which
however suffer from high computation and communication costs and do not
provide content confidentiality. More efficient PIR solutions rely on the presence
of different copies of the data stored at different servers (e.g., [1]), and are based
on the assumption that servers do not communicate with each-other.

The first approach that protects data, access, and pattern confidentiality has
been illustrated in [22] and combines the pyramid-shaped hierarchy layout of
the Oblivious RAM (ORAM) data structure [11] with Bloom filters. Even if this
proposal adopts an enhanced reordering technique between adjacent levels of
the ORAM to provide a limited amortized cost of accesses, the response time
of queries submitted during the reordering of the bottom level of the structure
remains linear in the database size. Different approaches try to mitigate the cost



of these accesses, for instance by limiting shuffling to fetched records (e.g., [9]);
guaranteeing a constant number of interactions between the data owner and
the server, independently from the number of levels in the ORAM (e.g., [21]);
introducing the support for concurrent accesses by multiple clients (e.g., [12]).
ORAM has been recently extended to the distributed scenario [16], but its pri-
vacy guarantees rely on the presence of non-communicating servers.

The line of works most related to our is represented by solutions that provide
data, access, and pattern confidentiality by exploiting dynamic data allocation,
which destroys the otherwise static relationship between disk blocks and the in-
formation they store (e.g., [5, 6, 15, 23]). The first approach adopting dynamic
data allocation has been introduced in [15] and is based on a B-tree index struc-
ture. This proposal however does not guarantee pattern confidentiality. Simi-
larly to the shuffle index [5], the proposal in [23] adopts cover searches, repeated
searches, and shuffling protection techniques to provide access and pattern con-
fidentiality. This solution is less flexible than the shuffle index, as it does not
have an underlying index structure and the number of cover searches is fixed.
Our solution provides higher protection guarantees than the proposals above,
since we operate in a distributed scenario. Also, with respect to distributed PIR
and distributed ORAM approaches, we remove the limiting assumption that the
storing servers cannot communicate.

8 Conclusions

We extended the shuffle index to the consideration of multiple servers. Our
approach is based on distributing the index structure over two servers, and on
the use of shadows for providing to each server a view as if it was the only
server storing the data. The distributed index enjoys an increased protection
with respect to the use of a single server while not impacting performance.
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