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15.1 Introduction 

Information sharing and data dissemination are at the basis of our digital society.  Users as well 

as companies access, disseminate, and share information with other parties to offer services, to 

perform distributed computations, or to simply make information of their own available. Such a 

dissemination and sharing process however is typically selective, and different parties may be 

authorized to view only specific subsets of data. Exchanges of data and collaborative 

computations should be controlled to ensure that authorizations are properly enforced and that 

information is not improperly accessed, released, or leaked. For instance, data about the patients 
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in a hospital and stored at one provider might be selectively released only to specific providers 

(e.g., research institutions collaborating with the hospital) and within specific contexts (e.g., for 

research purposes).  This situation calls for the definition of a policy specification and 

enforcement framework regulating information exchange and access in the interactions among 

parties. This problem has been under the attention of the research and development communities 

and several investigations have been carried out, proposing novel access control solutions for 

emerging and distributed scenarios.  In particular, attention has been devoted to the development 

of powerful and flexible authorization languages and frameworks for open environments, policy 

composition techniques, privacy-enhanced access control and identity management solutions, 

policy negotiation and trust management strategies, fault tolerant policies based on user’s 

requirements, and access control models and policies for regulating query execution in 

distributed multi-authority scenarios (e.g., [4][6][7][11][12][13][14][15][22] 

[23][26][27][28][37]). Other works have addressed the problem of private and secure multi-party 

computation, where different parties perform a collaborative computation learning only the query 

results and nothing on the inputs (e.g., [36]). In this chapter, we focus on a scenario where 

different parties (data owners or providers) need to collaborate and share information for 

performing a distributed query computation with selective disclosure of data.  For the sake of 

simplicity, we will assume that the data stored at each provider are modeled by a relational table 

r(a1,…,am), with r the name of the relation and a1,…,am its attributes. In the following, we refer 

our examples to a set of four different providers, each storing one relation (Figure 15.1): 

Insurance company SI with relation Insurance, Hospital SP with relation Patient, Research 

Center ST with relation Treatment, and a Pharmaceutical Company SM with relation 

Medicine. In such a scenario, the problem of executing distributed query computations while 
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ensuring that information is not improperly leaked, can be translated into the problem of 

producing query plans with data sharing constraints. Traditional query optimizers aim at 

optimizing query plans by pushing down selection and projection operations, and by choosing, 

for each operation in the query plan, the provider in charge of its evaluation and how the 

operation should be executed (e.g., they decide which join evaluation algorithm should be 

adopted and/or which index should be used). Query optimizers do not take into consideration 

possible share restrictions that data owners may wish to enforce over their data. For instance, the 

hospital may want to keep patients’ diseases confidential and allow the insurance company to 

access the data of their customers only. In the definition of efficient query plans, the query 

optimizer should therefore consider also access privileges to guarantee that query evaluation 

does not imply flows of information that should be forbidden. In the remainder of this chapter, 

we survey the following existing approaches that address the above-mentioned problems. 

• View-based access control: in the relational database context, it is necessary to define 

authorizations that provide access to portions of the original relations. In Section 15.2, we 

describe solutions that address this problem by defining views, which are used to both 

grant access privileges to users and to enforce them at query evaluation time. 

• Access patterns: in many scenarios (e.g., in the Web context) data sources may have 

limited capabilities, meaning that data can be accessed only by specifying the values for 

given attributes according to some patterns. In Section 15.3, we summarize approaches 

Figure 15.1 An example of four relations stored at four different providers 

1 

  

 

 

SI: Insurance(ssn, type, premium) 
SP: Patient(ssn, name, dob, disease) 
ST: Treatment(ssn, mid, date, result) 
SM: Medicine(mid, principle, auth_date) 
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that associate a profile with each relation to keep track of the attributes that should be 

provided as input to gain access to the data. 

• Sovereign join: when relations are owned by different parties, the evaluation of join 

operations among them may reveal sensitive information to both the server in charge of 

the evaluation and to the two providers owning the operands. In Section 15.4, we 

illustrate a join evaluation strategy that reveals to the server evaluating the join neither 

the operands nor the result. 

• Coalition networks: in coalition networks, different parties are aimed at sharing their data 

for efficiency in query evaluation while protecting data confidentiality. In Section 15.5, 

we describe a solution based on the definition of pairwise authorizations to selectively 

regulate data release. 

• User-based restrictions: besides providers, also users may wish to define privacy 

restrictions in query evaluation to protect the objective of their queries to the providers’ 

eyes. In Section 15.6, we illustrate a proposal that permits a user to specify preferences 

about the providers in charge of the evaluation of her queries. 

• Authorization composition and enforcement in distributed query evaluation: in 

distributed scenarios where data release is selective, it is necessary to define an 

authorization model that, while simple, guarantees that parties cannot improperly access 

data. In Section 15.7, we describe an authorization model regulating the view that each 

provider can have on the data and illustrate an approach for composing authorizations. 

15.2 View-based access control 

In the relational database context, access restrictions can be defined over views that provide 
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access to only certain portions of the underlying relations [25][31][34][35]. Authorization views 

represent a powerful and flexible mechanism for controlling what information can be accessed, 

and can be distinguished between traditional relational views and parameterized views. A 

parameterized view makes use of input parameters (e.g., $user_id, $time) in its conditions to 

possibly change the authorized subset of data depending on the execution context (e.g., the 

identity of the subject performing the access). Access pattern views are parameterized views 

whose parameters are bounded at access time to any value. For instance, Figure 15.2(a-c) 

illustrates three authorization views over the relations in Figure 15.1. The first view 

(AvgPremium) is a traditional relational view that authorizes the release of the average premium 

for each insurance type. The second view (MyData) is a parameterized view that allows each 

user to access her data (variable $user_id) in relation Insurance. The third view (Customers) 

is an access pattern view that allows the access to the information about treatments using 

medicines whose active principles are provided as input (variable $$values). 

