
Supporting Concurrency in
Private Data Outsourcing

Sabrina De Capitani di Vimercati1, Sara Foresti1, Stefano Paraboschi2,
Gerardo Pelosi3, and Pierangela Samarati1

1 Università degli Studi di Milano, 26013 Crema, Italy
firstname.lastname@unimi.it

2 Università degli Studi di Bergamo, 24044 Dalmine, Italy
parabosc@unibg.it

3 Politecnico di Milano, 20133 Milano, Italy
pelosi@elet.polimi.it

Abstract. With outsourcing emerging as a successful paradigm for del-
egating data and service management to third parties, the problem of
guaranteeing proper privacy protection against the external server is be-
coming more and more important. Recent promising solutions for en-
suring privacy in such scenarios rely on the use of encryption and on
the dynamic allocation of encrypted data to memory blocks for destroy-
ing the otherwise static relationship between data and blocks in which
they are stored. However, dynamic data allocation implies the need to
re-write blocks at every read access, thus requesting exclusive locks that
can affect concurrency.
In this paper we present an approach that provides support for con-
current accesses to dynamically allocated encrypted data. Our solution
relies on the use of multiple differential versions of the data index that
are periodically reconciled and applied to the main data structure. We
show how the use of such differential versions guarantees privacy while
effectively supporting concurrent accesses thus considerably increasing
the performance of the system.

1 Introduction

The evolution of information and communication technology is leading to infor-
mation system architectures that rely more and more on the outsourcing to other
parties of IT functions that were typically managed within an organization. A
major motivation for such trend, is economical: with outsourcing an organization
can simplify its structure and benefit from the large scale economies of ad-hoc IT
services, with low costs and high availability. However, a significant obstacle to
a greater adoption of outsourcing is today represented by possible concerns over
improper exposure of confidential or sensitive information. As a matter of fact,
while the external service provider can be relied upon for guaranteeing security
of data and services managed, it is of utmost importance to protect possible
sensitive information from the eyes of the service provider itself.

Sara
Line

The research and development communities have devoted significant atten-
tion to the problem of protecting data confidentiality in outsourcing scenarios,
producing several solutions addressing different aspects of the problem. All pro-
posals apply encryption to make data not intelligible to the server, providing
support for query execution either by associating additional indexes with the
encrypted data [1, 3, 8, 14, 15, 20, 21] or extending tree-based indexing structures
typically adopted in DBMSs [8, 17]. Tree-based approaches, unlike additional in-
dexes, are not vulnerable to privacy breaches exploiting the possible correlation
between frequencies of the index values and of the actual data behind them [3].
However, even tree-based data structures remain vulnerable to attacks based on
the observation of sequences of accesses and on the analysis of the frequency
distribution of access requests (i.e., by observing that certain physical blocks are
often accessed). Such vulnerability can be counteracted by adopting approaches
that change the location of the encrypted data at every access, so to break the
otherwise static relationship between data and their physical location [10, 17,
22]. Dynamically allocated data structures represent the best defense against
frequency attacks by the server. Among them, the shuffle index [10] extends the
classical B+-tree structure used in databases with encryption, cover searches
(to cover the actual target search with additional fake searches to “hide” it in
a set and provide uncertainty over the block actually aimed by the access), and
shuffling to enforce dynamic allocation. Although the shuffle index enjoys lim-
ited overhead with respect to the protection guarantees it offers [10], like other
dynamically allocated data structures, it can potentially affect performance in
scenarios where accesses need to operate concurrently. In fact, reallocating data
at the server side requires write (hence exclusive) locks on the blocks involved
in an access even in the execution of read-only operations.

In this paper, we extend the shuffle index to support a scenario where the
data owner – who outsources data to the external server – wants to be able to
execute several concurrent read-only transactions that need to access the remote
data. Our solution to provide concurrent accesses to the shuffle index (Sect. 2)
stored at the external server consists in having transactions operating on dynam-
ically created portions of the index, which we call delta versions (Sect. 3). Delta
versions are maintained in the server main memory, are managed – and shuffled
at each access – independently one from the other (Sect. 4), and are periodically
reconciled and applied to the main data structure on disk (Sect. 5). The use of
periodically reconciled and merged delta versions offers protection against fre-
quency attacks similar or better than the use of a single main index (Sect. 6)
while producing an up to fourfold increase in system throughput (Sect. 7), thus
offering a convincing argument for its adoption.

2 Preliminary Concepts

Before introducing our approach, we illustrate the shuffle index with which out-
sourced data are organized [10]. We assume data to be indexed over a candidate
key and organized as an abstract unchained B+-tree, with actual data stored in

Abstract index r

a b c d

a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3

(a)

Logical index
r [101,104,102,103]

001

d2
201

c1
202

c2
203

b3
204

a1
205

b1
206

c3
207

d1
208

a3
209

b2
210

d3
211

a2
212

101

a [205,212,209]

103

d [208,201,211]

104

b [206,210,204]

102

c [202,203,207]

r [103,101,102,104]

001

b3
201

c1
202

c2
203

a3
204

a1
205

b1
206

c3
207

d1
208

d2
209

b2
210

d3
211

a2
212

101

b [206,210,201]

103

a [205,212,204]

104

d [208,209,211]

102

c [202,203,207]

(b) (c)

Physical index
α
001

β
101

γ
102

δ
103

ε
104

ζ
201

η
202

θ
203

ι
204

κ
205

λ
206

μ
207

ν
208

ξ
209

ο
210

π
211

ρ
212

ς
001

σ
101

γ
102

τ
103

υ
104

φ
201

η
202

θ
203

χ
204

κ
205

λ
206

μ
207

ν
208

ψ
209

ο
210

π
211

ρ
212

(d) (e)

