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Abstract. The privacy of users, the confidentiality of organizations, and
the protection of huge collections of sensitive information, possibly re-
lated to data that might be released publicly or semi-publicly for various
purposes, are essential requirements for the today’s Electronic Society.
In this chapter, we discuss the main privacy concerns that arise when
releasing information to third parties. In particular, we focus on the
data publication and data outsourcing scenarios, illustrating the emerg-
ing trends in terms of privacy and data protection and identifying some
research directions to be investigated.

1 Introduction

The proliferation of information collected by organizations in their daily activ-
ities and made public and semi-public available for different purposes (e.g., to
study trends, make statistical inference, or share knowledge among organiza-
tions) together with the access to inexpensive, fast computers with large storage
capacities make it possible to draw damaging inferences about sensitive informa-
tion. When sharing and disseminating data, it is crucial to guarantee that the
privacy of the organizations or individuals to whom the data refer is properly
preserved. Often sensitive data (e.g., medical or financial data) are protected
by simply removing explicit identifiers (e.g., name, address, and phone number)
from the released data in the, incorrect, belief that in this way data become
anonymous. Such a de-identification process however provides no guarantee of
anonymity. For instance, released information may contain other data (e.g., birth
date and ZIP code) that in combination can be linked to publicly available in-
formation to re-identify the apparently anonymous data.

The same privacy problem arises when data are outsourced to external servers
that become responsible for their management and for dissemination to other
parties. In this case, data are no more under the direct control of their owners
and therefore data privacy as well as data integrity may be put at risk. Moreover,
the server storing and managing the data is often supposed to be honest-but-
curious. A honest-but-curious server is relied upon for correctly managing the
data and for guaranteeing their availability, but it is not trusted to access the
data content.



2

Research and development communities as well as regulatory bodies and
final users have been devoting much attention to the privacy and data protec-
tion problems, both in data publication and outsourcing scenarios. Many of the
techniques investigated for ensuring proper privacy and data protection aim at
limiting the possibility of identifying users and at protecting sensitive informa-
tion about users. The goal of this chapter is to analyze emerging solutions as
well as research directions for guaranteeing privacy and data protection in the
data publication and outsourcing scenarios. The remainder of this chapter is or-
ganized as follows. Section 2 introduces the problem of protecting privacy in the
publication of microdata and illustrates different concepts proposed in the liter-
ature to prevent the disclosure of sensitive information. Section 3 presents some
techniques that provide privacy of data outsourced to external parties, focusing
on query execution and access control enforcement. Finally, Section 4 concludes
the chapter.

2 Privacy in data publication

In the past data were principally released in tabular form (macrodata) and
through statistical databases. Today, however, there is a growing need of us-
ing and releasing specific stored data (microdata). While macrodata report the
results of precomputed statistics, microdata contain specific information. The
advantage of microdata with respect to macrodata is that they may be used to
perform any kind of analysis. The disadvantage is that their release may put at
risk the privacy of the respondents (i.e., individuals or companies) to whom the
released microdata refer. In the following, we first describe the main motivation
for which the privacy of the respondents can be at risk and then illustrate some
possible countermeasures.

2.1 Identity disclosure

Microdata contain a set of attributes relating to single respondents in a sample
or in a population. Microdata can be represented as tables composed of tuples
with values from a set of attributes. The attributes in a microdata table can be
usually partitioned into the following four classes.

– Identifiers . Attributes that uniquely identify respondents (e.g., SSN and
Name).

– Quasi-Identifier (QI). Set of attributes that can be linked to external data
sets (e.g., Race, DoB, and Sex).

– Confidential attributes . Attributes that contain sensitive information (e.g.,
Illness).

– Non confidential attributes . Any other attribute in the microdata table.

To guarantee the anonymity of the respondents (i.e., to prevent identity dis-
closure), the identifiers are usually removed (or encrypted) from the released
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Patients

SSN Name Race DoB Sex Illness

white 64/10/02 F stomach ulcer
white 64/10/25 M stomach ulcer
white 65/08/04 M arrhythmia
white 65/08/12 F gastritis
asian 64/07/15 M aids
asian 65/02/20 M aids
asian 64/07/11 M flu
asian 64/07/09 F flu
asian 65/02/23 F hypertension
black 72/04/30 M flu

Fig. 1. An example of de-identified microdata table

Voter List

Name Marital Status Address City Race YoB Sex

................ ................ ................ ........ ........ ........ ........