The main disadvantage of a view-based solution is that it forces requesters (which may be final 

Figure 15.2 An example of traditional view (a), parameterized view (b), access pattern view (c), and valid query (d) 
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CREATE AUTH VIEW AvgPremium AS 
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users as well as providers) to know and directly query authorization views. To overcome such a 

limitation, more recent models operate in an authorization-transparent way (e.g., [31][34][35]). 

These solutions permit requesters to formulate their queries over base relations. The access 

control system will then be in charge of checking whether such queries should be permitted or 

denied. Two models can be used to determine whether a query q satisfies the authorization views 

granted to the requester [25][34]. 

• Truman model: query q is rewritten substituting the original relations with the 

authorization views and base relations that the requester is authorized to access. This 

rewriting aims at ensuring that the requester does not obtain information that she cannot 

access. The advantage of this solution is that it always provides an answer to every query 

formulated by a requester. The drawback is that this approach may return misleading 

results. As an example, assume that a user is authorized to access view MyData and 

submits the query in Figure 15.2(d). Before evaluation, the query is reformulated as 

“SELECT AVG(premium) FROM MyData,” which will return the premium of the user. The 

user will then have the impression that her premium is exactly equal to the average 

premium of all the customers of the insurance company. 

• Non-Truman model: query q is subject to a validity check that aims at verifying whether 

the query can be answered using only the information contained in the authorization 

views and base relations that are accessible to the requester.  If the query is valid, it is 

executed as it is without any modification. Otherwise, the query q is rejected. To check 

its validity, query q is compared against the authorization views of the requester. For 

instance, the query in Figure 15.2(d) is valid with respect to the authorization views in 

Figure 15.2(a-c). In fact, the query can be evaluated over view AvgPremium. On the 
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contrary, query “SELECT AVG(premium) FROM Insurance JOIN Patient ON 

I.ssn=P.ssn GROUP BY disease” is not valid. 

View-based access control solutions have been developed for centralized scenarios, but they can 

be adapted to operate also in distributed database systems. However, when the diversity of the 

providers involved and of their views is considerable and dynamic, view-based access control 

approaches result limiting, since they require to explicitly define a view for each possible access 

need. This aspect is particularly critical in distributed scenarios, where inter-organizational 

collaborations occur on a daily basis, and where the heterogeneity of the providers and of their 

access restrictions can be high. 

15.3 Access patterns 

In many scenarios, data sources can be accessed only providing the values of certain attributes as 

input. These values are used to properly bound query results. For instance, to access data 

available on the web, users are often required to fill in a form that includes mandatory fields. The 

provider can then bound the returned data to the tuples matching the values specified in the form.  

As another example, a research center may be willing to share the results of the testing of 

medicines with a pharmaceutical company only if the company provides as input the identifier of 

the medicines it produces. Access patterns [21] are used to formally define these kinds of access 

restrictions, which have to be properly enforced by query evaluation engines.  Each relation 

schema r(a1,…,am) in a distributed database is then assigned an access pattern α, which is a 

string of m symbols, one for each attribute in the schema, as formally defined in the following. 

Definition 1  (Access Pattern) Given a relation r defined over relational schema 

r(a1,…,am), an access pattern α associated with r, denoted rα, is a sequence of m symbols 

in {i, o}. 
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If the j-th symbol of the access pattern is i, the j-th attribute aj in the relation schema is said to be 

an input attribute; it is an output attribute, otherwise. Input attributes are those that must be 

provided as input to gain access to a subset of tuples in relation r. Output attributes are instead 

not subject to constraints for access to the data. (Note that input and output attributes can also be 

referred as bounded and free attributes, denoted b and f, respectively.) Figure 15.3 illustrates an 

example of access patterns defined over the relations in Figure 15.1 where, for example, 

Insuranceioo(ssn, type, premium) indicates that the ssn of customers must be provided as input 

to access attributes type and premium of their insurance contracts. 

The presence of access patterns may complicate the process of query evaluation. In fact, the 

execution of a query q under access restrictions may require the evaluation of a recursive query 

plan where the values extracted from a relation (say ry), which may even not be explicitly 

mentioned in the query itself, have to be used to access another relation (say rx) in q. Clearly, the 

schema of relations rx and ry must include attributes characterized by the same domain (e.g., join 

attributes). For instance, with reference to the access patterns in Figure 15.3, the result of the 

projection over attribute ssn of relation Treatment can be used as input for relation 

Insurance, to obtain the plans subscribed by patients subject to a treatment. 

The enforcement of access restrictions modeled by access patterns requires a revision of the 

traditional query evaluation strategies. In fact, classical solutions do not take into consideration 

the fact that query plans may need to operate recursively. 

Most of the proposed solutions for the definition of query plans with access patterns consider 

Figure 15.3 An example of access patterns 
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Insuranceioo (ssn, type, premium) 
Patientiooi (ssn, name, dob, disease) 
Treatmentoioo (ssn, mid, date, result) 
Medicineoio (mid, principle, auth_date) 
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conjunctive queries (e.g., [2][5][16][21][24][30][32]), that is, queries that include selection, 

projection, and join operations only and aim at identifying the tuples that satisfy all the 

conditions implied by the values given as input to the query. An effective (although non 

optimized) approach to determine a query plan that satisfies all the access restrictions operates 

according to the following three steps. 

• Initialize a set B of constant values with the constant values in q and a local cache to the 

empty set. 

• Iteratively access relations according to their access patterns using values in B and, for 

each accessed relation, update the cache with the tuples obtained and B with the 

corresponding values. 

• Evaluate q over the tuples in the local cache. 

For instance, consider query q in Figure 15.4 and the access patterns in Figure 15.3. Condition 

M.principle=‘paracetamol’ provides the required input value to access the tuples in relation 

Medicine and, in particular, to extract the list of identifiers mid of the medicines that contain 

this active principle. This list of mid values can in turn be provided as input for accessing the 

tuples of interest in relation Treatment, which include the ssn of the patients treated with 

these medicines. The list of ssn values, together with value flu for attribute disease, finally 

permit to get access to the tuples in relation Patient, which form the result of query q. The 

above approach has been subsequently enhanced by considering, for example, run-time 

optimization techniques for the generation of a query plan and integrity constraints (e.g., 

[2][3][5][16][24][32]). 