Fig. 1: An example of abstract (a), logical (b)-(c), and physical (d)-(e) index
before (b)-(d) and after (c)-(e) the execution of a search operation

the leaves of the tree in association with their index values. The fact that the tree
is unchained means that there are no links connecting the leaves. The fan-out F
of the tree regulates the number of index values stored in the nodes. Each node
stores a list v [1, . . . , q] of q values, with ⌈F

2 ⌉ − 1 ≤ q ≤ F − 1 (the lower-bound
does not apply to the root) ordered from the smallest to the greatest, and has
q + 1 children. The i-th children of a node is the root of the subtree containing
the values val with v [i − 1] ≤ val < v [i], i = 2, . . . , q; the first child is the root
of the subtree with all values val < v [1], while the last child is the root of the
subtree with all values val ≥ v [q]. Figure 1(a) illustrates a graphical representa-
tion of our abstract data structure. For simplicity, in our examples we refer to
nodes with a label (not explicitly reporting values in them). At the logical level,
nodes are allocated to logical addresses that work as logical identifiers.

Pointers between nodes of the abstract data structure correspond, at the log-
ical level, to node identifiers, which can then be easily translated at the physical
level into physical addresses at the storing server. In the following, we assume
that the physical address corresponds to the logical identifier of the node stored
in it. Note that the possible order between identifiers does not necessarily cor-

respond to the order in which nodes appear in the value-ordered abstract rep-
resentation. Figure 1(b) illustrates a possible representation at the logical level
of the abstract data structure in Fig. 1(a). In the figure, nodes appear ordered
(left to right) according to their identifiers, which are reported on the top of
each node. Pointers to children are represented by reporting in the node the
ordered list of the identifiers of its children. For simplicity and easy reference, in
our example, the first digit of the node identifier denotes the level of the node
in the tree. For external outsourcing, node’s content is prefixed with a random
salt and then encrypted in CBC mode with a symmetric encryption function
producing an encrypted block. Figure 1(d) illustrates the physical representa-
tion of the logic data structure in Fig. 1(b) (Greek letters represent the result of
encryption). Since the block content is encrypted, the server does not have any
information on the content or on the parent-child relationship between nodes
stored in blocks. Retrieval of the leaf block containing the tuple corresponding
to an index value requires an iterative process. Starting from the root of the tree
and ending at a leaf, the read block is decrypted retrieving the address of the
child block to be read at the next step. To avoid leaking to the server i) the fact
that some blocks represent a path in the tree and ii) different accesses aim at
the same content, the shuffle index extends the search operation by:

– performing, in addition to the target search, other fake cover searches, guar-
anteeing indistinguishability of target and cover searches and operating on
disjoint paths of the tree (retrieving at every level of the tree num cover+1
blocks at the same time);

– maintaining a set of blocks in a local cache;
– mixing (shuffling) the content of all retrieved blocks as well as those main-

tained in cache and rewriting them accordingly on the server.

Intuitively, cover searches introduce uncertainty over the leaf block actually
belonging to the target search and do not allow the server to establish the parent-
child relationship between blocks (since multiple blocks are retrieved at every
level). The cache is used to make searches repeated within a short time interval
not recognizable as being the same search (if the nodes in the target path are
already in cache, an additional cover search will be executed instead). Shuffling
moves content among blocks, thus breaking the correspondence between nodes
(contents) and blocks (addresses). Note that shuffling requires to re-encrypt the
involved nodes with a different random salt, so to produce a different encrypted
text, and changing the pointers to them in their parents (which will have to point
to the new blocks at which nodes have been allocated). Changing the allocation
of nodes to blocks provides confidentiality: i) subsequent searches looking for the
same content would aim at different blocks, and ii) subsequent searches hitting
the same block would involve a different content.

As an example, consider a search for value b3 over the abstract index in
Fig. 1(a) that adopts a3 as cover, and assume that the local cache contains the
path to d2 (i.e., (001,103,201)). The nodes involved in the search operation are
denoted in gray in the figure. Figure 1(b) illustrates the logical representation of

the abstract index before the execution of the search operation and how accessed
blocks are shuffled, level by level, to obtain the structure in Fig. 1(c). Note
that although the server knows which blocks have been accessed (gray blocks in
Figs. 1(d)-(e)) it cannot detect which of those is the actual search target and
how the content of blocks has been shuffled, since blocks are encrypted using a
different salt at each encryption.

3 Main Index and Delta Versions

Before introducing the concept of delta version, we need to formalize the different
components of the shuffle index data structure and of the shuffling (which were
only procedurally managed in the original proposal). Data can be seen at the
abstract, logical, and physical levels, which we formally capture as follows.

– Abstract (T a): set {na
1 , . . . , n

a
m} of abstract nodes forming an unchained B+-

tree. Each internal node in T a is a pair na = ⟨values , children ⟩ with values
a list of index values and children a list of q + 1 child nodes. Leaf nodes
have tuples , representing the tuples with index value in values , instead of
children .

– Logical (T): triple (T a, ID, ϕ), where T a is an abstract data structure, ID
is a set of logical identifiers, and ϕ : T a → ID is a bijective function as-
sociating each abstract node na in T a with a logical identifier id in ID.
Triple (T a, ID, ϕ) determines how the abstract nodes in T a are allocated to
logical identifiers in ID. Each internal node na=⟨values , children ⟩ ∈ T a is
then represented by a (logical) node of the form ⟨id , v , p⟩, where id=ϕ(na),
v=values , and p [j]=ϕ(children [j]), j = 1, . . . , q + 1. Leaf nodes are repre-
sented with logical nodes of the form ⟨id , v , t ⟩ that include tuples t instead
of pointers to children.

