
Keep a Few: Outsourcing Data
while Maintaining Confidentiality

Valentina Ciriani1, Sabrina De Capitani di Vimercati1, Sara Foresti1,
Sushil Jajodia2, Stefano Paraboschi3, and Pierangela Samarati1

1 DTI - Università degli Studi di Milano, 26013 Crema, Italia
firstname.lastname@unimi.it

2 CSIS - George Mason University, Fairfax, VA 22030-4444, USA
jajodia@gmu.edu

3 DIIMM - Università degli Studi di Bergamo, 24044 Dalmine, Italia
parabosc@unibg.it

Abstract. We put forward a novel paradigm for preserving privacy in
data outsourcing which departs from encryption. The basic idea behind
our proposal is to involve the owner in storing a limited portion of the
data, and maintaining all data (either at the owner or at external servers)
in the clear. We assume a relational context, where the data to be out-
sourced is contained in a relational table. We then analyze how the rela-
tional table can be fragmented, minimizing the load for the data owner.
We propose several metrics and present a general framework capturing
all of them, with a corresponding algorithm finding a heuristic solution
to a family of NP-hard problems.

1 Introduction

The correct management of data with adequate support for reliability and avail-
ability requirements presents extremely significant economies of scale. There is
an important cost benefit for individuals and small/medium organizations in
outsourcing their data to external servers and delegating to them the respon-
sibility of data storage and management. Important initiatives already operate
in this market (e.g., Amazon’s S3 service) and a significant expansion in this
direction is expected in the next few years. However, while on the one hand
there is a desire to outsource data management, there is on the other hand an
equally strong need to properly protect data confidentiality. Certain data, or -
more often - associations among data, are sensitive and cannot be released to
others or be stored outside the owner’s control. The success and wide adoption of
data outsourcing solutions strongly depends on their ability to properly support
such confidentiality requirements.

In the last few years, the problem of outsourcing data subject to confidential-
ity constraints has raised considerable attention, and various research activities
have been carried out, providing the foundation for a large future deployment
of these solutions. All existing proposals share the assumption that sensitive
information stored at external servers can be protected by proper encryption.

Sara
Line

More recent proposals combine encryption with fragmentation. While varying in
the amount of encryption required, all existing approaches assume the use of en-
cryption whenever needed for privacy, and operate under the implicit assumption
that the owner aims at externally storing the complete database. Encryption is
therefore considered a necessary price to be paid for protecting the confidential-
ity of information. Although cryptographic tools enjoy today a limited cost and
an affordable computational complexity, encryption carries however the burden
of managing keys, which makes it not applicable for many scenarios. In addition,
while the cost of encryption/decryption operations may be negligible, the exe-
cution of queries on encrypted data greatly increases the computational effort
required to the DBMS, considerably impacting its applicability for real-world
applications.

In this paper we propose a paradigm shift for solving the problem, which
departs from encryption, thus freeing the owner from the burden of its man-
agement. In exchange, we assume that the owner, while outsourcing the major
portion of the data at one or more external servers, is willing to locally store a
limited amount of data. The owner-side storage, being under the owner control,
is assumed to be maintained in a trusted environment. The main observation
behind our approach is that often is the association among data to be sensitive,
in contrast to the individual data themselves. Like recent solutions, we there-
fore exploit data fragmentation to break sensitive associations; but, in contrast
to them, we assume the use of fragmentation only. Basically, the owner main-
tains a small portion of the data, just enough to protect sensitive values or their
associations. The contribution of this paper is threefold. First, we propose a
novel approach to the problem of outsourcing data in the presence of privacy
constraints, based on involving the owner as a trusted party for limited stor-
age (Sect. 3). Second, aiming at minimizing the load required to the owner, we
investigate possible metrics according to which the owner’s load could be char-
acterized (Sect. 4). The different metrics can be applicable in different scenarios,
depending on the owner’s preferences and/or on the information (on the data or
on the system’s workload) available at design time. Third, we introduce a new
theoretical problem, which is a generalization of a hitting set problem, show
how all the problems of minimizing the owner load with respect to the different
metrics can be characterized as specific instances of this problem, and present a
heuristic algorithm for its solution (Sect. 5).

2 Basic Concepts

We consider a scenario where, consistently with other proposals (e.g., [1, 4, 6]),
the data to be protected are represented with a single relation r over a relation
schema R(a1, . . . , an). We use the standard notations of the relational database
model. Also, when clear from the context, we will use R to denote either the
relation schema R or the set of attributes in R .

Patient

SSN Name DoB Race Job Illness Treatment HDate

123-45-6789 White 82/12/09 asian waiter laryngitis antibiotic 09/01/02
987-65-4321 Taylor 75/03/05 white nurse diabetes insulin 09/01/06
963-85-2741 Harris 68/05/11 white banker laryngitis antibiotic 09/01/08
147-85-2369 Ripley 90/02/06 black waiter flu aspirin 09/01/10

(a)

c0={SSN}
c1={Name,Illness}
c2={Name,Treatment}
c3={DoB,Race,Illness}
c4={DoB,Race,Treatment}
c5={Job,Illness}

(b)

Fig. 1. An example of relation (a) and of confidentiality constraints over it (b)

Protection requirements are represented by confidentiality constraints, which
express restrictions on the single or joint visibility (association) of attributes in
R and are formally defined as follows [1, 4].

