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Glossary

AES: Advanced Encryption Standard.

Asymmetric-key cipher: An encryption algorithm based on methods involving a public key and a private
key.

Authentication: Means of establishing the validity of a claimed identity.

Auditing: It is the monitoring and recording of events to investigate suspicious activity and/or to monitor
and gather data about specific activities.

Audit log: A file including records showing who has accessed a system and what operations he/she has
performed during a given period of time.



Authorization: The right granted to a user to exercise an action (e.g., read, write, create, delete, and
execute) on certain objects.

Availability: A requirement intended to guarantee that information and system resources are accessible to
authorized users when needed.

Biometric: Any specific and uniquely identifiable physical human characteristic (e.g., retina, fingerprints)
that may be used to authenticate an individual.

Block ciphers: A symmetric-key cipher that encrypts a message by breaking it into blocks and encrypting
each block.

Challenge-response: Common authentication technique whereby a user receives a random number (the
challenge) and then provides some private information (the response) related to the received challenge.

Cipher: A cryptographic algorithm used to encrypt and decrypt messages.

Ciphertext: The result of encryption. A ciphertext contains the same information as the original plaintext,
but makes it unintelligible to unauthorized parties.

Confidentiality: The assurance that private or confidential information not be disclosed to unauthorized
users.

Cryptography: the art or science encompassing the principles and methods of transforming an intelligible
message into one that is unintelligible, and then retransforming that message back to its original form.

DAC: Discretionary Access Control.

DES: Data Encryption Standard.

Data integrity: A requirement that information is not modified improperly.

Decryption: Any process to convert ciphertext back into plaintext.

Denial-of-service: Prevention of legitimate users of a service from using that service.

Digest: Commonly used to refer to the output of a hash function.

Double-spending: Double-spending refers to fraudulently spending the same digital money twice.
Encryption: Any process to convert plaintext into ciphertext.

Group: A set of users.

Hash function: A hash function h is a transformation that takes an input m and returns a fixed-size string,
which is called the hash value.

IDEA: International Data Encryption Algorithm.
Identification: Means by which a user provides a claimed identity to the system.

Inference: An inference problem arises whenever some data can be used to derive partial or complete
information about some other more sensitive data.

Integrity: Information has integrity when it is accurate, complete, and consistent. (See data integrity and
system integrity.)

MAC: Mandatory Access Control.
NIST: National Institute of Standard and Technology.

Non-repudiation: A requirement intended to guarantee that users cannot deny actions they performed.



PIN: Personal Identifier Number.
Plaintext: The data to be encrypted.

Public Key Infrastructure: The framework and services that provide for the generation, production,
distribution, control, accounting and destruction of public key certificates.

RBAC: Role Based Access Control.

Replay attacks: Attacks based on intercepting and recording messages between parties for their subsequent
(illegitimate) replaying in a different context.

Role: A job function within an organization that describes the authority and responsibility related to the
execution of an activity.

Secrecy: A requirement that released information be protected from improper or unauthorized release.
Security: The combination of integrity, availability, and secrecy.

Security mechanism: Low-level software and/or hardware functions that implement security policies.
Security policy: High-level guidelines establishing rules that regulate access to resources.

Smartcard: A small electronic device that contains electronic memory and is equipped with processing
capabilities.

Stream cipher: A symmetric-key encryption algorithm that operates on a bit at a time.
Subject: An active entity that can exercise access to the resources of the system.

Substitution cipher: A cipher in which each letter of a message is replaced with another character, but
preserves its position within the message.

Symmetric-key cipher: An encryption algorithm where the same key is used for encryption as decryption.

System integrity: A requirement that a system performs its intended functions while preventing deliberate
or inadvertent unauthorized manipulation of the resources.

Token: A small device typically used by users to authenticate them to the system.

Transposition cipher: A cipher in which the original letters of a plaintext message are rearranged into a
different, unintelligible sequence according to a fixed rule.

Trojan horse: A malicious program containing hidden instructions allowing the unauthorized collection of
information and that masquerades as benign applications.

User: A person who interacts directly with a system.

Summary

Data security refers to the protection of information against possible violations that can compromise its
secrecy, confidentiality, integrity, or availability. Secrecy is compromised if information is disclosed to unau-
thorized subjects. Integrity is compromised if information is modified in an unauthorized or improper way.
Availability is compromised if users are prevented from exercising authorized access (denial-of-service).
Guaranteeing data security requires the establishment and enforcement of different kinds of controls, in-
cluding the identification and authentication of the different parties in a system (e.g., users and machines),
the enforcement of rules regulating access to the system and its resources, the use of encryption techniques
to protect information in storage or in transit over the network, and the post-facto examination of all the
activities in a system to point out vulnerabilities or violations.

This chapter discusses issues involved in establishing security restrictions to regulate access to data and
resources in a system.



1 Introduction

Governments, commercial businesses, and individuals are all storing information in electronic form. This
medium provides a number of advantages over previous physical storage: storage is more compact, transfer is
almost instantaneous, and accessing via databases is simpler. The ability to use information more efficiently
has resulted in a rapid increase in the value of information; many organizations today recognize information
as their most valuable asset. However, with the electronic revolution, information faces new, and potentially
more damaging, security threats. Unlike information printed on paper, electronic information can be copied
leaving the original unaltered. Also, information in electronic form can potentially be stolen from a remote
location and it is vulnerable from interceptions and alterations during communication.

Data security describes all measures taken to prevent unauthorized or improper access to electronic data
- whether unlegitimate access can take the form of disclosure, alteration, substitution, or destruction of the
data concerned. Data security can be classified as the provision of the following services:

e Secrecy (Confidentiality) Information that is stored on a system or transmitted over a network should
be released, directly or indirectly, only to users authorized to access it.

o Integrity Information should be protected from unauthorized or improper alteration, that is, informa-
tion must not be improperly modified, deleted, or tampered.

o Awailability Users should not be prevented from accessing data for which they have the necessary
permissions (denials-of-service).

Ensuring security requires the application of different protection measures at both the organizational
level (organizational practices and user training) and the technical level. Technical services crucial to the
protection of data include Authentication, Access Control, Audit, and Encryption.

Authentication Authentication establishes the validity of one party to another, where parties can be
human users or computers. Authentication can also be employed in communication system to ensure the
validity of transmitted messages.

Access Control Access control is concerned with evaluating every request, submitted by users who have
entered the system, to access data and resources to determine whether the request should be allowed or
denied based on a specified policy.

Audit Audit is an independent review and examination of records and activities in the system to assess
the adequacy of system controls, to ensure compliance with established policies and operational procedures,
and to recommend necessary changes in controls, policies, or procedures.

Encryption Allows the coding of information so to make it unintelligible to parties not authorized to
access it. It also allows to signal possible improper alterations.

In the remainder of this chapter we describe each of these services in more details.

2 Authentication

Authentication is a means of establishing identities. Generally speaking, authentication allows the estab-
lishment of the identity of one party to another, where parties can be computers or human users. The most
popular form of authentication is the authentication of a user to a computer, by which a machine ensures the
correctness of the identity of users requesting access to its resources. In a computer to computer interaction,
authentication can be required to be performed in both directions, as in the case of peer-to-peer commu-
nication. Mutual authentication can also be used in a client-server scenario (although typically only client
authentication is enforced). Also in a user-to-computer interaction, authentication of a computer can be
used, to ensure the user of the identity of the machine with which he/she is interacting and thus preventing



against spoofing attacks. In spoofing attacks a system masquerades as another system, tricking the user into
disclosing information.

Authentication can be certainly seen as the most primary security service on which other security services
depend. As a matter of fact, good authentication is a prerequisite for correct access control and auditing: if
a user’s identity is incorrect, so will be the privileges granted (or denied) to the user by the access control
mechanism and the accountability attribution of the auditing controls.!

The most common ways to enforce user to computer authentication are based on the use of:

e something the user knows (e.g., a username and password);
e something the user possesses (e.g., a smartcard);
e something the user is (e.g., fingerprints and retinal scan).

These techniques can be used in alternative or in combination; thus providing a stronger protection. For
instance, a smartcard may require that a password be entered to unlock it.

Authentication based on something the user knows The most common form of authentication is
based on the assignment to each user of an identifier (e.g., a computer login) and an associated password
(string, PIN, or passphrase). While the identifier can be public, the password is assumed to be known only
to the legitimate user. The password is stored in the system in encrypted form. To access the system,
a user provides his identifier (declaration of identity) and the corresponding password (proof of identity).
Since only the user is assumed to know the password, matching of the encrypted version of the password
provided with that stored at the system for the declared identifier successfully authenticates the user. The
benefits of password-based authentication are that it is very simple, cheap, and easy to enforce. All these
characteristics make password-based control the most commonly used authentication measure. However,
strength is traded off for such simplest and low cost, and password-based techniques are the weakest form
of authentication: security strictly depends on maintaining the secrecy of the password, which however can
be compromised. For instance, passwords can be sniffed (i.e., observed by unlegitimate users) when in
transit over the network, snooped by people observing the legitimate users when they key them in, or simply
guessed by intruders. A common bad practice that makes password vulnerable to guessing attacks is the
users tendency to choose passwords that are easy for them to remember, such as their birthdate, the name
of their relatives or pets, or their favorite sport. Other diffused bad practices that put password’s secrecy at
risk are writing the password down, to not forget it, or pass it to colleagues, as a quick and dirty solution to
a file sharing problem. Instead, passwords should always remain private: giving away our password means
giving someone else the ability of masquerading as ourselves to the system, being retained accountable for
all the actions they will execute (which are recorded as associated with our identifier).