– Physical (T e): set of (disk) blocks storing T . Each logical node ⟨id , v , p⟩ ∈ T
(leaf ⟨id , v , t ⟩ ∈ T , resp.) is stored in a block that can be seen as a pair of
the form ⟨id ,b⟩, where b=Ek(salt ||id ||v ||p) (b=Ek(salt ||id ||v ||t), resp.) with
E a symmetric encryption function, k the encryption key, and salt a value
chosen at random during each encryption.

In the following, we use the term node to refer to an abstract content and
block to refer to a specific memory slot in the logical/physical structure. When
either term can be used, we will use node/block interchangeably.

Shuffling executed at every access randomly exchanges the content among
blocks. A shuffling of logical index T = (T a, ID, ϕ) is equivalent to reallocating
nodes to potentially different blocks (the corresponding abstract index remains
unaltered), as formally defined in the following.

Definition 1 (Shuffling). Let T = (T a, ID, ϕ) be a logical index and π : ID →
ID be a random permutation of ID. The shuffling of T with respect to π is a
logical index T ′ = (T a, ID, ϕ′), where ∀na∈T a, ϕ′(na) = π(ϕ(na)).

Note that a change in the allocation of nodes to blocks implies that the point-
ers to children must be updated to reflect their new allocation, thus preserving
the correct parent-child relationship. In the following, for convenience we assume
shuffling to operate within the boundary of the tree level (i.e., permutations are
always performed among nodes of the same level of the tree).

A delta version is essentially a – potentially shuffled – portion of the main
index, as captured by the following definition.

Definition 2 (Delta version). Let T = (T a, ID, ϕ) be a logical index. A delta
version ∆i = (∆a

i , IDi, ϕi) of T is a shuffling of (∆a
i , IDi, ϕ), where ∆a

i⊆T a

such that ∀na∈∆a
i , the parent of na belongs to ∆a

i ; IDi=
∪
ϕ(na), na∈∆a

i ; and
ϕi : T a → ID such that ϕi(n

a) = ϕ(na) if na ̸∈∆a
i .

Figure 2(c) illustrates an example of delta version of the logical index in Fig. 2(a).
Note that, since a delta version is composed of nodes forming paths that are
traversed when executing search operations, the parent of each node in the delta
version also belongs to the delta version. As a consequence, every delta version
always includes the root of T a.

Merging a delta version with a main index implies enforcing on the main index
the allocation of nodes to blocks prescribed by the delta version, as captured by
the following definition.

Definition 3 (Merge). Let T = (T a, ID, ϕ) be a logical index and ∆i =
(∆a

i , IDi, ϕi) be a delta version of T . The merge of T and ∆i, denoted T ⊕∆i,
is logical index T ′ = (T a, ID, ϕi).

In terms of actual enforcement, T ′ can be simply obtained by flushing the
blocks of the delta version to the main index (overwriting the corresponding
blocks on disk), while leaving the other blocks unaltered. Such an operation
– which can be performed without any need to download the involved blocks
or performing computation by the client – produces an index that correctly
represents the original data structure and includes the shuffling operated in the
delta version.

4 Operating on Delta Versions

The basic idea of our approach is that transactions operate on delta versions
(dynamically created and maintained in main memory at the server) rather than
on the main shuffle index.

Access execution. Every access operation is executed over a delta version. If
the operation needs to read a block that does not belong to the delta version,
such a block is taken from the main index and included in the delta version.
Access execution works essentially like in the original shuffle index proposal re-
questing at every level at least num cover+1 blocks. Apart from the need to
include new blocks in the delta version, the only notable difference with respect
to the original shuffle index proposal is that we depart from the local cache

main index
r [105,102,104,101,107,103,108,106]

001

c2
201

h1
202

h2
203

c3
204

d3
205

g4
206

d4
207

e3
208

c1
209

e2
210

f3
211

f2
212

a4
213

b2
214

c4
215

h4
216

e4
217

a1
218

h3
219

a2
220

f1
221

d2
222

b3
223

g2
224

g3
225

a3
226

e1
227

g1
228

d1
229

b4
230

b1
231

f4
232

g [228,224,225,206]
108107

e [227,210,208,217]

106

h [202,203,219,216]

105

a [218,220,226,213]

104

c [209,201,204,215]

103

f [221,212,211,232]

102

b [231,214,223,230] d [229,222,205,207]

101

(a)

target: a1 (001, 105, 218) ∆1

cover: d2 (001, 101, 222)
e3 (001, 107, 208)

repeated: –

read: 001/101,105,107/208,218,222

shuffle: 101→105, 105→107, 107→101
208→218, 218→208, 222→222 a1

208

e3
218

d2
222

r [107,102,104,105,101,103,108,106]

001

e [227,210,218,217]
101

d [229,222,205,207]

105

a [208,220,226,213]

107

(b)

target: b4 (001, 102, 230) ∆1

cover: g3 (001, 108, 225)

repeated: (001, 101, 218)

read: 001/101,102,108/218,225,230

shuffle: 101→102, 102→108, 108→101
218→225, 225→230, 230→218 a1

208

b4
218

d2
222

e3
225

g3
230

r [107,108,104,105,102,103,101,106]

001

g [228,224,230,206]
101

e [227,210,225,217]

102

d [229,222,205,207]

105

a [208,220,226,213]

107

b [231,214,223,218]

108

(c)