Definition 1 (Confidentiality Constraint). Let R(a1, . . . , an) be a relation
schema, a confidentiality constraint c over R is a subset of attributes in R
(c ⊆ R).

While simple, confidentiality constraints of this form allow the representation
of different protection requirements that may need to be expressed. A singleton
constraint states that the values assumed by an attribute are considered sen-
sitive and therefore cannot be accessed by an external party. A non-singleton
constraint (association constraint) states that the association among values of
given attributes is sensitive and therefore should not be released to an external
party.

Example 1. Figure 1 illustrates relation Patient (a) and a set of confidentiality
constraints defined over it (b): c0 is a singleton constraint indicating that the list
of SSNs of patients is considered sensitive; c1 . . . c5 are association constraints
stating that the association between all the values assumed by the specified
attributes should not be disclosed. Constraints c3 and c4 derive from c1 and
c2, respectively, and from the fact that attributes DoB and Race together could
be exploited to retrieve the name of patients (i.e., they can work as a quasi-
identifier [6]).

The satisfaction of a constraint ci clearly implies the satisfaction of any
constraint cj such that ci⊆cj . We therefore assume the set Cf = {c1, . . . , cm}
to be well defined , ∀ci, cj ∈ Cf : i 6= j ⇒ ci 6⊂ cj .

To satisfy confidentiality constraints, we consider an approach based on data
fragmentation. Fragmenting R means splitting its attributes into different frag-
ments (i.e., different subsets) in such a way that only attributes in the same frag-
ment are visible in association [1, 4]. For instance, splitting Name and Illness

Fo

t id SSN Illness Treatment

1 123-45-6789 laryngitis antibiotic
2 987-65-4321 diabetes insulin
3 963-85-2741 laryngitis antibiotic
4 147-85-2369 flu aspirin

Fs

t id Name DoB Race Job HDate

1 White 82/12/09 asian waiter 09/01/02
2 Taylor 75/03/05 white nurse 09/01/06
3 Harris 68/05/11 white banker 09/01/08
4 Ripley 90/02/06 black waiter 09/01/10

Fig. 2. An example of physical fragments for relation Patient in Fig. 1(a)

into two different fragments offers visibility of the two lists of values but not of
their association. A fragment is said to violate a constraint if it contains all the
attributes in the constraint. For instance, a fragment containing both Name and
Illness violates constraint c1.

3 Rationale of our Approach

Departing from previous solutions resorting to encryption or unlinkable frag-
ments in the storage of sensitive attributes or associations at the external server,
our solution involves the data owner in storing (and managing) a small portion of
the data, while delegating the management of all other data to external parties.
We consider the management of a small portion of the data to be an advantage
with respect to the otherwise required encryption management and computa-
tion. We then propose to maintain sensitive attributes at the owner side. Sensi-
tive associations are instead protected by ensuring that not all attributes in an
association are stored externally. In other words, for each sensitive association,
the owner should locally store at least an attribute. With this fragmentation,
the original relation R is then split into two fragments, called F o and F s, stored
at the data owner and at the server side, respectively.

To correctly reconstruct the content of the original relation R , at the physical
level F o and F s have a common tuple identifier (attribute t id as in Fig. 2) that
can correspond to the primary key of the original relation, if it is not sensitive,
or can be an attribute that does not belong to the schema of the original relation
R and that is added to F o and F s after the fragmentation process. We consider
this a physical-level property and ignore the common attribute in the reminder
of the paper.

Given a set Cf of confidentiality constraints over relation R , our goal is then
to split R into two fragments: F o, stored at the owner side, and F s, stored at
the server side, in such a way that all sensitive data and associations are pro-
tected. It is easy to see that, since there is no encryption, singleton constraints
can only be protected by storing the corresponding attributes at the owner side.
Therefore, each singleton constraint c={a} is enforced by inserting a into F o

and by not allowing a to appear in F s. Association constraints are enforced
via fragmentation, that is, by splitting the attributes involved in the constraint
between F o and F s. A fragmentation F=〈F o,F s〉 should satisfy the following
conditions: 1) all attributes in R should appear in at least one fragment, to avoid

loss of information; 2) the external fragment should not violate any confidential-
ity constraint. Note that this condition applies only to F s, since F o is accessible
only to authorized users and therefore can contain sensitive data and/or asso-
ciations. These conditions are formally captured by the following definition of
correct fragmentation.

Definition 2 (Fragmentation Correctness). Let R(a1, . . . , an) be a relation
schema, Cf={c1, . . . , cm} be a well defined set of confidentiality constraints over
R, and F=〈F o,F s〉 be a fragmentation for R, where F o is stored at the owner
and F s is stored at a storage server. F is a correct fragmentation for R, with re-
spect to Cf , iff: 1) F o∪F s=R (completeness); 2) ∀c∈Cf , c 6⊆F s (confidentiality);
3) F o∩F s=∅ (non-redundancy).

In addition to the two correctness criteria already mentioned, Definition 2
includes also a condition imposing non redundancy. Besides avoiding usual repli-
cation problems, this condition intuitively avoids unnecessary storage at the data
owner (there is no need to maintain information that is outsourced).

