Contents

1 Access Control

Sabrina De Capitani di Vimercati, Pierangela Samarati, and Ravi Sandhu
1.1 Imtroduction
1.2 Discretionary access control (DAC)
1.2.1 The access matrix model and its implementation
1.2.2 Expanding authorizations L.
1.3 Mandatory access control (MAC)
1.3.1 Secrecy-based model oo L
1.3.2 Integrity-based model oo
1.4 Role-based access control (RBAC),
1.41 Basic RBACmodel.
1.4.2 Expanding RBAC
1.5 Administration of authorizations
1.6 Attribute and credential-based access control
1.6.1 Basic elements of the model
1.6.2 Policy communication 0L
1.6.3 Languages for access control L.
1.6.3.1 Logic-based languages,
1.6.3.2 XML-based languages L.
1.6.3.3 Expanding XACML with credentials
1.7 Conclusions e
1.8 Defining Terms L e

Bibliography

Chapter 1

Access Control

Sabrina De Capitani di Vimercati

Universita degli Studi di Milano, Italy
sabrina.decapitani@unimi.it

Pierangela Samarati

Universita degli Studi di Milano, Italy
pierangela.samarati@unimi.it

Ravi Sandhu

University of Texas at San Antonio, USA
ravi.sandhu@utsa.edu

1.1 IntrodUuctiono.onin it e 3
1.2 Discretionary access control (DAC) i 4
1.2.1 The access matrix model and its implementation 4
1.2.2 Expanding authorizations 8

1.3 Mandatory access control (MAC)ooiiiiii e 10
1.3.1 Secrecy-based model 10
1.3.2 Integrity-based model 12

1.4 Role-based access control (RBAC) ...t 13
1.4.1 Basic RBAC model i 13
1.4.2 Expanding RBAC 14

1.5 Administration of authorizations 15
1.6 Attribute and credential-based access control ...l 16
1.6.1 Basic elements of the model 17
1.6.2 Policy communicationooiuiiiiini i 19
1.6.3 Languages for access control 20
1.6.3.1 Logic-based languagesc.ouiiiiiiiiiiiii i 20

1.6.3.2 XML-based languagesc.iiiiiiiiiiiii i 22

1.6.3.3 Expanding XACML with credentialscocoiiiiiiii... 25

1.7 CONCIUSIONS ...ttt e e e e e e 26
1.8 Defining Termso.ouin i e e e e 26

1.1 Introduction

An important requirement of any information management system is to protect infor-
mation against improper disclosure or modification (known as confidentiality and integrity,
respectively). Access control is a fundamental technology to achieve this goal (e.g., [22, 26]).
It controls every access request to a system and determines whether the access request
should be granted or denied. In access control systems a distinction is generally made
among policies, models, and mechanisms. Policies are high level guidelines which determine
how accesses are controlled and access decisions determined. A policy is then formalized
through a security model and is enforced by access control mechanisms. The access con-
trol mechanism works as a reference monitor that mediates every attempted access by a
user (or program executing on behalf of that user) to objects in the system. The reference

3

4

monitor consults an authorization database to determine if the user attempting to do an
operation is actually authorized to perform that operation. Authorizations in this database
are usually defined with respect to the identity of the users. This implies that access con-
trol requires authentication as a prerequisite, meaning that the identity of the requesting
user has to be correctly verified (e.g., [8, 19, 25, 31]). The reader is surely familiar with
the process of signing on to a computer system by providing an identifier and a password.
This authentication establishes the identity of a human user to a computer. More gener-
ally, authentication can be computer-to-computer or process-to-process and mutual in both
directions. Access control is then concerned with limiting the activity of legitimate users
who have been successfully authenticated. The set of authorizations are administered and
maintained by a security administrator. The administrator sets the authorizations on the
basis of the security policy of the organization. Users may also be able to modify some
portion of the authorization database, for example, to set permissions for their personal
files. The effectiveness of the access control rests on a proper user identification and on the
correctness of the authorizations governing the reference monitor.

The variety and complexity of the protection requirements that may need to be imposed
in today’s systems makes the definition of access control policies a far from trivial process.
For instance, many services do not need to know the real identity of a user but they may
need to know some characteristics/properties of the requesting users (e.g., a user can access
a service only if she work in an European country), or different systems may need to collab-
orate while preserving their autonomy in controlling access to their resources [23, 24, 26].
The goal of this chapter is therefore to provide an overview of the access control evolu-
tion. This overview begins with a discussion on the classical discretionary, mandatory, and
role-based access control policies and models (Sections 1.2-1.4), and then continue with
an illustration of the administration policies (Section 1.5) that determine who can modify
the accesses allowed by such policies. We then discuss the most recent advances in access
control, focusing on attribute and credential-based access control (Section 1.6). Finally, we
present our conclusions in Section 1.7.

1.2 Discretionary access control (DAC)

Discretionary access control policies govern the access of users to the informa-
tion/resources on the basis of the users’ identities and authorizations (or rules) that specify,
for each user (or group of users) and each object in the system, the access modes the user
is allowed on the object. Each request of a user to access an object is checked against the
specified authorizations. If there exists an authorization stating that the user can access the
object in the specific mode, the access is granted; it is denied, otherwise. In the following,
we first describe the access matrix model, which is useful to understand the basic princi-
ples behind discretionary access control models and policies, and discuss implementation
alternatives. We then illustrate how discretionary policies have been further expanded.

1.2.1 The access matrix model and its implementation

A first step in the definition of an access control model is the identification of the set
of objects to be protected, the set of subjects who request access to objects, and the set
of access modes that can be executed on objects. While subjects typically correspond to
users (or groups thereof), objects and access modes may differ depending on the specific

Access Control 5

Filel File2 File3 Filed Accountl Account2

Own Own Inquiry
John R R Credit
W W
Own Inquiry Inquiry
Alice R R W R Debit Credit
W
Own Inquiry
Bob R R R Debit
W W

FIGURE 1.1: An example of access matrix

system or application. For instance, objects may be files and access modes may be Read,
Write, Execute, and Own. The meaning of the first three of these access modes is self
evident. Ownership is concerned with controlling who can change the access permissions
for the file. An object such as a bank account may have access modes Inquiry, Credit and
Debit corresponding to the basic operations that can be performed on an account. These
operations would be implemented by application programs, whereas for a file the operations
would typically be provided by the Operating System.

A subtle point that is often overlooked is that subjects can themselves be objects. A
subject can create additional subjects to accomplish its task. The children subjects may be
executing on various computers in a network. The parent subject will usually be able to
suspend or terminate its children as appropriate. The fact that subjects can be objects cor-
responds to the observation that the initiator of one operation can be the target of another.
(In network parlance, subjects are often called initiators, and objects called targets.)

The access matrix is a conceptual model which specifies the rights that each subject
possesses for each object. There is a row in the matrix for each subject, and a column
for each object. Each cell of the matrix specifies the access authorized for the subject in
the row to the object in the column. The task of access control is to ensure that only
those operations authorized by the access matrix actually get executed. This is achieved by
means of a reference monitor, which is responsible for mediating all attempted operations
by subjects on objects.

Figure 1.1 shows an example of access matrix where the access modes R and W denote
read and write, respectively, and the other access modes are as discussed previously. The
subjects shown here are John, Alice, and Bob. There are four files and two accounts. This
matrix specifies that, for example, John is the owner of File3 and can read and write that
file, but John has no access to File2 and Filed. The precise meaning of ownership varies
from one system to another. Usually the owner of a file is authorized to grant other users
access to the file, as well as revoke access. Since John owns Filel, he can give Alice the R
right and Bob the R and W rights as shown in Figure 1.1. John can later revoke one or
more of these rights at his discretion.

The access modes for the accounts illustrate how access can be controlled in terms of
abstract operations implemented by application programs. The Inquiry operation is similar
to read since it retrieves information but does not change it. Both the Credit and Debit
operations will involve reading the previous account balance, adjusting it as appropriate
and writing it back. The programs which implement these operations require read and
write access to the account data. Users, however, are not allowed to read and write the
account object directly. They can manipulate account objects only indirectly via application
programs which implement the Debit and Credit operations. Also, note that there is no

Filel—m John p| Alice p| Bob
Own R

R R
W w

File2——m Alice — Bob
Own

File3—— = John p Alice

Filed— = Alice p| Bob

Accountt——® John > Alice

Inquiry Inquiry
Credit Debit

Account2——pmt Alice p| Bob

Inquiry Inquiry
Credit Debit

FIGURE 1.2: Access Control Lists corresponding to the access matrix in Figure 1.1

Own right for accounts. Objects such as bank accounts do not really have an owner who
can determine the access of other subjects to the account. Clearly, the user who establishes
the account at the bank should not be the one to decide who can access the account. Within
the bank different officials can access the account depending on their job functions in the
organization.

In a large system the access matrix will be enormous in size, and most of its cells are
likely to be empty. Accordingly, the access matrix is very rarely implemented as a matrix.