As user bad practices are one of the major cause of password vulnerability, a primary aspect for the
success of password-based techniques is proper user training and awareness. Also, password security can be
improved by the enforcement of additional controls. For instance, sniffing can be prevented by encrypting the
communication between the user and the computer. Snooping can be prevented by protecting the keyboard
from the view of others and by not echoing it on the screen. Guessability of passwords can be reduced by
adopting password generators or dictionary controls. In the first case, the computer chooses the password for
the users. In the second case, the computer simply controls the strength of the passwords chosen by the users,
rejecting those passwords considered too easy and therefore guessable by an adversary. A good password
should be at least 8 character long, should use a reasonably large character set (possibly mixing alphanumeric
characters with special characters), and still should be easy to remember (otherwise users would be tempted
to write it down or they would suffer denial-of-service in case of forgotten passwords). Also, passwords
should not correspond to real words (or a slight variation of them), since this would make them vulnerable
to dictionary attacks, by which an adversary automatically attempts all words in a dictionary. It is also
a good practice to change passwords frequently (e.g., once a month). Automatic controls can be applied
to enforce periodical password changes: passwords are assigned a limited lifetime after which they become
invalid; users are therefore forced to change their password upon expiration. These controls can also be
coupled with history checks, to avoid users reusing the same password before a specified time frame.

1 Accountability is the ability to link all the activities to the users who exercised them.
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Figure 1: An example of challenge-response handshake

Authentication based on something the user possesses Authentication is based on possession by
users of objects, called tokens. Each token has a unique private cryptographic key stored within it, used
to establish the token’s identity to the computer. Token-based authentication is stronger than password,
as by keeping control on the token the user maintains control on the use of his identity. However, token
authentication proves only the identity of the token, not of the user presenting it. The main weakness of such
an approach is that tokens can be forged, lost, or stolen; anybody gaining possess of a token would be able
to masquerade as the legitimate owner. To solve this problem, token-based authentication is often combined
with the request of a proof of knowledge by the user. As an example, think of the Automatic Teller Machine
(ATM), where a card is used together with a PIN (Personal Identification Number). The PIN is usually a
string of four numeric digits, and works like a password. The combination of token and password clearly
provides better security than each of the measures singularly taken. Indeed, to enter a system, an intruder
needs both to present the token and to enter the PIN.

The simplest form of token is a memory card. Memory cards have storing capabilities, but do not have
any processing ability. They cannot therefore perform any check on the PIN or encrypt it for transmission.
This requires sending the PIN to the authentication server in the clear, exposing the PIN to sniffing attacks
and requiring trust in the authentication server. More sophisticated tokens, called smart tokens, are equipped
with processing capabilities (e.g., tokens incorporating one or more integrated circuits). For instance, the
ATM cards are provided with processing power that allows the checking and encrypting of the PIN before its
transmission to the authentication server. Smart tokens can use different types of authentication protocols,
which can be classified as static password exchange, dynamic password generators, and challenge-response.
With static password exchange, the user authenticates himself to the token and the token authenticates
the user to the system. In the dynamic password generator approach, a token dynamically changes its key,
by periodically generating a new key to be used. To authenticate the token to the system, the user reads
the current key for the token and types it into the system. Alternatively, the key can be communicated to
the system by the token. The challenge-response approach is the one most commonly used. It works on a
challenge-response handshake as follows (see Figure 1). The party establishing the authentication issues a
challenge (e.g., a random string number). The token generates a response to the challenge using the token’s
private key. Like for the dynamic case, communication between the token and the system can be enforced
with or without the user intervention. In the first case, the challenge is keyed into the token by the user
and the response displayed by the token is again keyed by the user into the workstation and communicated
to the authenticating party. In the second case, the workstation is equipped with a reader that can directly
interact with the token eliminating the need for the user to key in the challenge and response. An example of
smart token is represented by smart cards, sophisticated token devices that have both processing power and
direct connection to the system. Each smart card has a unique private key stored within. To authenticate
the user to the system, the smart card verifies the PIN. It then enciphers the user’s identifier, the PIN, and
additional information like date and time, and sends the resulting ciphertext to the authentication server.
Authentication succeeds if the authentication server can decipher the message properly.

Authentication based on something the user is Authentication techniques in this category exploit
biometric characteristics of the users. These can be physical characteristics, such as fingerprints, hand shape,



and characteristics of the eyes and face, or behavioral characteristics, like signatures, voiceprint, handwriting,
and keystroke dynamic. The first step in the application of biometric techniques is the measurement of the
interested characteristic to the purpose of defining a template for it. This step, called enrollment phase, gen-
erally comprises of several measurements of the characteristic (e.g., to define the voiceprint for an individual
several inputs need to be considered). Based on the different measurements, a template is computed and
stored for authentication. When a user presents himself to the system, the relevant characteristic is mea-
sured and matched with the stored template. Notice that, unlike for password and token-based techniques,
biometric-based authentication cannot require an exact match. While a password either matches the one
stored at the authentication server or it does not, no two signatures of a person are an exact copy one of
the other. The authentication result is therefore based on how closely the measured characteristic matches
the stored template. Authentication succeeds if the difference is within an acceptable predefined threshold;
it fails otherwise. An important, and not easy, task is therefore the definition of the acceptable threshold,
which must guarantee a high rate of successes (correct authentication of legitimate users and rejection of
attackers) and low rate of insuccesses.

Although they can be less accurate, biometric techniques are stronger than either password or token based
techniques. Indeed, they eliminate the weaknesses due to the possibility of the identity proof (password or
token) being acquired by unlegitimate users. However, the use of biometric techniques is still limited because
of the high cost and expensive equipment needed. Moreover, their intrusive nature limits user acceptance
and large scale use. For instance, retinal scanners, which are one of the most accurate biometric methods
of authentication, have raised concerns about possible harms that the infrared beams sent to the eye by the
scanner can cause. Also, deployment of biometric technology in a large scale is certain to raise social and
political debates, since unforgeable biometric authentication could result in significant loss of privacy for
individuals.

From a strictly technical point of view, the best authentication solution would be the combination of
user-to-token biometric authentication, followed by mutual cryptographic authentication between the token
and system services.

2.1 Attacks

We have already mentioned some of the most popular attacks (e.g., password spoofing or dictionary attacks)
to fool authentication mechanisms, and possible defenses against these attacks. Another popular class of
attacks to password secrecy is represented by replay attacks. Replay attacks are based on intercepting
and recording messages between parties for their subsequent (illegitimate) replaying in a different context.
When replayed, messages can be redirected to recipients other than the one originally intended, or they
can be repeated in different protocols or protocol runs. A way to combat replay attacks is to ensure that
the information to be exchanged across the network be different each time. Methods which prevent replay
attacks are known as strong authentication and can be divided into three classes: shared sequence, challenge-
response, and asymmetric-key. In shared sequence methods, the user and the service share a sequence of
one-time passwords that the user can present to authenticate himself at the service. A one-time password
can be used only for one connection, and once used it becomes invalid. Even if the password is sniffed all
replay attacks trying to use it will therefore fail. In challenge-response methods, the service generates a
challenge string, which must be different for each transaction, and sends it to the user. The user computes a
response to the challenge with a function dependent on both the challenge and the user’s key. The function
used to produce the answer must be such that it must practically impossible (meaning infeasible from a
computational point of view), given the challenge and the response to it, to reconstruct the password. Since
the challenge is different every time, replay attacks cannot succeed (as possibly intercepted responses cannot
be reused). In asymmetric key methods, the user possesses a pair of keys: a public key k, which is widely
publicized; and a private key k~!, which is kept secret. Whenever a user wants to authenticate himself
to a service, he/she sends a message signed (i.e., encrypted) with his/her private key. If the service can
decrypt the message correctly by using the corresponding public key, it can be certain that the message was
encrypted by using the user’s private key (which should be known only to the user). Analogously, a service
which encrypts its replies with the user’s public key can be confident that they can only be read by using
the corresponding private key. We will illustrate asymmetric-key techniques in more details in Section 5.



3 Access control

Access control evaluates the requests to access resources and determines whether to grant or deny them.
Typically, access control operates after authentication has taken place, evaluating all requests to access
resources of users who have successfully entered the system. The ability of users to access resources usually
depend on their identity, which must be therefore properly authenticated. In studying access control, it is
useful separate security policies from mechanisms. A security policy defines high-level guidelines establishing
rules that regulate access to resources. Mechanisms are low-level software and/or hardware functions that
implement the policies. The design of an access control system is usually performed with a multiphase
approach, from the analysis of the security requirements, to the definition and formalization of the policies,
to their final implementation in a security mechanism. The formalization of security policies introduces the
concept of an access control model, that formally defines the entities that part of the system (e.g., users
and resources), the accesses to be controlled (operations), and the rules regulating access. The definition
of a formal model allows to reason about the properties that the resulting system will have and prove
security results. By proving properties on the formalized model and by proving that the mechanism correctly
implements the model, we can claim that the mechanism enjoys those properties. Among the properties that
a security model must satisfy there are the basic completeness and consistency. Completeness ensures that
all the input security requirements to be addressed are satisfied. Consistency requires that the model be
free of contradictions: an access cannot be simultaneously granted and denied. Many mechanisms have
been developed and they vary in terms of precision, sophistication, and cost. Access control mechanisms are
generally based on the definition of a reference monitor that intercepts every access request to objects in the
system and examines whether the request should be granted or not, according to the access control policy
to be enforced. The reference monitor must be:

e tamper-proof: the reference monitor cannot be altered;
e non-bypassable: each access request must be filtered by the reference monitor;

e kernel-based: the reference monitor should be confined in a limited part of the system (splitting the
security functions all over the system would require to verify of all the code);

e small: the reference monitor should be enough small so to make formal verification possible.