................ ................ ................ ........ ........ ........ ........
Helen White Married 1600 Madison Street New York white 64 F
................ ................ ................ ........ ........ ........ ........

Fig. 2. An example of non de-identified public available table

microdata table. This de-identification process is however not sufficient to guar-
antee anonymity. As a matter of fact, quasi-identifiers can be exploited for link-
ing the released data with other publicly available data sets, thus possibly re-
identifying (or reducing the uncertainty about) respondents [1, 2]. In the follow-
ing, our analysis is focused on quasi-identifiers and confidential attributes, since
we assume that any microdata table is de-identified before its release and that
non confidential attributes do not pose privacy concerns.

Example 1. Consider microdata table Patients in Figure 1 containing infor-
mation on the patients of a hospital, which has been de-identified by removing
attributes SSN and Name, and the publicly available Voter List in Figure 2.
Attributes QI ={Race, DoB, Sex} can be linked to the tuples in the Voter List

in Figure 2, thus revealing the Name, Marital Status, Address, and City of
respondents whose information is stored in the microdata table. In table Pa-

tients, for example, there is only one tuple referring to a white female born in
1964 (the first tuple). If this combination is unique in the external word as well,
it reveals that this tuple refers to “Helen White, Married, 1600 Madison Street,
New York”, who suffers from stomach ulcer.

Different protection techniques have been proposed (e.g., sampling, swap-
ping values, adding noise) for protecting released microdata from improper dis-
closure [3]. These techniques obfuscate the data while maintaining some overall
statistical properties of the resulting table. There are however some situations
where there is the need of preserving truthful information within each tuple, thus
making techniques that perturb data not applicable. k-anonymity has been pro-
posed as an approach to protect respondents’ identities while releasing truthful



4

information [2]. In the following, we first present a brief overview of k-anonymity
together with its enforcement via generalization and suppression and then de-
scribe other approaches that extend k-anonymity.

2.2 k-Anonymity

The concept of k-anonymity is based on the observation that often a re-
identification happens whenever the released microdata table contains high vis-
ibility records or when some combination of values for the quasi-identifier is
unique or rare in the real world. In these cases, the respondent could be easily
identified using other publicly available information. To counteract this problem,
k-anonymity tries to capture, on the microdata table to be released, one of the
main requirements that has been followed by the statistical community and by
agencies releasing the data: the released data should be indistinguishably related
to no less than a certain number of respondents. To satisfy this requirement, it is
however necessary to know, for each possible data recipient (or adversary), the
available data (quasi-identifiers) that could be exploited for linking attacks. Since
it seems impossible, or highly impractical and limiting, to have this knowledge,
in [2] the author assumes that the microdata table has a single quasi-identifier
including all attributes in the table that can be externally available, and con-
tains at most one tuple for each respondent. k-anonymity then requires that each
quasi-identifier value in the released table to have at least k occurrences . Note
that this requirement represents a sufficient, but not a necessary, condition to
guarantee that every tuple in the microdata table is indistinguishably related to
no fewer than k respondents. For instance, considering QI ={Race, DoB, Sex},
the microdata table in Figure 1 is 1-anonymous since there are single occurrences
of values over the quasi-identifier (e.g., “white, 64/10/02, F”).

Among the different techniques used for providing anonymity in the release
of microdata, the k-anonymity proposal [2] uses generalization and suppression,
which have the advantage of preserving the truthfulness of the information.
Generalization consists in replacing the values of an attribute with more gen-
eral values (e.g., the data of birth can be substituted with the year of birth).
This technique is based on a generalization hierarchy, where the most general
value is at the root of the hierarchy and the leaves correspond to the most spe-
cific values. Figure 3 illustrates three examples of generalization hierarchies for
attributes Sex, Race, and DoB. The generalization hierarchy specified for DoB

generalizes the date of birth first to the year and month of birth, then to the
year of birth, and then to ∗. The generalization hierarchies specified for Sex and
Race generalize the corresponding specific values to ∗ and person, respectively. A
generalization process therefore proceeds by replacing the values represented by
the leaf nodes with one of their ancestor nodes at a higher level. Different gener-
alized microdata tables can be built, depending on the amount of generalization
applied on the considered attribute. The final effect of a generalization is that
tuples in the original microdata table with different values for the quasi-identifier
are generalized to the same value, thus becoming indistinguishable.
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Fig. 3. Examples of generalization hierarchies