Given a relation schema R(a1, . . . , an) and a set Cf of confidentiality con-
straints, our goal is then to produce a correct fragmentation that minimizes
the owner’s workload. For instance, a fragmentation where F o=R and F s=∅ is
clearly correct but it is also undesirable (unless required by the confidentiality
constraints), since it leaves to the owner the burden of storing all information
and of managing all possible queries.

The owner’s workload may be a concept difficult to capture, also since dif-
ferent metrics might be applicable in different scenarios (see Sect. 4). Regardless
of the metrics adopted, we can model the owner workload as a weight function
w:P(A) × P(A)→R+ that takes a pair 〈F o,F s〉 of fragments as input and re-
turns the storage and/or the computational load at the owner side due to the
management of F o. Our problem can then be formally defined as follows.

Problem 1 (Minimal Fragmentation). Given a relation schema R(a1, . . . , an), a
set Cf={c1,. . . ,cm} of well defined constraints over R , and a weight function w,
determine a fragmentation F=〈F o,F s〉 that satisfies the following conditions: 1)
F is correct according to Definition 2; and 2)@F ′ such that w(F ′)<w(F) and
F ′ is correct.

In the following, we present some possible fragmentation metrics and corre-
sponding weight functions. We then introduce a modeling of the problem (which
we prove to be NP-hard) that is able to capture, as special cases, all these weight
functions and illustrate a heuristic algorithm for its solution.

4 Fragmentation Metrics

In our scenario, storage and computational resources offered by the external
server are considered, for a given level of availability and accessibility, less ex-
pensive than the resources within the trust boundary of the owner. The owner

Problem Metrics Weight function

Storage
Min-Attr Number of attributes card(Fo)

Min-Size Size of attributes

∑

a∈Fo

size(a)

Computation/traffic
Min-Query Number of queries

∑

q∈Q
freq(q) s.t. Attr(q)∩Fo 6=∅

Min-Cond Number of conditions

∑

cond∈Cond(Q)

freq(cond) s.t. cond∩Fo 6=∅

Fig. 3. Classification of the weight metrics and minimization problems

has then a natural incentive to rely as much as possible, for storage and compu-
tation, on the external server. In the absence of confidentiality constraints, all
data would then be remotely stored and all queries would be computed by the
external server. In the case of confidentiality constraints, as discussed in Sect. 3,
the owner internally stores some attributes, and consequently is involved in some
computation.

In this section we discuss several metrics (and corresponding weight functions
to be minimized) that could be used to characterize the quality of a fragmenta-
tion, and therefore to determine which attributes are stored at the owner and
which attributes are outsourced at the external server. The different metrics may
be applicable to different scenarios, depending on the owner’s preferences and/or
on the specific knowledge (on the data or on the query workload) available at
design time. We consider four possible scenarios, in increasing level of required
knowledge. The first two scenarios support measuring storage, while the latter
two scenarios support measuring computation. The scenario and corresponding
weight functions are summarized in Fig. 3.

– Min-Attr . Only the relation schema (set of attributes) and the confidential-
ity constraints are known. The only applicable metric aims at minimizing
the storage required at the owner side by minimizing the number of the at-
tributes in F o. The weight wa(F) of a fragmentation F is the number of at-
tributes in F o, that is: wa(F)=card(F o). For instance, given fragmentation
F=〈{SSN,Illness,Treatment}, {Name,DoB,Race,Job,HDate}〉 illustrated in
Fig. 2, wa(F)=3.

– Min-Size. Besides the mandatory knowledge of the relation schema and the
confidentiality constraints on it, the size of each attribute is known. In this
case, it is possible to produce a more precise estimate of the storage re-
quired at the owner side, aiming at minimizing the physical size of F o,
that is, the actual storage required by its attributes. The weight ws(F)
of a fragmentation F is the physical size of the attributes in F o, that is:
ws(F)=

∑
a∈Fo

size(a), where size(a) denotes the physical size of attribute
a . For instance, with respect to fragmentation F in Fig. 2 and the attributes
size in Fig. 4(a), ws(F)=64.

– Min-Query . In addition to the relation schema and the confidentiality con-
straints, a representative profile of the expected query workload is known.

Attribute a size(a)

SSN 9
Name 20
DoB 8
Race 5
Job 18
Illness 15
Treatment 40
HDate 8

(a)

Query q freq(q) Attr(q) Cond(q)

q1 5 DoB, Illness 〈Dob〉, 〈Illness〉
q2 4 Race, Illness 〈Race〉, 〈Illness〉
q3 10 Job, Illness 〈Job〉, 〈Illness〉
q4 1 Illness, Treatment 〈Illness〉, 〈Treatment〉
q5 7 Illness 〈Illness〉
q6 7 DoB, HDate, Treatment 〈DoB,HDate〉, 〈Treatment〉
q7 1 SSN, Name 〈SSN〉, 〈Name〉

(b)

Fig. 4. An example of data (a) and workload (b) knowledge for relation Patient
in Fig. 1(a)