Obviously, the reference monitor that enforces a certain access control policy should be trusted by the
authority that specifies the policy. Multiple reference monitors can be involved in specific access decisions;
as in the case of distributed systems where policies specified by different authorities govern the access to
certain objects.

The separation between policies and mechanisms has many advantages: access requirements can be
discussed independently of their implementation to reason about their correctness and properties; different
access control policies as well as different mechanisms enforcing the same policy can be compared; and it is
possible to design mechanisms that enforce multiple policies.

Access control policies can be divided in three major categories: discretionary access control (DAC),
mandatory access control (MAC), and the most recent role-based access control (RBAC).

3.1 Discretionary Access Control

The Trusted Computer System Evaluation Criteria (TCSEC) defines discretionary access control as

“A means of restricting access to objects based on the identity of subjects and/or groups to
which they belong. The controls are discretionary in the sense that a subject with a certain
access permission is capable of passing that permission (perhaps indirectly) on to any other
subject (unless restrained by mandatory access control)”

Discretionary access controls therefore base on (discretionary) rules that state who can exercise given
accesses. The simplest form of rule is an authorization tuple, usually of the form (u,o0,a,p), where u is
the user to whom the access rule is granted, o is the object, a is the action and represents the type of



access that the user can exercise on the object, and p is a predicate expressing conditions over the access.
Authorization tuple {(u, 0,a, p) states that user u can execute action a on object o provided that predicate p
is satisfied. The simplest form of predicates are system conditions, that is, conditions that can be evaluated
by checking the state of the system, like the time or the location of a request. For instance, an authorization
can state that “Bob can write file accounts but only between 8am and 5pm and from machines in the
bank building”. Predicates can also express content-dependent conditions, which restrict the authorization
validity depending on the content of the object, or history-based conditions, which restrict the validity of the
authorization depending on previous accesses. Specific subjects, objects, and actions to which authorizations
can be referred may be different from system to system. For instance, in an operating system, objects will
be files and directories, while in database systems, tables and records within them might be considered
as objects. Actions for which authorizations can be specified include the following access modes: read, to
provide users with the capability to view information; write, to allow users to modify or delete information;
ezecute, to allow users to run programs; delete, to allow users to delete system resources; and create, to
allow users to create new resources within the system. Authorization tuples can be referred to single users,
actions, and objects, or to sets of them. The reference of authorizations to sets of entities is usually done
by defining named groups of these entities. Usually groups need not be disjoint (i.e., a user can belong to
several groups) and can be nested (i.e., groups can be defined as members of other groups). Groups together
with the membership relationship form a hierarchy usually depicted as a directed acyclic graph. Figure 2
illustrates an example of users, actions, and objects hierarchies. Authorizations assigned to a group can be
enjoyed by all its members. Whenever a user requests an access to an object, his/her request is checked
against the specified authorizations. If there exists an authorization applicable to the request, the access
will be granted; it will be denied otherwise.

Access control policies based on the (positive) authorization tuples granting privileges are called closed:
an access is granted only if there is an authorization for it. Alternatively, an open policy can be applied
which is based on negative authorizations. In an open policy, authorization tuples state accesses that must
be denied, and an access is granted only if it is not denied by any authorization. Recent proposals adopt
a hybrid approach, combining in a single model the use of both positive and negative authorizations. The
combination of positive and negative authorizations provides more flexibility and control in the specification
of authorizations. For instance, the owner of an object who is delegating administration to others, can
specify a negative authorization for a specific user to ensure that the user will never be able to access the
object, even if others grant him/her a positive permission for it. Negative authorizations can also be used
to specify exceptions. For instance, suppose we wish to grant an authorization to all members of a group,
except Bob. In the absence of negative authorizations, we would have to express the above requirement by
specifying a positive authorization for each member of the group except Bob. If negative authorizations are
supported, the same requirement can be expressed by granting a positive authorization to the group and a
negative authorization to member Bob. While increasing flexibility, negative authorizations introduce the
possibility of conflicts, meaning the presence of both a negative and a positive authorization for an access.
Different policies can be applied to resolve conflicts. Among them, the most intuitive and natural is the most
specific takes precedence according to which authorizations specified for an entity (user, object, or action)
take precedence over authorizations specified for groups in which the entity belong. With reference to the
example just illustrated, this conflict resolution policy would consider, in evaluating Bob’s access, the negative
authorization granted to Bob personally as prevailing over the authorization granted to the group in which
he belongs. The most specific takes precedence criteria is intuitive and natural, as it expresses the concept of
“exception”. However, it does not solve all possible conflicts. For instance, Alice can belong to two groups
(which are not in a membership relationship) holding conflicting authorizations. Alternative or additional
conflict resolution policies that ensure complete conflict resolution include: the denials-take-precedence policy
(negative authorizations always win); the permissions-take-precedence policy (positive authorizations always
win); explicit assignments of priorities to the authorizations; grantor-dependent resolution (the strength of
an authorization depend on who granted it); or considering the sign of the authorizations that are in larger
number. More recent access control models further extend the authorization tuple allowing the specification
of more expressive access control rules, usually based on some logic language. Goal of these proposals is
the development of flexible and powerful access control models that provide multiple policy features, that
is, that can capture within a single model (and therefore mechanism) different access control and conflict
resolution policies.
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Figure 3: An example of access matrix

As their name suggests, discretionary access policies give users discretion in the specification of accesses
that can (or cannot) be granted. The specification of authorizations can be regulated by different admin-
istrative policies. The most elementary administrative policy is the centralized policy in which a central
authority (e.g., superuser, database administrator, or security administrator), which can correspond to one
or more privileged users, has the privilege of specifying authorizations. Another basic and highly applied
administrative policy is the ownership policy, in which the creator of an object is considered its owner and as
such he/she is granted administrative authority on it. The two approaches can be enriched with decentral-
ized administration, in which the administrator of an object (superuser or owner) can grant to other users
the privilege of administering accesses on the objects. The delegated authority can be limited to the specifi-
cation of access authorizations or it can include administrative authorizations (i.e., the delegated authority
can pass on the administrative privilege to others). Decentralized administration introduces the problem of
revocation. In particular, the question is what should happen to the privileges granted by a user once his/her
administrative privileges are revoked. It is easy to imagine that while there are cases in which we would like
these privileges to be deleted as well (as in the case where we are revoking administrative privileges because
we do not trust the user anymore), there are other cases in which these privileges should be maintained (as
in the case where we are revoking administrative privileges since the user has been promoted and would like
to retain all his/her administrative work). Different revocation strategies have been proposed, which include
recursive (or cascade) and non recursive revocation. In recursive revocation, authorizations granted by the
revokee are recursively deleted. In the non recursive revocation approach, either the revoke operation can
be rejected if “pending” authorizations (those granted by the revokee) would remain or it can be enforced
giving the revoker authority over these authorizations.

3.1.1 DAC Mechanisms

A simple way to represent a set of authorizations for their enforcement consists in using an access control
matriz. An access control matrix has authorization subjects represented on the rows, and protected objects
on the columns. Entry (s,o0) in the matrix reports the actions that subject s can exercise on object o.
Figure 3 illustrates an example of access matrix. Since the access matrix is usually large and sparse, its
storage implies a waste of memory space. There are three basic approaches of implementing the access
matrix in a practical way:
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[ User |  Accessmode [ Object | fileA— Alice Bob Eve Alice—* fileA fileB programC
Alice own fileA owrtw read read Owtn write execute
write write
Alice read fileA read read
Alice write fileA
Alice write fileB fileB———* Alice Bob Eve Bob ———* fileA fileB programC
write read read read read execute
Alice execute programC write
read
Bob read fileA
Bob read fileB progranC———= Alice Bob Eve ———= fileA fileB
Bob read programC executel execute read read
Bob write programC vyégg
Bob execute programC e
Eve read fileA
Eve read fileB

@ (b) ©

Figure 4: Authorization table (a), access control lists (b), and capability lists (c) corresponding to the access
matrix in Figure 3

e Authorization table Store a table of non-null triples of the form (s, a,0). It is especially used in database
management systems (DBMSs), where authorizations are stored as catalogs.

e Access control lists (ACLs) Each object is associated with an ACL which specifies which users have
which access modes on it.

o Capability lists (tickets) Each user is associated with a capability lists that specifies the objects that
the user can access and the access modes the user can exercise on them.