Fig. 2: An example of main index (a) and of execution of two subsequent searches
(b)-(c) over it using delta version ∆1

originally maintained for hiding the fact that subsequent searches were aiming
at the same node. The reason for departing from the cache is that its main-
tenance would impose a strong synchronization overhead among the different
transactions operating at the client side. To prevent the server from recognizing
that two subsequent accesses aim at the same block, we take a dual approach
and adopt repeated searches. Intuitively, while the cache ensured consequent
searches never accessed the same block (if a value just retrieved was needed, a
fake value was searched instead, so to ensure no intersection between the two
searches and the same number of blocks is accessed at each level), repeated
searches always ensure intersection between subsequent searches (regardless of
whether the two searches are looking or not for the same value). For enforcing
repeated searches, we store, in conjunction with each delta version, a layered
structure that keeps track of the identifiers of the blocks accessed during the
last search. Execution of an access on a delta version will also request at least
one block per level among those appearing in the last search. Each search then
accesses num cover+2 blocks at every level of the index, since, besides the blocks
of the target and cover searches, an additional block is necessary for the repeated
search (the additional blocks are two if the target or cover searches correspond

to a repeated search). At the beginning, when the delta version is empty, there
is no search to repeat and an additional cover is requested instead. To illustrate,
consider the index in Fig. 2(a) and a request for value a1 that adopts one cover
and operates on empty delta version ∆1. In this case, two covers (e.g., d2 and e3)
are needed. The blocks on the paths to a1, d2, and e3 are all read from the main
index, shuffled, and written back in ∆1 as illustrated Fig. 2(b). Suppose now to
execute another search for value b4 over ∆1, with cover g3, and one repeated
access (e.g., 001, 101, 218). Since the nodes along the paths to b4 and g3 (except
the root) do not belong to ∆1 they are read from the main index, and after
shuffling their content with all accessed blocks, are copied in the delta version.
Figure 2(c) illustrates ∆1 after the execution of the second search operation.

Delta version assignment. To avoid imposing synchronization constraints at
the client side, we assume the allocation of delta versions to each transaction to
be determined by the server. However, we need to provide a means at the client
side to control the proper behavior of the server in the allocation of the versions.
It is important to ensure that the server does not discard the shuffling requested,
creates a new delta version at each access and having then transactions always
operating on the main index (and therefore on a static data structure), or se-
lectively allocates versions to monitor specific activities. Therefore, we assume
that the client sets the number of delta versions (i.e., amount of concurrent
operations). At the client side, we maintain a table Version(∆id , ts, status),
reporting for each delta version ∆id the time ts of last access and whether its
status is busy or free. We assume synchronization before execution of each search
operation, requesting the transaction at the client side to update the entry for
the version allocated to it setting ts to the current time and status to busy. We
instead account for a lazy process for the transactions in setting that the version
allocated to them has been released (status free). Hence, while a version appear-
ing free in the table is certainly free, a version appearing busy could actually
have been released (but the transaction be late in reporting the status change).
We request the server to manage delta version allocation according to the MRU
policy, that is, an access should be enforced on the most recently used version.
The client can then check that the server has performed proper allocation by
checking that the delta version allocated to the request has ts greater than the
greatest ts associated with a free version in the table (the greater than condition
is to accommodate for possible delays at the client side to set version status
free). We also assume the root of every delta version to be timestamped at each
access. This allows checking that the root is actually the result of the access
executed at the time ts recorded in the table for the delta version and, therefore
(since the root points to the other blocks in the tree) the freshness of the whole
version.

5 Reconciling Delta Versions and Main Index

A delta version grows at every access by including new requested blocks that
were not previously contained in the delta version. In the long run, a delta version

could potentially grow to include all the blocks of the main index saturating the
server main memory. Hence, we periodically synchronize the main index with the
delta versions, reporting shuffling operations on the main index and resetting the
delta versions. Note that we cannot simply destroy the delta versions without
changing the main index. In fact, although all operations are read-only (i.e., the
abstract data structure remains unaltered), the principle of the shuffle index is
that the allocation of nodes to blocks is dynamic. It is therefore important to
apply the shuffle performed on the delta versions to the main index, so to enjoy
the protection of shuffling for subsequent accesses.

If there were a single delta version, applying the performed shuffling on the
main index would be simple. Indeed, it would be sufficient to simply flush to
the main index on disk the blocks included in the delta version. The situation is
however complicated by the existence of several delta versions, which can have
operated independently on the same nodes/blocks. In this case, a reconciliation
is needed to ensure correctness of the index and, in particular, to ensure no
content is lost and pointers to child blocks are properly set. We first note that,
while it is important that shuffling is enforced in the main index, the specific
way in which nodes are shuffled (i.e., which node goes to which block) does
not have any impact, provided it represents a random permutation. As long as
allocation is dynamic, any rearrangement would do. Hence, a straightforward
approach to enforce shuffling on the main index would be to download all the
blocks contained in the delta versions at the client side, retrieve (by decrypting)
the corresponding nodes, allocate them to blocks, and re-uploading them at the
server by rewriting the involved blocks on the main index. Such a naive approach,
requiring to download all the blocks and to re-encrypt all the nodes, is clearly
too expensive and not needed. Our approach aims at minimizing the blocks
to be downloaded and re-uploaded by limiting these blocks to the ones strictly
needed to guarantee correctness or to avoid leakage on the node allocation, while
flushing as many blocks as possible directly to disk.

To determine which blocks need to be downloaded and re-encrypted, we have
to identify the blocks for which the presence of multiple delta versions represents
a problem. In principle, it is sufficient for two delta versions to have a block (and
hence the corresponding node) in common to require checking all the blocks in
them, since the node (which should be reported in only one block to the main
index) may have been re-allocated to any of the blocks within each delta version.
In practice, however, only the block where the node was originally allocated in
the main index and the new block where it has been allocated in each of the
delta versions need to be strictly involved in some re-encryption, since the delta
versions have conflicting node/block allocation.

We then start by characterizing conflicting node/block allocation among a
set of delta versions as follows.