The profile defines for each query, the frequency of execution and the set
of attributes evaluated by its conditions. The query workload profile is then
a set of triples Q={(q1, freq(q1),Attr(q1)), . . . , (q l, freq(q l)Attr(q l))}, where
q1, . . . , q l are the queries to be executed, for each q i, i = 1, . . . , l, freq(q i) is
the expected execution frequency of q i, and Attr(q i) the attributes appearing
in the where clause of query q i. The first three columns of Fig. 4(b) illus-
trate a possible workload profile for relation Patient in Fig. 1(a). Knowl-
edge on the workload allows the adoption of a metric evaluating the com-
putational work required to the owner for executing queries. Intuitively, the
goal is to minimize the number of query executions that require process-
ing at the owner, producing immediate benefits in terms of the reduced
level of use of the more expensive and less powerful computational ser-
vices available at the owner. The weight wq(F) of a fragmentation F is
then the number of times that the owner needs to be involved in evaluat-
ing queries, that is, the sum of the frequencies of queries whose set of at-
tributes in the where clause contain at least an attribute in F o. Formally,
wq(F)=

∑
q∈Q freq(q) s.t. Attr(q)∩F o 6= ∅. For instance, with respect to the

fragmentation F in Fig. 2 and the query workload in Fig. 4(b), wq(F)=35.
– Min-Cond . In addition to the relation schema and the confidentiality con-

straints, a complete profile of the expected query workload is known. The
complete profile assumes that the specific conditions (not only the attributes
on which they are evaluated) appearing in each query are known. We assume
select-from-where queries where the condition in the where clause is a
conjunction of simple predicates of the form (ai op v), or (ai op aj), with ai

and aj attributes in R , v a constant value in the domain of ai, and op a com-
parison operator in {=, >, <, ≤, ≥, 6=}. The query workload profile is then a
set of triplesQ={(q1, freq(q1),Cond(q1)), . . . , (q l, freq(q l)Cond(q l))}, where
q1, . . . , q l are the queries to be executed, for each q i, i = 1, . . . , l, freq(q i) is
the expected execution frequency of q i, and Cond(q i) is the set of conditions
appearing in the where clause of query q i. Each condition is represented
as a single attribute or a pair of attributes. The first, second, and fourth
columns of Fig. 4(b) illustrate a possible workload profile for relation Pa-

tient in Fig. 1(a).
For each condition appearing in some query, we define freq(cond) as
its overall frequency in the system; formally: freq(cond)=

∑
q freq(q) s.t.

cond∈Cond(q). For instance, with reference to the workload in Fig. 4(b),
freq(Illness)=27. The precise characterization of the workload allows the
definition of a metric to minimize the number of conditions that require pro-
cessing at the owner. The weight w c(F) of a fragmentation F is the number
of times that the owner needs to be involved in evaluating conditions in the
query execution. Intuitively, this corresponds to the number of times the exe-
cution of queries requires evaluating a condition involving an attribute in F o.
Note that conditions are considered separately, hence the evaluation of n dif-
ferent conditions involving some attribute in F o in a query q will contribute
to the weight for n · freq(q). Formally, w c(F)=

∑
cond∈Cond(Q)freq(cond) s.t.

cond∩F o 6=∅, where Cond(Q) denotes the set of all conditions of queries in
Q. For instance, with respect to the fragmentation F in Fig. 2 and to the
query workload in Fig. 4(b), w c(F)=36.
Note that the minimization of the conditions executed at the owner’s side
has a direct relationship with the minimization of the traffic needed for
receiving results of the portion of queries outsourced to the external server.
As a matter of fact, minimizing the conditions executed by the owner is
equivalent to maximizing the conditions outsourced to the external server,
and therefore delegating to it as much computation as possible. In fact, since
the result of evaluating a condition on a relation is a smaller relation, the
greater the number of conditions outsourced to the external servers, the
smaller will be the corresponding results to be received in response.

The different metrics above translate into different instances of Problem 1, by
substituting w with the corresponding weight functions. In synthesis, the re-
sulting instances of the problem aim at minimizing, respectively: the number
of attributes in F o (Min-Attr); the physical size of fragment F o (Min-Size);
the number of times queries requiring access to F o need to be evaluated (Min-
Query); the number of times conditions on F o need to be evaluated (Min-Cond).
Figure 3 summarizes the metrics previously discussed, indicating the name of
the corresponding instantiations of Problem 1.

5 A General Modeling of the Minimization Problems

We start the analysis of the minimization problems previously introduced by
first observing that the Min-Attr problem directly corresponds to the classical
Minimum Hitting Set Problem (MHSP) [10], which can be formulated as follows:
Given a finite set A and a collection C of subsets of A, find a subset S (hitting
set) of A such that S contains at least one element from each subset in C and
|S| is minimum. It is easy to see that setting A as the set R of attributes and C
as the set Cf of constraints, the solution S of the MHSP is the set of attributes
that must be maintained in fragment F o, since S contains the minimum number

of attributes that must be kept by the owner for breaking all the confidential-
ity constraints. Analogously, the Min-Size problem directly corresponds to the
classical Weighted Minimum Hitting Set Problem (WMHSP) [10] formulated as
follows: Given a finite set A, a collection C of subsets of A, a weight function
w : A → R+, find a hitting set S such that w(S) =

∑
a∈S w(a) is minimum.

The correspondence is given by setting w(a) = size(a), ∀a∈R .
Unfortunately, the two problems above (MHSP and WMHSP) are not suffi-

cient for capturing all the different metrics that could be adopted, and therefore
the different minimization problems described in the previous section. As a mat-
ter of fact, while all problems aim at the identification of a hitting set (as F o

must contain at least an attribute for each constraint) the criteria according to
which such a hitting set should be minimized are different. In the following we
define a general problem that is able to capture the different metrics.