Intuitively, an entry in the authorization table corresponds to a cell in the matrix, an ACL corresponds
to a column of the matrix, and a capability corresponds to a row of the matrix. Figures 4 illustrates the
authorization table, ACLs, and capability lists corresponding to the access matrix in Figure 3. ACLs and
capabilities have dual advantages and disadvantages: the ACL approach provides efficient per-object access,
while the capability approach provides efficient per-subject access. In particular, in the ACL approach, by
looking at an object’s ACL, it is easy to determine which actions subjects are currently authorized for that
object. Determining all accesses for which a subject is authorized would require instead the examination
of all the ACLs. Conversely, in a capability based approach it is easy to review all accesses that a subject
is authorized to perform, by simply examining the subject’s capability list. However, determination of all
subjects who can access a particular object requires examination of each and every subject’s capability
list. A number of capability-based computer systems were developed in the 1970s, but did not prove to be
commercially successful. Modern operating systems typically take the ACL-based approach. An example
of primitive form of ACL is that implemented in the UNIX operating system, where each file is associated
with a list of bits. Access privileges are represented as 9 bits where: bits 1 through 3 reflect the privileges of
the file owner, bits 4 through 6 those of the user group to which the file belongs, and bits 7 through 9 those
of all the other users. The three bits correspond to the read, write, and execute privilege, respectively. For
instance, a list rwzr-z—x associated with a file states that the file can be read, written, and executed by its
owner, read and executed by the users belonging to the group associated with the file, and executed by all
the other users.

3.1.2 Weaknesses of discretionary access control

Discretionary access control policies restrict access to objects based only on the identity of users who are
requesting access. Although each access request is originated by users for the purpose of performing some
action, it is useful, for a better understanding of the access control problem, to make a distinction between
user and subject. A user is a “passive” entity for whom authorizations are defined and who can connect to the
system. A subject is an “active” process operating on behalf of a user that accesses system resources, while
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Figure 5: An example of Trojan horse

users are trusted, subjects that operate on their behalf are not. Discretionary access control policies make
no distinction between these two concepts: any process (subject) running on behalf of a user can exercise the
access privileges granted to the user. DAC policies are vulnerable to Trojan horses (i.e., a software containing
hidden malicious code) improperly leaking information to unauthorized users. The reason for this weakness
is that no control is enforced on the use or dissemination of the information once this information is released
to a process. It is thus possible for a process to write information into objects accessible by users not
authorized to access the objects from which the information has been read. To see how a Trojan horse can
be used to leak information despite the enforcement of discretionary access controls, consider the following
example. A user Alice (the victim) creates a file, called Patient, and writes sensitive data in it. Alice is
the only one allowed to access the file; no one else has any authorization on it. Consider now user Bob who
wants to acquire the sensitive information in file Patient but is denied access by discretionary access control.
To acquire information, Bob creates a file Stolen-data and grants Alice the authorization to write it. Bob
also writes an appealing application (e.g., an electronic agenda) that provides useful functionalities, but that
also has two hidden instructions: a read operation on Patient, and a write operation of the read data in
Stolen-data (see Figure 5(a)). He then gives this application to Alice. Alice ignores both the existence
of the two hidden instructions and the existence of Stolen-data (and her privileges on it). Consider now
the execution of the program by Alice. The electronic agenda process activated by Alice, acquires Alice’s
privileges. Consequently, the two hidden operations will be successfully granted (Alice has authorizations
for them) and information will be copied from file Patient to file Stolen-data, as illustrated in Figure 5(b).
Bob can now access his file and read the information he is not authorized to access directly. All this happens
without Alice even knowing.

Improper information leakages such as the one discussed can be prevented by controlling, besides direct
accesses, also information flow within the execution of processes, as done in mandatory access control policies
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Figure 6: Example of security lattice

discussed next.

3.2 Mandatory Access Control

The Trusted Computer System Evaluation Criteria (TCSEC) defines mandatory access control as follows:

“A means of restricting access to objects based on the sensitivity (as represented by a label) of
the information contained in the objects and the formal authorization (i.e., clearance) of subjects
access information of such sensitivity.”

Mandatory access control policies distinguish between users and processes operating on their behalf
(subjects) and are based on the classification of subjects and objects in the system. All users and resources
are assigned security classifications. Processes (subjects) activated by a user take on the classification with
which the user connected to the system. Classifications are elements of a partially ordered set and may reflect
secrecy or integrity labels associated with subjects and/or objects. Usually, partially ordered access classes
are modeled as pairs the form (I, ¢), where [ is a security level of a hierarchical ordered set, and c is a set of non-
hierarchical categories. Example of secrecy-based security levels are TopSecret (TS), Secret (S), Confidential
(C), and Unclassified (U), where TS > S > C > U. Categories allow the definition of areas of competence, and
enforce the need-to-know principle. Examples of categories can be: Nato, Army, and Nuclear. Partial order
is defined on such pairs as a dominance relation > as follows. An access class (I, ¢) dominates another access
class (I', '), denoted (I,c) = (I, ¢"), if and only if [ is at least as high in the hierarchical ordered set as I’ (i.e.,
1 >1") and ¢’ C c. For instance, access class (S,{Army,Nuclear}) dominates access class (S,{Army}) because
they have the same security level and {Army} is a subset of {Army,Nuclear}. The set of access classes with
the corresponding dominance relation form a security lattice. Figure 6 illustrates an example of lattice for
classes over two levels (TopSecret and Secret) and two categories (Army and Nuclear).

MAC policies can be divided in two classes: the most popular secrecy-based, controlling data confiden-
tiality, and integrity-based, controlling data integrity.

Secrecy-based MAC policies In secrecy-based MAC policies each user and object in the system is
assigned a classification. The security class assigned to a user (also called user’s clearance) reflects the user’s
trustworthiness not to disclose sensitive information to individuals who do not hold appropriate clearance.
The secrecy class assigned to an object reflects the sensitivity of information contained in the object and the
potential damage that could result from its improper leakage. Users can log into the system at any security
class dominated by their clearance. Processes activated by a user are subjects that take on the security class
with which the user connected. Access is regulated by two basic principles, originally formulated by Bell
and LaPadula:

e No read-up A subject can read only objects classified at the subject’s access class or below.

13



Subjects Objects

E I read/write | 1
High
-
%
Information flow for secrecy
E I read/write N
Low Low

Figure 7: Information flow for secrecy

e No write-down A subject can write only objects classified at the subject’s access class or above.

Satisfaction of these principles prevents information stored in high level objects to flow to objects at
lower or incomparable levels (see Figure 7); thus blocking possible information flow making data accessible
to subjects not allowed to access them directly. To illustrate, consider the Trojan horse example described in
the previous section. Since Bob cannot access Patient, his security class (and that of his objects) will be lower
or incomparable to that of Alice and file Patient. Note also that Bob does not have discretion of granting
privileges to Alice. Let us assume that Alice and Patient are classified High while Bob and Stolen-data
are classified Low. Consider again the execution of the Trojan horse application by Alice. Assume Alice
is connected as a High subject. The write operation to Stolen-data requested by the application will be
rejected since it does not satisfy the no-write-down principle. Assume instead Alice connects at level Low.
In this case, the read operation on object Patient, which does not satisfy the no-read-up principle, will be
rejected. In both cases the improper information flow is blocked.

Integrity-based policy Secrecy mandatory policies control only improper leakage of information; they
do not safeguard integrity. Integrity can be controlled in a dual way. Again, security classification (integrity
class) are assigned to subjects and objects. Examples of integrity levels are: Crucial (C), Important (1),
and Unknown (U). Integrity classes assigned to users reflect user’s trustworthiness not to improperly modify
sensitive information; the integrity classes assigned to objects reflect the degree of trust in information
contained in the objects and the potential damage that could result from its improper modification/deletion.
Access control is then performed according to the following principles:

e No read-down A subject can read only objects classified at the subject’s access class or above.

e No write-up A subject can write only objects at the subject’s access class or below.

Satisfaction of these principles prevents information stored in low level objects to flow to high or incom-
parable objects (see Figure 8) and therefore to corrupt them.

Note that secrecy and integrity policies can coexist but two different classes (one for secrecy and one
for integrity) must be maintained in this case. Mandatory policies enforce stricter control on the flow of
information than discretionary policies. However, they can be applied only to environments where it is
possible to classify information and the better security gained is to be preferred over the loss of flexibility
(due to the nondiscretionality of the access regulations). Mandatory and discretionary policies can be applied
jointly. In this scenario an access will be granted if both it satisfies the MAC restrictions and there is a
discretionary authorization for it. In other words, discretionary authorizations operate within the boundaries
of the mandatory policy: they can only restrict the set of accesses that will be granted.
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3.3 Role-based access control

A third class of policies considered in more recent access control models is represented by role-based policies.
A role-based access control (RBAC) policy bases access control decisions on the roles a user takes on when
executing activities in an organization. For instance, the roles a user associated with a hospital can assume
may include physician, nurse, researcher, and pharmacist. Roles in a bank may include teller, loan
officer, and accountant. Intuitively, access privileges by users to objects are mediated by roles. Autho-
rizations to access objects are assigned to roles, not to users anymore. Users are given authorizations to
activate roles. The operations that a user is permitted to perform are based on the user’s currently active
roles. For instance, within a hospital system the role of physician can be defined to which authorizations to
perform diagnosis and prescribe drugs are granted. Users authorized to activate the role will, upon activa-
tion, be able to exercise such privileges. The fact that privileges associated with a role can be exercised only
when the role is active provide enforcement of the least privilege principle, according to which a subject is
authorized only for the privileges it needs to perform its job. Role-based access control have also advantages
in terms of access rule management. For instance, when a user leaves the organization or is promoted it
is sufficient to change his/her roles and reassigning them to his/her substitute (instead of changing all the
involved access authorizations). In many applications there is a natural hierarchy of roles, based on the
familiar principles of generalization and specialization. For instance, a specialist role may be specialized
into physician and intern. In turn, role specialist may be a specialization of a more general role like
cardiologist (see Figure 9). The role hierarchy has implication on role activation and access privileges:
a specialized role inherits the authorizations of its generalizations; also, users authorized to activate a role
inherit the authorization to activate the generalizations of the role. For instance, with reference to Figure 9,
role intern inherits all authorizations of role specialist. Also, users authorized to activate role intern
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will also be allowed to activate role specialist. Although groups (discussed in the previous section) and
roles may seem similar, they capture two different concepts: groups define sets of users while roles define
sets of privileges. Also, roles can be activated or deactivated by users depending on their needs while group
membership always applies (a user cannot disable his/her membership in groups at his/her discretion).

