
1

15

Specification and Enforcement of Access Policies in

Emerging Scenarios

Sabrina De Capitani di Vimercati

Università degli Studi di Milano

Sara Foresti

Università degli Studi di Milano

Pierangela Samarati

Università degli Studi di Milano

15.1 Introduction

Information sharing and data dissemination are at the basis of our digital society. Users as well

as companies access, disseminate, and share information with other parties to offer services, to

perform distributed computations, or to simply make information of their own available. Such a

dissemination and sharing process however is typically selective, and different parties may be

authorized to view only specific subsets of data. Exchanges of data and collaborative

computations should be controlled to ensure that authorizations are properly enforced and that

information is not improperly accessed, released, or leaked. For instance, data about the patients

2

in a hospital and stored at one provider might be selectively released only to specific providers

(e.g., research institutions collaborating with the hospital) and within specific contexts (e.g., for

research purposes). This situation calls for the definition of a policy specification and

enforcement framework regulating information exchange and access in the interactions among

parties. This problem has been under the attention of the research and development communities

and several investigations have been carried out, proposing novel access control solutions for

emerging and distributed scenarios. In particular, attention has been devoted to the development

of powerful and flexible authorization languages and frameworks for open environments, policy

composition techniques, privacy-enhanced access control and identity management solutions,

policy negotiation and trust management strategies, fault tolerant policies based on user’s

requirements, and access control models and policies for regulating query execution in

distributed multi-authority scenarios (e.g., [4][6][7][11][12][13][14][15][22]

[23][26][27][28][37]). Other works have addressed the problem of private and secure multi-party

computation, where different parties perform a collaborative computation learning only the query

results and nothing on the inputs (e.g., [36]). In this chapter, we focus on a scenario where

different parties (data owners or providers) need to collaborate and share information for

performing a distributed query computation with selective disclosure of data. For the sake of

simplicity, we will assume that the data stored at each provider are modeled by a relational table

r(a1,…,am), with r the name of the relation and a1,…,am its attributes. In the following, we refer

our examples to a set of four different providers, each storing one relation (Figure 15.1):

Insurance company SI with relation Insurance, Hospital SP with relation Patient, Research

Center ST with relation Treatment, and a Pharmaceutical Company SM with relation

Medicine. In such a scenario, the problem of executing distributed query computations while

3

ensuring that information is not improperly leaked, can be translated into the problem of

producing query plans with data sharing constraints. Traditional query optimizers aim at

optimizing query plans by pushing down selection and projection operations, and by choosing,

for each operation in the query plan, the provider in charge of its evaluation and how the

operation should be executed (e.g., they decide which join evaluation algorithm should be

adopted and/or which index should be used). Query optimizers do not take into consideration

possible share restrictions that data owners may wish to enforce over their data. For instance, the

hospital may want to keep patients’ diseases confidential and allow the insurance company to

access the data of their customers only. In the definition of efficient query plans, the query

optimizer should therefore consider also access privileges to guarantee that query evaluation

does not imply flows of information that should be forbidden. In the remainder of this chapter,

we survey the following existing approaches that address the above-mentioned problems.

• View-based access control: in the relational database context, it is necessary to define

authorizations that provide access to portions of the original relations. In Section 15.2, we

describe solutions that address this problem by defining views, which are used to both

grant access privileges to users and to enforce them at query evaluation time.

• Access patterns: in many scenarios (e.g., in the Web context) data sources may have

limited capabilities, meaning that data can be accessed only by specifying the values for

given attributes according to some patterns. In Section 15.3, we summarize approaches

Figure 15.1 An example of four relations stored at four different providers

1

SI: Insurance(ssn, type, premium)
SP: Patient(ssn, name, dob, disease)
ST: Treatment(ssn, mid, date, result)
SM: Medicine(mid, principle, auth_date)

4

that associate a profile with each relation to keep track of the attributes that should be

provided as input to gain access to the data.

• Sovereign join: when relations are owned by different parties, the evaluation of join

operations among them may reveal sensitive information to both the server in charge of

the evaluation and to the two providers owning the operands. In Section 15.4, we

illustrate a join evaluation strategy that reveals to the server evaluating the join neither

the operands nor the result.

• Coalition networks: in coalition networks, different parties are aimed at sharing their data

for efficiency in query evaluation while protecting data confidentiality. In Section 15.5,

we describe a solution based on the definition of pairwise authorizations to selectively

regulate data release.