Definition 4 (Conflicting allocations). Let T = (T a, ID, ϕ) be a logical in-
dex and {∆1, . . . , ∆n} be a set of delta versions of T . The conflicting allocations
of ∆i with respect to {∆1, . . . ,∆n} \ {∆i} is a set Ci of pairs ⟨na

i ,id i⟩, where

main index
r [105,102,104,101,107,103,108,106]

001

c2
201

h1
202

h2
203

c3
204

d3
205

g4
206

d4
207

e3
208

c1
209

e2
210

f3
211

f2
212

a4
213

b2
214

c4
215

h4
216

e4
217

a1
218

h3
219

a2
220

f1
221

d2
222

b3
223

g2
224

g3
225

a3
226

e1
227

g1
228

d1
229

b4
230

b1
231

f4
232

d [229,222,205,207]

101

e [227,210,208,217]

107

g [228,224,225,206]
108

h [202,203,219,216]

106

a [218,220,226,213]

105

c [209,201,204,215]

104

f [221,212,211,232]

103

b [231,214,223,230]

102

conflict

conflict conflict

conf.

(a)

∆1 ∆2

a1
208

b4
218

d2

222

e3
225

g3
230

r [107,108,104,105,102,103,101,106]

001

g [228,224,230,206]
101

e [227,210,225,217]

102

d [229,222,205,207]

105

a [208,220,226,213]

107

b [231,214,223,218]

108

conflict

conflict conflict conflict conflict downloaded

conf. cover
f2

201

d2

212

e1
215

c4
222

c2
227

r [105,102,103,104,106,101,108,107]

001

f [221,201,211,232]

101

c [209,227,204,222]

103

d [229,212,205,207]

104

e [215,210,208,217]

106

h [202,203,219,216]

107

conflict

conf.

conflict conflict conflict conflictparent

conf.

(b) (c)

reconciled main index

b [231,214,223,218]

108107

e [215,210,222,217]

106

g [228,224,230,206]
105

f [221,201,211,232]

104

h [202,203,219,216]

103

c [209,227,204,212]

102

a [208,220,226,213] d [229,225,205,207]

101

f2
201

h1
202

h2
203

c3
204

d3
205

g4
206

d4
207

a1
208

c1
209

e2
210

f3
211

c4
212

a4
213

b2
214

e1
215

h4
216

e4
217

b4
218

h3
219

a2
220

f1
221

e3
222

b3
223

g2
224

d2
225

a3
226

c2
227

g1
228

d1
229

g3
230

b1
231

f4
232

r [102,108,103,101,107,105,106,104]

001

uploaded

uploaded uploaded uploaded uploaded uploaded uploaded uploaded uploaded

up. up. up.fl.fl. fl. fl. fl. fl.

(d)

Fig. 3: An example of main index (a), two delta versions ∆1 (b) and ∆2 (c), and
the result of their reconciliation (d)

na
i ∈∆a

i , id i = ϕi(n
a
i), and ∃na

j∈∆a
j , ∆j∈{∆1, . . . ,∆n} and i ̸= j, such that

either: 1) na
i=na

j (same node); or 2) ϕi(n
a
i) = ϕj(n

a
j) (same block).

It is easy to see that, with respect to nodes, the nodes that are in conflict
for a given delta version ∆i are all those nodes that are also present in another
version (i.e., belong to ∆a

i ∩∆a
j , for some j) or are contained in a block which

is also present in another version (i.e., are allocated to a block in IDi ∩ IDj ,
for some j). Analogously, with respect to blocks, the blocks that are in conflict
for a given delta version ∆i are all those blocks that are also present in another
version (i.e., belong to IDi ∩ IDj , for some j) or that contain a node that
is also present in another version (i.e., belong to ∆a

i ∩ ∆a
j , for some j). For

completeness, Definition 4 captures both components representing conflicts, in
terms of pairs ⟨node,block⟩ since the conflict requires to revisit the allocation of
the node contained in block . To illustrate, consider the two delta versions ∆1

and ∆2 in Figs. 3(b)-(c). The nodes/blocks representing a conflicting allocation
in each version are marked with the word conflict below the block.

All blocks involved in a conflict for some delta version are blocks that cannot
be simply written to disk as the resulting index would not be correct (some nodes

would be lost and others would appear replicated). To ensure consistency of the
content, it is important to reconcile the delta versions so that there is agreement
– with respect to common nodes or common blocks – on which node is allocated
to which block. We capture this by formalizing the definition of reconciled delta
version, resulting from a reconciliation of different delta versions, as follows.

Definition 5 (Reconciled delta version). Let T = (T a, ID, ϕ) be a logical
index, {∆1, . . . , ∆n} be a set of delta versions of T , and Ci be the conflicting
allocations of ∆i with respect to {∆1, . . . , ∆n} \ {∆i}, i = 1, . . . , n. A reconciled
delta version of {∆1, . . . , ∆n} is a delta version ∆r = (∆a

r , IDr, ϕr) where ∆a
r =

∆a
1 ∪ . . . ∪ ∆a

n, IDr = ID1 ∪ . . . ∪ IDn, and ϕr(n
a) = ϕi(n

a) if na∈∆a
i and

⟨na, ϕi(n
a)⟩̸∈Ci.

The reconciled delta version can then be enforced on the shuffle index as in
the case of a single delta version, by merging T and ∆r producing logical index
Tr=T ⊕∆r that represents the same abstract index represented by T .

For producing the reconciled version, in addition to blocks in conflict also
the blocks containing a pointer to a block in conflict (e.g., block 103 in ∆2 in
Fig. 3(c)) need to be re-written, as the pointer should be changed to refer to the
new block where the child node (e.g., c4) has been allocated.