The process of assigning roles to users can be enriched with the support of constraints. For instance,
mutual exclusion constraints can restrict role assignment so that users will not be authorized for roles that
are considered in conflict with one another (e.g., author and referee for a same paper) or that would grant
the user too much privileges (e.g., accountant and supervisor). The set of privileges granted to roles and
to users must obey the separation of duty principle, according to which no single user or role should be
granted enough power to misuse the system. Separation of duty can be enforced statically or dynamically.
In the static approach, separation of duty constraints are accounted for in the authorizations assignment
(no user/role will be authorized for operations that are in a separation of duty constraint). In the dynamic
separation of duty, constraints are enforced at run-time: users/roles can be authorized for any access but
executing one operation will rule out their ability to execute any other operation which is in a separation of
duty constraints with it.

3.4 Inference controls

Access control systems described in the previous section intercept every request submitted to the system and
determine whether the request can or cannot be granted according to some specified access control rules. As
already discussed, direct control of every single request has limitations, which are addressed in mandatory
policies by restricting information flow. There is another threats to data confidentiality which the policies
discussed above do not address, which is inference. Inference refers to the ability to withdraw information
about some data by observing other data. The consideration of inference implies that security restrictions
should take into account not only the data directly released, but also those data that can be withdrawn
from those released. If we do not, users not authorized to access some data may be able to infer them
from data that we release to them. For instance, in a health care environment specific prescriptions can be
symptomatic of specific illnesses. By knowing the prescriptions of a patient, a user can then infer the illness
from which the patient suffers. Consequently, if we do not want the user to know the illness, we should not
release to that user prescription data. Inference usually exploits relationships between data. In addition,
inference problems may be due the contributions of released data with to external knowledge that the user
has available. Inference due to the external knowledge is clearly more difficult to control since it is not
usually possible to know what other information users may know. Even inferences due to the relationships
between data are far from being trivial to control. Inference strategies by which users can indirectly acquire
information include:

o Inference by deductive reasoning New information can be inferred either through classical or non-
classical logic deduction. Classical deductions are based on basic rules of logic (e.g., from assertions
“A is true” and if “A then B” it is possible to deduce that “B is true”). Non-classical logic-based
deduction includes, for example, probabilistic reasoning, fuzzy reasoning, non-monotonic reasoning,
and modal logic-based reasoning.

e Inference by analogical reasoning Statements such as “X is like Y” can be exploited to infer properties
of X given the properties of Y.

e Inferred existence A user can infer the existence of a data element from certain information (e.g., from
the information, “Alice is a physician” one can infer that there is some entity called Alice).

o Statistical inference Information about a data element is inferred from various statistics compared on
a set of data elements.

Inference of a set of data elements can be ezact or inexact. It is exact when knowledge of the values in a
set A of data elements allows one to derive the values of another set B of data elements. It is inexact when
knowledge of the values in A allows one to reduce the values of B to a subset of possible values. For instance,
there may exist exact inference from the pair (rank,position) to salary, meaning that knowing the value
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for rank and position allows users to infer the value of salary. The inference is inexact if knowing the
values of rank and position allows the user to restrict the range of possible values for salary.

Inference controls can be best modeled within mandatory security policies, where the labels assigned
to the data reflects their sensitivy. In this context, there is an inference problem if high level data can be
inferred from low level data. The earliest formal characterization of the inference problem is that of Goguen
and Meseguer. According to their definition, the inference problem in mandatory contexts can be stated
as follows. Given two data elements A and B, there exists an inference problem if and only if from A it is
possible to infer B and the classification of A is lower than the classification of B. For instance, suppose
that the classification of rank and position is Low and the classification of salary is High. It is clear to
see that, even in the respect of the no-read-up principles, users cleared Low, and therefore not allowed to see
attribute salary can indeed know it by requesting the values of rank and position, which they are cleared
to see. To block such improper release, the mandatory policy should be enriched to take inference channels
into account. Inference related constraints can be taken into account either in the database design or at
query processing time. Approaches to inference analysis during database design locate all inference channels
through an analysis of the database schema and all the complex relationships between data elements of the
application domain. Channels leaking information at higher or incomparable levels are blocked by upgrading
selected schema components or redesigning the schema. With reference to the salary example, this solution
may imply that either rank or position will be classified as High. In this way, subjects labeled Low will not
be able to access both position and rank and infer the value of salary. Data upgrading to prevent inference
channels requires a complete examination of all the possible inference channels and is far from being trivial.
A further complication is due to the necessity of ensuring non overclassification of data. In other words, only
upgrades strictly necessary to prevent improper channels should be enforced. Overclassifying data would
unnecessarily restrict data visibility. For instance, with reference to our example, the inference channel could
be blocked by upgrading both attribute rank and attribute position but this is not necessary as upgrading
only one attribute gives the sufficient protection. Determining an optimal solution to an upgrading problem
can be a NP-hard problem. Inference controls at query time leave data classification invaried. However,
they keep track of the information released to subjects and block data release (even if mandatory axioms are
satisfied) if a subject would acquire enough data to withdraw inference above its clearance level. Again, with
reference to our example, this would mean that a High subject can be returned either rank or position but
once it has been returned one it will not be granted access to the other. Run-time controls can be useful in
cases where data upgrading is not possible. However, its enforcement has some complications. In particular,
it requires keeping the history of requests and determine inferences that can be withdrawn from them, which
is a complex and expensive process. Also, determining inference channels simply by looking at subjects (and
therefore controlling information released at a given level) may be limiting since the fact that a user has
acquired some data would rule out the possibility for other, possibly unrelated, users operating at the same
level to acquire other data.

4 Audit

Authentication and access control do not guarantee complete security. Indeed, unauthorized or improper
uses of the system can still occur. The reasons for this are various. First, security mechanisms, like any
other software or hardware mechanism, can suffer from flaws that make them vulnerable to attacks. Second,
security mechanisms have a cost, both monetary and in loss of system’s performances. The more protection
to reduce accidental and deliberate violations is implemented, the higher the cost of the system will be.
For this reason, often organizations prefer to adopt less secure mechanisms, which have little impact on the
system’s performance, with respect to more reliable mechanisms, that would introduce overhead processing.
Third, authorized users may misuse their privileges. This last aspect is definitely not the least, as misuse of
privileges by internal users is one of the major causes of security violations.

This scenario raises the need for audit control. Audit provides a post facto evaluation of the requests
and the accesses occurred to determine whether violations have occurred or have been attempted. To detect
possible violations, all the user requests and activities are registered in an audit trail (or log), for their later
examination. An audit trail is a set of records of computer events, where a computer event is any action
that happens on a computer system (e.g., logging into a system, executing a program, and opening a file).
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A computer system may have more than one audit trails, each devoted to a particular type of activity. The
kind and format of data stored in an audit trail may vary from system to system, however, the information
which should be recorded for each event include: the subject making the request, the object to which access is
requested, the operation requested, the time and location at which the operation was requested, the response
of the access control, and the amount of the resources used. An audit trail is generated by an auditing system
that monitors system activities. Audit trails have many uses in the computer security :

o Individual Accountability An individual’s actions are tracked in an audit trail making users personally
accountable for their actions. Accountability may have a deterrent effect, as users are less likely to
behave improperly if they know that their activities are being monitored.

e Reconstructing Events Audit trails can be used to reconstruct events after a problem has occurred.
The amount of damage that occurred with an incident can be assessed by reviewing audit trails of
system activity to pinpoint how, when, and why the incident occurred.

e Monitoring Audit trails may also be used as on-line tools to help monitoring problems as they occur.
Such real time monitoring helps in detecting problems like disk failures, over utilization of system
resources, or network outages.

o Intrusion Detection Audit trails can be used to identify attempts to penetrate a system and gain
unauthorized access.