• User-based restrictions: besides providers, also users may wish to define privacy

restrictions in query evaluation to protect the objective of their queries to the providers’

eyes. In Section 15.6, we illustrate a proposal that permits a user to specify preferences

about the providers in charge of the evaluation of her queries.

• Authorization composition and enforcement in distributed query evaluation: in

distributed scenarios where data release is selective, it is necessary to define an

authorization model that, while simple, guarantees that parties cannot improperly access

data. In Section 15.7, we describe an authorization model regulating the view that each

provider can have on the data and illustrate an approach for composing authorizations.

15.2 View-based access control

In the relational database context, access restrictions can be defined over views that provide

5

access to only certain portions of the underlying relations [25][31][34][35]. Authorization views

represent a powerful and flexible mechanism for controlling what information can be accessed,

and can be distinguished between traditional relational views and parameterized views. A

parameterized view makes use of input parameters (e.g., $user_id, $time) in its conditions to

possibly change the authorized subset of data depending on the execution context (e.g., the

identity of the subject performing the access). Access pattern views are parameterized views

whose parameters are bounded at access time to any value. For instance, Figure 15.2(a-c)

illustrates three authorization views over the relations in Figure 15.1. The first view

(AvgPremium) is a traditional relational view that authorizes the release of the average premium

for each insurance type. The second view (MyData) is a parameterized view that allows each

user to access her data (variable $user_id) in relation Insurance. The third view (Customers)

is an access pattern view that allows the access to the information about treatments using

medicines whose active principles are provided as input (variable $$values).

The main disadvantage of a view-based solution is that it forces requesters (which may be final

Figure 15.2 An example of traditional view (a), parameterized view (b), access pattern view (c), and valid query (d)

1

CREATE AUTH VIEW AvgPremium AS
SELECT type, AVG(premium) AS avg
FROM Insurance
GROUP BY type

CREATE AUTH VIEW MyData AS
SELECT *
FROM Insurance
WHERE ssn=$user_id

(a) (b)

CREATE AUTH VIEW Customers as
SELECT ssn, date, result
FROM Treatment T

JOIN Medicine M
ON T.mid=M.mid

WHERE M.principle IN $$values

SELECT AVG(premium)
FROM Insurance

(c) (d)

1

CREATE AUTH VIEW AvgPremium AS
SELECT type, AVG(premium) AS avg
FROM Insurance
GROUP BY type

CREATE AUTH VIEW MyData AS
SELECT *
FROM Insurance
WHERE ssn=$user_id

(a) (b)

CREATE AUTH VIEW Customers as
SELECT ssn, date, result
FROM Treatment T

JOIN Medicine M
ON T.mid=M.mid

WHERE M.principle IN $$values

SELECT AVG(premium)
FROM Insurance

(c) (d)

(a) (b)

1

CREATE AUTH VIEW AvgPremium AS
SELECT type, AVG(premium) AS avg
FROM Insurance
GROUP BY type

CREATE AUTH VIEW MyData AS
SELECT *
FROM Insurance
WHERE ssn=$user_id

(a) (b)

CREATE AUTH VIEW Customers as
SELECT ssn, date, result
FROM Treatment T

JOIN Medicine M
ON T.mid=M.mid

WHERE M.principle IN $$values

SELECT AVG(premium)
FROM Insurance

(c) (d)

1

CREATE AUTH VIEW AvgPremium AS
SELECT type, AVG(premium) AS avg
FROM Insurance
GROUP BY type

CREATE AUTH VIEW MyData AS
SELECT *
FROM Insurance
WHERE ssn=$user_id

(a) (b)

CREATE AUTH VIEW Customers as
SELECT ssn, date, result
FROM Treatment T

JOIN Medicine M
ON T.mid=M.mid

WHERE M.principle IN $$values

SELECT AVG(premium)
FROM Insurance

(c) (d)

(c) (d)

6

users as well as providers) to know and directly query authorization views. To overcome such a

limitation, more recent models operate in an authorization-transparent way (e.g., [31][34][35]).

These solutions permit requesters to formulate their queries over base relations. The access

control system will then be in charge of checking whether such queries should be permitted or

denied. Two models can be used to determine whether a query q satisfies the authorization views

granted to the requester [25][34].

• Truman model: query q is rewritten substituting the original relations with the

authorization views and base relations that the requester is authorized to access. This

rewriting aims at ensuring that the requester does not obtain information that she cannot

access. The advantage of this solution is that it always provides an answer to every query

formulated by a requester. The drawback is that this approach may return misleading

results. As an example, assume that a user is authorized to access view MyData and

submits the query in Figure 15.2(d). Before evaluation, the query is reformulated as

“SELECT AVG(premium) FROM MyData,” which will return the premium of the user. The

user will then have the impression that her premium is exactly equal to the average

premium of all the customers of the insurance company.