Access Control 7

John——m Filel p| File3 | Account]
Own Own Inquiry
R R Credit
W W
Alice— = Filel > File2 > File3 - File4 ..;Accountl Account2
Own . .
Inquiry Inquiry
R R w R Debit Credit
N —
Bob — i Filel p File2 p-| Filed | AAccount?
R R Olivn Inquiry
w W Debit

FIGURE 1.3: Capability lists corresponding to the access matrix in Figure 1.1

We now discuss some common approaches for implementing the access matrix in practical
systems.

Access Control Lists. Each object is associated with an Access Control List (ACL), indicat-
ing for each subject in the system the accesses the subject is authorized to execute on the
object. This approach corresponds to storing the matrix by columns. ACLs corresponding
to the access matrix of Figure 1.1 are shown in Figure 1.2. Essentially the access matrix
column for Filel is stored in association with Filel, and so on.

By looking at an object’s ACL, it is easy to determine which access modes subjects are
currently authorized for that object. In other words, ACLs provide for convenient access
review with respect to an object. It is also easy to revoke all accesses to an object by replacing
the existing ACL with an empty one. On the other hand, determining all the accesses that a
subject has is difficult in an ACL-based system. It is necessary to examine the ACL of every
object in the system to do access review with respect to a subject. Similarly, if all accesses of
a subject need to be revoked, all ACLs must be visited one by one. (In practice revocation
of all accesses of a subject is often done by deleting the user account corresponding to
that subject. This is acceptable if a user is leaving an organization. However, if a user is
reassigned within the organization it would be more convenient to retain the account and
change its privileges to reflect the changed assignment of the user.)

Many systems allow group names to occur in ACLs (see Section 1.2.2). For instance, an
entry such as (ISSE, R) can authorize all members of the ISSE group to read a file. Several
popular Operating Systems (e.g., Unix) implement an abbreviated form of ACLs in which a
small number, often only one or two, group names can occur in the ACL. Individual subject
names are not allowed. With this approach the ACL has a small fixed size so it can be
stored using a few bits associated with the file.

Capabilities. Capabilities are a dual approach to ACLs. Each subject is associated with a
list, called capability list, indicating for each object in the system, the accesses the subject
is authorized to execute on the object. This approach corresponds to storing the access
matrix by rows. Figure 1.3 shows the capability lists corresponding to the access matrix
in Figure 1.1. In a capability list approach it is easy to review all accesses that a subject
is authorized to perform by simply examining the subject’s capability list. However, deter-
mination of all subjects who can access a particular object requires examination of each

Subject | Access mode | Object
John Own Filel
John R Filel
John \WY Filel
John Own File3
John R File3
John WY File3
John Inquiry Account1
John Debit Accountl
Alice R Filel
Alice Own File2
Alice R File2
Alice A% File2
Alice \% File3
Alice R File4
Alice Inquiry Accountl
Alice Debit Accountl
Alice Inquiry Account?2
Alice Credit Account?2
Bob R Filel
Bob AW Filel
Bob R File2
Bob Own Filed
Bob R File4
Bob W File4
Bob Inquiry Account?2
Bob Debit Account2

FIGURE 1.4: Authorization relation corresponding to the access matrix in Figure 1.1

and every subject’s capability list. A number of capability-based computer systems were
developed in the 1970s, but did not prove to be commercially successful. Modern operating
systems typically take the ACL-based approach.

It is possible to combine ACLs and capabilities. Possession of a capability is sufficient
for a subject to obtain access authorized by that capability. In a distributed system this
approach has the advantage that repeated authentication of the subject is not required.
This allows a subject to be authenticated once, obtain its capabilities and then present
these capabilities to obtain services from various servers in the system. Each server may
further use ACLs to provide finer-grained access control.

Authorization relations. We have seen that ACL- and capability-based approaches have
dual advantages and disadvantages with respect to access review. There are representations
of the access matrix which do not favor one aspect of access review over the other. For
instance, the access matrix can be represented by an authorization relation (or table) as
shown in Figure 1.4. Each row, or tuple, of this table specifies one access right of a subject
to an object. Thus, John’s accesses to Filel require three rows. If this table is sorted by
subject, we get the effect of capability lists. If it is sorted by object, we get the effect of
ACLs. Relational database management systems typically use such a representation.

1.2.2 Expanding authorizations

Although the access matrix still remains a framework for reasoning about accesses per-
mitted by a discretionary policy, discretionary policies have been developed considerably

Access Control 9

Personnel Objects
Marketing Purchase Admin Files Accounts
Alice Bob John Emma Filel File2 File3 File4 Accountl Account2

(2) (b)

FIGURE 1.5: An example of user group (a) and object (b) hierarchy

since the access matrix was proposed. In particular, early approaches to authorization spec-
ifications allowed conditions to be associated with authorizations to restrict their valid-
ity [33]. Conditions may involve some system predicates, and may specify restrictions based
on the content of objects or on accesses previously executed. Another important feature
supported by current discretionary policies is the definition of abstractions on users and
objects. Both users and objects can therefore be hierarchically organized, thus introducing
user groups and classes of objects. Figures 1.5(a)-(b) illustrate an example of user group
hierarchy and object hierarchy, respectively. The definition of groups of users (and classes
of objects) requires a technique to easily handle exceptions. For instance, suppose that all
users belonging to a group can access a specific object but user u. In this case, it is necessary
to explicitly associate an authorization with each user in the group but u, which is clearly a
solution that does not take advantage from the definition of user groups. This observation
has been the driving factor supporting the development of access control models that com-
bine positive and negative authorizations (e.g., [10]). In this way, the previous exception can
be easily modeled by the definition of two authorizations: a positive authorization for the
group and a negative authorization for user u. Hierarchies can also simplify the definition
of authorizations because authorizations specified on an abstraction can be propagated to
all its members. The propagation of authorizations over a hierarchy may follow different
propagation policies (e.g., [35, 52]). For instance, authorizations associated with an element
in the hierarchy may not be propagated, may be propagated to all its descendants, or may
be propagated to its descendants if not overridden.

The use of both positive and negative authorizations introduces two problems: 3) in-
consistency, which happens when for an access there are both a negative and a positive
authorization; and 4i) incompleteness, which happens when some accesses are neither au-
thorized nor denied (i.e., no authorization exists for them). The inconsistency problem is
solved by applying a conflict resolution policy. There are several conflict resolution poli-
cies [35, 45] such as: no conflict, the presence of a conflict is considered an error; denials
take precedence, negative authorizations take precedence; permissions take precedence, pos-
itive authorizations take precedence; nothing takes precedence, neither positive nor negative
authorizations take precedence and conflicts remain unsolved; most specific takes precedence,
the authorization that is more specific with respect to a hierarchy wins (e.g., consider the
user group hierarchy in Figure 1.5(a), the effect on John of a positive authorization for
the Admin group to read Filel, and a negative authorization for reading the same file for
Personnel is that he is allowed to read Filel since Admin is more specific than Personnel);
and most specific along a path takes precedence, the authorization that is more specific with
respect to a hierarchy wins only on the paths passing through it (e.g., consider the user
group hierarchy in Figure 1.5(a), the effect on John of a positive authorization for the Admin
group to read Filel, and a negative authorization for reading the same file for Personnel is
that there is a conflict for managing John’s access to Filel since the negative authorization

10

wins along path (Personnel, Purchase, John) and the positive authorization wins along
path (Personnel, Admin, John)). The incompleteness problem can be solved by adopting
a decision policy, that is, an open policy or a closed policy. Open policies are based on
explicitly specified authorizations and the default decision of the reference monitor is de-
nial. Open policies are based on the specification of denials instead of permissions. In this
case, for each user and each object in the system, the access modes the user is forbidden
on the object are specified. Each access request by a user is checked against the specified
(negative) authorizations and granted only if no authorization denying the access exists.
The combination of a propagation policy, a conflict resolution policy, and a decision policy
guarantees a complete and consistent policy for the system.

1.3 Mandatory access control (MAC)

The flexibility of discretionary policies makes them suitable for a variety of systems and
applications, especially in the commercial and industrial environments. However, discre-
tionary access control policies have the drawback that they do not provide real assurance
on the flow of information in a system. It is easy to bypass the access restrictions stated
through the authorizations. For instance, a user who is authorized to read data can pass
them to other users not authorized to read them without the cognizance of the owner. The
reason is that discretionary policies do not impose any restriction on the usage of informa-
tion by a user once the user has got it (i.e., dissemination of information is not controlled).
By contrast, dissemination of information is controlled in mandatory systems by preventing
flow of information from high-level objects to low-level objects. Mandatory policies govern
access on the basis of a classification of subjects and objects in the system. Note that the
concept of subject in discretionary policies is different from the concept of subject in manda-
tory policies. In fact, authorization subjects correspond to users (or groups thereof) while
in mandatory policies users are human beings who can access the system, and subjects are
processes operating on behalf of users.