It is easy to see that auditing is not a simple task, also due to the huge amount of data to be examined
and to the fact that it is not always clear how violations are reflected in the users’ or system’s behaviors.
Recent research has focused on the development of automated tools to help audit controls. In particular,
a class of automated tools is represented by the so called intrusion detection systems, whose purpose is to
automate the data acquisition and their analysis. Among the issues to be addressed in data acquisition and
analysis are:

o Audit data retention If the audit control is based on history information, then audit records already
examined must be maintained. However, to avoid the “history log” to grow indefinitely, pruning
operations should be executed removing records that do not need to be considered further.

o Audit level Different approaches can be taken with respect to the level of events to be recorded.
For instance, events can be recorded at the command level, at the level of each system call, at the
application level, and so on. Each approach has some advantages and disadvantages, represented by
the violations that can be detected and by the complexity and volume of audit records that have to
be stored, respectively.

e Recording time Different approaches can be taken with respect to the time at which the audit records
are to be recorded. For instance, accesses can be recorded at the time they are requested or at the time
they are completed. The first approach provides a quick response to possible violations, the second
provides more complete information for analysis.

e FEvents monitored Audit analysis can be performed on any event or on specific events such as the events
regarding a particular subject, object, operation, or occurring at a particular time or in a particular
situation.

o Audit control execution time Different approaches can be taken with respect to the time at which the
audit control should be executed.

o Audit control mechanism location The intrusion detection system and the monitored system may reside
on the same machine or on different machines. Placing the audit control mechanism on a different
machines has advantages both in terms of performances (audit control do not interfere with normal
system operation) and security, as the audit mechanism will not be affected from violations to the
system under control.
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5 Cryptography

The word cryptography comes from the Greek words kryptos, which means “hidden”, and logos, which
means “word”. Cryptography is essentially a technique for protecting information and is used in many aspects
of computer security. For instance, cryptography is useful to store sensitive information (e.g., password) in
a way that it is unintelligible to unauthorized users or to preserve the confidentiality and integrity of a
communication in the presence of an adversary. Cryptography is traditionally associated with keeping data
secret (confidentiality). As we will see, however, this is only one part of today’s cryptography. One of the
best ways to obtain data confidentiality is through the use of encryption. Encryption transforms data in
user or machine readable form, called plaintezrt, to an unintelligible form, called ciphertext. The conversion
of plaintext to ciphertext is controlled by an electronic key k. The key is simply a binary string which
determines the effect of the encryption function. The reverse process of transforming the ciphertext back
into the plaintext is called decryption, and is controlled by a related key k~!. The transformation rule
used to encrypt and decrypt messages is called cryptographic algorithm or cipher. The concept of securing
messages through cryptography has a long history that can be divided into three main stages. In the first
stage, cryptography was viewed as an art. Early cryptographic algorithms often took the form of substitution
ciphers, where each character in the plaintext was substituted for another character in the ciphertext; or
transposition ciphers, where a plaintext is partitioned into fixed-size blocks and the letters within each block
are arranged according to some permutation. One of the most famous and simplest example of substitution
cipher is the Caesar cipher, which is said to have been used by Julius Caesar to communicate with his army.
The Caesar cipher transforms a message by replacing each letter with the letter appearing three positions
after it in the alphabet, wrapping around at the end. For instance, using the Caesar cipher, the message
“return to rome” would be encrypted as “uhwxua wr urph”. A simple example of transposition cipher is
the rail fence cipher. This cipher first writes the message in two different rows, alternating letters in the
two rows. The ciphertext is obtained by reading the first row and then the second row. For instance, the
message “return to rome” is first written as:

r t T t T m
e u n o 0o e

The corresponding ciphertext is then “rtrtrm eunooe”. The rail fence is a transposition cipher since the
characters in the ciphertext are the ones appearing in the original text, but they appear in a different position.
This transposition cipher can be generalized by writing a message in n different rows, alternating letters in
these rows. The ciphertext is then obtained by reading each row, from top to the bottom. Substitution and
transposition ciphers are simple but weak. Substitution ciphers can be easily broken by analyzing single-
letter frequency distribution by mapping the letters in the ciphertext to letters in the corresponding position
in the frequency distribution of the language (e.g., the letter appearing most frequently is translated to
the letter with the highest frequency in the language). Assuming the language (and the letter frequency
distribution) with which the original text was written is known, if the message is reasonably long, frequency
distribution attacks are likely to succeed. Transposition systems are easy to identify. Their single-letter
frequency distribution will necessarily look like the one for a plaintext since the same letters are still present.
However, identifying which type of transposition is used is much more difficult at first, and it may be
necessary to try different possibilities. However, when the type of transposition has been detected, simple
attacks can be enforced to break the cipher. For instance, when simple columnar transposition ciphers are
used (the plaintext is inserted into a matrix of a predetermined width and the ciphertext is obtained by
extracting the letters in each column, from left to right), their security depends only on the matrix width.
Thus, to solve a message enciphered by simple columnar transposition it is necessary to try different matrix
widths until the right one is determined. The second stage of cryptography was that of cryptographic engines.
This stage is associated with the period of the second world war, and the most famous cryptographic engine
was the German FEnigma machine. The basic Enigma was invented in 1918 by Arthur Scherbius in Berlin.
The Enigma machine gives a mechanized way of performing one alphabetic substitution cipher after another.
The last stage is modern cryptography that relies upon advanced mathematics and electronic computers. In
modern cryptography, algorithms are complex mathematical formulae and keys are strings of bits; computers
are necessary to implement the algorithms. It is this last stage that we will explore. In particular, we will
describe fundamental aspects of the basic cryptographic technologies and some specific ways cryptography
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Characteristic || Symmetric-key Asymmetric-key

number of keys one key pair of keys

types of keys key is secret one key is secret and one key is public
relative speeds faster slower

Table 1: Comparison between symmetric-key and asymmetric-key ciphers

Symmetric-key Asymmetric-key
Encryption/Decryption Encryption/Decryption
message:"return to rome" message:"return to rome”

(prepared by Alice)

B encr;ption B encr;ption

(Bob's public key)

\/
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B decr;ption @ decr¥ption

(Bob' s private key)

original (decrypted) message: original (decrypted) message:
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Figure 10: Symmetric (a) and asymmetric (b) encryption/decryption

can be used to improve security.

5.1 Basic cryptographic technologies

Ciphers can be divided in two categories: symmetric-key ciphers and asymmetric-key ciphers. Table 1
compares some of the distinct characteristics of symmetric-key and asymmetric-key ciphers.

Symmetric-key cipher In a symmetric-key cipher (also called secret-key cipher), the same key is used
for both encryption and decryption. As shown in Figure 10(a), the sender uses the key to encrypt the
plaintext and sends the ciphertext to the receiver. The receiver applies the same key to decrypt the message
and recover the plaintext. Symmetric-key ciphers can be divided in two classes: block ciphers and stream
ciphers. A block cipher encrypts blocks of data at a time; given a key, the same plaintext block will always
be encrypted to the same ciphertext. A stream cipher operates on a single bit, byte, or word at a time,
and applies a feedback mechanism so that the same plaintext will yield different ciphertexts every time it is
encrypted.

The most famous symmetric cipher is the Data Encryption Standard (DES) which was adopted in 1977 by
the American National Bureau of Standard (now National Institute of Standard and Technology - NIST) for
commercial and unclassified government applications. It was developed by IBM with technical advice from
the National Security Agency (NSA). DES is a block cipher using a 56-bit key that operates on 64-bit blocks.
DES has a complex set of rules and transformations that were designed specifically to yield fast hardware
implementations and slow software implementations. On July 17, 1998, the Electronic Frontier Foundation
(EFF) announced the construction of a hardware device that could break DES in an average of 4.5 days. A
variant of DES, called Triple-DES (3DES) was introduced in 1998 after DES was compromised. Triple-DES
uses the Triple Data Encryption Algorithm (TDEA) which employs three secret-key cryptographic steps
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and one, two, or three keys, denoted k1, k2, and k3, respectively. Generation of the ciphertext ¢ from a
block of plaintext p is accomplished by: ¢ = Ey3(Dg2(Ek1(p))), where Ep and Dy denote the encryption and
decryption processes, respectively, performed by using key k (see Figure 11).

There are a number of other symmetric-key cryptography algorithms that are also in use today: Inter-
national Data Encryption Algorithm (IDEA), another DES-like 64-bit block cipher using 128-bit keys; RC2
(Rivest Cipher 2), named from its inventor Ron Rivest, a 64-bit block cipher using keys of variable size;
RCY, a stream cipher, using keys of variable size, widely used in commercial cryptography products; and
RC5, a block-cipher supporting a variety of block sizes, key sizes, and number of encryption passes over the
data.

In 1997, NIST initiated a process to develop a new secure cipher for U.S. government applications.
The result, the Advanced Encryption Standard (AES), will be the “official” successor of DES. From the
many algorithms submitted, at the end of 1999 a group of five candidate algorithms was selected: MARS
(multiplication, addition, rotation and substitution) from IBM; Ronald Rivest’s RC6; Rijndael from Belgian
researchers Joan Daeman and Vincent Rijmen; Serpent, developed jointly by a team from England, Israel,
and Norway; and Twofish, developed by Bruce Schneier. In October 2000, NIST selected Rijndael as the
AES algorithm. Rijndael is a block cipher. The algorithm can use a variable block length and key length:
the current specification describes keys with a length of 128, 192, or 256 bits to encrypt blocks of length
128, 192 or 256 bits (all nine combinations of key length and block length are possible). The final approval
of Rijndael is expected in July 2001.