While the blocks in conflict and their parents are the only ones that should be
downloaded by the client and re-uploaded (after shuffling the nodes in conflict) to
produce a correct reconciled version (all other blocks in the delta versions could
simply be flushed to disk directly by the server), we may need to download (and
either include in the shuffling or simply re-write) other blocks. The reason is
to ensure that the server cannot infer node/block allocation by observing that
only few blocks have been involved in a reconciliation. As an example, for ∆1

in Fig. 3(b), the only leaf block to download and re-upload would be conflicting
block 222, therefore the server can infer that it stores the value accessed (as
target or cover) by two searches performed with different delta versions. To avoid
leakages like this, and providing the same uncertainty over the block allocation
enjoyed by the original shuffle index proposal in the access execution, we require
each version, for each level of the index, to: i) perform shuffling of either 0
or at least num cover+1 blocks and ii) flush directly either 0 or not less that
num cover+1 blocks. If for a given level there are less than num cover+1 blocks
to flush, additional cover blocks are also downloaded and re-uploaded after re-
encrypting them with a new salt (to make them not recognizable). Like parents,
these latter nodes are not involved in the shuffling to avoid propagating the need
for changes to higher levels of the index. For instance, with reference to ∆1 in
Fig. 3(b): i) 225 is added as cover to perform shuffling among at least two nodes
at leaf level, and ii) 108 is also downloaded since it would have been the only one
flushed at level one. Figure 3(d) illustrates the merging of the index in Fig. 3(a)
after reconciliation of delta versions ∆1 and ∆2 in Figs. 3(b)-(c). The gray blocks
are those that have been written on disk because flushed from main memory or
re-uploaded by the client.

6 Security Analysis

We analyze the protection offered by our proposal for the new aspects introduced
with respect to the serial version operating only with the main index. Like in
the original proposal, we focus the analysis on leaves of the index (nodes at a
higher level are subject to a greater number of accesses, due to the multiple paths
that pass through them, and are then involved in a larger number of shuffling
operations, which increase their protection). Since our search operations execute
essentially like in the original proposal (with repeated searches instead of cache),
our solution enjoys the protection guarantees given by covers like in [10]. The only
potential exposure in our solution is when two different delta versions require
access to a block in the main index for the first time. Since the main index
changes only upon reconciliation, the server can infer that the two requests
actually refer to the same node. However, since every access execution entails
reading at least num cover+1 blocks (in addition to the repeated search) at every
level, and covers are chosen guaranteeing indistinguishability (with respect to
access profiles) between target and covers, the server cannot determine whether
the transactions operating on the two different delta versions are actually aiming
at the same target, or either or both of them are accessing the block as a cover.
The probability that the two transactions aimed at the same target is then

1
(num cover+1)2 ; when m delta versions request access to the same block from the

main index, the probability that all the transactions aimed at the same target
is 1

(num cover+1)m .

The crucial property we are interested in evaluating is the protection against
the inferences the server may make on the data content by exploiting informa-
tion on the frequency of accesses to the blocks. Applying classical concepts of
information theory, we can model the information available to the server on the
association between a node na

i and block id j storing it as probability P(na
i , id j).

A value equal to 1 for this probability means that the server will be able to cor-
rectly identify a node, whereas a value equal to 1

|T a| will correspond to the ab-

sence of any knowledge. If the block is replicated in delta versions, each instance
will be associated with the analogous probability. Let ID ′ be the set of blocks in-
volved in an access in a version (excluding the repeated search). For all na

i ∈ T a,

and all id j∈ID ′, P(na
i , id j) after the shuffling becomes

∑
idj∈ID′

P(na
i ,idj)

num cover+1 , be-
cause the shuffling can associate each node with any of the blocks involved in
the access with equal probability, thus flattening the probability distribution.
After the reconciliation, all the blocks that have been accessed by a single ver-
sion will be transferred to the main index, where they will be associated with
the probabilities computed in the version. Blocks accessed by multiple versions
will be shuffled together, with a further averaging of probabilities among the
blocks. As a consequence, P(na

i , id j) for each node na
i after each access and each

reconciliation will progressively move toward value 1
|T a| .

It is natural to study the evolution of these probabilities using the concept
of entropy, which allows us to identify at an aggregate level the knowledge of
the server and its degradation due to shuffling and merging. In particular, we

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 500 1000 1500 2000 2500 3000

E
nt

ro
py

 (
bi

t)

Number of accesses

Serial - Average uncertainity
Concurrent - Average uncertainity

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 500 1000 1500 2000 2500 3000

E
nt

ro
py

 (
bi

t)

Number of accesses

Serial - Average uncertainity
Concurrent - Average uncertainity

(b)

Fig. 4: Evolution of the entropy for values of γ equal to 0.5 (a) and 0.25 (b)

are interested in the impact of delta versions over the entropy, which we evalu-
ated – as common in the study of codes and channels when analytical models
become unmanageable – experimentally. We then designed a set of experiments
with an initial configuration corresponding to a worst case assumption where the
server has a precise knowledge about the node-block correspondence, and then
the entropy is equal to zero, and evaluated how the entropy increases with ac-
cess execution (for the serial index) and with access execution and merging after
reconciliation (for our proposal). The experiments have considered a variety of
configurations, with different numbers of nodes, number of versions, num cover ,
and access profiles. Access profiles have been simulated by synthetically generat-
ing a sequence of accesses that follow a self-similar probability distribution with
skewness γ in the range [0.25, 0.5] (given a domain of cardinality d, a self-similar
distribution with skewness γ provides a probability equal to 1 − γ of choosing
one of the first γd domain values). We then applied the same sequence of ac-
cesses to the serial and concurrent shuffle index and evaluated the growth of
the entropy. Figure 4 illustrates the experimental results using 4 covers, 4 ver-
sions, 1000 nodes, skewness γ equal to 0.5 and 0.25, and varying the number of
accesses. Experiments with different configurations presented a similar behavior.