5.1 The General Problem

We define a new problem, generalization of MHSP and WMHSP, which we call
Weighted Minimum Target Hitting Set Problem (WMTHSP), as follows.

Problem 2 (WMTHSP). Given a finite set A, a set C of subsets of A, a set T
(target) of subsets of A, and a weight function w:T →R+, determine a subset S
of A that satisfies the following conditions: 1) S contains at least one element
from each subset in C (S is a hitting set of A); 2) @S′ such that S′ is a hitting
set of A and

∑
t∈T ,t∩S′ 6=∅ w(t) <

∑
t∈T ,t∩S 6=∅ w(t).

The weight of a set of attributes is the sum of the weights of the targets
intersecting it; a solution of WMTHSP is a hitting set of attributes with min-
imum weight, that is, it minimizes the sum of the weights of the intersecting
targets. As an example, consider the WMTHSP with A = {a, b, c, d, e, f, g}, C =
{{a, b, c}{b, c, d}{f, g}}, and T = {{a, e}{c, f}{g}} with weights w({a, e}) = 1,
w({c, f}) = 3, and w({g}) = 2. A minimal solution to this problem is S = {b, g},
whose weight is w(S) = 2 (b does not intersect any target, while g intersects a
target with weight 2).

The WMTHSP is NP-hard since the MHSP can be reduced to this problem
by simply defining T ={{a1},. . .,{an}} and w({a1}) = 1, for all i ∈ {1, . . . , n}.
Minimizing

∑
t∈T ,t∩S 6=∅ w(t) is equivalent to minimizing the cardinality of the

hitting set S, since each set t in T corresponds to an element in A and w(t) = 1.
All our minimization problems can be reformulated as instances of the

WMTHSP, remaining however NP-hard. The formulation of all our problems
as a WMTHSP considers as sets A and C of WMTHSP the set R of attributes
and a set Cf of confidentiality constraints, respectively. The definition of the
target set T and of the corresponding weight function w is different depend-
ing on the problem (i.e., the metrics to be minimized). For all the instances of
the problem, the solution S of WMTHSP corresponds to fragment F o of the
data owner. Fragment F s can be simply defined as R \F o. Figure 5 summarizes
the definition of the target T for the different problems, which we now discuss
together with their computational complexity.

Problem Target T w(t) ∀t∈T
Min-Attr T = {{a}|a∈R} w(t)=1
Min-Size T = {{a}|a∈R} w(t)=size(a) s.t. {a}=t
Min-Query T = {attr|∃q∈Q, Attr(q)=attr} w(t)=

∑
q∈Qfreq(q) s.t. Attr(q)=t

Min-Cond T = {cond |∃q∈Q, cond∈Cond(q)} w(t)=freq(cond) s.t. cond=t

Fig. 5. Reductions of the minimization problems to the WMTHSP

– Min-Attr. Each attribute a∈R corresponds to a target with weight 1. Min-
imizing the sum of the weights in S corresponds therefore to minimize the
number of elements in it, and therefore in F o. As already observed, Min-
Attr directly corresponds to the classical NP-hard MHSP and is therefore
NP-hard.

– Min-Size. Each attribute a∈R corresponds to a target with as weight the
size of the attribute. Recalling that the Min-Size problem is equivalent to
the NP-hard WMHSP by setting w(a) as the size of the attribute a, also the
Min-Size problem is NP-hard.

– Min-Query. Each set attr of attributes characterizing some queries corre-
sponds to a target with as weight the number of times the queries need to be
evaluated, that is, the sum of the frequencies of the queries characterized by
the set. The NP-hardness of Min-Query can be directly seen from the fact
that the specific instance of workload having a query with frequency 1 for
each attribute a∈R (i.e., a query q with Attr(q)={a}) corresponds to the
Min-Attr problem and therefore the MHSP can be reduced to it.

– Min-Cond. Each condition cond corresponds to a target with as weight the
frequency of the conditions, that is, the number of times the conditions need
to be evaluated. Note that the specific instance of the Min-Cond problem,
where all conditions are singleton (i.e., conditions of the form “ax op v”,
where v is a constant value), can be formulated as a Min-Size problem, con-
sidering as the size of each attribute the number of times that conditions
on it need to be evaluated. Such a specific instance of the Min-Cond corre-
sponds to the WMHSP, and is therefore NP-hard. Consequently, the general
Min-Cond problem is NP-hard.

5.2 Algorithm

Given the NP-hardness of our minimization problems, that is, of the instances of
Problem 2 with respect to the different weight functions, we propose a heuristic
algorithm for its solution. While not necessarily minimum, our solution ensures
minimality, meaning that moving any attribute from F o to F s would violate at
least a constraint.