• Non-Truman model: query q is subject to a validity check that aims at verifying whether

the query can be answered using only the information contained in the authorization

views and base relations that are accessible to the requester. If the query is valid, it is

executed as it is without any modification. Otherwise, the query q is rejected. To check

its validity, query q is compared against the authorization views of the requester. For

instance, the query in Figure 15.2(d) is valid with respect to the authorization views in

Figure 15.2(a-c). In fact, the query can be evaluated over view AvgPremium. On the

7

contrary, query “SELECT AVG(premium) FROM Insurance JOIN Patient ON

I.ssn=P.ssn GROUP BY disease” is not valid.

View-based access control solutions have been developed for centralized scenarios, but they can

be adapted to operate also in distributed database systems. However, when the diversity of the

providers involved and of their views is considerable and dynamic, view-based access control

approaches result limiting, since they require to explicitly define a view for each possible access

need. This aspect is particularly critical in distributed scenarios, where inter-organizational

collaborations occur on a daily basis, and where the heterogeneity of the providers and of their

access restrictions can be high.

15.3 Access patterns

In many scenarios, data sources can be accessed only providing the values of certain attributes as

input. These values are used to properly bound query results. For instance, to access data

available on the web, users are often required to fill in a form that includes mandatory fields. The

provider can then bound the returned data to the tuples matching the values specified in the form.

As another example, a research center may be willing to share the results of the testing of

medicines with a pharmaceutical company only if the company provides as input the identifier of

the medicines it produces. Access patterns [21] are used to formally define these kinds of access

restrictions, which have to be properly enforced by query evaluation engines. Each relation

schema r(a1,…,am) in a distributed database is then assigned an access pattern α, which is a

string of m symbols, one for each attribute in the schema, as formally defined in the following.

Definition 1 (Access Pattern) Given a relation r defined over relational schema

r(a1,…,am), an access pattern α associated with r, denoted rα, is a sequence of m symbols

in {i, o}.

8

If the j-th symbol of the access pattern is i, the j-th attribute aj in the relation schema is said to be

an input attribute; it is an output attribute, otherwise. Input attributes are those that must be

provided as input to gain access to a subset of tuples in relation r. Output attributes are instead

not subject to constraints for access to the data. (Note that input and output attributes can also be

referred as bounded and free attributes, denoted b and f, respectively.) Figure 15.3 illustrates an

example of access patterns defined over the relations in Figure 15.1 where, for example,

Insuranceioo(ssn, type, premium) indicates that the ssn of customers must be provided as input

to access attributes type and premium of their insurance contracts.

The presence of access patterns may complicate the process of query evaluation. In fact, the

execution of a query q under access restrictions may require the evaluation of a recursive query

plan where the values extracted from a relation (say ry), which may even not be explicitly

mentioned in the query itself, have to be used to access another relation (say rx) in q. Clearly, the

schema of relations rx and ry must include attributes characterized by the same domain (e.g., join

attributes). For instance, with reference to the access patterns in Figure 15.3, the result of the

projection over attribute ssn of relation Treatment can be used as input for relation

Insurance, to obtain the plans subscribed by patients subject to a treatment.

The enforcement of access restrictions modeled by access patterns requires a revision of the

traditional query evaluation strategies. In fact, classical solutions do not take into consideration

the fact that query plans may need to operate recursively.

Most of the proposed solutions for the definition of query plans with access patterns consider

Figure 15.3 An example of access patterns

1

Insuranceioo (ssn, type, premium)
Patientiooi (ssn, name, dob, disease)
Treatmentoioo (ssn, mid, date, result)
Medicineoio (mid, principle, auth_date)

9

conjunctive queries (e.g., [2][5][16][21][24][30][32]), that is, queries that include selection,

projection, and join operations only and aim at identifying the tuples that satisfy all the

conditions implied by the values given as input to the query. An effective (although non

optimized) approach to determine a query plan that satisfies all the access restrictions operates

according to the following three steps.

• Initialize a set B of constant values with the constant values in q and a local cache to the

empty set.

• Iteratively access relations according to their access patterns using values in B and, for

each accessed relation, update the cache with the tuples obtained and B with the

corresponding values.

• Evaluate q over the tuples in the local cache.