Suppression consists in removing information from the microdata table. The
introduction of suppression can reduce the amount of generalization necessary
to satisfy the k-anonymity constraint.

Generalization and suppression can be applied at different levels of granular-
ity [4]. Generalization can be applied at the attribute level (i.e., a generalization
step generalizes all the values of an attribute) or single cells (i.e., for a spe-
cific attribute, the table may contain values at different generalization levels).
Suppression can be applied at the level of tuple (i.e., a suppression operation
removes a whole tuple), attribute (i.e., a suppression operation obscures all the
values of an attribute), or single cells (i.e., only the content of certain cells are
removed). The possible combinations of the different choices for generalization
and suppression (including also the choice of not applying one of the two tech-
niques) result in different k-anonymity proposals and different algorithms for
k-anonymity [4].

Example 2. Consider table Patients in Figure 1 and suppose that QI ={Race,
DoB, Sex}. To guarantee 2-anonymity by applying only generalization at at-
tribute level, it is necessary to generalize attribute Race to value person and
attribute DoB to value ∗. Alternatively, since the last tuple in the table is an out-
lier, it is sufficient to perform one step of generalization on attribute DoB (i.e.,
the day of birth is removed), to generalize attribute Sex to ∗, and to suppress
the last tuple to obtain the 2-anonymous table in Figure 4.

Since the application of generalization and/or suppression techniques cause
an information loss (i.e., the anonymized table contains less information than
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Race DoB Sex Illness

white 64/10 * stomach ulcer
white 64/10 * stomach ulcer
white 65/08 * arrhythmia
white 65/08 * gastritis
asian 64/07 * aids
asian 64/07 * flu
asian 64/07 * flu
asian 65/02 * aids
asian 65/02 * hypertension

Fig. 4. An example of a 2-anonymous table

the original table), the approaches proposed try to minimize such an information
loss. The problem of computing an optimal k-anonymous table (i.e., a table that
does not generalize or suppress more than it is needed to reach the threshold
k) adopting attribute level generalization and tuple level suppression has been
widely studied in the literature and has been proved to be computationally
hard [5–7]. As a consequence, both exact [2, 8, 9] and heuristic [10] algorithms
have been proposed for its solution. Note that the computational complexity of
such exact algorithms is exponential in the number of attributes composing the
quasi-identifier. Therefore, if the quasi-identifier contains a lot of attributes, the
exact algorithms are not applicable in practice.

2.3 Extensions of k-anonymity

k-anonymity is an important concept that has started a new line of research, as
testified by many research proposals developed after its introduction in [2]. The
main goal of k-anonymity is however preventing identity disclosure and then it
suffers from attribute disclosure, meaning that a quasi-identifier can be exploited
for inferring sensitive information about respondents. Two possible attacks that
may violate the privacy of the respondents are the homogeneity attack and the
background knowledge attack .

A homogeneity attack [2, 11] happens when all the tuples in the released
table with the same value for the quasi-identifier have also the same value for the
sensitive attribute. If an adversary knows that a target respondent is represented
in the released table and also knows her quasi-identifier, then she can infer the
sensitive value associated with the target respondent. As an example, consider
the 2-anonymous table in Figure 4, where QI ={Race, DoB, Sex} and Illness

is the sensitive attribute. Suppose now that Alice knows that Helen is a white
female born in October 1964 and that she is represented in the 2-anonymous
table. Alice can infer that Helen suffers from stomach ulcer .