Figure 15.4 An example of query over relations in Figure 15.1 
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SELECT P.ssn, P.name, P.dob 
FROM Treatment T JOIN Medicine M ON T.mid=M.mid 

JOIN Patient P ON T.ssn=P.ssn 
WHERE M.principle=‘paracetamol’ AND P.disease=‘flu’ 
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15.4 Sovereign joins 

When operating with different relations owned by different providers, the operation that most of 

all may reveal sensitive information to non-authorized subjects is the join operation, which 

combines tuples from different relations. In fact, the evaluation of the join between two relations 

rx and ry reveals to the server S evaluating it the content of the two operands. In many scenarios, 

however, the content of the relations involved in the join operation should be kept confidential, 

even if the join result can possibly be revealed to the requester who submitted the query. As an 

example, suppose that we need to extract the collateral effects of a medicine that depend on the 

age of the patients treated with that medicine. However, both the hospital and the research center 

conducting the experimentation want (or are legally forced) to keep their own data private. 

Sovereign join [1] has been proposed as a join evaluation strategy aimed to solve this privacy 

issue, permitting the evaluation of join operations without revealing the operands to the server in 

charge of the join computation, which is assumed to not be the owner of one of the operands. 

The goal of sovereign join is to evaluate join operation rx ⋈J ry, with J an arbitrary join 

condition, in such a way that: i) only the party that requested the join can access the join result; 

and ii) no other party should be able to learn the content of relations rx, ry, and rx ⋈J ry. 

Sovereign join solution relies on a secure coprocessor located at server S, which is the only 

trusted component in the system. The secure coprocessor can access rx, ry, and the join result. 

To prevent unauthorized parties, including the server S, to access the content of rx, ry, and of the 

join result, all the information flows between provider Px (Py, respectively) storing rx (ry, 

respectively) and S, and between S and the requester are encrypted with a key shared between the 

coprocessor and each of the providers owing an operand relation, and between the coprocessor 
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and the requester. 

Note that even if S has a secure coprocessor onboard, the evaluation of the join operation should 

be performed carefully. In fact, secure coprocessors have limited resources and, in particular, 

limited memory. Hence, the join operands cannot be completely loaded in memory. The join 

evaluation algorithm should then guarantee that any observation of the interactions between the 

coprocessor and S (i.e., read and write operations by the coprocessors) do not reveal any 

information about the join operands and the result. As an example, consider the following 

straightforward adaptation of the traditional nested-loop algorithm for join evaluation. S receives 

from Px and Py the encrypted version of rx and ry, respectively. Iteratively, the coprocessor reads 

one encrypted tuple from rx and decrypts it, obtaining tx. For each tuple tx, the coprocessor 

iteratively reads each tuple in ry, decrypts it obtaining ty, and checks whether it matches with tx. If 

tuples tx and ty join, the coprocessor encrypts the pair <tx, ty> and writes the resulting ciphertext 

in the join result. It then passes to the next tuple in ry. The join evaluation terminates when all the 

pairs of tuples in rx and ry have been evaluated by the coprocessor. By observing the sequence of 

read and write operations, S (as well as any observer) can infer which encrypted tuples in rx join 

with which encrypted tuples in ry. To prevent this leakage of sensitive information, sovereign 

join guarantees that every join computation satisfies the following two properties:  

• fixed time: the time for the evaluation of the join condition and for the composition of 

tuples is the same independently from the result;  

• fixed size: the size of the result obtained when comparing tuples is the same 

independently from the result.  

To guarantee the satisfaction of both these properties, the sovereign join solution adopts a 

variation of the nested-loop algorithm. This join computation strategy burns CPU cycles to 
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maintain a fixed computation time, and relies on decoys (i.e., fake tuples) to maintain a fixed size 

of the join result. The algorithm is then designed to return an encrypted join tuple if the input 

tuples tx and ty satisfy the join condition, and an encrypted decoy of the same size, otherwise. 

Since decoys are indistinguishable from original tuples, server S cannot draw any inference 

observing information flows. 

15.5 Pairwise authorizations 

Emerging scenarios where data need to be exchanged and shared among different parties are 

represented by coalition networks. A coalition network is a distributed system characterized by a 

set of providers that wish to collaborate and share their data to reach a common goal (e.g., 

coalition networks often combine organizations cooperating for military, scientific, or emergency 

purposes) [38][39]. Each provider P in a coalition network owns one or more relations, as well as 

one or more servers for both computation and data storage purposes. The servers that belong to a 

same provider are said to be buddies and typically share the same privileges.  A coalition 

network is traditionally modeled as an undirected graph G(N,E) representing the corresponding 

overlay network among servers. Each server in the coalition network is represented by a node in 

N, and connections among servers are represented by weighted edges in E, where the weight of 

edge (Si,Sj) represents the cost of transmitting a data unit between servers Si and Sj. Figure 

15.5(a) illustrates an example of weighted graph representing the overlay network among the 

servers storing the relations in Figure 15.1 and an additional server SQ that does not store any 

relation and is a buddy of SP. 
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Given a query q, the goal of the query optimizer is to minimize data transmission costs among 

the servers involved in query evaluation. For instance, consider a query that requires to join 

relations Patient (SP), Treatment (ST), and Medicine (SM). A plan that minimizes data 

transmission costs would evaluate the join operations at server SP. In fact, the shortest path 

between ST, storing Treatment, and SM, storing Medicine, passes through SP, which stores 

Patient. This plan may however imply unauthorized data releases. In fact, in a coalition 

network not all the servers can perform all the operations in a query plan. The access control 

model regulating accesses to data in coalition networks must provide the data owner with the 

possibility to: i) authorize different parties for different portions of its dataset; ii) maintain full 

and autonomous control over who can access its data; and iii) define access control restrictions 

operating at tuple level. Pairwise authorizations satisfy all these requirements and are formally 

defined as follows [38]. 