For instance, consider query q in Figure 15.4 and the access patterns in Figure 15.3. Condition

M.principle=‘paracetamol’ provides the required input value to access the tuples in relation

Medicine and, in particular, to extract the list of identifiers mid of the medicines that contain

this active principle. This list of mid values can in turn be provided as input for accessing the

tuples of interest in relation Treatment, which include the ssn of the patients treated with

these medicines. The list of ssn values, together with value flu for attribute disease, finally

permit to get access to the tuples in relation Patient, which form the result of query q. The

above approach has been subsequently enhanced by considering, for example, run-time

optimization techniques for the generation of a query plan and integrity constraints (e.g.,

[2][3][5][16][24][32]).

Figure 15.4 An example of query over relations in Figure 15.1

1

SELECT P.ssn, P.name, P.dob
FROM Treatment T JOIN Medicine M ON T.mid=M.mid

JOIN Patient P ON T.ssn=P.ssn
WHERE M.principle=‘paracetamol’ AND P.disease=‘flu’

10

15.4 Sovereign joins

When operating with different relations owned by different providers, the operation that most of

all may reveal sensitive information to non-authorized subjects is the join operation, which

combines tuples from different relations. In fact, the evaluation of the join between two relations

rx and ry reveals to the server S evaluating it the content of the two operands. In many scenarios,

however, the content of the relations involved in the join operation should be kept confidential,

even if the join result can possibly be revealed to the requester who submitted the query. As an

example, suppose that we need to extract the collateral effects of a medicine that depend on the

age of the patients treated with that medicine. However, both the hospital and the research center

conducting the experimentation want (or are legally forced) to keep their own data private.

Sovereign join [1] has been proposed as a join evaluation strategy aimed to solve this privacy

issue, permitting the evaluation of join operations without revealing the operands to the server in

charge of the join computation, which is assumed to not be the owner of one of the operands.

The goal of sovereign join is to evaluate join operation rx ⋈J ry, with J an arbitrary join

condition, in such a way that: i) only the party that requested the join can access the join result;

and ii) no other party should be able to learn the content of relations rx, ry, and rx ⋈J ry.

Sovereign join solution relies on a secure coprocessor located at server S, which is the only

trusted component in the system. The secure coprocessor can access rx, ry, and the join result.

To prevent unauthorized parties, including the server S, to access the content of rx, ry, and of the

join result, all the information flows between provider Px (Py, respectively) storing rx (ry,

respectively) and S, and between S and the requester are encrypted with a key shared between the

coprocessor and each of the providers owing an operand relation, and between the coprocessor

11

and the requester.

Note that even if S has a secure coprocessor onboard, the evaluation of the join operation should

be performed carefully. In fact, secure coprocessors have limited resources and, in particular,

limited memory. Hence, the join operands cannot be completely loaded in memory. The join

evaluation algorithm should then guarantee that any observation of the interactions between the

coprocessor and S (i.e., read and write operations by the coprocessors) do not reveal any

information about the join operands and the result. As an example, consider the following

straightforward adaptation of the traditional nested-loop algorithm for join evaluation. S receives

from Px and Py the encrypted version of rx and ry, respectively. Iteratively, the coprocessor reads

one encrypted tuple from rx and decrypts it, obtaining tx. For each tuple tx, the coprocessor

iteratively reads each tuple in ry, decrypts it obtaining ty, and checks whether it matches with tx. If

tuples tx and ty join, the coprocessor encrypts the pair <tx, ty> and writes the resulting ciphertext

in the join result. It then passes to the next tuple in ry. The join evaluation terminates when all the

pairs of tuples in rx and ry have been evaluated by the coprocessor. By observing the sequence of

read and write operations, S (as well as any observer) can infer which encrypted tuples in rx join

with which encrypted tuples in ry. To prevent this leakage of sensitive information, sovereign

join guarantees that every join computation satisfies the following two properties:

• fixed time: the time for the evaluation of the join condition and for the composition of

tuples is the same independently from the result;

• fixed size: the size of the result obtained when comparing tuples is the same

independently from the result.

To guarantee the satisfaction of both these properties, the sovereign join solution adopts a

variation of the nested-loop algorithm. This join computation strategy burns CPU cycles to

12

maintain a fixed computation time, and relies on decoys (i.e., fake tuples) to maintain a fixed size

of the join result. The algorithm is then designed to return an encrypted join tuple if the input

tuples tx and ty satisfy the join condition, and an encrypted decoy of the same size, otherwise.

Since decoys are indistinguishable from original tuples, server S cannot draw any inference

observing information flows.