Each subject and each object in a mandatory system is assigned an access class. The
set of access classes is a partially ordered set and in most cases an access class is composed
by a security level and a set of categories. The security level is an element of a hierarchical
ordered set. In the military and civilian government arenas, the hierarchical set generally
consists of Top Secret (TS), Secret (S), Confidential (C), and Unclassified (U), where TS
> S > C > U. Each security level is said to dominate itself and all others below it in
this hierarchy. The set of categories is a subset of an unordered set, whose elements reflect
functional, or competence, areas (e.g., Financial, Demographic, Medical). Given two access
classes ¢; and co, we say that ¢; dominates co, denoted c; = co, iff the security level of ¢;
is greater than or equal to that of co and the categories of ¢; include those of cs.

The semantics and use of the access classes assigned to objects and subjects within
the application of a multilevel mandatory policy depends on whether the access class is
intended for a secrecy or an integrity policy. In the following, we illustrate secrecy-based
and integrity-based mandatory policies.

1.3.1 Secrecy-based model

The main goal of a secrecy-based mandatory policy is to protect the confidentiality of
information. In this case, the security level associated with an object reflects the sensitivity

Access Control 11

SUBJECTS OBJECTS
5T A 4
@; - é) s
R
Q@ o8
\{ \4 U ""

FIGURE 1.6: Controlling information flow for secrecy

of the information contained in the object, that is, the potential damage which could result
from unauthorized disclosure of the information. The security level associated with a user,
also called clearance, reflects the user’s trustworthiness not to disclose sensitive information
to users not cleared to see it. The set of categories associated with a user reflect the specific
areas in which the user operates. The set of categories associated with an object reflect the
area to which information contained in the object is referred. Categories enforce restriction
on the basis of the need-to-know principle (i.e., a subject should be only given those accesses
which are required to carry out the subject’s responsibilities). Users can connect to the
system at any access class dominated by their clearance. A user connecting to the system
at a given access class originates a subject at that access class.

Access to an object by a subject is granted only if some relationship (depending on the
type of access) is satisfied between the access classes associated with the two. In particular,
the following two principles are required to hold.

Read-down A subject’s access class must dominate the access class of the object being
read.

Write-up A subject’s access class must be dominated by the access class of the object
being written.

Satisfaction of these principles prevents information in high level objects (i.e., more sen-
sitive) to flow to objects at lower levels. Figure 1.6 illustrates the effect of these rules.
Here, for simplicity, accesses classes are only composed of a security level. In such a system,
information can only flow upwards or within the same security class.

To better understand the rationale behind the read-down and write-up rules, it is im-
portant to analyze the relationship between users and subjects in this context. Suppose that
the human user Jane is cleared to S (again, for simplicity, access classes are only composed

12

SUBIJECTS OBJECTS

reads
-
[m | [
[| [
(i | [
— e
MO UOBLLIOJU]

SAILIM

& reads

SAILIAM

& reads
-

U

FIGURE 1.7: Controlling information flow for integrity

of a security level), and assume she always signs on to the system as an S subject (i.e., a
subject with clearance S). Jane’s subjects are prevented from reading TS objects by the
read-down rule. The write-up rule, however, has two aspects that seem at first sight contrary
to expectation.

e Firstly, Jane’s S subjects can write a TS object (even though they cannot read it).
In particular, they can overwrite existing TS data and therefore destroy them. Due
to this integrity concern, many systems for mandatory access control do not allow
write-up; but limit writing to the same level as the subject. At the same time write-
up does allow Jane’s S subjects to send electronic mail to TS subjects, and can have
its benefits.

e Secondly, Jane’s S subjects cannot write C or U data. This means, for example, that
Jane can never send electronic mail to C or U users. This is contrary to what happens
in the paper world, where S users can write memos to C and U users. This seeming
contradiction is easily eliminated by allowing Jane to sign to the system as a C, or U,
subject as appropriate. During these sessions she can send electronic mail to C or, U
and C, subjects respectively.

The write-up rule prevents malicious software from leaking secrets downward from S to U.
Users are trusted not to leak such information, but the programs they execute do not merit
the same degree of trust. For instance, when Jane signs onto the system at U level her
subjects cannot read S objects, and thereby cannot leak data from S to U. The write-up
rule also prevents users from inadvertently leaking information from high to low.

1.3.2 Integrity-based model

Mandatory access control can also be applied for the protection of information integrity.
The integrity level associated with an object reflects the degree of trust that can be placed
in the information stored in the object, and the potential damage that could result from
unauthorized modification of the information. The integrity level associated with a user
reflects the user’s trustworthiness for inserting, modifying or deleting data and programs
at that level. Again, categories define the area of competence of users and data. Principles
similar to those stated for secrecy are required to hold, as follows.

Access Control 13

Read-up A subject’s integrity class must be dominated by the integrity class of the object
being read.

Write-down A subject’s integrity class must dominate the integrity class of the object
being written.

Satisfaction of these principles safeguard integrity by preventing information stored in low
objects (and therefore less reliable) to flow to high objects. This is illustrated in Figure 1.7,
where, for simplicity, integrity classes are only composed of integrity levels, which can be
Crucial (C), Important (I), and Unknown (U) with C>I>U. Controlling information flow in
this manner is only one aspect of achieving integrity. Integrity in general requires additional
mechanisms, as discussed in [16, 53].

Note that the only difference between Figure 1.6 and Figure 1.7 is the direction of
information flow, being bottom to top in the former case and top to bottom in the latter.
In other words, both cases are concerned with one-directional information flow. The essence
of classical mandatory controls is one-directional information flow in a lattice of security
classes. For further discussion on this topic see [52].

1.4 Role-based access control (RBAC)

Role-based policies regulate the access of users to the information on the basis of the
activities the users execute in the system. Role-based policies require the identification of
roles in the system. A role can be defined as a set of actions and responsibilities associated
with a particular working activity. Then, instead of specifying all the accesses each user is
allowed to execute, access authorizations on objects are specified for roles. Users are given
authorizations to play roles. This greatly simplifies the authorization management task. For
instance, suppose a user’s responsibilities change, say, due to a promotion. The user’s current
roles can be taken away and new roles assigned as appropriate for the new responsibilities.
Another advantage of RBAC is that roles allow a user to sign on with the least privilege
required for the particular task at hand. Users authorized to powerful roles do not need
to exercise them until those privileges are actually needed. This minimizes the danger of
damage due to inadvertent errors or by intruders masquerading as legitimate users. Note
that, in general, a user can take on different roles on different occasions. Also, the same
role can be played by several users, perhaps simultaneously. Some proposals for role-based
access control allow a user to exercise multiple roles at the same time. Other proposals limit
the user to only one role at a time, or recognize that some roles can be jointly exercised
while others must be adopted in exclusion to one another. In the remainder of this section,
we briefly describe the standard RBAC model and then illustrate an extension of RBAC.

1.4.1 Basic RBAC model

In 2004, the National Institute of Standards and Technology (NIST) proposed a U.S.
national standard for role-based access control through the International Committee for
Information Technology Standards (ANSI/INCITS) [3, 28]. The standard RBAC model is
organized in four components, which are briefly described in the following.

Core RBAC. Core RBAC includes five basic elements, that is, users, roles, objects, op-
erations, and permissions. Users are assigned to roles, and permissions (i.e., the associa-
tion between an object and an operation executable on the object) are assigned to roles.

14

Medical Staff

/ \

Doctor Nurse
\ /

Supervising Medical Staff

FIGURE 1.8: An example of role hierarchy

The permission-to-role and user-to-role assignments are both many-to-many, thus provid-
ing greater flexibility. In addition, Core RBAC includes the concept of session, where each
session is a mapping between a user and a set of activated roles, which are a subset of the
roles assigned to the user. The permissions available to a user during a session are therefore
all the permissions associated with the roles activated by the user in the session.

Hierarchical RBAC. This model introduces the concept of role hierarchy. In many applica-
tions there is a natural hierarchy of roles, based on the familiar principles of generalization
and specialization. For instance, the Medical Staff role may be specialized into Doctor
and Nurse (see Figure 1.8). The role hierarchy has implication on role activation and access
privileges: a specialized role inherits the authorizations of its generalizations; also, users
authorized to activate a role inherit the authorization to activate the generalizations of the
role. For instance, with reference to Figure 1.8, role Nurse inherits all authorizations of
role Medical Staff. Also, users authorized to activate role Nurse will also be allowed to
activate role Medical Staff. A role hierarchy can be an arbitrary partial order or it may
be possible to impose some restrictions on the type of hierarchy. For instance, it is possible
to require that a role hierarchy has to be a tree, meaning that each role may have only one
single direct parent.

Static separation of duty. The RBAC model can be enriched by adding separation of duty
constraints. Intuitively, static separation of duty imposes restrictions on the assignments of
users to roles. For instance, a user assigned to the Nurse role may not be assigned to the
Doctor role. A separation of duty constraint is defined as a pair where the first element
is a set rs of roles and the second element is an integer n greater than or equal to two
denoting the number of roles that would constitute a violation. For instance, ({Doctor,
Nurse},2) states that a user may be assigned to one out of the two roles mentioned in the
constraint. Since static separation of duty constraints can be also defined in the presence of
a role hierarchy, it is important to ensure that role inheritance does not violate the static
separation of duty constraints.