As visible from the figure, before the first reconciliation, the entropy is slightly
lower in the concurrent scenario with respect to the serial index. The reason is
that each delta version serves a smaller number of accesses than the index in
the serial version (assuming uniform distribution of load among versions, each
transaction has one fourth of the accesses operating on the main index). How-
ever, already at the first reconciliation, the entropy for the concurrent scenario
becomes higher than that of the serial scenario, and keeps maintaining higher.
While an even higher entropy might sound not intuitive and an unexpected ad-
vantage (more protection with better performances), the explanation for such a
behavior is simply that reconciliation and merging enjoy shuffling over a larger
number of nodes all at one time. In fact, reconciliation makes the concurrent
shuffle index stronger because this phase applies a shuffle over all the nodes in
the conflict set. The size of this set depends on the number of conflicts and our

model forces it to be for each delta version at least as large as the number of
covers used for every shuffle. The size of the conflict set will often be greater
than the number of covers, and the growth of entropy produced by a shuffle
increases more than linearly with the number of blocks involved in the shuffle
(i.e., the execution of two shuffles over two sets of m distinct elements produces
lower entropy than a single shuffle over the set of 2m elements). The cost of such
better protection can be reconducted to the cost of the reconciliation, which
is below 10% of the access cost in the configuration that maximizes the server
throughput (Sect. 7).

7 Performance Analysis

We implemented the search and reconciliation algorithms with Java programs.
To assess the system performance, we used a data set of 1TB stored in the leaves
of a shuffle index with 4 levels, built on a numerical candidate key of fixed-length,
with fan-out 512, and representing 232 (over 4 billion) different index values. The
hardware used in the experiments included a server machine with 2 Intel Xeon
Quad 2.0GHz L3-4MB, 12GB RAM, four 1TB disks, 7200RPM, 32MB cache,
and Linux Ubuntu 9.04 x86 64 with the ext4 file system, and a client machine
with an Intel Core 2 Duo CPU T5500 at 1.66GHz, 2GB DRAM, and Linux
Ubuntu 9.04 x86. The client and the server operate in a local area network
(100Mbps Ethernet, with average RTT of 0.48ms). The results reported in this
section have been obtained as the average over 50 runs and, for each run, the
number of accesses is 5000 and the number of covers adopted at each access is 4.
The inverse of the average disk time needed to perform a single search is 52tps
and represents the upper bound for the maximum throughput of the system.

To emulate the workload of an outsourcing service, we designed a generator
scheme, modeling the number of access requests per second as a random variable
following a Poisson distribution with mean arrival rate λ (the time when an ac-
cess request arrives is independent from the time of arrival of previous requests).
In our experiments, we considered λ=16tps and λ=32tps, which correspond to
30% and to 60%, respectively, of the physical maximum throughput (52tps).
These are sensible workloads for a service hosted on a single machine and a ro-
bust test for the deployment of the proposed solution in a real world scenario. In
fact, a workload of 60% of the maximum disk service rate is known to be optimal
with respect to the upper bound of the physical maximum throughput [16].

To evaluate the performance gain obtained with the support of concurrent
searches and the overhead due to reconciliation, we compare the server through-
put in three different scenarios: i) serial shuffle index [10]; ii) concurrent shuffle
index where delta versions are never reconciled; and iii) concurrent shuffle in-
dex where delta versions are periodically reconciled. In the experiments, delta
versions are reconciled every 128 and every 256 access requests, for the configura-
tion with λ=16tps and λ=32tps, respectively. A higher reconciliation frequency
increases overhead because it more often requires write locks on the disk blocks
to be re-written. On the other hand, a lower frequency requires less often such

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34

 1 2 4 8 16 32 64 128

T
hr

ou
gh

pu
t (

tp
s)

Number of delta versions

without reconciliation
with reconciliation

serial

(a)

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34

 1 2 4 8 16 32 64 128

T
hr

ou
gh

pu
t (

tp
s)

Number of delta versions

without reconciliation
with reconciliation

serial

(b)

Fig. 5: Server throughput varying the number of delta versions between 1 and
128, with access request arrival rate equal to λ=16tps (a) and λ=32tps (b)

locks but over a considerably larger number of blocks (conflicts among versions
grow more than linearly with respect to the number of searches). Experiments
(which we do not present here for space reasons) show that the chosen thresh-
old values balance the two aspects offering the maximum server throughput for
the employed operating setup. Figure 5 reports the server throughput, varying
the maximum number of delta versions between 1 and 128 with access request
arrival rate equal to λ=16tps and λ=32tps, respectively. Although the perfor-
mance overhead of concurrent applications highly depends on the random disk
access patterns required to execute read and write accesses to blocks, Fig. 5
demonstrates how the adoption of our concurrency support offers a threefold
(fourfold, respectively) increase of the server throughput compared to the se-
rial shuffle index when λ=16tps (λ=32tps, respectively). Note that the server
throughput is higher than or equal to the mean arrival rate λ of client requests,
meaning that the time necessary to the server to process an access request is
lower than the time between two consecutive accesses. Figure 5 also highlights
the limited cost due to reconciliation, which has a maximum of 25% and is 6%
in the configuration that maximizes the server throughput.

8 Related Work

Previous work is related to the definition of indexing structures for the exe-
cution of queries on encrypted outsourced data (e.g., [1, 8, 14, 15, 20, 21]). The
proposals in [8, 21] specifically adopt the B+-tree and the B-tree data struc-
tures to define an index able to efficiently support search operations on the key
attribute. Although these solutions efficiently support accesses to the outsourced
data, they are static and do not offer protection against the attacks based on
the frequency of the accesses. Another line of work related to our is represented
by Private Information Retrieval (PIR) [4, 18]. These proposals typically protect
the confidentiality of users’ queries while data confidentiality is not considered
an issue.