15.5 Pairwise authorizations

Emerging scenarios where data need to be exchanged and shared among different parties are

represented by coalition networks. A coalition network is a distributed system characterized by a

set of providers that wish to collaborate and share their data to reach a common goal (e.g.,

coalition networks often combine organizations cooperating for military, scientific, or emergency

purposes) [38][39]. Each provider P in a coalition network owns one or more relations, as well as

one or more servers for both computation and data storage purposes. The servers that belong to a

same provider are said to be buddies and typically share the same privileges. A coalition

network is traditionally modeled as an undirected graph G(N,E) representing the corresponding

overlay network among servers. Each server in the coalition network is represented by a node in

N, and connections among servers are represented by weighted edges in E, where the weight of

edge (Si,Sj) represents the cost of transmitting a data unit between servers Si and Sj. Figure

15.5(a) illustrates an example of weighted graph representing the overlay network among the

servers storing the relations in Figure 15.1 and an additional server SQ that does not store any

relation and is a buddy of SP.

13

Given a query q, the goal of the query optimizer is to minimize data transmission costs among

the servers involved in query evaluation. For instance, consider a query that requires to join

relations Patient (SP), Treatment (ST), and Medicine (SM). A plan that minimizes data

transmission costs would evaluate the join operations at server SP. In fact, the shortest path

between ST, storing Treatment, and SM, storing Medicine, passes through SP, which stores

Patient. This plan may however imply unauthorized data releases. In fact, in a coalition

network not all the servers can perform all the operations in a query plan. The access control

model regulating accesses to data in coalition networks must provide the data owner with the

possibility to: i) authorize different parties for different portions of its dataset; ii) maintain full

and autonomous control over who can access its data; and iii) define access control restrictions

operating at tuple level. Pairwise authorizations satisfy all these requirements and are formally

defined as follows [38].

Definition 2 (Pairwise authorization). Given two providers Pi and Pj and a relation ri owned

Figure 15.5 An example of a graph modeling a coalition network (a) and its pairwise authorizations (b)

!"#$%&'(SI
30 !"#$%&'(SP

30
10

✡
✡✡
✡
✡✡
✡✡
✡
✡✡
✡✡

20

❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦

!"#$%&'(SQ

10
①①①①①①①

60

❋❋
❋❋

❋❋
❋

!"#$%&'(ST
50 !"#$%&'(SM

research center
q1−−→ hospital

q1 = select *
from Treatment

pharmaceutical company
q2−−→ hospital

q2 = select *
from Medicine

where principle in {paracetamol, antacid}

research center
q3−−→ pharmaceutical company

q3 = select *
from Treatment

where result=‘success’

pharmaceutical company
q4−−→ research center

q4 = select *
from Medicine

where auth data>01/01/1995

(a) (b)

Fig. 1. An example of a graph modeling a coalition network (a) and its pairwise au-
thorizations (b)

Policy Specification and Enforcement in

Emerging Scenarios

Sabrina De Capitani di Vimercati, Sara Foresti, Pierangela Samarati

Università degli Studi di Milano – 26013 Crema, Italy
firstname.lastname@unimi.it

Abstract.

!
Research!Center! r1=σ(T)! →!!!!! !Hospital!

r1!=!! SELECT!*!
FROM!Treatment!

Pharmaceutical!Company! r2=σ(M)! →!!!!! !Hospital!
r2!=!! SELECT!*!

FROM!Medicine!
!!!!!!!!!! WHERE!!principle!IN!!

{paracetamol,!antacid}!
Research!Center! r3=σ(T)! →!!!!! !Pharmaceutical!Company!

r3!=!! SELECT!*!
FROM!!Treatment!
WHERE!!result.=!‘success’!

Pharmaceutical!Company! r4=σ(M)! →!!!!! !Research!Center!
r4!=!! SELECT!*!

FROM!!Medicine!
WHERE!!auth_data.>!01/01/1995!

!

(a) (b)

14

by Pi, a pairwise authorization defined by Pi over ri is a rule of the form

Pi
rx =σ(ri)! →!!!!! Pj, with rx the subset of tuples in ri that satisfy a selection condition.