Dynamic separation of duty. In the dynamic separation of duty, constraints are enforced
at run-time: users can activate any role to which they are assigned but the activation of
some roles during a session will rule out their ability to activate another role which is in a
separation of duty constraint with the activated roles. An example of dynamic separation
of duty is the two-person rule. The first user who executes a two-person operation can be
any authorized user, whereas the second user can be any authorized user different from the
first. The dynamic separation of duty constraints are still defined as pairs composed by a
set rs of roles and an integer n greater than or equal to two and their enforcement requires
that no user is assigned to n or more roles from rs in a single session.

In addition to the four components described above, the NIST RBAC standard defines
administrative functions related to the creation and management of the basic elements and
relations of RBAC, and permission review functions.

Access Control 15

1.4.2 Expanding RBAC

The RBAC model has been adopted in a variety of commercial systems (e.g., DB2,
Oracle), and has been the subject of many research proposals aimed at extending and en-
riching the model to support particular domain specific security policies (e.g., web services,
social networks), administration models, and delegation. Some proposals are also aimed at
integrating RBAC with other technologies such as cryptography, trust mechanisms, and
XML-based access control languages (e.g., [1, 30]). Given the huge amount of work on
RBAC, it is clearly not feasible to provide a comprehensive summary of the extensions pro-
posed in the literature. A notable example is the Usage Control Model (UCON 4p¢) [51], a
framework that encompasses access control, trust management, and digital right manage-
ment. This proposal is interesting since it supports DAC, MAC, and RBAC and is based
on attributes characterizing subjects and objects that are used for specifying authorizations
(see Section 1.6 for more details about attribute-based access control). In particular, the
UCON 4pc model integrates authorizations, obligations, and conditions within a unique
framework, and includes the following eight components.

Subjects, objects, and rights. Subjects, objects, and rights have the same meaning of the
corresponding concepts also used within the DAC, MAC, and RBAC access control models.
A subject is therefore an individual who holds some rights on objects.

Subject and object attributes. Each subject and object in the system is characterized by a
set of attributes that can be used for verifying whether an access request can be granted.
Examples of subject attributes include identities, group names, and roles while examples
of object attributes include ownerships, security labels, and so on. A peculiarity of the
UCON 4 ¢ model is that subject and object attributes can be mutable, meaning that their
values may change due to an access.

Authorizations. Authorizations are evaluated for usage decision and return whether a
subject can perform the required right on an object. Authorizations are based on sub-
ject and object attributes, and are distinguished between pre-authorizations and ongoing-
authorizations. A pre-authorization is performed before the execution of the requested right
while an ongoing-authorization is performed during the access.

Obligations. An obligation is a requirement that a user has to perform before (pre) or
during (ongoing) access. For instance, a pre-obligation may require a user to provide her
date of birth before accessing a service. The execution of obligations may change the value
of mutable attributes and therefore they may affect current or future usage decisions.

Conditions. Conditions evaluate current environmental or system status. Examples are time
of the day and system workload. The evaluation of these conditions cannot change the value
of any subject or object attributes.

A family of UCON ap¢ core models is defined according to three criteria: the decision
factor, which may be authorizations, obligations, and conditions; the continuity of decision,
which may be either pre or ongoing; and the mutability, which can allow changes on subject
or object attributes at different times. According to these criteria, the authors in [51] define
16 basic UCON 4 gc models and show how these models can support traditional DAC, MAC,
and RBAC.

16

1.5 Administration of authorizations

Administrative policies determine who is authorized to modify the allowed accesses. This
is one of the most important, and least understood, aspects of access control.

In mandatory access control the allowed accesses are determined entirely on the basis of
the access class of subjects and objects. Access classes are assigned to users by the security
administrator. Access classes of objects are determined by the system on the basis of the
access classes of the subjects creating them. The security administrator is typically the
only one who can change access classes of subjects or objects. The administrative policy is
therefore very simple.

Discretionary access control permits a wide range of administrative policies. Some of
these are described below.

e Centralized. A single authorizer (or group) is allowed to grant and revoke authoriza-
tions to the users.

e Hierarchical. A central authorizer is responsible for assigning administrative responsi-
bilities to other administrators. The administrators can then grant and revoke access
authorizations to the users of the system. Hierarchical administration can be applied,
for example, according to the organization chart.

e Cooperative. Special authorizations on given resources cannot be granted by a single
authorizer but need cooperation of several authorizers.

e Quwnership. A user is considered the owner of the objects he/she creates. The owner
can grant and revoke access rights for other users to that object.

e Decentralized. In decentralized administration the owner of an object can also grant
other users the privilege of administering authorizations on the object.

Within each of these there are many possible variations [52].

Role-based access control has a similar wide range of possible administrative policies. In
this case roles can also be used to manage and control the administrative mechanisms.

Delegation of administrative authority is an important aspect in the administration of
authorizations. In large distributed systems centralized administration of access rights is
infeasible. Some existing systems allow administrative authority for a specified subset of
the objects to be delegated by the central security administrator to other security adminis-
trators. For instance, authority to administer objects in a particular region can be granted
to the regional security administrator. This allows delegation of administrative authority
in a selective piecemeal manner. However, there is a dimension of selectivity that is largely
ignored in existing systems. For instance, it may be desirable that the regional security
administrator be limited to granting access to these objects only to employees who work
in that region. Control over the regional administrators can be centrally administered, but
they can have considerable autonomy within their regions. This process of delegation can
be repeated within each region to set up sub-regions and so on.

Access Control 17

1.6 Attribute and credential-based access control

Emerging distributed scenarios (e.g., cloud computing and data outsourcing) are typ-
ically characterized by several independent servers offering services to anyone who needs
them (e.g., [21]). In such a context, traditional assumptions for enforcing access control
do not hold anymore. As a matter of fact, an access request may come from unknown
users and therefore access control policies based on the identity of the requester cannot be
applied. Alternative solutions that have been largely investigated in the last twenty years
consist in adopting attribute-based access control that uses the attributes associated with
the resources/services and requesters to determine whether the access should be granted
(e.g., [5]). The basic idea is that not all access control decisions are identity-based. For
instance, information about a user’s current role (e.g., doctor) or a user’s date of birth may
be more important than the user’s identity for deciding whether an access request should
be granted.

In the remainder of this section, we first review the basic concepts about attribute and
credential-based access control and then describe some solutions based on such a model.

1.6.1 Basic elements of the model

Attribute-based access control differs from traditional discretionary access control since
both the subject and the object appearing in an authorization are replaced by a set of
attributes associated with them. Such attributes may correspond to an identity or a non-
identifying characteristic of a user (e.g., date of birth, nationality) and to metadata associ-
ated with an object that provide additional context information (e.g., data of creation). In
particular, the attributes associated with a user may be specified by the user herself (declara-
tions), or may be substantiated by digital certificates or credentials (e.g., [12, 57]). Metadata
associated with resources/services can be in different form (e.g., textual or semistructured
data). By analyzing previous works in the area, we identify the following main concepts
captured by attribute/credential-based access control models.

Authority. An authority is an entity responsible for producing and signing certificates. A
party may accept certificates issued by an authority that it trusts or that has been (directly
or indirectly) delegated by an authority that it trusts.

Certificate. A certificate is a statement certified by an authority trusted for making such a
statement. Each certificate is characterized by the identity of the issuer, the identity of the
user for which the certificate has been issued, a validity period, a signature of the issuing
authority, and a set of certified attributes. Certificates can be classified according to different
dimensions. Since we focus on the use of certificates in access control, we distinguish between
atomic and non-atomic certificates [7]. Atomic certificates (e.g., X.509) can only be released
as a whole, meaning that all attributes in a certificate are disclosed. These certificates are
the most common type of certificates used today in distributed systems. Although these
certificates can only be released as a whole, there is usually the possibility to refer to
specific attributes within a certificate for querying purpose. Given a certificate ¢ including
a set {ay,...,an,} of attributes, we can use the dot notation to refer to a given attribute
in c. For instance, given credential Passport certifying attributes name, dob, and country,
Passport.name denotes attribute name certified by the Passport credential. Non-atomic
certificates (e.g., Idemix [15]) allow the selective release of the attributes certified by them.
Non-atomic certificates are based on technologies that also permit to certify the possession
of a given certificate without disclosing the attributes within it. Abstractions can be defined

18

ID

Passport Drivelicense
Diplomatic Regular Civilian Military

FIGURE 1.9: An example of certificate abstractions

within the domain of certificates. Figure 1.9 illustrates an example of certificate abstractions.
The use of abstractions in the policy specification provides a compact and easy way to refer
to complex concepts. For instance, the specification of abstraction Passport in a policy
states that any kind of passport (diplomatic or regular) can be accepted. Abstractions can
be formally modeled through a hierarchy H=(C,<), with C a set of certificate abstractions
and < a partial order relationship over C. Given two certificate abstractions ¢; and c;,
¢; < ¢; if ¢; is an abstraction of ¢;.