Asymmetric-key cipher Asymmetric-key ciphers (also called public-key ciphers) have been introduced
in 1976 by two Stanford researchers, Whitfield Diffie and Martin Hellman. In an asymmetric-key cipher,
the abilities to perform encryption and decryption are separated (see Figure 10(b)). The encryption rule
employs a public key k, while the decryption rule requires a different (but mathematically related) private
key k—!. Therefore, in public-key systems, each individual must be associated with a pair keys: a private
key known only to the user, and a public key, that can be publicized to others. Messages addressed to a user
are encrypted by using the user’s public key. The recipient user can decrypt them with the corresponding
private key. Since the private key is kept secret, only the intended individual can decrypt the ciphertext.
While the public and private keys must be related so that texts ciphered with one key can be deciphered
with the other, it must be computationally infeasible to derive the private key from the knowledge of the
public key (given that this is made known). The establishment of the pair of keys exploits mathematical
problems that are hard to solve, such as computing discrete logarithms, as in the proposals by Diffie and
Hellman, (the proponents of public key cryptography) and by ElGamal, or factoring numbers, as in the RSA
algorithm.

The RSA algorithm, named from the three MIT mathematicians who developed it (Ronald Rivest, Adi
Shamir, and Leonard Adleman) is the most popular asymmetric-key cipher. It is currently used in many
software products and can be used for key exchange or encryption of small blocks of data. The key-pair
is derived from a very large number n obtained by the product of two prime numbers chosen according to
special rules; these primes may be 100 or more digits in length each, yielding a number n with twice as
many digits as the prime factors. The steps necessary to create an RSA public/private key pair are the
following: (1) choose two prime numbers, p and ¢, and compute n = pg; (2) select a third number e that
is relatively prime to (p — 1)(¢ — 1); (3) determine a number d such that ed = 1 mod (p — 1)(¢ — 1). The
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public key is the number pair (n,e), while the private key is the number pair (n,d). A message m is then
encrypted by using the equation: ¢ = m® mod n. The receiver then decrypts the ciphertext ¢ with the
private key using the equation: m = ¢? mod n. The security of this scheme is related to the mathematical
problem of factorization: it is easy to generate two large primes and to multiply them, but given a large
number that is the product of two primes, it requires a huge amount of computation to find the two prime
factors. The ability for computers to factor large numbers, and therefore attack schemes such as RSA, is
rapidly improving and systems today can find the prime factors of numbers with more than 140 digits. The
presumed protection of RSA, however, is that users can easily increase the key size to always stay ahead of
the computer processing curve.

The main drawbacks of symmetric-key ciphers is that a key must be established between each pair of
entities (e.g., users) that wish to communicate in confidence. In applications where a limited number of
users exist, symmetric-key cryptography is effective. However, in large networks with users distributed over
a wide area, key distribution and maintenance becomes a problem. Each individual in a network should
have a distinct key to communicate with each single individual in the system. Therefore, a large number of
keys must be established and stored securely. Providing individual to individual secret communication in a
system with n users would require "("2_1) keys. In a system with 1000 users this would amount to almost
half a million keys. Exchanging and managing such a large number of keys is at best a difficult task and at
worst impossible.

Among other advantages, asymmetric-key ciphers do not suffer from the explosion of the number of keys
to be maintained: only two keys need to be maintained for every individual. Providing secure individual
to individual communication in a network with n individuals therefore requires only 2n keys. In a network
with 1000 users, this would amount to total of 2000 keys, in contrast to the half a million keys required in
the symmetric-key approach. In a Public Key Infrastructure, distribution of public keys can be enforced
through external authorities, called Certification Authorities, which maintain a database of identities and
public keys registered for them.

By comparing symmetric-key and asymmetric-key systems, it may appear that asymmetric-key systems
are functionally superior to symmetric-key techniques and that there is little need to consider the latter.
However, symmetric-key systems are still widely used because they are able to process data much faster
than current asymmetric-key systems. For instance, RSA is about 100 times slower in software and 1.000 to
10.000 times slower in hardware than DES. A common approach is to combine the most attractive features of
each system: an asymmetric-key scheme is used to exchange a common secret key, after which a symmetric-
key scheme performs data encryption using the common key exchanged. Such a “hybrid” system offers the
extra speed that a symmetric-key cipher affords, while employing an asymmetric-key cipher to avoid the key
distribution problem.

5.2 Uses of cryptography

The main uses of modern cryptography include: data authentication, user authentication, non-repudiation
of origin, and data confidentiality. We look at them in more details in the following. For simplicity, we
refer all examples to a hypothetical communication between two users, Alice and Bob, in the presence of an
adversary user named Eve.

Data confidentiality Data confidentiality, that is maintaining the secrecy of the message transmitted,
can be achieved by encrypting data for their transmission. Encryption can employ either symmetric or
asymmetric key systems. In the first case, to communicate a message to Bob, Alice encrypts the message
with the secret key shared between them, Bob will decrypt it by using the same key. In the second case,
Alice encrypts the message with the public key of Bob, and Bob decrypts it with his private key.

Data authentication Data authentication includes two different aspects: data integrity and data origin
authentication. Authenticating data integrity means guaranteeing that the message has not been unaltered
improperly. Authenticating data origin means guaranteeing that the message has really been sent by the
claimed sender.
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Let us first look at data integrity. Suppose that Alice sends a message to Bob and that the adversary
Eve intercepts it. Without the support of data integrity, Eve can just change the message and then relay the
corrupted message to Bob. Bob will not see that the message has been changed and will assume Alice states
what is written in the message received. While not applicable for prevention, cryptography can effectively
detect integrity compromises due to intentional or unintentional modifications to the original data. Both
symmetric-key and asymmetric-key methods can be used to this purpose. When symmetric-key cryptography
is used, a message authentication code (MAC) is calculated from the message and appended to it. The MAC
is a function of the message and of the secret key shared between the sender and the recipient. That is,
MAC=f(k,m), where f is a public function, k is a secret key, and m is the message. The MAC, which
should be a function of every bit of the message, works as an integrity checksum. By using the secret key
k, the recipient can then verify the integrity of a message m' received simply by computing f(k,m') and
matching the result with the MAC appended to the message. If the two do not match, m' # m, which means
that integrity has been compromised. Note that matching is only a necessary condition for integrity as two
different messages m and m' could result in a same value of f . The condition can be made sufficient by
defining function f so to avoid collisions (there is a collision if two different messages map to a same MAC).
The longer the MAC, the less chance there is of a match for a fraudulent message.

Asymmetric key cryptography verifies integrity by using digital signatures and secure hashes. Asthe name
suggests, digital signatures are the electronic equivalent of traditional handwritten signatures. Handwritten
signatures provide security services because each individual has distinct handwriting, making their signature
hard to forge. It is important to note that if digital signatures were formed in the same way as written
signatures, that is, by simply appending a fixed string to each message that somebody wants to sign, then
security would easily be compromised. For instance, to forge Bob’s signature, the adversary Eve can duplicate
a previous copy of Bob’s signature and append it to any message she chooses, claiming that the message was
been signed by Bob. This problem arises because, unlike an individual’s handwriting, electronic information
is easy to duplicate, and is therefore vulnerable from replay attacks (see Section 2). To avoid this, digital
signatures are performed in a more complex manner using an asymmetric-key system. The essential difference
between the use of an asymmetric-key system for signing and its use for encrypting is that the order in which
the keys are used is reversed. To encrypt a message addressed to Bob, Alice uses Bob’s public key. If Alice
wants instead to sign a message, she uses her own private key. The recipient can verify the signature by
using Alice’s public key. More precisely, the signature process can be schematized as follows. Suppose that
Alice wishes to sign a message m. Alice first transforms m using a hash function h. A hash function b is
a transformation that takes an input m and returns a fixed-size string, which is called the hash value. The
basic requirements for a cryptographic hash function are: (1) h(x) must be relatively easy to compute for
any given z; (2) h(z) must be one-way, meaning that given a hash value y, it is computationally infeasible
to find some input x such that h(z) = y; (3) h(x) must be collision-free, meaning that it is computationally
infeasible to find two messages ¢ and y such that h(z) = h(y) (strongly collision-free). The output of the
hash function, denoted h(m), is a value which is specific to the content of the message and is called message
digest. Alice signs m by transforming h(m) using her private key, to obtain s = Dy (h(m)), where k_;} .
is Alice’s private key. Alice now sends m and s to Bob as her signature on m. If Bob wants to verify Alice’s
signature on m, he first retrieves Alice’s public key kgiice- Then, he recomputes the message digest h(m)
from m using the publicly available hash function. Finally, Bob transforms s using ksi;ce and compares the
result with h(m). If Bob finds that Ey,,,.. (s) = h(m), then he accepts Alice’s signature as valid. Otherwise,
Bob concludes that s cannot be Alice’s signature for message m, and that m has been improperly modified.

Data origin authentication guarantees that the person who is claiming to be the sender of a message
really is the one from whom the message originated. For instance, in absence of authentication of origin
the adversary Eve could send a message to Bob claiming that the message is from Alice. Data origin
authentication is naturally provided in symmetric-key approaches because of the different keys shared by
each pair of users: to masquerade as Alice, Eve should know the secret key shared by Alice and Bob. In
asymmetric-key approaches, data origin authentication can be provided through the signature process just
discussed. Indeed, transformation from h(m) to s (i.e., the signature) can be computed only by knowing the

private key of the sender (Alice’s private key k_,; . in the example above).