A pairwise authorization Pi
rx =σ(ri)! →!!!!! Pj allows provider Pj to access a subset of the

tuples in ri, according to σ(ri). In fact, rx is the result of a selection restricting the tuples visible

to Pj to all and only the tuples in ri that satisfy the selection condition. Note that all the servers

belonging to Pj have the same visibility over ri, that is, they can access the tuples granted by the

pairwise authorization. A server Sj that belongs to provider Pj is then authorized to access: i) all

the relations owned by Pj, and ii) the subsets of tuples of any relation ri for which there exists a

pairwise authorization Pi
rx =σ(ri)! →!!!!! Pj. Server Sj can also view any subset of tuples

and/or attributes in the Cartesian product among the authorized relations, also when these views

are the result of the evaluation of a (sub-)query. Figure 15.5(b) illustrates an example of a set of

pairwise authorizations for the coalition network in Figure 15.5(a). According to these

authorizations, for example, server SQ, which is owned by Hospital, can access relation

Patient, relation Treatment, and the tuples in relation Medicine associated with values

paracetamol and antacid for attribute principle. SQ can also access the result of any query

operating on these relations.

Given a query q, a coalition network G(N,E), and a set of pairwise authorizations, a safe query

plan for q has to be determined, that is, a query plan that entails only authorized data exchanges

(i.e., the server receiving some data must be authorized to see them). Such a plan should also

minimize data transfers, according to the costs represented by the weight of edges in G. Unary

operators (i.e., selection and projection) clearly do not require data transmission for their

evaluation. In fact, the server that knows the operand can evaluate the operator with no risk of

violation of pairwise authorizations. Join operations may instead require the cooperation of

15

different servers (at least the ones knowing the two operands). The server in charge of

computing the join is called master and the server that cooperates with the master is called

slave. The data transmitted between the two servers for the execution of the join vary depending

on the specific strategy adopted. For each join in the query plan, it is important to choose the

evaluation strategy that minimizes data transfers and implies only authorized flows. In the

following, we summarize four join strategies (see Figure 15.6 for more details about the

operations performed at each server and the corresponding information flows) that can be

applied for join evaluation. For concreteness, we consider join operation rx ⋈ax=ay ry required by

server SQ, where relations rx and ry are stored at Sx and Sy, respectively.

• Broker-join: both Sx and Sy send their relations to SQ, which computes the join result. This

approach can be applied independently on whether Sx, SQ, and Sy are buddies or not.

• Peer-join: server Sy sends relation ry to Sx, which computes the join and sends the result

to SQ. This approach works well when Sx and SQ are buddies, while Sy is not. In fact, Sx

and SQ have the same privileges and therefore any result computed by Sx can always be

sent to SQ.

Figure 15.6 Working of the different join evaluation strategies

1

broker join
Sx: rx ! SQ
Sy: ry ! SQ
SQ: rJ := rx ⋈ax=ay ry

semi-join
Sx: rJx := πax (rx)
 rJx ! Sy
Sy: rJxy := rJx ⋈ax=ay ry

 rJxy ! Sx
Sx: rJ := rJxy ⋈ax=ay rx

 rJ ! SQ

split-join
Sx: rx1 := authorized tuples
 rx2 := rx - rx1
 rx1 ! Sy
Sy: ry1 := authorized tuples
 ry2 := ry – ry1
 ry1 ! Sx

Sx: rJxy1 := rx ⋈ax=ay ry1

 {rx2, rJxy1}! SQ

Sy: rJx1y2 := rx1 ⋈ax=ay ry2

 {ry2, rJx1y2}! SQ
SQ: rJx2y2 := rx2 ⋈ax=ay ry2

 rJ := rJxy1 ∪ rJx1y2 ∪ rJx2y2

peer join
Sy: ry ! Sx
Sx: rJ := rx ⋈ax=ay ry

 rJ ! SQ

16

• Semi-join: servers Sx and Sy interact to compute the join result, which operates in four

steps. Assuming that Sx acts as master, it first sends the projection over the join attribute

of relation rx to Sy. As a second step, Sy computes the join between the relation received

from Sx and ry, and sends the result back to Sx. In the third step, Sx computes the join

between the received relation and rx, obtaining the join result. In the fourth step, Sx sends

the join result to SQ. This approach works well when Sx and Sy are buddies as they need

to exchange attributes and/or tuples of their relations.

• Split-join: let rx1 be the set of tuples in rx that server Sy can access, and ry1 be the set of

tuples in ry that server Sx can access. To evaluate the join between rx and ry, the

operation is rewritten as the union of three joins: (rx ⋈ax=ay ry1) ∪ (rx1 ⋈ax=ay ry2) ∪ (rx2

⋈ax=ay ry2), with rx2 the set of tuples in rx that Sy cannot access, and ry2 the set of tuples

in ry that Sx cannot access. The computation of the join result operates in three steps.