An important concept captured by several credential-based access control models is
delegation. The delegation consists in the ability of an authority to produce credentials
on behalf of the delegator. Delegation increases flexibility and permits the inexpensive
creation of credentials, particularly in an open environment. A delegation certificate issued
by an authority states that it trusts another authority for issuing certificates that include
specific attributes. An authority can delegate other authorities only on given attributes
(e.g., a hospital can issue a certificate delegating physicians to certify specific properties of
patients) or can give unrestricted delegation to other authorities.

Low-level issues related to the certificate creation, retrieval, validation, and revocation
are all usually assumed to be managed by an underlying implementation of the certificate
management system (e.g., [38, 41, 44]) and are therefore outside the scope of this chapter.

Policy. A policy defines the rules (authorizations) regulating access to resources. Such au-
thorizations model access restrictions based on generic properties associated with subjects
and objects. In general, these restrictions can refer to attributes within specific credentials
or can refer to certificate abstractions. In this latter case, a restriction involving a certifi-
cate abstraction applies also to its specialized abstractions/credentials. For instance, with
respect to the certificate abstractions in Figure 1.9, ID.dob represents attribute dob certified
by a credential of type ID. From an analysis of the current attribute and credential-based
access control policies it is easy to see that at an abstract level the main elements of an
authorization that are common to many proposals are the following.

e Subject expression. A subject expression identifies a set of subjects having specific
attributes. A subject expression can be seen as a boolean formula of basic conditions
defined on attributes. Attributes appearing in basic conditions must be certified or
can be declared by a user. For instance, expression ID.dob>01-05-1971 denotes all
users with a certificate of type ID certifying that the date of birth of the users is after
January 05, 1971.

e Object expression. An object expression identifies the resources/services to be pro-
tected. Like for subject expressions, also an object expression can be seen as a boolean
formula of basic conditions defined on the metadata associated with resources/services.
For instance, assume that producer is a metadata attribute associated with objects.
Then, expression producer=“EU” denotes all objects made in an European country.

e Action. An action denotes the operation (or group thereof) to which the authorization
refers.

Access Control 19

Different languages have been developed for the specification of policies, and each of
them supports different features. In the remainder of this section, we first describe the
policy communication problem (Section 1.6.2), which is a specific problem of the attribute-
based access control systems, and then we present some policy languages (Section 1.6.3).
In particular, we present logic-based languages, which are expressive but turn out to be
not applicable in practice, and then XACML-based languages, which are easy to use and
consistent with consolidated technology.

1.6.2 Policy communication

A peculiarity of access control systems based on attributes is that the server offering
resources/services evaluates the policies without a complete knowledge of users and their
properties. The server has then to communicate to users the policies that they should sat-
isfy to have their requests possibly permitted. For instance, consider a service accessible
to all people older than 18 and working in an European country. In this case, the server
has to communicate to the user that she has to provide her date of birth and the place
where she works before accessing the service. This policy communication problem has been
under the attention of the research and development communities for more than a decade
and several solutions have been proposed, each addressing different issues (e.g., [29, 38]). A
simple policy communication strategy consists in giving the user a list with all the possible
sets of certificate that would allow the access. This solution is not always applicable due to
the large number of possible alternatives (e.g., with compound credential requests such as
“a passport and one membership certificate from a federated association”, there may be a
combinatorial explosion of alternatives). Automated trust negotiation strategies have been
therefore proposed (e.g., [38, 55, 56, 59, 60, 61, 62]), which are based on the assumption
that parties may be unknown a-priori and a multi-step trust negotiation process is neces-
sary for communicating policies and for releasing certificates, which are both considered
sensitive. The goal of a trust negotiation process is to gradually establish trust among par-
ties by disclosing credentials and requests for credentials. In successful trust negotiations,
credentials eventually are exchanged so that the policy regulating access to the required
resource/service is satisfied. In [55] two different strategies are described: eager and parsi-
monious credential release strategies. Parties applying the first strategy communicate all
their credentials if the release policy for them is satisfied, without waiting for the creden-
tials to be requested. Parsimonious parties only release credentials upon explicit request
by the server (avoiding unnecessary releases). In [60] the PRUdent NEgotiation Strategy
(PRUNES) strategy ensures that a user communicates her credentials to the server only if
the access will be granted and the set of certificates communicated to the server is the min-
imal necessary for granting it. Each party defines a set of credential policies that regulates
how and under what conditions the party releases its credentials. The negotiation consists
of a series of requests for credentials and counter-requests on the basis of the parties’ cre-
dential policies. In [61] the authors present a family of trust negotiation strategies, called
Disclosure Tree Strategy (DTS) family, and show that if two parties use different strategies
from the DTS family, they are able to establish a negotiation process. In [59] the authors
present a Unified Schema for Resource Protection (UniPro) for protecting resources and
policies in trust negotiation. UniPro gives (opaque) names to policies and allows any named
policy P; to have its own policy P» regulating to what parties policy P; can be disclosed.
TrustBuilder [62] is a prototype developed to incorporate trust negotiation into standard
network technologies. Traust [38] is a third-party authorization service that is based on the
TrustBuilder framework for trust negotiation. The Traust service provides a negotiation-
based mechanism that allows qualified users to obtain the credentials necessary to access
resources provided by the involved server. In [56] the authors introduce a formal framework

20

for automated trust negotiation, and formally define the concept of correct enforcement
of policies during a trust negotiation process. In [6] the authors present an expressive and
flexible approach for enabling servers to specify, when defining their access control policies,
if and how the policy should be communicated to the client. Intuitively, an access control
policy is represented through its expression tree and each node of the tree is associated with
a disclosure policy (modeled with three colors, namely green, yellow, or red), ensuring a
fine-grained support and providing expressiveness and flexibility in establishing disclosure
regulations. The disclosure policies state whether an element in the policy can be released
as it is or whether it has to be obfuscated. The authors also illustrate how to determine the
user’s view on the policy (i.e., the policy to be communicated to the user requesting access)
according to the specified disclosure policies.

1.6.3 Languages for access control

Languages for access control aim to support the expression and the enforcement of poli-
cies [52]. Several access control languages have been developed, and most of them rely on
concepts and techniques from logic and logic programming (e.g., [13, 27, 35, 36, 39, 40, 42]).
Logic languages are particularly attractive due to their clean and unambiguous semantics,
suitable for implementation validation, as well as formal policy verification. Logic languages
can be expressive enough to formulate all the policies introduced in the literature, and
their declarative nature yields a good compromise between expressiveness and simplicity.
Nevertheless, many logic-based proposals, while appealing for their expressiveness, are not
applicable in practice, where simplicity, efficiency, and consistency with consolidated tech-
nology are crucial. Effectively tackling these issues is probably the main motivation for the
success of the eXtensible Access Control Markup Language (XACML) [50]. XACML is an
OASIS standard that proposes an XML-based language for specifying and exchanging ac-
cess control policies over the Web. The language can support the most common security
policy representation mechanisms and has already found significant support by many play-
ers. Moreover, it includes standard extension points for the definition of new functions, data
types, and policy combination methods, which provide a great potential for the management
of access control requirements in emerging and future scenarios.

In the following, we survey some logic-based access control languages, and then describe
the XACML language along with some extensions aiming at including the possibility of
using credentials in the XACML policy specification.

1.6.3.1 Logic-based languages

The first work investigating logic languages for the specification of authorizations is
the work by Woo and Lam [58]. They shown how flexibility and extensibility in access
specifications can be achieved by abstracting from the low level authorization triples and
adopting a high level authorization language. Their language is a many-sorted first-order
language with a rule construct, useful to express authorization derivations and therefore
model authorization implications and default decisions (e.g., closed or open policy). Their
work has been subsequently refined by several authors (e.g., [35]).

Several logic-based languages have been developed for formulating, for example, dy-
namic policies, inheritance and overriding, policy composition, and credential-based autho-
rizations (e.g., [9, 11, 12, 35]). In particular, specific solutions have addressed the problem
of constraining the validity of authorizations through periodic expressions and appropriate
temporal operators. For instance, the proposal in [9] shows a temporal authorization model
that supports periodic access authorizations and periodic rules, and allows the derivation
of new authorizations based on the presence or absence of other authorizations in specific

Access Control 21

periods of time. Other logic-based access control languages support inheritance mechanisms
and conflict resolution policies. Jajodia et al. [35] present a proposal for a logic-based lan-
guage that allows the representation of different policies and protection requirements, while
at the same time providing understandable specifications, clear semantics (guaranteeing
therefore the behavior of the specifications), and bearable data complexity. Authorizations
are specified in terms of a locally stratified rule base logic. Such a solution allows the repre-
sentation of different propagation policies (i.e., policies that specify how to obtain derived
authorizations from the explicit authorizations), conflict resolution policies, and decision
policies that a security system officer might want to use.

The fact that in open environments there is the need for combining access control re-
strictions independently stated by different parties motivates the development of solutions
specifically targeted to the composition of policies (e.g., [11, 54]). These solutions typically
do not make any assumption on the language adopted for specifying the given policies and
define a set of policy operators used for combining different policies. In particular, in [12] a
policy is defined as a set of triples of the form (s,0,a), where s is a constant in (or a variable
over) the set of subjects S, o is a constant in (or a variable over) the set of objects O, and
a is a constant in (or a variable over) the set of actions A. Here, complex policies can then
be obtained by combining policies via specific algebra operators.