The background knowledge attack happens when an adversary can exploit
her prior knowledge to reduce the uncertainty about the value of the sensitive
attribute of the target respondent. With reference to the previous example, sup-
pose that Alice knows that Carol is a white female born in August 1965 and
that she is represented in the 2-anonymous table. Alice can infer that Carol
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Race DoB Sex Illness

white * F stomach ulcer
white * F gastritis
white * M stomach ulcer
white * M arrhythmia
asian * M aids
asian * M aids
asian * M flu
asian * F flu
asian * F hypertension

Fig. 5. An example of an anonymized table satisfying 2-diversity

suffers from either arrhythmia or gastritis . Suppose now that Alice also knows
that Carol swims for two hours every day (background knowledge). Since a per-
son that suffers from arrhythmia cannot swim for two hours a day (background
knowledge), Alice can infer with certainty that Carol suffers from gastritis .

To prevent these attacks, in [11] the authors introduce the concept of ℓ-
diversity that can be formalized as follows. Given an anonymous table, a q-block
(i.e., a set of tuples in the table characterized by the same value for the quasi-
identifier) satisfies ℓ-diversity if there are at least ℓ well represented values for
the sensitive attribute in the q-block, where well-represented can be defined in
different ways (e.g., there must be at least ℓ distinct values for the sensitive
attribute in the q-block). An anonymous table satisfies ℓ-diversity if all its q-
blocks are ℓ-diverse.

Example 3. Consider table Patients in Figure 1, with QI ={Race, DoB, Sex}.
Figure 5 illustrates a 2-diverse table, obtained by generalizing the values of
attribute DoB to ∗ and suppressing the last tuple in Patients.

ℓ-diversity is however not immune to attacks. In [12] the authors show that
ℓ-diverse tables are vulnerable to the skewness attack and similarity attack . In
particular, a skewness attack happens when the distribution of the values for
the sensitive attribute in a q-block is different from the distribution of the values
for the attribute in the population (e.g., a value that is rare in the population is
frequent in the q-block). If an attacker knows that a respondent is represented in
the released table and that she belongs to a specific q-block, she can reduce her
uncertainty about the value of the sensitive attribute for the target respondent.
As an example, consider the 2-diverse table in Figure 5 and suppose that Alice
knows that John is an asian male born in 1964 and that he is represented in
the table. Alice can infer that John is one of the three respondents in the third
q-block. Since the q-block has 2 out of 3 tuples suffering from aids , Alice can
infer that John has 67% probability of suffering from aids , against the 1% of the
considered population. Similarity attack happens when the values assumed by
the sensitive attribute within a q-block are semantically similar. If an attacker
knows that a respondent is represented in the table and that it belongs to a
specific q-block, the privacy of the target respondent is put at risk. As an exam-
ple, consider the 2-diverse table in Figure 5 and suppose that Alice knows that
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Helen is a white female born in 1964 and that she is represented in the table.
Alice can infer that Helen is one of the two respondents in the first q-block and
then that she suffers from a stomach disease. In [12] the authors introduce the
concept of t-closeness to counteract these attacks. A q-block satisfies t-closeness
if the relative distance between the distribution of the values assumed by the
sensitive attribute in the q-block and the distribution of the values assumed by
the sensitive attribute is lower than t. A table satisfies t-closeness if all the q-
blocks in the table satisfy t-closeness. The main problem is how to compute the
distance between two probabilistic distributions. The authors propose the use of
the Earth Mover’s distance (EMD).

In addition to the concept of ℓ-diversity and t-closeness, other models have
been also proposed (e.g., [13, 14]). Like for k-anonymity and its previously dis-
cussed variations, these models however do not take into consideration the ex-
ternal knowledge that an adversary may have and that can be used for inferring
sensitive information about individuals with high confidence. On this problem,
some enhanced variations of k-anonymity can be found in the literature (e.g., [15–
18]). Typically these proposals address the problem of positive inference that
happens whenever an adversary can infer that a respondent has a given sensi-
tive value or a value within a restricted set (which is contrast to the negative
inference that happens when an adversary can infer that a respondent does not
have a given sensitive value). These proposals describe different modeling of the
external knowledge and represent a first important attempt towards the develop-
ment of efficacy and efficient anonymization solutions in the presence of external
knowledge.