First, Sx and Sy compute rx ⋈ax=ay ry1 as a peer-join with Sx acting as master. Second, Sx

and Sy compute rx1 ⋈ax=ay ry2 as a peer-join with Sy acting as master. Third, SQ

cooperates with both Sx and Sy and acts as a master for the evaluation of rx2 ⋈ax=ay ry2 as

a broker join, and computes the union of the three partial results. This approach can be

applied independently on whether Sx, Sy, and SQ are buddies or not. Then it is also suited

to scenarios where Sx, Sy, and SQ belong to three different providers.

17

As
Figure 15. 7 An example of safe query tree plan for the query in Figure 15.4 (a) and corresponding
information flow (b)

1

⋈ T.mid = M.mid

πM.mid

M.mid

π T.ssn, T.mid

σ disease=‘flu’

σ principle=‘paracetamol’

Treatment Medicine Patient

π P.ssn, P.name, P.dob
@SP

⋈ P.ssn = T.ssn
peer @SP

π P.ssn, P.name, P.dob @SP

@SP

@SP

π T.ssn @SP

@SM

@SM

@SM

@ST

@ST

split @SP

(a)
 ST : T := πT.ssn,T.mid (Treatment)
 Tr1 := σresult=‘success’(Treatment)
 T1 := πT.ssn,T.mid (Tr1)
 T2 := T - T1
 T1 ! SM
SM : Mp := σprinciple=‘paracetamol’(Medicine)
 Mp1 := σauthdata>1/1/1995 (Mp)
 M := πM.mid (Mp)
 M1 := πM.mid (Mp1)
 M2 := M - M1
 M1 ! ST
 TM1 := T1 ⋈T.mid=M.mid M2
 {TM1, T2} ! SP
ST : TM2 := T ⋈T.mid=M.mid M1
 {TM2, M2} ! SP
SP : TM := (T2 ⋈T.mid=M.mid M2) ∪TM1 ∪TM2
 Pd := σdisease=‘flu’ (Patient)
 P := πP.ssn,P.name,P.dob (Pd)
 J := P ⋈P.ssn=T.ssn TM
 Res := πP.ssn,P.name,P.dob (J)
 Res ! SQ (b)

(a)

!

ST#:# T!:=!πT.ssn,T.mid#(Treatment)!
Tr1!:=!σresult=‘success’(Treatment)!
T1!:=!πT.ssn,T.mid#(Tr1)!
T2!:=!T!/!T1!
T1!!!SM#

SM#:# Mp!:=!σprinciple=‘paracetamol’(Medicine)!
Mp1!:=!σauthdata>1/1/1995!(Mp)!
M!:=!πM.mid#(Mp)!
M1!:=!πM.mid!(Mp1)!
M2!:=!M!/!M1!
M1!!!ST!
TM1!:=!T1!⋈T.mid=M.mid#M2!
{TM1,!T2}!!!SP!

ST!:# TM2!:=!T!⋈T.mid=M.mid!M1!
{TM2,!M2}!!!SP!

SP!:# TM!:=!(T2!⋈T.mid=M.mid!M2)!∪ TM1!∪TM2!
Pd!:=!σdisease=‘flu’!(Patient)!
P!:=!πP.ssn,P.name,P.dob#(Pd)!
J!:=!P!⋈P.ssn=T.ssn!TM!
Res!:=!πP.ssn,P.name,P.dob#(J)!
Res!!!SQ!

! !
!
! !
! !
!

(b)

18

an example, consider the pairwise authorizations in Figure 15.5(b) and the query in Figure 15.4.

Figure 15. 7(a) illustrates a safe query plan for the query, which is represented as a tree where

the leaf nodes are the relations appearing in the FROM clause, and each non-leaf node

corresponds to a relational operator. In this figure, the server acting as master for each operation

is reported on the side of each node. The deepest join in the tree is evaluated as a split join,

while the other join is evaluated as a peer join. The operations evaluated at each server and the

corresponding information flows are detailed in Figure 15. 7(b).