Logic-based approaches have been also used for specifying, reasoning about, and com-
municating protection requirements. In particular, several proposals have addressed the
problem of defining and enforcing credential-based authorization policies and trust man-
agement (e.g., [12, 34, 43, 48, 62]). In particular, in [12] the authors present a framework
that includes an access control model, a language for expressing access and release policies,
and a policy-filtering mechanism to identify the relevant policies for a negotiation. Access
regulations are specified by logical rules, where some predicates are explicitly identified.
The system is composed of two entities: the client that requests access, and the server that
exposes a set of services. Abstractions can be defined on services, grouping them in sets,
called classes. Server and client interact via a negotiation process, defined as the set of mes-
sages exchanges between them. Clients and servers have a portfolio, which is a collection of
credentials (certified statements) and declarations (unsigned statements). Credentials are
modeled as credential expressions of the form credential_name(attribute_list), where creden-
tial_name is the credential name and attribute_list is a possibly empty list of elements of the
form attribute_name=value_term, where value_term is either a ground value or a variable.
The proposed framework allows a client to communicate the minimal set of certificates to
a server, and the server to release the minimal set of conditions required for granting ac-
cess. For this purpose, the server defines a set of service accessibility rules, representing the
necessary and sufficient conditions for granting access to a resource. More precisely, this
proposal distinguishes two kinds of service accessibility rules: prerequisites and requisites.
Prerequisites are conditions that must be satisfied for a service request to be taken into
consideration (they do not guarantee that it will be granted); requisites are conditions that
allow the service request to be successfully granted. The basic motivation for this separation
is to avoid unnecessary disclosure of information from both parties. Therefore, the server
will not disclose a requisite rule until after the client satisfies a corresponding prerequisite
rule. Also, both clients and servers can specify a set of portfolio disclosure rules, used to
define the conditions that govern the release of credentials and declarations.

The rules both in the service accessibility and portfolio disclosure sets are defined
through a logic language that includes a set of predicates whose meaning is expressed on
the basis of the current state. The state indicates the parties’ characteristics and the status
of the current negotiation process, that is, the certificates already exchanged, the requests
made by the two parties, and so on. Predicates evaluate both information stored at the
site (persistent state) and acquired during the negotiation (negotiation state). Information

22

related to a specific negotiation is deleted when the negotiation terminates. In contrast,
persistent state includes information that spans different negotiations, such as user profiles
maintained at Web sites.

Since there may exist different policy combinations that may bring the access request
to satisfaction, the communication of credentials and/or declarations could be an expensive
task. To overcome this issue, the abbreviation predicates are used to abbreviate requests.
Besides the necessity of abbreviations, it is also necessary for the server, before releasing
rules to the client, to evaluate state predicates that involve private information. For instance,
the client is not expected to be asked many times the same information during the same
session and if the server has to evaluate if the client is considered not trusted, it cannot
communicate this request to the client itself.

Communication of requisites to be satisfied by the requester is then based on a filter-
ing and renaming process applied on the server’s policy, which exploits partial evaluation
techniques in logic programs [12, 47]. Access is then granted whenever a user satisfies the
requirements specified by the filtering rules calculated by means of the original policy and
the already released information.

1.6.3.2 XML-based languages

With the increasing number of applications that either use XML as their data model,
or export relational data as XML data, it becomes critical to investigate the problem of
access control for XML. To this purpose, many XML-based access control languages have
been proposed (e.g., [14, 20, 37, 50]). As already mentioned, the eXtensible Access Control
Markup Language (XACML) is the most relevant XML-based access control language.
XACML version 1.0 [49] has been an OASIS standard since 2003. Improvements have been
made to the language and incorporated in version 3.0 [50].

XACML supports the definition of policies based on attributes associated with subjects
and resources other than their identities. The attributes are assumed to be known during
the evaluation time and stored in the XACML evaluation context, or presented by the
requester together with the request. While XACML acknowledges that properties can be
presented by means of certificates, and in fact, it has been designed to be integrated with
the Security Assertion Markup Language (SAML) [2] for exchanging various types of secu-
rity assertions and for providing protocol mechanisms, it does not provide a real support for
expressing and reasoning about digital certificates in the specification of the authorization
policies. Intuitively, XACML supports attribute-based access control but does not really
support credential-based access control (see Section 1.6.3.3). XACML also supports poli-
cies independently specified by multiple authorities on the same resources. When an access
request on that resource is submitted, the system has to take into consideration all these
policies and their outcomes are combined according to a combining algorithm. Policies de-
fined by different parties may be enforced at different enforcement points. XACML provides
a method for specifying some actions, called obligations, that must be fulfill in conjunction
with the policy enforcement.

Figure 1.10 illustrates the XACML data-flow that consists of the following steps.

e The requestor sends an access request to the Policy Evaluation Point (PEP) module,
which has to enforce the access decision taken by the decision point.

e The PEP module sends the access request to the Context Handler that translates the
original request in a canonical format, called XACML request contezt, by inquiring the
Policy Information Point (PIP) module. PIP provides the values of attributes about
the subject, resource, and action (the function to be performed). To this purpose, PIP
interacts with the Subjects, Resource, and Environment modules. The Environment

Access Control 23

Access . Obligations
Requester |_=- Accegs Request' PEP 13. Obligations , Service
3. Request 12. Response
4. Request Netification >
5. Attributes Query
PDP > Context 9. Resource Resource
10, Attributes Handler Content
11. Response Context
¥) . 7y
6. Attribute .
Query 8. Attribute
R,]
L. Policy PIP [« 7c. Resource Attributes
le—— 7b. Environment Attributes
7a. Subject
Attributes
PAP Subjects Environment

FIGURE 1.10: XACML overview [50]

module provides a set of attributes that are relevant to take an authorization decision
and are independent of a particular subject, resource, and action.

The Context Handler sends the XACML request to the Policy Decision Point (PDP).
The PDP identifies the applicable policies by means of the Policy Administration
Point (PAP) module and retrieves the required attributes and, possibly, the resource
from the Context Handler.

The PDP then evaluates the policies and returns the XACML response context to the
Context Handler. The context handler translates the XACML response context to the
native format of the PEP and returns it to the PEP together with an optional set of
obligations.

The PEP fulfills the obligations and, if the access is permitted, it performs the access.
Otherwise, the PEP denies access.

The main concepts of interest in the XACML policy language are rule, policy, and policy

set. Each XACML policy has a root element that can be either a Policy or a PolicySet. A
PolicySet is a collection of Policy or PolicySet. A XACML policy consists of a target, a
set of rules, an optional set of obligations, an optional set of advices, and a rule combining
algorithm. We now describe these components more in details.

e Turget. It consists of a simplified set of conditions for the subject, resource, and action
that must be satisfied for a policy to be applicable to a given request. Note that the
definition of the subjects, resources, and actions in a target are based on attributes.
For instance, a physician at an hospital may have the attribute of being a researcher,

24

a specialist in some field, or many other job roles. According to these attributes, the
physician can be able to perform different functions within the hospital. If all the
conditions of a Target are satisfied, its associated Policy (or Policyset) applies to
the request. If a policy applies to all entities of a given type, that is, all subjects, ac-
tions, or resources, an empty element, named AnySubject, AnyAction, AnyResource,
respectively, is used.

Rule. The components of a rule are a target, an effect, a condition, obligation expres-
sions, and advice expressions. The target defines the set of resources, subjects, and
actions to which the rule applies. The effect of the rule can be permit or deny. The
condition represents a boolean expression that may further refine the applicability of
the rule. Note that the target element is an optional element: a rule with no target
applies to all possible requests. Obligation and advice expressions are evaluated and
they can be returned to the PEP in the response context. Note that while obligations
cannot be ignored, advices can be safely ignored by the PEP.

Obligation. An obligation is an operation that has to be performed in conjunction
with the enforcement of an authorization decision. For instance, an obligation can
state that all accesses on medical data have to be logged. Obligations are returned
by the PDP to the PEP along with the response. Note that, only policies that are
evaluated and have returned a response of permit or deny can return obligations. This
means that if a policy evaluates to indeterminate or not applicable, the associated
obligations are not returned to the PEP.

Advice. An advice is a supplementary piece of information that is returned to the PEP
with the decision of the PDP.