User Authentication When one party tries to communicate with another, it is necessary to verify that
the parties involved in the communication are who they say they are. This process is called user authentica-
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tion. Cryptography is the basis for several advanced authentication methods. As an example, consider the
following scenario. Alice needs the user authentication service to be sure that she is involved in a real-time
communication with Bob. Suppose Bob attempts to provide this assurance by simply signing the message
“this is Bob”. Alice is assured that the message originated from Bob at some stage, because, as seen in the
previous discussion, digital signatures provide data origin authentication. The problem here is that once
Bob has signed “this is Bob ”, the adversary Eve can save this signature and use it to authenticate herself
as Bob at any later time. Thus, digital signature alone does not provide Alice with user authentication. To
obtain this service, the interaction between Alice and Bob can be modified as follows. When Alice initiates
a real-time communication with Bob and wants user authentication, she first generates an unpredictable
random number r and sends it to Bob; r is called a challenge in this context. Now, instead of signing just
“this is Bob”, Bob signs “this is Bob, r”. Provided this signature is valid, and the signed value r is the
same as the challenge Alice generated, then Alice is assured that she is communicating with Bob in “real-
time”. Thus, the combination of a digital signature together with the Alice’s random challenge provides user
authentication.

Non-repudiation of origin Non-repudiation protects against denial by one of the entities involved in a
communication of having participated in all or part of the communication. Non-repudiation with proof of
origin protects against any attempts by the sender to repudiate having sent a message, while non-repudiation
with proof of delivery protects against any attempt by the recipient to deny having received a message. For
instance, suppose that Bob is the owner of a company collecting orders electronically and Alice one of his
customer who submitted an order. Non repudiation of origin allows Bob to demonstrate to a third party
that the order he received was indeed from Alice. Non repudiation of delivery allows Alice to demonstrate
to a third party that Bob indeed received her order. Both non repudiation of origin and non repudiation of
delivery require the use of a public key system. Indeed, since in a secret key system Bob and Alice share
the same key, any of them can write messages claiming they originated from the counterpart. Again, the
signature process described above provides non-repudiation of origin. To provide non-repudiation of origin,
Bob has to save Alice’s signature s on purchase order po. The presence of the signature proves that the
message could have been sent only by somebody knowing Alice’s private key (who should be known only to
Alice). Public key can also be used to provide non repudiation of delivery by requesting the recipient of a
message to provide a receipt for the message signed with his/her own private key.

5.3 Applications of cryptography

In the previous section, we have seen how modern cryptography can be used to provide each of the major
security services: confidentiality, user authentication, data origin authentication, data integrity, and non-
repudiation. In this section, we mention some current applications of cryptography.

Multi party protocols In a multi party protocol, several parties want to coordinate their activities to
achieve some goal. To ensure correctness even in the presence of corrupted parties, the protocol should
guarantee that the non-corrupted parties are able to achieve the goal even though the corrupted parties
send misleading information. A typical example of secure multi party computation is electronic elections.
In the general instance of this problem there are m people with their private input z;, and it is necessary
to compute the result of a function f over such values, without revealing them. In the case of electronic
elections, the involved parties are the voters, their input is a binary value (e.g., yes or no), the function to
be computed is a simple sum, and the result is the score. The properties that the electronic elections should
satisfy are the following: (1) only authorized voters can vote, (2) nobody can vote more than one time, (3)
secrecy of votes is preserved, (4) nobody can duplicate the vote of anyone else, (5) the score is computed
correctly, (6) anybody should be able to check that the score is computed correctly, (7) the protocol should
be fault-tolerant (i.e., it should work even in presence of corrupted parties), and (8) it should be impossible
to coerce a voter. A single cryptographic protocol or mechanism alone is not enough to assure all these
desired properties. In general, an electronic elections schema relies on different cryptographic techniques
like blind signatures, miz-nets, and vote-tags. Blind signature mechanisms allow a party to get a message
digitally signed by another party without revealing the signer information about the content of the message.
A mix-net is constructed by cascading several mizes. The goal of a mix-net is to realize an anonymous
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channel. The input of a mix-net is a set of messages. The output of a mix-net consists of the same messages
but in a distinct order, in such a way that the link between a message and the sender of the message is
unknown. A vote-tag is a piece of data that is linked with the vote, but it does not reveal any information
on it. There is no a formal definition of vote-tag, however it must satisfy two important properties: given a
vote-tag, it has to be difficult, (even better, impossible) to discover the corresponding vote; and a vote has
to be bounded to the corresponding vote-tag in such a way that it is not possible to create a different valid
vote without modify the vote-tag.

Another example of multi party protocol is the problem of sharing a secret. The general model for secret
sharing is called a k-out-of-n schema (or (k,n)-threshold schema), for integers such that k£ < n. In the schema,
n people py,... ,p, share a secret s (e.g., a secret cryptographic key) by dividing it into pieces, called shares
or shadows, in such a way that any subset of k& people can recreate the secret from their pieces, but no subset
of less than k people can recreate the secret. The first solution to this problem has been given by Shamir in
1979, and is based on polynomial interpolation. The secret is divided into pieces by:

e generating a random polynomial p(z) with degree k — 1 and constant term s;

e publicly choosing n random distinct evaluation points z; # 0 and secretly distributing to each person
p; the share share; = p(x;).

The secret s can then be reconstructed from any %k shares by using Lagrange interpolation to find the
coefficients of the polynomial p(z) (including the secret s that is equal to p(0)). Shamir’s solution, however,
suffers of two problems. First, if one person is dishonest, he can give pieces that when put together do
not univocally define a secret. Second, dishonest players, at the reconstruction stage, may provide different
pieces than they received and therefore cause an incorrect secret to be recreated. To avoid these drawbacks,
Chor, Goldwasser, Micali, and Awerbuchhave proposed a schema based on the intractability of factoring.

Anonymous transactions is another example of multi part protocol. The purpose is to protect individuals
from tracing of their transactions. Using digital pseudonyms, like those proposed by Chaum, individuals
can enter into electronic transactions with assurance that the transactions cannot be later traced to the
individuals. However, since the individual is anonymous, the other party may wish to assurance that the
individual is authorized to start the transaction, or is able to pay.

Digital cash The electronic payment scenario assumes three kinds of players: a customer, a merchant,
and the bank. In this context, the most common type of payments used on-line are credit card payments.
The main problems with the credit card payments are:

e Security, all user’s private information is exposed to the merchants.

e Anonymity, all purchases are traceable since the identity of the customer is established every time
he/she makes a purchase; in real-life situations, we can use cash whenever we want to buy something
without establishing our identity.

e Small payments, small amount purchasing with credit card is difficult because of the high transaction
cost of credit card.

There are many other different types of cryptographically payment systems (e.g., electronic check and digital
cash); we briefly describe the digital cash schema. The term digital cash (or electronic cash) is applied to
any electronic payment schema that aims to recreate over the Internet the concept of cash-based shopping.
Among the properties that these digital cash schemas should satisfy there are: (1) forgery should be hard, (2)
duplication should be either prevented or detected, (3) customer’s anonymity should be preserved, and (4)
the on-line operations on large databases should be minimized. There are two different types of digital cash:
identified digital cash and anonymous digital cash. Identified digital cash contains information revealing the
identity of the person who originally withdraw the money from the bank. Anonymous digital cash works
just like real paper cash. Once anonymous digital cash is withdrawn from an account, it can be spent or
given away without leaving a transaction trail. In addition, digital cash systems can be on-line or off-line.
In on-line systems a transaction between customer and merchant does not take place unless a third party
server first verifies the customer’s identity or the validity of the customer’s digital cash, and authorizes
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the payment of the good to the merchant. By contrast, in off-line systems involve no third party in the
payment from customer to merchant. Off-line anonymous digital cash is the most complex form of digital
cash because of the double-spending problem. Double-spending refers to fraudulently spending the same
money twice. Because digital cash is a set of bits, it can be easily copied. If digital cash can be copied and
spent twice, then it can also be copied and spent n-times (multi-spending). To overcome this problem, on-
line systems typically keep a record of digital coins that have been spent, and do not authorize transactions
involving money that have been previously spent. Obviously, the problem here is that the list of digital
coin spent grows over time, which creates issues of storage and access time. By contrast, off-line anonymous
digital cash systems frequently rely on exposure as a preventive measure: the anonymous identity of the
spender is publicly revealed by double-spending. One way of doing this is to structure the digital coins and
cryptographic protocols to reveal the identity of the double spender at the time the digital coin makes it
back to the bank. If customers of the off-line system know they will get caught, the incidence of double
spending will be minimized (in theory). To make digital cash possible, asymmetric-key ciphers and digital
signatures are used. The basic idea is that banks and customers would have public-key encryption keys.
Banks and customers use their keys to encrypt (for security) and sign (for identification) blocks of digital
data that represent money orders. A bank “signs” money orders using its private key and customers and
merchants verify the signed money orders using the bank’s widely published public key. Customers sign
deposits and withdraws using their private key and the bank uses the customer’s public key to verify the
signed withdraws and deposits.
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