The proposals in [10, 17, 22] aim to protect data confidentiality and the ac-
cesses realized by the client over the data. The solution in [17] is based on the
definition of a B-tree index and of a technique for accessing the content of a
node in the tree that prevents the server from inferring which node has been
accessed. However, the server can observe repeated accesses to the same physi-
cal block, which correspond to repeated searches for the same values, and apply
a frequency attack to infer information about the values stored by each node
in the B-tree. The proposal in [22] adopts the pyramid-shaped database layout
of Oblivious RAM [13] and an enhanced reordering technique between adjacent
levels of the data structure to protect both data confidentiality and the secrecy of
users’ queries. The performance of a search operation is however highly affected
by the reordering of lower levels of the database, since this reordering can take
hours and needs to be periodically performed. This appears a strong obstacle to
the real deployment of such a solution. The architecture proposed in [22] also re-
quires a secure coprocessor trusted by the client on the server. The first proposal
combining shuffling, cover searches, and cache to offer an extensive protection
of confidentiality with a limited overhead in response times is illustrated in [10],
where data are organized according to a novel data structure whose management
does not rely on a trusted component at the server side. However, such proposal
as well as the proposals in [17, 22] do not support concurrency, with consequent
performance limits in many real life scenarios.

9 Conclusions

Dynamically allocated data structures have recently emerged as a promising
solution to provide privacy protection of data whose storage and management
are delegated to external servers. However, even solutions guaranteeing limited
performance overheads could be affected in scenarios where several accesses need
to operate concurrently, therefore impacting their application. In this paper,
we have addressed this problem and presented a proposal for accommodating
concurrent executions over a shuffle index whose working (based on multiple
searches and dynamic data allocation) would otherwise require several exclusive
locks which, while causing only a limited overhead in serial environments, could
considerably affect concurrent accesses. Our proposal, based on operating on
multiple differential versions of the index, enjoys a privacy protection against
frequency attacks comparable to or better than the serial solution while offering
up to fourfold throughput, thus providing a convincing argument for its adoption.

Acknowledgments

This work was supported in part by the EC within the 7FP, under grant agree-
ments 216483 (PrimeLife) and 257129 (PoSecCo), by the Italian Ministry of
Research within the PRIN 2008 project “PEPPER” (2008SY2PH4), and by the
Università degli Studi di Milano within the project “PREVIOUS”.

References

1. Agrawal, R., Kierman, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proc. of ACM SIGMOD 2004. Paris, France (June 2004)

2. Atallah, M., Frikken, K.: Securely outsourcing linear algebra computations. In:
Proc. of ASIACCS 2010. Beijing, China (April 2010)

3. Ceselli, A., Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Modeling and assessing inference exposure in encrypted databases.
ACM TISSEC 8(1), 119–152 (February 2005)

4. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
JACM 45(6), 965–981 (November 1998)

5. Cimato, S., Gamassi, M., Piuri, V., Sassi, R., Scotti, F.: Privacy-aware biomet-
rics: Design and implementation of a multimodal verification system. In: Proc. of
ACSAC 2008. Anaheim, CA, USA (December 2008)

6. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Fragmentation design for efficient query execution over sensitive dis-
tributed databases. In: Proc. of ICDCS 2009. Montreal, Canada (June 2009)

7. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Combining fragmentation and encryption to protect privacy in data
storage. ACM TISSEC 13(3), 22:1–22:33 (July 2010)

8. Damiani, E., De Capitani Vimercati, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Balancing confidentiality and efficiency in untrusted relational DBMSs. In: Proc.
of CCS 2003. Washington, DC, USA (October 2003)

9. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Encryption policies for regulating access to outsourced data. ACM TODS 35(2),
12:1–12:46 (April 2010)

10. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Efficient and private access to outsourced data. In: Proc. of ICDCS 2011. Min-
neapolis, MN, USA (June 2011)

11. Gamassi, M., Lazzaroni, M., Misino, M., Piuri, V., Sana, D., Scotti, F.: Accuracy
and performance of biometric systems. In: Proc. of IMTC 2004. Como, Italy (May
2004)

12. Gamassi, M., Piuri, V., Sana, D., Scotti, F.: Robust fingerprint detection for access
control. In: Proc. of RoboCare Workshop 2005. Rome, Italy (May 2005)

13. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. JACM 43(3), 431–473 (May 1996)

14. Hacigümüs, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: Proc.
of ICDE 2002. San Jose, CA, USA (February 2002)

15. Hacigümüs, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted data
in the database-service-provider model. In: Proc. of SIGMOD 2002. Madison, WI,
USA (June 2002)

16. Lazowska, E., Zahorjan, J., Graham, G., Sevcik, K.: Quantitative system perfor-
mance: Computer system analysis using queueing network models. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (1984)

17. Lin, P., Candan, K.: Hiding traversal of tree structured data from untrusted data
stores. In: Proc. of WOSIS 2004. Porto, Portugal (April 2004)

18. Olumofin, F., Goldberg, I.: Privacy-preserving queries over relational databases.
In: Proc. of PETS 2010. Berlin, Germany (July 2010)

19. Sadeghi, A., Schneider, T., Winandy, M.: Token-based cloud computing: Secure
outsourcing of data and arbitrary computations with lower latency. In: Proc. of
TRUST 2010. Berlin, Germany (June 2010)

20. Shmueli, E., Waisenberg, R., Elovici, Y., Gudes, E.: Designing secure indexes for
encrypted databases. In: Proc. of IFIP DBSec 2005. Storrs, CT, USA (August
2005)

21. Wang, H., Lakshmanan, L.: Efficient secure query evaluation over encrypted XML
databases. In: Proc. of VLDB 2006. Seoul, Korea (September 2006)

22. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: Practical ac-
cess pattern privacy and correctness on untrusted storage. In: Proc of CCS 2008.
Alexandria, VA, USA (October 2008)

	copyright: © Springer Berlin / Heidelberg, Lecture Notes in Computer Science (2011)
http://www.springerlink.com/content/88r0160410jq80r8/fulltext.pdf