Rule combining algorithm. Each policy is associated with a rule combining algorithm
used for reconciling the decisions each rule make. The final decision value, called
authorization decision, inserted in the XACML context by the PDP is the value of
the policy as defined by the rule combining algorithm. XACML defines eight differ-
ent combining algorithms: deny overrides, ordered-deny-overrides, permit overrides,
ordered-permit-overrides, deny-unless-permit, permit-unless-deny, first applicable, and
only-one-applicable (see [50] for more details about the meaning of these combining
algorithms). If no rule applies, the result is not applicable. If only one policy ap-
plies, the result coincides with the result of evaluating that rule. According to the
selected combining algorithm, the authorization decision returned to the PEP can be
permit, deny, not applicable (when no applicable policies or rules could be found),
or indeterminate (when some errors occurred during the access control process). In
particular, XACML 3.0 defines an extended set of indeterminate values, which in-
cludes: indeterminate{D} when a policy (rule) could have evaluated to deny but not
permit; indeterminate{P} when a policy (rule) could have evaluated to permit but
not deny; indeterminate{DP} when a policy (rule) could have evaluated to deny or
permit.

XACML also defines a standard format for expressing requests and responses. The origi-

nal request submitted by the PEP is translated through the Context Handler in a canonical
form, and then forwarded to the PDP to be evaluated. For instance, an application can
provide a SAML [2] message that includes a set of attributes characterizing the subject
making the access request. This message has to be converted to the XACML canonical
form and, analogously, the XACML decision has then to be converted to the SAML for-
mat. A request contains attributes for the subject, resource, action, and, optionally, for
the environment. Each request includes exactly one set of attributes for the resource and

Access Control 25

action and at most one set of environment attributes. There may be multiple sets of subject
attributes each of which is identified by a category URI. A response element contains one or
more results corresponding to an evaluation. Each result contains six elements: Decision
specifies the authorization decision (i.e., permit, deny, indeterminate, not applicable);
Status indicates if some error occurred during the evaluation process; Obligations states
the obligations that the PEP must fulfill; AssociatedAdvice is optional and reports a list
of advices that provide additional information to the PEP; Attributes is optional and con-
tains a list of attributes that were part of the request; PolicyIdentifierList is optional
and corresponds to a list of policy or policy set identifiers that have been applicable to a
request.

1.6.3.3 Expanding XACML with credentials

Although designed to be integrated with the Security Assertion Markup Language
(SAML) [2] for exchanging security assertions and providing protocol mechanisms, XACML
lacks a real support for considering, reasoning, and expressing conditions on certified proper-
ties. Recent proposals have tried to overcome this and other limitations that make XACML
not yet suitable for open Web-based systems. In particular, the novel features that should
be supported by a practical access control language can be summarized as follows [4].

e Certified information. The attributes used in the XACML policies are assumed to be
known during the evaluation time and stored within the XACML context or presented
by the user together with the access request. To represent and manage credentials
in XACML it is then necessary to express the fact that some attributes should be
presented through given certificates, possibly imposing conditions on the value of
these attributes and on the certificates themselves.

e Abstractions. Intuitively, abstractions represent a shorthand by which a single concept
is introduced to represent a more complex one (e.g., a set, a disjunction, or a conjunc-
tion of concepts). For instance, ID (abstraction head) can be defined as an abstraction
for any element in set {Passport, DriverLicense} of credentials (abstraction tail).
A policy specifying that an access requester must provide an ID can then be satisfied
by presenting any of the two credentials above.

e Recursive conditions. The support for recursive reasoning allows the specification of
policies based on chains of credentials and of conditions on data with a recursive
structure.

e Dialog. The introduction of dialog between the involved parties has the advantages
that the server can communicate which information is needed to evaluate an access
control policy, and a user can release only the necessary credentials instead of releasing
the whole set. A further advantage is that it permits to tackle the issue of the privacy
trade-off between providing the whole set of credentials (on the access requester side)
and disclosing the whole access control policy (on the server side). The proposal in [4]
obtains this result by attaching a disclosure attribute to each condition in an access
control policy. This attribute indicates what type of disclosure policy is associated with
the condition, and it is enforced by hiding from the access requester the information
that cannot be released according to such a disclosure policy. The more (less) of an
access control policy is disclosed, the smaller (bigger) is the quantity of information
in terms of released credentials that will have to be provided by the user.

The proposal in [4] illustrates how certified information, abstractions, recursive reason-
ing, and dialog management can be deployed in XACML. In particular, it shows that the

26

integration of XACML with XQuery can be adopted for supporting abstractions and re-
cursive conditions. Credentials and dialog management require a minimal change in the
XACML language that consists in the addition of appropriate elements and attributes.
Other proposals (e.g., [17, 18, 32, 46]) provide XACML extensions to support trust negoti-
ation.

1.7 Conclusions

In this chapter we introduced the most important concepts related to access control.
We first described the discretionary, mandatory, and role-based access control policies, and
then we illustrated recent proposals in the area of access control models and languages.
In particular, we described novel approaches based on digital certificates, which are more
suitable for open scenarios where servers offering services and users requesting such services
do not know each other. We also provided an overview of logic-based and XML-based access
control languages.

1.8 Defining Terms

Access control: A process that controls every request to a system and determining, based
on specified authorizations, whether the request should be granted or denied.

Access matrix: A matrix representing the set of authorizations defined at a given time in
the system.

ACL: Access Control List.
Administrative policy: A policy regulating who can modify the allowed accesses.

Authorization: The right granted to a user to exercise an action (e.g., read, write, create,
delete, and execute) on certain objects.

Certificate: A statement certified by an authority trusted for making such a statement.
DAC: Discretionary Access Control.
MAC: Mandatory Access Control.

Obligation: An action that must be performed sometime to allow the execution of a given
action.

PEP: Policy Evaluation Point.
PDP: Policy Decision Point.
PIP: Policy Information Point.

RBAC: Role Based Access Control.

Access Control 27

Role: A job function within an organization that describes the authority and responsibility
related to the execution of an activity.

Security mechanism: Low-level software and/or hardware functions that implement se-
curity policies.

Security policy: High-level guidelines establishing rules that regulate access to resources.

XACML: eXtensible Access Control Markup Language.

28

Bibliography

[1]

[10]

[11]

G. Ahn and R. Sandhu. Role-based authorization constraints specification. ACM
Transactions on Information and System Security (TISSEC), 3(4):207-226, November
2000.

A. Anderson and H. Lockhart. SAML 2.0 profile of XACML. OASIS, September
2004. http://docs.oasis-open.org/xacml/access_control-xacml-2.0-saml_profile-spec-cd-
01.pdf.

ANSI/INCITS 359 American National Standard for Information Technology — Role
Based Access Control, 2004.

C. Ardagna, S. De Capitani di Vimercati, S. Paraboschi, E. Pedrini, P. Samarati,
and M. Verdicchio. Expressive and deployable access control in open web service
applications. IEEE Transactions on Service Computing (TSC), 4(2):96-109, April-
June 2011.

C.A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, and P. Samarati. A privacy-
aware access control system. Journal of Computer Security (JCS), 16(4):369-392, 2008.

C.A. Ardagna, S. De Capitani di Vimercati, S. Foresti, G. Neven, S. Paraboschi, F.-
S. Preiss, P. Samarati, and M. Verdicchio. Fine-grained disclosure of access policies.
In Proc. of the 12th International Conference on Information and Communications

Security (ICICS 2010), Barcelona, Spain, December 2010.

C.A. Ardagna, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati.
Minimising disclosure of client information in credential-based interactions. Interna-
tional Journal of Information Privacy, Security and Integrity (IJIPSI), 1(2/3):205-233,
2012.

M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. Donida Labati, P. Failla,
R. Lazzeretti, V. Piuri, F. Scotti, and A. Piva. Privacy-preserving fingercode authenti-
cation. In Proc. of 12th ACM Workshop on Multimedia and Security (MMé&Sec 2010),
Rome, Italy, September 2010.

E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An access control model support-
ing periodicity constraints and temporal reasoning. ACM Transactions on Database
Systems (TODS), 23(3):231-285, September 1998.

E. Bertino, P. Samarati, and S. Jajodia. Authorizations in relational database man-
agement systems. In Proc. of the First ACM Conference on Computer and Communi-
cations Security (CCS 93), pages 130-139, Fairfax, VA, November 1993.

P. Bonatti, S. De Capitani di Vimercati, and P. Samarati. An algebra for compos-
ing access control policies. ACM Transactions on Information and System Security
(TISSEC), 5(1):1-35, February 2002.

29

30

[12]

[19]

[20]

[21]

P. Bonatti and P. Samarati. A uniform framework for regulating service access and
information release on the web. Journal of Computer Security (JCS), 10(3):241-271,
2002.

P. Bonatti and P. Samarati. Logics for authorizations and security. In J. Chomicki,
R. van der Meyden, and G. Saake, editors, Logics for Emerging Applications of
Databases. Springer-Verlag, 2003.

D. Box et al. Web services policy framework (WS-Policy) version 1.1., May 2003.
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-policy.asp.

J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In Proc. of International Conference
on the Theory and Application of Cryptographic Techniques (EUROCRYPT 2001),
Innsbruck, Austria, May 2001.

S. Castano, M.G. Fugini, G. Martella, and P. Samarati. Database Security. Addison
Wesley, 1994.

D.W. Chadwick, S. Otenko, and T.A. Nguyen. Adding support to XACML for dy-
namic delegation of authority in multiple domains. In Proc. of 10th Open Conference
on Communications and Multimedia Security (CMS 2006), Heraklion, Crete, Greece,
October 2006.