Before illustrating the algorithm, we note that any solution must include all
singleton constraints. In other words all attributes involved in singleton con-
straints must belong to F o. Given this observation, we remove singleton con-
straints from the problem to be solved heuristically and implicitly assume their

MAIN
A′ := ∅ /* initialization of the solution */
PQ := Build Priority Queue(A,C,T ,w) /* initialization of the priority queue */
E := Extract Min(PQ) /* E is the element in PQ that minimizes E .w/E .nc */
while (E 6=null) ∧ (E .nc 6=0) do /* there are still constraints to be solved */
A′ := A′ ∪ {E .a} /* update the solution */
to be updated := ∅ /* elements in PQ such that E .w/E .nc has changed */
for each t∈E .T do /* update E .w due to targets */
for each E ′∈(t .Att Ptr\{E}) do
E ′.w := (E ′.w) − w(t)
E ′.T := (E ′.T) \ {t}
to be updated := to be updated ∪ {E ′}

for each c∈E .C do /* update E .nc due to satisfied constraints */
for each E ′∈(c .Att Ptr\{E}) do
E ′.nc := (E ′.nc) − 1
E ′.C := (E ′.C) \ {c}
to be updated := to be updated ∪ {E ′}

for each E ′∈to be updated do /* update the priority queue */
PQ := Delete(PQ,E ′)
PQ := Insert(PQ,E ′)

E := Extract Min(PQ)
for each a∈A′ do /* scan attributes in reverse order of insertion in A′ */
if Can Be Removed(a ,A′,C) then /* check if a is redundant*/
A′ := A′ \ {a}

return(A′)

Fig. 6. Algorithm that computes a solution to the WMTHSP

inclusion in the solution. Consistently, the input to the algorithm ignores all
the targets including attributes in singleton constraints (intuitively, these tar-
gets have been already intersected and therefore there is no further weight to
consider for them). In terms of our example, the unique singleton constraint is
c0, which implies that query q7 is removed from the set T of targets for the
Min-Query problem, while condition 〈SSN〉 is removed from the set T of targets
for the Min-Cond problem.

Our algorithm, reported in Fig. 6, takes as input a set A of attributes not
appearing in singleton constraints, a well defined set C of constraints, a set T
of targets, and a weight function w defined on T , and returns a solution A′,
corresponding to the set of attributes composing, together with those appearing
in singleton constraints, F o.

The heuristic uses a priority-queue PQ that contains an element E for each
attribute a to be considered. Each element E in PQ is a record with the following
fields: E .a is the attribute; E .C is the set of pointers to non-satisfied constraints
that contain E .a ; E .T is the set of pointers to the targets non intersecting the
solution (i.e., targets with no attribute in the solution) that contain E .a ; E .nc is
the number of constraints pointed by E .C ; and E .w is the total weight of targets
pointed by E .T (i.e., E .w=

∑
t∈E .Tw(t)). The priority of the elements in the

queue is dictated by the value of the ratio E .w/E .nc: elements with lower ratio
have higher priority. The ratio E .w/E .nc reflects the relative cost of including an
attribute in the solution, therefore obtained as weight to pay divided by number
of constraints that would be solved by including the attribute. Each constraint
c∈C (target t∈T , resp.) is represented by a set c .Att Ptr (t .Att Ptr , resp.) of
pointers to the elements in PQ representing the attributes appearing in c (t ,
resp.). Therefore, there are double linking pointers between the elements in the

I
 D
 N
 R
 T
 J
 H

3
 2
 2
 2
 2
 1
 0

NI
 NT
 DRI
 DRT
 JI

1
 1
 1
 1
 1
 1
 1

N

1

H

1

D

1

J

1

I

1

T

1
1

C

PQ

T
 R

R
 D
 I
 N
 J
 T
 H

2
 2
 3
 2
 1
 2
 0

NI
 NT
 DRI
 DRT
 JI

5
 8
 15
 20
 18
 40
 8

N

20

H

8

D

8

J

18

I

15

T

40
5

C

PQ

T
 R

(a) Min-Attr (b) Min-Size

NI
 NT
 DRI
 DRT
 JI

N
 R
 T
 D
 I
 J
 H

2
 2
 2
 2
 3
 1
 0

0
 4
 8
 12
 27
 10
 7

C

PQ

T
 RI

4

JI

10

IT

1

I

7

DHT

7
5

DI

NI
 NT
 DRI
 DRT
 JI

N
 R
 T
 D
 I
 J
 H

2
 2
 2
 2
 3
 1
 0

1
 4
 8
 7
12
 27
 10

D

5

J

10

I

27

T

8
4

DH

7

C

PQ

T
 R
N

1

(c) Min-Query (d) Min-Cond

Fig. 7. Data structure initialization for the different problems

priority queue and the constraints (and the targets, resp.). At initialization, the
set of constraints and weighted targets are those given in input to the problem,
the queue contains one element for each attribute to be fragmented, and the
other fields of each queue element are calculated according to the input.

As an example, consider relation Patient and its confidentiality constraints
in Fig. 1 and the data and query profile in Fig. 4. Figure 7 illustrates the initial
configurations of the data structures used by the algorithm, for the different
minimization problems. In the figure, attributes are represented by their initials;
constraints are represented as ovals; and targets as double-circled ovals, with
their weight at the top. Each element E in the priority queue is represented
with a box containing E .a , with E .nc and E .w at the right-top and right-bottom
corner of the box, respectively.

The algorithm performs a while loop that, at each iteration, extracts from
the queue the element E with highest priority (lowest E .w/E .nc ratio), and
inserts its attribute a into A′. Hence, for each constraint c pointed by E.C, it
removes all pointers from/to c and elements in the priority queues, consequently
adjusting the values of field nc of all the involved elements. Analogously, for each
target t pointed by E.T , it removes all pointers from/to t and elements in the
priority queues, consequently adjusting the values of field w of all the involved
elements. This update to the data structure reflects the fact that inclusion of a
in the solution brings satisfaction of all the constraints in which a is involved
(which therefore need not be considered anymore) and it carries the weight for
all the targets that include a (which therefore need not be considered anymore).