2.4 Open Issues

The problem of preserving the privacy of the respondents in data publication
has been widely studied. However, there are still different open issues that need
to be further investigated.

– Protection against utility measures. Research is needed to develop measures
to allow users to assess, besides the protection offered by the data, the utility
of the released data. Clearly, utility may be different depending on the data
recipients and the use intended for the information. Approaches should be
therefore devised that maximize information utility with respect to intended
uses, while properly guaranteeing privacy.

– Merging of different tables and views . The original k-anonymity proposal as
well as its variations are based on the assumption that there is a single table
whose content has to be released and that the table contains at most one
tuple for each respondent. Work is needed to release these two assumptions.
In particular, the problem of releasing different tables providing anonymity
needs to be investigated.

– External knowledge. k-anonymity do not model external knowledge that can
be further exploited for inference and expose the data to identity or at-
tribute disclosure. Although some proposals have started the analysis of this
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problem, work is still needed to model external knowledge and take it into
account in the process of computing the anonymized table.

– Extensions and enrichment of the constraints and protection requirements .
k-anonymity and its variations capture only the defense against identity and
attribute disclosure attacks. However, when we consider a data publication
scenario, the protection requirements that may need to be enforced can be
more sophisticated. For instance, we may need the possibility of specifying
that given associations among data are sensitive. Along this line of research,
some recent proposals have introduced the idea of using fragmentation for
enforcing sensitive associations [19–21].

3 Data Outsourcing

The evolution of computer technology promises to offer inexpensive storage that
allows the collection and distribution of huge amount of (possibly sensitive)
information. Organizations have then to add data storage (and skilled admin-
istrative personnel) at a high rate to mange such a amount of information. An
alternative solution to the problem, which is becoming increasingly popular as it
saves costs and provides service benefits, it is represented by data outsourcing.
Data are stored together with application front-ends at external servers who take
full responsibility of their management. Typically, in such a scenario the exter-
nal server is relied upon for ensuring high availability of the outsourced data
while cannot always be trusted with respect to the confidentiality of data con-
tent (i.e., the server may be honest-but-curious). Since traditional access control
techniques cannot prevent the server itself from making unauthorized accesses
to the outsourced data, data are encrypted. In the following, we assume that the
outsourced data are stored within a relational database and encryption is ap-
plied at the tuple level via a symmetric encryption function (the problems and
solutions discussed however apply to any data model). The resulting scenario
and the parties involved are illustrated in Figure 6: data owner is an organiza-
tion (or a person) that outsources her data to make them available for controlled
external release; user is a person that submits access requests; client is the user’s
front-end, which is in charge of translating access requests formulated by the user
in equivalent requests operating on the outsourced data; server is the external
party that stores and manages the data on behalf of the data owner.

Different issues need to be carefully investigated to allow the effective and
widespread use of outsourcing functionalities in a secure and private way [22]. In
this section, we focus on two of such issues: query execution and access control
enforcement .

3.1 Query execution

Since the outsourced data are encrypted, the server cannot directly execute
queries submitted by a user on them; the server can only return the whole en-
crypted data to the client, thus leaving to it the burden of executing queries. So-
lutions have been therefore proposed for enabling external servers to (partially)
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Patients
k

tid etuple IR ID IS II

1 ksjie89sdd β ε λ µ
2 hh382npzs8 β ε κ µ
3 8793ndsodn β δ κ η
4 md0324js90 β δ λ θ
5 iweor04we9 α γ κ η
6 jd93209eny α γ κ η
7 hi293jkfkd α γ κ θ
8 ndhw83nd81 α γ λ θ
9 jsiw923j9s α γ λ µ
10 i39jxcisas β ε κ θ

Fig. 7. An example of an encrypted relation

execute queries [23–25]. These solutions are based on the definition of additional
indexing information stored together with the encrypted data. Each relation
ri over relational schema Ri(Ai1 , . . . ,Ain

) in the plaintext database is mapped
onto an encrypted relation rk

i over relational schema Rk
i (tid ,etuple, I i1 , . . . , I in

)
in the encrypted database. Attribute tid is a numerical attribute added to the
encrypted relation and acting as a primary key; etuple is the attribute containing
the encrypted tuple; I ij

is the index associated with the j-th attribute Aij
in

Ri.