Definition 2  (Pairwise authorization). Given two providers Pi and Pj and a relation ri owned 

Figure 15.5 An example of a graph modeling a coalition network (a) and its pairwise authorizations (b) 
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by Pi, a pairwise authorization defined by Pi over ri is a rule of the form  

Pi 
rx =σ(ri)! →!!!!!  Pj, with rx the subset of tuples in ri that satisfy a selection condition.  

A pairwise authorization Pi 
rx =σ(ri)! →!!!!!  Pj allows provider Pj to access a subset of the 

tuples in ri, according to σ(ri). In fact, rx is the result of a selection restricting the tuples visible 

to Pj to all and only the tuples in ri that satisfy the selection condition. Note that all the servers 

belonging to Pj have the same visibility over ri, that is, they can access the tuples granted by the 

pairwise authorization. A server Sj that belongs to provider Pj is then authorized to access: i) all 

the relations owned by Pj, and ii) the subsets of tuples of any relation ri for which there exists a 

pairwise authorization Pi 
rx =σ(ri)! →!!!!!  Pj. Server Sj can also view any subset of tuples 

and/or attributes in the Cartesian product among the authorized relations, also when these views 

are the result of the evaluation of a (sub-)query. Figure 15.5(b) illustrates an example of a set of 

pairwise authorizations for the coalition network in Figure 15.5(a). According to these 

authorizations, for example, server SQ, which is owned by Hospital, can access relation 

Patient, relation Treatment, and the tuples in relation Medicine associated with values 

paracetamol and antacid for attribute principle. SQ can also access the result of any query 

operating on these relations. 

Given a query q, a coalition network G(N,E), and a set of pairwise authorizations, a safe query 

plan for q has to be determined, that is, a query plan that entails only authorized data exchanges 

(i.e., the server receiving some data must be authorized to see them). Such a plan should also 

minimize data transfers, according to the costs represented by the weight of edges in G. Unary 

operators (i.e., selection and projection) clearly do not require data transmission for their 

evaluation. In fact, the server that knows the operand can evaluate the operator with no risk of 

violation of pairwise authorizations. Join operations may instead require the cooperation of 
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different servers (at least the ones knowing the two operands). The server in charge of 

computing the join is called master and the server that cooperates with the master is called 

slave. The data transmitted between the two servers for the execution of the join vary depending 

on the specific strategy adopted. For each join in the query plan, it is important to choose the 

evaluation strategy that minimizes data transfers and implies only authorized flows.  In the 

following, we summarize four join strategies (see Figure 15.6 for more details about the 

operations performed at each server and the corresponding information flows) that can be 

applied for join evaluation. For concreteness, we consider join operation rx ⋈ax=ay ry required by 

server SQ, where relations rx and ry are stored at Sx and Sy, respectively. 

• Broker-join: both Sx and Sy send their relations to SQ, which computes the join result. This 

approach can be applied independently on whether Sx, SQ, and Sy are buddies or not. 

• Peer-join: server Sy sends relation ry to Sx, which computes the join and sends the result 

to SQ. This approach works well when Sx and SQ are buddies, while Sy is not. In fact, Sx 

and SQ have the same privileges and therefore any result computed by Sx can always be 

sent to SQ.  

Figure 15.6 Working of the different join evaluation strategies 
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• Semi-join: servers Sx and Sy interact to compute the join result, which operates in four 

steps. Assuming that Sx acts as master, it first sends the projection over the join attribute 

of relation rx to Sy. As a second step, Sy computes the join between the relation received 

from Sx and ry, and sends the result back to Sx. In the third step, Sx computes the join 

between the received relation and rx, obtaining the join result. In the fourth step, Sx sends 

the join result to SQ. This approach works well when Sx and Sy are buddies as they need 

to exchange attributes and/or tuples of their relations. 

• Split-join: let rx1 be the set of tuples in rx that server Sy can access, and ry1 be the set of 

tuples in ry that server Sx can access. To evaluate the join between rx and ry, the 

operation is rewritten as the union of three joins: (rx ⋈ax=ay ry1) ∪  (rx1 ⋈ax=ay ry2) ∪  (rx2 

⋈ax=ay ry2), with rx2 the set of tuples in rx that Sy cannot access, and ry2 the set of tuples 

in ry that Sx cannot access. The computation of the join result operates in three steps. 

First, Sx and Sy compute rx ⋈ax=ay ry1 as a peer-join with Sx acting as master. Second, Sx 

and Sy compute rx1 ⋈ax=ay ry2 as a peer-join with Sy acting as master. Third, SQ 

cooperates with both Sx and Sy and acts as a master for the evaluation of rx2 ⋈ax=ay ry2 as 

a broker join, and computes the union of the three partial results. This approach can be 

applied independently on whether Sx, Sy, and SQ are buddies or not. Then it is also suited 

to scenarios where Sx, Sy, and SQ belong to three different providers. 
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As 
Figure 15. 7 An example of safe query tree plan for the query in Figure 15.4 (a) and corresponding 
information flow (b) 
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SM :  Mp := σprinciple=‘paracetamol’(Medicine) 
            Mp1 := σauthdata>1/1/1995 (Mp) 
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            M1 := πM.mid (Mp1) 
            M2 := M - M1 
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            J := P ⋈P.ssn=T.ssn TM 
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ST#:# T!:=!πT.ssn,T.mid#(Treatment)!
Tr1!:=!σresult=‘success’(Treatment)!
T1!:=!πT.ssn,T.mid#(Tr1)!
T2!:=!T!/!T1!
T1!!!SM#
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Res!:=!πP.ssn,P.name,P.dob#(J)!
Res!!!SQ!

! !
!
! !
! !
!

 

(b) 
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an example, consider the pairwise authorizations in Figure 15.5(b) and the query in Figure 15.4. 