The while loop terminates if either the queue is empty (i.e., all attributes are in
A′) or all elements E in it have E .nc=0 (i.e., all constraints have been solved).
The set A′ obtained at the end of the cycle, might be redundant (as the inclusion
of a lower priority attribute might have made unnecessary the inclusion of an
attribute, with higher priority, previously inserted in A′). Hence, the algorithm
iteratively considers attributes in A′ in reverse order of insertion and, for each
considered attribute a , it determines if A′\{a} still represents a hitting set for
C. If it does, a is removed from A′. Note that considering the attributes in A′

in reverse order of insertion corresponds to considering them in increasing order
of priority. Note also that it is sufficient to check each attribute once (i.e., only
a scan of A′ needs to be performed).

The final fragmentation F = 〈F o,F s〉 is then obtained by inserting in F o,
the union of A′ with the attributes involved in singleton constraints (which are
not considered in the algorithm and, consequently, are not in A′); and by setting
F s = R \ F o.

The proposed heuristic algorithm has a polynomial time complexity, and
computes a correct fragmentation. To prove its effectiveness, we have run exper-
iments comparing the solutions returned by our heuristic with the optimal solu-
tion. We considered varying configurations, with different number of attributes,
constraints, and queries. The heuristic algorithm produces solutions always close
to the optimum (in many cases returning the optimum) and the maximum error
observed is 14%. In terms of execution time, the heuristic algorithm considerably
outperforms the exhaustive search. For all the runs, execution times remained
below the measurement threshold of 1 ms, while the execution times of the ex-
haustive procedure increase exponentially, as expected.

Example 2. Figure 8 presents the execution, step by step, of the heuristic algo-
rithm to solve problem Min-Query on relation Patient with its confidentiality
constraints in Fig. 1 assuming the query profile in Fig. 4. The right hand side of
Fig. 8 illustrates the evolution of solution A′, the values of fields E .a , E .C , E .T ,
of the element E considered for each step, and the elements in the priority queue
whose fields w and/or nc must be changed (to be updated). The left hand side of
the figure graphically illustrates the evolution of the data structure. At each step,
the element with highest priority in the queue, together with the constraints and
the targets pointed by it, are highlighted in gray. At the beginning, A′ is empty,
all constraints and targets need to be considered, and the priority queue is as re-
ported in Fig. 7(c). The element with highest priority, with E .a=N , is extracted
from the queue and placed into A′. Pointed constraints, c1=NI and c2=NT ,
need not be considered anymore and therefore the pointers among them and the
elements in the queue are removed, consequently updating field nc for elements
corresponding to attributes I and T , and therefore the priority of the elements
in the queue. No update is needed for targets (as N was not involved in any).
The subsequent steps proceed in analogous way extracting the elements corre-
sponding to attributes R and J . Inclusion of J in the solution brings all values
of nc to 0; meaning that all constraints are satisfied and the algorithm ends. The
computed solution A′ = {N, R, J} is minimal, since removing any attribute from

NI
 NT
 DRI
 DRT
 JI

N
 R
 T
 D
 I
 J
 H

2
 2
 2
 2
 3
 1
 0

0
 4
 8
 12
 27
 10
 7

C

PQ

T
 RI

4

JI

10

IT

1

I

7

DHT

7
5

DI

A′ = {}
E .a = N
E .C = {NI, NT}
E .T = {}
to be updated = {I,T}

DRI
 DRT
 JI
C

PQ

T
 RI

4

JI

10

IT

1

I

7

DHT

7
5

DI

R
 D
 T
 J
 I
 H

2
 2
 1
 1
 2
 0

4
 12
 8
 10
 27
 7

A′ = {N}
E .a = R
E .C = {DRI, DRT}
E .T = {RI}
to be updated = {D,I,T}

JI
C

PQ

T

J
 I
 D
 T
 H

1
 1
 0
 0
 0

10
 23
 12
 8
 7

DHT

7

I

7

IT

1

JI

10
5

DI

A′ = {N ,R}
E .a = J
E .C = {JI}
E .T = {JI}
to be updated = {I}

C

PQ

T
 DHT

7

I

7

IT

1
5

DI

I
 D
 T
 H

0
 0
 0
 0

13
 12
 8
 7

A′ = {N ,R,J}

Fig. 8. An example of algorithm execution

it would not produce a hitting set. The resulting fragmentation, including in Fo

the computed solution as well as all attributes appearing in singleton constraints
is: F o={SSN,Name,Race,Job}; F s={DoB,Illness,Treatment,HDate}.

The execution of the algorithm for the other minimization problems returns:
Min-Attr: F o={SSN,Illness,Treatment}, F s={Name,DoB,Race,Job,HDate};
Min-Size: F o={SSN,Race,Illness,Name}, F s={DoB,Job,Treatment,HDate};
Min-Cond: F o={SSN,Name,Race,Job}, F s={DoB,Illness,Treatment,HDate}.