Example 4. Consider relation Patients in Figure 1. By assuming that only
attributes Race, DoB, Sex, and Illness are involved in queries and therefore
that there is the need to define an index for them, a possible encrypted relation
is illustrated in Figure 7. Here, index values are conventionally represented with
Greek letters. Note that the number of tuples in the encrypted relation is equal
to the number of tuples in the corresponding plaintext relation.

Given a query Q defined on the original plaintext relational schema, the def-
inition of indexes allows its partial execution at the server side, provided it is
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translated into an equivalent query operating on the encrypted data (see Fig-
ure 6). The query Q submitted by a user is then sent to the client (step 1), which
translates Q into two queries: Qs that operates on the encrypted database using
indexes, and Qc that operates on the result of Qs. The client then passes query
Qs to the server (step 2), which evaluates the query and returns the result to
the client (step 3). The client decrypts the relation obtained from the server,
evaluates Qc on the plaintext result of Qs, and returns the result to the user
(step 4). The process of transforming Q in Qs and Qc depends both on the
indexing method adopted and on the kind of query Q. In the literature, differ-
ent kinds of indexing techniques have been proposed (e.g., [24–29]). In [24], the
authors propose a bucket-based indexing, where the domain of an attribute A
is partitioned in a number of non-overlapping subsets of values containing con-
tiguous values. Each partition is then associated with a unique value and the set
of these values is the domain for index I associated with A. In [25] the authors
propose a hash-based index , where index values are obtained by applying a hash
function h to the plaintext values of the attribute on which the index is build.
Both these two methods support equality queries (i.e., queries with conditions
of the form A = v or Ai = Aj) while do not easily support range queries (i.e.,
queries that retrieve all tuples where the value of an attribute is between a given
range) since the index domain does not necessarily preserve the plaintext domain
ordering. In [25] the authors present a B+-tree index that allows the evaluation
of equality and range queries at the server side and of group by and order by

SQL clauses. The idea is to outsource to the external sever an encrypted version
of a B+-tree index build over a plaintext attribute of relational schema R. The
encrypted B+-tree is iteratively queried by the client for retrieving the desired
data. In [26] the authors present an order preserving encryption schema (OPES)
to support equality and range queries as well as max, min, and count queries
over encrypted data. In [27] the authors define an order preserving encryption
with splitting and scaling (OPESS) schema, again supporting both equality and
range queries. Other indexing techniques have been also proposed working, for
example, on attributes with character/string domains [28] and supporting ag-
gregation operators through privacy homomorphisms [29].

It is important to note that the definition of an index over an attribute must
consider two conflicting requirements: on one hand, the indexing information
should be related with the data well enough to provide for an effective query
execution mechanism; on the other hand, the relationship between indexes and
data should not open the door to inference and linking attacks. An evaluation of
the inference exposure in encrypted databases enriched with indexing informa-
tion has been presented in [30], where the authors show that if a limited number
of indexes is provided, then an adversary cannot easily violate the confidentiality
of the outsourced data.

3.2 Access Control Enforcement

Access control enforcement in the data outsourcing scenario cannot rely on tradi-
tional techniques (i.e., on the presence of a reference monitor), since the external
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t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

A 1 1 1 1 0 0 1 1 1 1
B 1 1 0 1 0 0 1 1 0 1
C 1 1 1 1 0 0 1 1 1 1
D 1 1 1 1 0 0 1 1 1 1
E 0 0 1 0 1 1 1 1 1 1
F 0 0 0 0 1 1 1 1 0 1

Fig. 8. An example of access matrix

server is not trusted to enforce the policy defined by the data owner. Also, the
data owner cannot directly enforce her policy, since this would require her in-
volvement in all users’ access requests for filtering the results according to the
policy defined. A promising solution for this problem consists in integrating en-
cryption and access control. The basic idea is to encrypt data using different
keys; users can decrypt (and therefore access) all and only the data for which
they know the encryption key. If access to the keys is limited to certain users of
the system, different users are given different access privileges.