Figure 15. 7(a) illustrates a safe query plan for the query, which is represented as a tree where 

the leaf nodes are the relations appearing in the FROM clause, and each non-leaf node 

corresponds to a relational operator. In this figure, the server acting as master for each operation 

is reported on the side of each node.  The deepest join in the tree is evaluated as a split join, 

while the other join is evaluated as a peer join. The operations evaluated at each server and the 

corresponding information flows are detailed in Figure 15. 7(b). 

15.6 Preferences in query optimization 

Besides the parties owning the data in a distributed database system, also requesters (e.g., end 

users) accessing such data may be interested in specifying confidentiality requirements that the 

query evaluation process should take into consideration. In particular, a requester authorized to 

access different data sources may want to keep secret to the involved providers that she is joining 

their data to possibly find hidden correlations. As an example, suppose that Alice works for  

Hospital, which is involved in the experimentation of a new medicine, and that she suspects that 

this medicine has serious side effects on people suffering from diabetes. To verify her 

assumption, she formulates query “SELECT T.result FROM Treatment T JOIN Medicine M ON 

T.mid=M.mid JOIN Patient P ON T.ssn=P.ssn WHERE M.principle=‘expz01’ AND P.disease= 

‘diabetis’ ”. Alice however wants to keep her intention secret from both Hospital (which may fire 

her) and Pharmaceutical Company (to not rise suspects). In this case, the intension of a query 

(i.e., the goal of the requester) has to be protected from the eyes of some servers 

[17][18][19][20][33]. The query plan may then need to satisfy constraints (i.e., requirements and 

preferences) specified by the requester formulating the query (e.g., certain operations cannot be 

revealed to, and hence also executed by, a given provider). In particular, a requester associates 
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conditions with those portions of the query that need to be handled in a specific way during the 

query evaluation process. Such requirements and preferences can be effectively expressed 

through the following specific clauses that extend the traditional SQL syntax [19]. 

1. REQUIRING condition HOLDS OVER node_descriptor  

expresses a mandatory condition that must be satisfied by the query evaluation plan 

2. PREFERRING condition HOLDS OVER node_descriptor 

expresses a non-mandatory condition representing user’s preferences. 

The node_descriptor is used to identify the portion of the query to which condition applies and 

represents a node in the query tree plan. A node_descriptor is a triple of the form <operation, 

parameters, master>, where operation is the operation represented by the node in the query plan, 

parameters are its input parameters, and master is the provider in charge of its evaluation. Each 

of the three components in a node descriptor can include a free variable (denoted with symbol 

@) or wild character * (representing any possible value for the corresponding element). The 

condition in a REQUIRING or PREFERRING clause imposes restrictions on the values of the free 

variables appearing in the node_descriptor. For instance, node descriptor <*, 

{(Treatment.ssn)}, @p> refers to the evaluation by an arbitrary provider @p of any operation 

over attribute ssn in relation Treatment. Condition @p <> SP implies that Hospital cannot 

operate over the ssn attribute of patients who are subject to a treatment. 

Both REQUIRING and PREFERRING clauses may include multiple conditions. While the conditions 

in the REQUIRING clause can be connected only through the AND operator and must all be 

satisfied, the conditions in the PREFERRING clause can be combined also using the CASCADE 

operator. The CASCADE operator defines a precedence among preferred conditions, thus imposing 

a partial order relationship among them. Consider query q in the example above formulated by 
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Alice. To prevent Hospital and Pharmaceutical Company to infer Alice’s intention, she can add a 

REQUIRING clause to her query as illustrated in Figure 15.8(a). 

Given a query q including REQUIRING and/or PREFERRING clauses, the corresponding query plan 

has to satisfy all the mandatory conditions in the REQUIRING clause and maximize the preferences 

for the conditions in the PREFERRING clause. To this aim, the approach in [19] proposes to modify 

traditional query optimizers. The proposed solution adopts a bottom-up dynamic programming 

approach, which iteratively builds a safe query tree plan involving a larger subset of relations in 

the query at each iteration. Figure 15.8(b) illustrates a safe query tree plan for the query in Figure 

15.8(b). We note that: i) the deepest join in the tree can only be evaluated by ST because SM 

cannot operate over attribute mid (as demanded by the REQUIRING clause in q); ii) the other join 

operation can only be evaluated by ST because SP cannot operate over attribute ssn (as demanded 

by the REQUIRING clause in q). 

15.7 Collaborative query execution with multiple providers 

Data stored and managed by different parties may need to be selectively shared and processed in 

a collaborative way to support distributed query evaluation. In this scenario, the correct 

definition and enforcement of access privileges ensuring that data are not improperly accessed 

and shared are crucial points for an effective collaboration and integration of large-scale 

distributed systems (e.g., [8][9][10][29]). In this section, we present an approach for 

collaborative distributed query execution in presence of access restrictions [8][9][10]. 
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15.7.1 Scenario and data model 

Given a set of collaborating providers, the set of all relations they store, denoted R, is assumed 

to be acyclic and lossless. Acyclicity means that the join path over any subset of the relations is 

unique. Lossless means that the join among relations produces only correct information. At the 

instance level, each relation r is a finite set of tuples, where each tuple t is a function mapping 

Figure 15.8 An example of query with privacy preferences (a) and a corresponding safe query tree plan 
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attributes to values in their domains and t[A] denotes the mapping for the set A of attributes in t. 

Each relation r has a primary key and a set of referential integrity constraints. The primary key K  

of a relation r(a1,….,am) is a subset of attributes in {a1,….,am} that univocally identifies the 

tuples of r, meaning that there is a functional dependency between the primary key of a relation 

and all the other attributes.1 A referential integrity constraint is a pair <Fj,Ki>, with Fj a subset of 

the attributes in relation rj and Ki the primary key of relation ri, stating that the set Fj of 

attributes, called foreign key, can assume only values that Ki assumes in the tuples of ri. Notation 

I is used to denote the set of all referential integrity constraints between relations in R. 