6 Related Work

Previous work is related to the data outsourcing scenario [3, 9, 11, 12, 14], where
the outsourced data are stored on an external honest-but-curious server and are
entirely encrypted for confidentiality protection. Such approaches are typically
based on the definition of additional indexing information, stored together with
the encrypted data, which can be exploited for the evaluation of conditions at
the server side. In [9, 12], the authors address the problem of access control
enforcement, proposing solutions based on selective encryption techniques for
incorporating the access control policy in the data themselves.

The first proposal suggesting the combined use of fragmentation and encryp-
tion for enforcing confidentiality constraints has been presented in [1]. This tech-
nique is based on the assumption that data are split over two honest-but-curious
servers and resorts to encryption any time two fragments are not sufficient for
enforcing confidentiality constraints. This proposal also relies on the complete
absence of communication between the two servers. The work presented in [4,
5] removes this limiting assumption, by proposing a solution that allows storing
multiple fragments on a single server and that minimizes the amount of data
stored only in encrypted format or the query execution costs. In this paper, dif-
ferently from previous approaches, we aim at solving confidentiality constraints
without resorting to encryption, by storing a portion of the sensitive data at the
data owner site, thus avoiding the burden of decryption in query execution.

An affinity to the work presented in this paper can be found in [2, 8]. Al-
though these approaches share with our problem the common goal of enforcing
confidentiality constraints on data, they are concerned with retrieving a data
classification (according to a multilevel mandatory policy) that ensures sensitive
information is not disclosed and do not consider the fragmentation technique.

The problem of fragmenting relational databases has been also addressed in
the literature, with the main goal of improving query evaluation efficiency [13].
However, these approaches are not applicable to the considered scenario, since
they do not take into consideration privacy requirements.

7 Conclusions

The paper presented an approach for the management of confidentiality con-
straints in data outsourcing. Specifically, we were interested in analyzing the
efficient management of data in the presence of a requirement forbidding the
use of encryption on the data. The solution presented satisfies this requirement
by exploiting the availability at the owner of local trusted storage, which will
have to be used efficiently by limiting its use to the representation of the min-
imal collection of data that are needed to protect the specified confidentiality
constraints. Minimization can be defined following several distinct criteria and
we presented a general approach able to support, within the same algorithm,
the evaluation of alternative metrics. It is to note that this approach in no way
intends to make obsolete previous approaches using encryption. Rather, it pro-
poses a novel way that extends the adoption of data outsourcing to scenarios

where, in the evaluation of the tradeoff between the advantages and disadvan-
tages of encryption, a strong preference is expressed toward the adoption of an
encryption-less solution.

Acknowledgements This work was supported in part by the EU within the
7FP project under grant agreement 216483 “PrimeLife”. The work of Sushil Ja-
jodia was partially supported by the National Science Foundation under grants
CT-0716323, CT-0627493, and IIS-04300402 and by the Air Force Office of Sci-
entific Research under grants FA9550-07-1-0527 and FA9550-08-1-0157.

References

1. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Mot-
wani, R., Srivastava, U., Thomas, D., Xu, Y.: Two can keep a secret: a distributed
architecture for secure database services. In: Proc. of CIDR 2005, Asilomar, CA,
USA (January 2005)

2. Biskup, J., Embley, D., Lochner, J.: Reducing inference control to access control
for normalized database schemas. IPL 106(1) (2008) 8–12

3. Ceselli, A., Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Modeling and assessing inference exposure in encrypted databases.
ACM TISSEC, 8(1) (February 2005) 119–152

4. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Fragmentation and encryption to enforce privacy in data storage.
In: Proc. of ESORICS’07, Dresden, Germany (September 2007)

5. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Fragmentation design for efficient query execution over sensitive
distributed databases. In: Proc. of ICDCS’09, Montreal, Canada (June 2009)

6. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Samarati, P.: k-Anonymity.
In Yu, T., Jajodia, S., eds.: Secure Data Management in Decentralized Systems.
Springer-Verlag (2007)

7. Cormode, G., Srivastava, D., Yu, T., Zhang, Q.: Anonymizing bipartite graph data
using safe groupings. In: Proc. of VLDB’08, Auckland, New Zeland (August 2008)

8. Dawson, S., De Capitani di Vimercati, S., Lincoln, P., Samarati, P.: Maximizing
sharing of protected information. JCSS 64(3) (May 2002) 496–541

9. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Over-encryption: Management of access control evolution on outsourced data. In:
Proc. of VLDB’07, Vienna, Austria (September 2007)

10. Garey, M., Johnson, D.: Computers and Intractability; a Guide to the Theory of
NP-Completeness. W.H. Freeman and Company (1979)

11. Hacigümüs, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: Proc.
of ICDE’02, San Jose, CA, USA (February 2002)

12. Miklau, G., Suciu, D.: Controlling access to published data using cryptography.
In: Proc. of VLDB’03, Berlin, Germany (September 2003)

13. Navathe, S., Ceri, S., Wiederhold, G., Dou, J.: Vertical partitioning algorithms for
database design. ACM TODS 9(4) (December 1984) 680–710

14. Wang, H., Lakshmanan, L.V.S.: Efficient secure query evaluation over encrypted
XML databases. In: Proc. of VLDB’06, Seoul, Korea (September 2006)

	copyright: © Springer Berlin / Heidelberg, Lecture Notes in Computer Science (2009)
http://www.springerlink.com/content/w7318n705q1g275l/fulltext.pdf