In [31] the authors illustrate an approach where an authorization policy de-
fined by the data owner is translated into an equivalent encryption policy. The
encryption policy allows all and only the accesses permitted by the correspond-
ing authorization policy, defines the keys communicated to the users, the keys
used for encrypting the resources, and a mechanism that the users can exploit
to obtain the encryption key of the resources they are entitled to access. The
authorization policy is represented through an access matrix A with a row for
each user in the system and a column for each resource to be protected. Each
cell A[ui, r j ] may assume two values: 1, if ui is allowed to access r j ; 0, otherwise.
Given an access matrix A over sets U and R of users and resources, respectively,
acl(r j) denotes the access control list of resource r j (i.e., the set of users who
can access r j).

Example 5. Consider relation Patients in Figure 1 and suppose that U
={A, . . . , F}, and R includes all tuples of Patients. Figure 8 illustrates an
example of access matrix regulating accesses to the tuples of Patients. Accord-
ing to this matrix, for example, acl(t1)={A,B,C,D}.

The solution proposed in [31] for generating an encryption policy is based
on a key derivation method (e.g., [32–35]). A key derivation method allows the
computation of a key k i starting from the knowledge of another key k j and a piece
of publicly available information. This characteristic of key derivation methods
can be used for creating an encryption policy such that only one key is released
to each user and each resource is encrypted at most once. To this purpose, in [31]
the authors define a key derivation hierarchy that exploits the hierarchy among
sets of users induced by the partial order relationship based on set containment
(⊆). Each vertex v in the hierarchy is associated with a key k and a public
label l and represents a set of users. Each edge in the hierarchy between vertices
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Fig. 9. An example of a key derivation hierarchy over {A, B, C, D}

v i and v j corresponds to a public token ti,j defined as k j⊕h(k i,l j), where ⊕ is
the bitwise xor operator, and h is a deterministic cryptographic function [33].
Token ti,j allows the computation of the k j through the value of k i and l j (i.e.,
k j=ti,j⊕h(k i,l j)). To correctly enforce the policy represented in A, it is then
sufficient to communicate to each u∈U the key of the vertex representing {u}
and to encrypt each resource r with the key of the vertex representing acl(r ).
We note that users never share the same key, while resources with the same
access control list are encrypted using the same encryption key.

Example 6. Consider the first four rows and the first four columns of the access
matrix in Figure 8. Figure 9 illustrates the key derivation hierarchy induced by
the set containment relationship defined on U ={A, B, C, D}. We note that, for
example, user A, who knows k1, can derive all and only the keys k i associated
with vertices in the hierarchy representing a set of users including A (i.e., vertices
v5, . . . , v7, v11, . . . , v13, and v15). Therefore, the encryption policy in Figure 9
correctly enforces the considered access control policy.

It is easy to see that the key derivation hierarchy in Figure 9 implies the use
of a great number of tokens, which in turn makes key derivation less efficient.
In fact, the public tokens are stored at the server side to allow any user to
access them when needed. Key derivation causes a series of interactions with the
server and of search operations on the set of tokens. To limit the effort in key
derivation, it is necessary to reduce the number of tokens by removing from the
key derivation hierarchy the vertices and edges that are not necessary to enforce
A.

Although the problem of minimizing the number of edges (tokens) in a key
derivation hierarchy is NP-hard, the authors in [31] proposes a heuristic algo-
rithm that is based on two observations: i) the vertices needed for correctly
enforcing an authorization policy are those representing the singleton sets of
users and the acls of the resources to be protected; ii) when two or more ver-
tices have more than two common direct ancestors, the insertion of a vertex
representing the set of users corresponding to these ancestors reduce the total
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Fig. 10. Hierarchy with only the needed vertices (a) and minimized hierarchy (b)

number of tokens. The correct enforcement of the authorization policy is then
guaranteed by properly connecting the vertices in the hierarchy, that is, for each
vertex v i representing {u}, there exists a path connecting v i with all vertices v j

representing a set of users including u .