Tuples of different relations can be combined through a join operation, working on the attributes 

with the same name, which represent the same concept in the real world. In particular, the 

considered approach focuses on natural joins where the join conditions are conjunctions of 

expressions of the form ax=ay, with ax an attribute of the left operand and ay an attribute of the 

right operand. In the following, the conjunction of join conditions between rx and ry will be 

represented as a pair J=<Ax,Ay>, with Ax (Ay, respectively) the attributes in rx (ry, respectively) 

involved in join conditions. Notation J will be used to denote the set of all possible joins not 

implied by referential integrity constraints between relations in R. Figure 15.9 illustrates an 

example of referential integrity constraints and of joins defined over the relations in Figure 15.1, 

which have been reported in the figure for the sake of readability. A sequence of join operations 

that combine tuples belonging to more than two relations is called join path and is formally 

defined as follows. 

                                                

1A functional dependency between two subsets Ai and Aj of attributes means that for each pair of tuples tx, ty in r such that 

tx[Ai]=ty[Ai], also tx[Aj]=ty[Aj] holds.  
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Definition 3  (Join path). Given a sequence of relations r1,…,rn, a join  path over it, denoted 

joinpath(r1,…,rn), is a sequence of n-1 joins J1,…,Jn-1 such that ∀ i=1,…,n-1, Ji=<Ak,Ai> 

∈ (J∪ I), with Ak attributes in Jk, k<i, and Ai attributes of relation ri. 

15.7.2  Security model 

The security model regulating access to data in the distributed system relies on the definition of 

permissions, stating which party can access which portion of the dataset, and on relation profiles, 

which represent the information content of relations. In the following of this section, we 

introduce permissions, relation profiles, and their graphical representation. 

Permission 

A permission defines a view over data that a given subject can access and is formally defined as 

follows. 

Definition 4  (Permission). A permission is a rule of the form [A,R]àP where A is a set of 

attributes belonging to one or more relations, R is a set of relations such that for each 

attribute in A there is a relation in R including it, and P is the subject of the permission. 

Permission [A,R]àP states that provider P (and hence also any server or user in its 

authorization domain) can view the sub-tuples over the set A of attributes belonging to the join 

among relations in R. Since the set R of relations is acyclic, the join over relations in R is 

unique. Note that only attribute names appear in the set A while the relations to which they 

belong are specified in R. This applies also to the attributes appearing in more than one relation, 

Figure 15.9 An example of relations, referential integrity constraints, and joins 
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R Insurance(ssn, type, premium) 
Patient (ssn, name, dob, disease) 
Treatment (ssn, mid, date, result) 
Medicine (mid, principle, auth_date) 

I <Treatment.ssn, Patient.ssn> 
<Treatment.mid, Medicine.mid> 

J <Insurance.ssn, Patient.ssn> 
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consistently with the fact that these attributes represent the same entity in the real word. Figure 

15.10 illustrates a set of permissions for the relations in Figure 15.9. It is important to note that 

while the presence of a relation in the set R of a permission possibly implies the release of 

fewer tuples (only the tuples matching the join conditions are released), it does not imply the 

release of less information. In fact, the tuples whose release is authorized by a permission 

[A,R]àP implicitly give information on the fact that they satisfy the join path joinpath(R), 

meaning that they match tuples of other relations. For instance, permission p5 in Figure 15.10 

allows Alice to access the identifier and the authorization date of a subset of medicines used to 

treat patients. The inclusion of a relation r in the set R does not disclose any additional 

information only if there is a referential integrity constraint from a foreign key of a relation in R 

referencing attributes in r. For instance, permission p2 in Figure 15.10 and a permission with the 

same set of attributes and the set (Treatment, Patient) of relations allows Alice to access 

the same information as p2. Note also that the set R of relations may include relations that do 

not have any attribute in A. This may occur when a relation is needed to: i) build a correct 

association among tuples belonging to different relations (connectivity constraint); or ii) restrict 

the values of the attributes in A to only those values appearing in tuples that can be associated 

with such a relation (instance-based restriction). For instance, permission p3 includes relation 

Treatment that is needed only to correctly associate tuples in Patient with tuples in 

Medicine, and permission p5 includes relation Treatment that is only needed to restrict the 

information on released medicines. 
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Relation profile 

The relation profile of a base or derived (i.e., computed through a query) relation r characterizes 

its information content and is necessary to determine whether a provider can access the relation. 

The profile of a relation r is a triple [rπ,r⋈,rσ], where rπ is the set of attributes in r, r⋈ is the set 

of relations used in the definition/construction of r, and rσ is the set of attributes involved in the 

selection conditions in the definition/construction of r. Intuitively, the meaning of a relation 

profile [rπ,r⋈,rσ] is that the base or derived relation r brings information on attributes in rπ∪ rσ 

appearing in the set r⋈ of joined relations. For instance, the profile of the relation resulting from 

the query in Figure 15.4 is [(ssn, name, dob), (Patient, Treatment, Medicine), 

(principle, disease)]. 

Schema and view graph  

A set R of relations can be represented through a schema graph, which is a mixed graph with 

one node for each attribute of the relations in R, one non-oriented arc for each join in J, one 

oriented arc for each referential integrity constraint in I and functional dependency between the 

key of a relation and its non-key attributes. Figure 15.11(a) illustrates the schema graph 

representing relations, referential integrity constraints, and joins in Figure 15.9. 