V.S.Y. Cheng, P.C.K. Hung, and D.K.W. Chiu. Enabling web services policy nego-
tiation with privacy preserved using XACML. In Proc. of the 40th Annual Hawaii
International Conference on System Sciences (HICSS 2007), Hawaii, USA, January
2007.

S. Cimato, M. Gamassi, V. Piuri, and F. Scotti. Privacy-aware biometrics: Design and
implementation of a multimodal verification system. In Proc. of the Annual Computer

Security Applications Conference (ACSAC 2008), Anaheim, CA, USA, December 2008.

E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. A fine-
grained access control system for XML documents. ACM Transactions on Information
and System Security (TISSEC), 5(2):169-202, May 2002.

S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. A
data outsourcing architecture combining cryptography and access control. In Proc. of
the 1st Computer Security Architecture Workshop (CSAW 2007), Fairfax, VA, USA,
November 2007.

S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Access control: Principles
and solutions. Software — Practice and Ezxperience, 33(5):397-421, April 2003.

S. De Capitani di Vimercati and P. Samarati. Access control in federated systems.
In Proc. of the ACM SIGSAC New Security Paradigms Workshop (NSPW 96), Lake
Arrowhead, CA, USA, September 1996.

S. De Capitani di Vimercati and P. Samarati. Authorization specification and enforce-
ment in federated database systems. Journal of Computer Security (JCS), 5(2):155-
188, 1997.

S. De Capitani di Vimercati, P. Samarati, and S. Jajodia. Hardware and software data
security. In D. Kaeli and Z. Navabi, editors, FOLSS The Encyclopedia of Life Support
Systems. EOLSS Publishers, 2001.

[26]

[27]

[28]

[31]

[32]

[35]

[36]

[37]

Access Control 31

S. De Capitani di Vimercati, P. Samarati, and S. Jajodia. Policies, models, and lan-
guages for access control. In Proc. of the Workshop on Databases in Networked Infor-
mation Systems (DNIS 2005), Aizu-Wakamatsu, Japan, March 2005.

J. DeTreville. Binder, a logic-based security language. In Proc. of the 2001 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, May 2002.

D.F. Ferraiolo and R. Sandhu. Proposed nist standard for role-based access control.
ACM Transactions on Information and System Security (TISSEC), 4(3):224-274, Au-
gust 2001.

K. Frikken, M. Atallah, and J. Li. Attribute-based access control with hidden policies
and hidden credentials. IEEE Transactions on Computer (TC), 55(10):1259-1270,
October 2006.

L. Fuchs, G. Pernul, and R. Sandhu. Roles in information security - A survey and
classification of the research area. Computers and Security, 30(8):748-769, November
2011.

M. Gamassi, V. Piuri, D. Sana, and F. Scotti. Robust fingerprint detection for access
control. In Proc. of the Workshop RoboCare (RoboCare 2005), Rome, Italy, May 2005.

D.A. Haidar, N. Cuppens, F. Cuppens, and H. Debar. XeNA: an access negotiation
framework using XACML. Annales des télécommunications - Annals of telecommuni-
cations, 64(1/2):155-169, January 2009.

M.H. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating systems. Com-
munications of the SCM, 19(8):461-471, August 1976.

K. Irwin and T. Yu. Preventing attribute information leakage in automated trust
negotiation. In Proc. of the 12th ACM Conference on Computer and Communications
Security (CCS 2005), Alexandria, VA, USA, November 2005.

S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian. Flexible support for
multiple access control policies. ACM Transactions on Database Systems (TODS),
26(2):214-260, June 2001.

T. Jim. Sd3: A trust management system with certified evaluation. In Proc. of the
2001 IEEE Symposium on Security and Privacy, Oakland, CA, USA, May 2001.

M. Kudoh, Y. Hirayama, S. Hada, and A. Vollschwitz. Access control specification
based on policy evaluation and enforcement model and specification language. In
Proc. of Symposium on Cryptography and Information Security, (SCIS 2000), Okinawa,
Japan, January 2000.

A.J. Lee, M. Winslett, J. Basney, and V. Welch. The Traust authorization service. ACM
Transactions on Information and System Security (TISSEC), 11(1):1-3, February 2008.

N. Li, B.N. Grosof, and Feigenbaum. Delegation logic: A logic-based approach to
distributed authorization. ACM Transactions on Information and System Security
(TISSEC), 6(1):128-171, February 2003.

N. Li and J.C. Mitchell. Datalog with constraints: A foundation for trust-management
languages. In Proc. of the 5th International Symposium on Practical Aspects of Declar-
ative Languages (PADL 2003), New Orleans, LA, USA, January 2003.

32

[41]

[42]

[49]

[50]

[51]

[54]

[55]

[56]

N. Li and J.C. Mitchell. Understanding SPKI/SDSI using first-order logic. Interna-
tional Journal of Information Security, 5(1):48-64, January 2006.

N. Li, J.C. Mitchell, and W.H. Winsborough. Design of a role-based trust-management
framework. In Proc. of the IEEE Symposium on Security and Privacy, Oakland, CA,
USA, May 2002.

N. Li, J.C. Mitchell, and W.H. Winsborough. Beyond proof-of-compliance: Security
analysis in trust management. Journal of the ACM, 52(3):474-514, May 2005.

N. Li, W. Winsborough, and J. Mitchell. Distributed credential chain discovery in trust
management. Journal of Computer Security (JCS), 11(1):35-86, 2003.

T. Lunt. Access control policies: Some unanswered questions. In Proc. of the IEEE
Computer Security Foundations Workshop (CSFW 88), Franconia, NH, USA, June
1988.

U.M. Mbanaso, G.S. Cooper, D.W. Chadwick, and S. Proctor. Privacy preserving
trust authorization framework using XACML. In Proc. of the 2006 International Sym-
posium on on World of Wireless, Mobile and Multimedia Networks (WOWMOM 2006),
Niagara-Falls, NY, USA, June 2006.

M. Minoux. Ltur: A simplified linear-time unit resolution algorithm for horn formulae
and computer implementation. Information Processing Letter (IPL), 29(1):1-12, 1988.

J. Ni, N. Li, and W.H. Winsborough. Automated trust negotiation using cryptographic
credentials. In Proc. of the 12th ACM Conference on Computer and Communications
Security (CCS 2005), Alexandria, VA, USA, November 2005.

OASIS. eXtensible Access Control Markup Language (XACML) Version 1.0, 2003.
http://www.oasis-open.org/committees/xacml.

OASIS. eXtensible Access Control Markup Language (XACML) Version 3.0, 2010.
http://www.oasis-open.org/committees/xacml.

J. Park and R. Sandhu. The uconapc usage control model. ACM Transactions on
Information and System Security (TISSEC), 7(1):128-174, February 2004.

P. Samarati and S. De Capitani di Vimercati. Access control: Policies, models, and
mechanisms. In R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis
and Design, volume 2171 of LNCS. Springer-Verlag, 2001.

R.S. Sandhu. On five definitions of data integrity. In Proc. of the IFIP WG11.3
Working Conference on Database Security VII (DBSec 93), Lake Guntersville, AL,
USA, September 1993.

D. Wijesekera and S. Jajodia. A propositional policy algebra for access control. ACM
Transactions on Information and System Security (TISSEC), 6(2):286-325, May 2003.

W. Winsborough, K.E. Seamons, and V. Jones. Automated trust negotiation. In Proc.
of the DARPA Information Survivability Conference & Ezposition (DISCEX 2000),
Hilton Head Island, SC, USA, January 2000.

W.H. Winsborough and N. Li. Safety in automated trust negotiation. ACM Transac-
tions on Information and System Security (TISSEC), 9(3):352-390, 2006.

[57]

[58]

[59]

[60]

Access Control 33

M. Winslett, N. Ching, V. Jones, and I. Slepchin. Using digital credentials on the
World-Wide Web. Journal of Computer Security (JCS), 5(2):255-267, 1997.

T.Y.C. Woo and S.S. Lam. Authorizations in distributed systems: A new approach.
Journal of Computer Security (JCS), 2(2,3):107-136, 1993.

T. Yu and M. Winslett. A unified scheme for resource protection in automated trust
negotiation. In Proc. of the IEEE Symposium on Security and Privacy, Berkeley, CA,
USA, May 2003.

T. Yu, M. Winslett, and K.E. Seamons. Prunes: An efficient and complete strategy for
automated trust negotiation over the internet. In Proc. of the 7th ACM Conference
on Computer and Communications Security (CCS 2000), Athens, Greece, November
2000.

T. Yu, M. Winslett, and K.E. Seamons. Interoperable strategies in automated trust
negotiation. In Proc. of the 8th ACM Conference on Computer and Communications
Security (CCS 2001), Philadelphia, PA, USA, November 2001.

T. Yu, M. Winslett, and K.E. Seamons. Supporting structured credentials and sensitive
policies trough interoperable strategies for automated trust. ACM Transactions on
Information and System Security (TISSEC), 6(1):1-42, February 2003.