Example 7. Figure 10(a) illustrates a key derivation hierarchy that correctly
enforces the authorization policy in Figure 8 and that contains only the vertices
representing singleton sets of users and the acls of the tuples. Note however that
vertices v8 and v9 have three common ancestors representing users A, C, and D.
If we then insert vertex v11 representing {A, C, D}, the total number of tokens
is reduced by one. The corresponding key derivation hierarchy is illustrated in
Figure 10(b).

Since each resource r is encrypted with the key k associated with the ver-
tex representing acl(r ), if the data owner updates the authorization policy, the
resources involved possibly need to be re-encrypted to guarantee the correct en-
forcement of the new authorization policy. In fact, if acl(r ) is changed, r must be
decrypted and re-encrypted with a key that all and only users in acl(r ) can de-
rive. A re-encryption operation is however expensive from the data owner point
of view, since she needs to download the encrypted version of r from the server,
decrypt it, re-encrypt the resource with a key that only the set acl(r ) of users
can derive, and send the new encrypted version of r to the server. Moreover, the
key derivation hierarchy may need to be updated accordingly.

To limit the burden for the data owner for managing updates to the access
control policy, in [31, 36] the authors propose a solution based on two layers of
encryption. A Base Encryption Layer (BEL) is applied by the data owner before
transmitting the resources to the server and consists in encrypting the resources
according to the authorization policy existing at initialization time. A Surface
Encryption Layer (SEL) is performed by the server over the resources already
encrypted by the data owner. It enforces the dynamic changes over the policy. A
user can then only access a resource if she knows or can derive the key used for
encrypting the resources at both levels. The combination of the policies applied
at BEL and SEL allows the outsourcing of the management of the authorization
policy defined by the data owner.
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3.3 Open Issues

We now outline some of the key aspects and challenges that have to be further
investigated in the data outsourcing scenario.

– Protecting the authorization policy. The current approaches that use selective
encryption for enforcing access control on the outsourced data are based on
the definition of a key derivation hierarchy and consequently on a set of
tokens that are stored at the server side. The public availability of tokens,
and therefore of the corresponding key derivation hierarchy, makes visible
the relationship between users and resources they are authorized to access,
thus disclosing the authorization policy. There are however situations where
the owners do not wish to publicly declare to whom they give (or not give)
access to their resources. In these cases, the authorization policy should be
kept confidential. In [37] the authors have presented a first proposal that
addresses this issue. Alternative solutions however may be envisioned.

– Write accesses. Current proposals in the data outsourcing scenario are based
on the assumption that write operations can be executed only by the data
owner. Although this assumption is realistic in the data outsourcing sce-
nario, there may exist other contexts where the consideration of read priv-
ileges only is limiting. This problem has been partially addressed in some
proposals (e.g., [38–40]) that however focus on the problem on verifying the
integrity of the outsourced resources. It would instead be interesting to ex-
tend current approaches for enforcing selective access to the consideration
of write operations.

– Depart from encryption. The typical assumption underlying approaches in
data outsourcing scenarios is that all the data are equally sensitive and
therefore they have to be all encrypted. This assumption however may be
an overdue. As a matter of fact, there are situations where data are not
sensitive per se; what is sensitive is their association with other data (e.g.,
in a hospital the list of illnesses cured or the list of patients could be made
publicly available, while the association of specific illnesses to individual
patients must be protected). An interesting evolution would be therefore the
development of new solutions where encryption should be applied only when
explicitly demanded by the privacy requirements. Recently some proposals
have put forward the idea of combining fragmentation and encryption [19–21]
to reduce the use of encryption.

– Multiple owners. The current proposals enforcing access control in the data
outsourcing scenario assume that the outsourced data belongs to a single
data owner. However, a server may be responsible for managing and sharing
data of different data owners that may also need to collaborate. An interest-
ing open problem is then how to extend the current approaches to consider
a multi-owners scenario.
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4 Conclusions

Information is today one of the most valuable resources that organizations col-
lect, share, and manage. Often these huge collections of information contain
sensitive data whose protection is of paramount importance. Users and organi-
zations are in fact not willing to release and share their information if they do
not have the guarantee that their privacy will be preserved. In this chapter, we
discussed privacy and data protection problems arising in data publication and
data outsourcing scenarios, presented some emerging solutions, and identified
some research challenges to be looked at.
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