Each permission [A,R]àP and each relation profile [rπ,r⋈,rσ] can be seen as a view over R that 

Figure 15.10 Examples of permissions for the relations in Figure 15.1 
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p1: [(ssn, name, dob, disease), (Patient)] !Alice 
p2: [(ssn, tid, date, result), (Treatment)] !Alice 
p3: [(name, principle), (Patient, Treatment, Medicine)] !Alice 
p4: [(ssn, type, premium), (Insurance)] !Alice 
p5: [(mid, auth_date), (Treatment, Medicine)] !Alice 
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is modeled as a pair [Attr, Rel] where: Attr corresponds to the attributes in the 

permission/relation profile (i.e, A/rπ∪ rσ), and Rel corresponds to the relations in the 

permission/relation profile (i.e., R/r⋈). In the characterization of views, we take into 

consideration the fact that the set Rel of relations can be extended by inserting all relations 

reachable from those already in Rel via referential integrity constraints without adding 

information. Given a set R of relations, we then denote with R* the set of relations obtained 

closing R via the set I of referential integrity constraints. For instance, the closure of 

(a) schema graph (b) p1 (c) p2 

(d) p3 (e) p4 (f) p5 

 
Figure 15.11 Schema graph for the relations in Figure 15.9 (a) and view graphs of the permissions in Figure 

15.10( b-f) 
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R={Treatment} is R*={Treatment, Patient, Medicine}. In fact, all the values of 

attribute ssn in Treatment also appear in Patient; analogously, all the values of attribute 

mid in Treatment also appear in Medicine. 

A view V=[Attr, Rel] can be graphically represented as a view graph GV obtained coloring the 

schema graph with three colors: white, black, and clear. The graph coloring is performed 

according to the following rules [8]: i) all nodes appearing in Attr, and all arcs belonging to 

joinpath(Rel*) or going from the key of a relation in Rel* to an attribute in Attr∪ joinpath(Rel*) 

are black; ii) all nodes belonging to a relation in Rel* that are not black and all arcs going from 

the key of a relation in Rel* to one of its attributes that neither belongs to Attr nor appears in 

joinpath(Rel*) are white; iii) the remaining nodes and arcs are clear. Figure 15.11(b-f) illustrates 

the view graphs corresponding to the permissions in Figure 15.10. In the figure, black nodes and 

arcs are represented by filled nodes and bold lines, white nodes and arcs are represented by 

continuous nodes and lines, and clear nodes and arcs are represented by dashed nodes and lines. 

15.7.3  Authorized views 

Given a subject and the set P of her permissions, the release of a base or derived relation to her 

is authorized when the information directly or indirectly conveyed by the relation is included in a 

permission. (In the following discussion, we refer to permissions of a specific subject and 

therefore we omit it). The indirect information release that a relation r computed through a query 

q may cause is related to: i) the attributes used in the WHERE clause but not appearing in the 

SELECT clause of q (i.e., the attributes not appearing in r), which are however captured by the 

relation profile (rσ); and ii) the presence of join conditions in q that restrict its set of tuples. A 

permission p=[A,R] authorizes the release of a relation r if and only if p includes: i) at least all 
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the attributes that directly or indirectly belong to r (i.e., (rπ∪ rσ) ⊆ A); and ii) all and only the 

join conditions evaluated to determine r (i.e., R* = r⋈*). Note that the set of joins (extended to 

consider those corresponding to referential integrity constraints) must be exactly the same for the 

authorizing permission and the authorized relation. This guarantees that p and r refer to the same 

set of tuples (i.e., the tuples belonging to the join result). As an example, consider the set of 

permissions in Figure 15.10 and suppose that Alice submits a query for retrieving the name of all 

patients. Permission p1 authorizes the execution of the query. In terms of the view graphs, this is 

equivalent to say that the view graph Gr of the derived relation and the view graph Gp1 of the 

permission have exactly the same black arcs among attributes in different relations, and that all 

nodes that are black in the view graph of the query are also black in the view graph of the 

permission. 

Note that while a subject may not have a single permission p authorizing the release of a relation 

r, she may be able to compute r by joining other authorized relations. For instance, consider 

query “SELECT name FROM Patient JOIN Insurance ON Patient.ssn=Insurance.ssn”. 

Even if no permission in Figure 15.10 authorizes Alice for this query, such a query does not 

provide any information that she cannot access (Alice could execute two separate queries on 

Patient and Insurance and join their results). The release of a relation r should therefore 

be allowed whenever there is a permission or a composition thereof that authorizes it. However, 

the composition of permissions has to be carefully performed to avoid that the composed 

permission authorizes releases that the original permissions do not authorize. In particular, two 

permissions pi=[Ai,Ri] and pj=[Aj,Rj] can be composed if and only if the join between the two 

corresponding views over R is lossless (i.e., the join produces a correct result w.r.t. R), meaning 
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(in our scenario) that the attributes in the intersection Ai ∩ Aj form the key of one of the two 

views. For instance, permissions p1 and p4 in Figure 15.10 can be composed because the 

common attribute ssn is the key for relation Patient (and also for relation Insurance). On 

the contrary, p1 and p3 cannot be composed, because name is not the key of the views 

corresponding to the two permissions. In terms of the view graphs, two permissions pi and pj can 

be composed if and only if there is a path of black edges from a node n that is black in both Gpi 

and Gpj to each black node in Gpi (or to each black node in Gpj). The composition of two 

permissions pi=[Ai,Ri] and pj=[Aj,Rj] is a new permission pi ⊗ pj = [Ai ∪  Aj, Ri∪Rj]. Figure 15.12 

illustrates some of the permissions resulting from the composition of the permissions in Figure 

 (a)  p1  (b) p2 (c)  p1⊗ p2 

 (d) p1 (e) p4 (f)  p1⊗ p4 

 
Figure 15.12 Examples of composed permissions 
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15.10. Note that permission pi ⊗ pj may in turn be composed with another permission pk that 

could be composed with neither pi nor pj. Notation P⊗ denotes the closure of P with respect to 

the composition operation. For instance, the closure of the permissions in Figure 15.10 is P⊗ = 

{p1, p2, p3, p4, p5, p1⊗ p2, p1⊗ p4, p2⊗p4, p2⊗ p5, p1⊗ p2⊗ p4, p1⊗p2⊗p5, p1⊗p2⊗ p4⊗p5}. Given the 

set P of permissions granted to a subject, she is authorized for r if there is a permission p in P⊗ 

that authorizes r. The work in [8] presents an efficient algorithm to verify whether a relation is 

authorized by a set of permissions without computing all possible compositions of permissions in 

P. 

15.7.4  Safe query plan 

Given a query tree plan for a query q, it is necessary to assign each operation to a server 

responsible for its execution. Such an assignment should be safe, meaning that the server should 

be authorized to execute the corresponding operation. Since each server is authorized to view the 

relations it holds, every unary operation (i.e, selection and projection) can be executed by the 

server holding the relation itself. Join operations instead require cooperation between the servers 

that hold the relations to be joined. Given a join operation rx ⋈J ry, with rx a relation of server Sx 

and ry a relation of server Sy, the join can be executed as a regular join or as a semi-join. Regular 

join means that the slave sends to the master its relation, and then the master computes the join. 

Semi-join means that the master sends to the slave the projection of its relation over the attributes 

involved in the join, and the slave computes the join with its relation. The slave then returns the 

result of such join operation to the master that in turn computes the final result. Figure 15.13 

summarizes the data exchanges occurring during the execution of a relational operation as well 

as the profile of the relation communicated at each exchange. In the figure, before each 
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operation, we report the server Si executing it. Column [m,s] reports the assignment as a pair, 

where the first element is the server serving as a master and the second element is the server 

serving as a slave. For an unary operation applied over relation r, the master is the server where r 

is stored and the slave is NULL. In [9] the authors present an approach that, given a query tree 

plan, computes a safe assignment (if it exists), meaning that each node of a query tree plan is 

assigned to a pair of servers so that there are only authorized information flows. 

As an example, consider the additional permissions in Figure 15.14 and assume that Alice 

submits query q in Figure 15.4. The algorithm verifies whether Alice is authorized for the 

relation profile resulting from q. In this case, it is immediate to see that the profile of q, [(ssn, 

name, dob), (Patient, Treatment, Medicine), (principle, disease)], is authorized by the 

permission resulting from p1⊗p2 = [(ssn, name, dob, disease, mid, date, results), (Patient, 

Treatment, Medicine)]. The algorithm then determines a safe assignment for all operations 

appearing in the query tree plan. Figure 15.15 illustrates the relation profile associated with each 

!

Oper.& [m,&s]& Operation/Flow& Views&(Sx)& Views&(Sy)& View&Profiles&
πX!(rx)! [Sx,!NULL]! Sx%:!πX!(rx)! ! ! !
σX!(rx)! [Sx,!NULL]! Sx%:!σX!(rx)! ! ! !
rx!⋈Jxy%ry! [Sx,!NULL]! Sy%:!ry!!%Sx%

Sx%:%rx!⋈J%ry!%
ry! ! [ry%π,ry⋈,ryσ]!

[Sy,!NULL]! Sx%:!rx!!%Sy%
Sy%:%rx!⋈J%ry!

! rx! [rxπ,rx⋈,rxσ]!

[Sx,!Sy]! Sx%:!rJx!:=!πJx!(rx)!
Sx%:!rJx%!!Sy%
Sy%:%rJxy!:=%rJx%⋈J%ry%
Sy%:%rJxy%!!Sx%
Sx%:%rJxy!⋈J%rx!

!
!
!
πJx!(rx)!⋈J%ry!
!

!
πJx!(rx)!

!
[Jx,rx⋈,rxσ]!

!

[Jx∪ ry%
π,rx⋈∪ ry⋈,rxσ∪ %ry

σ]!

[Sy,!Sx]! Sy%:!rJy!:=!πJy!(ry)!
Sy%:!rJy%!!Sx%
Sx%:%rxJy!:=%rx%⋈J%rJy%
Sx%:%rxJy%!!Sy%
Sy%:%rxJy!⋈J%ry!

!
πJy!(ry)!

!
!
!
rx%⋈J!πJy!(ry)!

!
[Jy,ry⋈,ryσ]!

!

[ryπ∪ Jy,rx⋈∪ ry⋈,rxσ∪ %ry
σ]!

!  
Figure 15.13 Execution of relational operations and required views and profiles [9] 
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node in the corresponding query tree plan, and a safe executor assignment for the same. 

p6: [(ssn, type, premium), (Insurance)] à  Insurance 
p7: [(ssn, name, dob, disease),(Patient)] à  Hospital 
p8: [(ssn, result, principle), (Patient, Treatment, Medicine)] àHospital 
p9: [(ssn, mid, date, result), (Treatment)] à  Research Center 
p10: [(mid, principle, auth_date), (Medicine)] à  Pharmaceutical Company 
p11: [(ssn, mid, results), (Treatment)]  à  Pharmaceutical Company 
p11: [(ssn), (Patient)] à  Pharmaceutical Company 

 Figure 15.15 Examples of permissions for the relations in Figure 15.9 

⋈ T.mid = M.mid 

π M.mid 

M.M.mid

 

π T.ssn, T.mid 

σ disease=‘flu’ 

σ principle=‘paracetamol’ 

Treatment Medicine Patient 

π P.ssn, P.name, P.dob @[SP, NULL] 

⋈ P.ssn = T.ssn 
@[SP, SM] 

π P.ssn, P.name, P.dob π T.ssn @[SM, NULL] 

@[SM, NULL] 

@[SM, NULL] 

@[SM, NULL] 

@[SM, NULL] 

@[ST, NULL] 

@[ST, NULL] 

@[SP, NULL] 

@[SP, NULL] 

@[SP, NULL] 

Figure 15.14 An example of a safe assignment for the query in Figure 15.4 
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15.8 Summary 

The need of a party to share information and to cooperate with others is growing every day. This 

situation requires the definition of approaches for easily defining and effectively enforcing the 

selective sharing requirements of information stored at different providers, possibly also crossing 

administrative and enterprise domains. In this chapter, we have surveyed recent solutions aimed 

at providing effective control to data owners interested in selectively sharing their data for 

collaborative distributed computations. We have also illustrated approaches for defining query 

evaluation plans that satisfy all the restrictions to data release defined by the different 

collaborating parties. 
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