15.6 Preferences in query optimization

Besides the parties owning the data in a distributed database system, also requesters (e.g., end

users) accessing such data may be interested in specifying confidentiality requirements that the

query evaluation process should take into consideration. In particular, a requester authorized to

access different data sources may want to keep secret to the involved providers that she is joining

their data to possibly find hidden correlations. As an example, suppose that Alice works for

Hospital, which is involved in the experimentation of a new medicine, and that she suspects that

this medicine has serious side effects on people suffering from diabetes. To verify her

assumption, she formulates query “SELECT T.result FROM Treatment T JOIN Medicine M ON

T.mid=M.mid JOIN Patient P ON T.ssn=P.ssn WHERE M.principle=‘expz01’ AND P.disease=

‘diabetis’ ”. Alice however wants to keep her intention secret from both Hospital (which may fire

her) and Pharmaceutical Company (to not rise suspects). In this case, the intension of a query

(i.e., the goal of the requester) has to be protected from the eyes of some servers

[17][18][19][20][33]. The query plan may then need to satisfy constraints (i.e., requirements and

preferences) specified by the requester formulating the query (e.g., certain operations cannot be

revealed to, and hence also executed by, a given provider). In particular, a requester associates

19

conditions with those portions of the query that need to be handled in a specific way during the

query evaluation process. Such requirements and preferences can be effectively expressed

through the following specific clauses that extend the traditional SQL syntax [19].

1. REQUIRING condition HOLDS OVER node_descriptor

expresses a mandatory condition that must be satisfied by the query evaluation plan

2. PREFERRING condition HOLDS OVER node_descriptor

expresses a non-mandatory condition representing user’s preferences.

The node_descriptor is used to identify the portion of the query to which condition applies and

represents a node in the query tree plan. A node_descriptor is a triple of the form <operation,

parameters, master>, where operation is the operation represented by the node in the query plan,

parameters are its input parameters, and master is the provider in charge of its evaluation. Each

of the three components in a node descriptor can include a free variable (denoted with symbol

@) or wild character * (representing any possible value for the corresponding element). The

condition in a REQUIRING or PREFERRING clause imposes restrictions on the values of the free

variables appearing in the node_descriptor. For instance, node descriptor <*,

{(Treatment.ssn)}, @p> refers to the evaluation by an arbitrary provider @p of any operation

over attribute ssn in relation Treatment. Condition @p <> SP implies that Hospital cannot

operate over the ssn attribute of patients who are subject to a treatment.

Both REQUIRING and PREFERRING clauses may include multiple conditions. While the conditions

in the REQUIRING clause can be connected only through the AND operator and must all be

satisfied, the conditions in the PREFERRING clause can be combined also using the CASCADE

operator. The CASCADE operator defines a precedence among preferred conditions, thus imposing

a partial order relationship among them. Consider query q in the example above formulated by

20

Alice. To prevent Hospital and Pharmaceutical Company to infer Alice’s intention, she can add a

REQUIRING clause to her query as illustrated in Figure 15.8(a).

Given a query q including REQUIRING and/or PREFERRING clauses, the corresponding query plan

has to satisfy all the mandatory conditions in the REQUIRING clause and maximize the preferences

for the conditions in the PREFERRING clause. To this aim, the approach in [19] proposes to modify

traditional query optimizers. The proposed solution adopts a bottom-up dynamic programming

approach, which iteratively builds a safe query tree plan involving a larger subset of relations in

the query at each iteration. Figure 15.8(b) illustrates a safe query tree plan for the query in Figure

15.8(b). We note that: i) the deepest join in the tree can only be evaluated by ST because SM

cannot operate over attribute mid (as demanded by the REQUIRING clause in q); ii) the other join

operation can only be evaluated by ST because SP cannot operate over attribute ssn (as demanded

by the REQUIRING clause in q).

15.7 Collaborative query execution with multiple providers

Data stored and managed by different parties may need to be selectively shared and processed in

a collaborative way to support distributed query evaluation. In this scenario, the correct

definition and enforcement of access privileges ensuring that data are not improperly accessed

and shared are crucial points for an effective collaboration and integration of large-scale

distributed systems (e.g., [8][9][10][29]). In this section, we present an approach for

collaborative distributed query execution in presence of access restrictions [8][9][10].

21

15.7.1 Scenario and data model

Given a set of collaborating providers, the set of all relations they store, denoted R, is assumed

to be acyclic and lossless. Acyclicity means that the join path over any subset of the relations is

unique. Lossless means that the join among relations produces only correct information. At the

instance level, each relation r is a finite set of tuples, where each tuple t is a function mapping

Figure 15.8 An example of query with privacy preferences (a) and a corresponding safe query tree plan

1

⋈ T.mid = M.mid

π M.mid π T.ssn, T.mid

σ disease=‘diabetis’

σprinciple=‘expz01’

Treatment Medicine Patient

π T.result @ST

⋈ P.ssn = T.ssn
@ST

π P.ssn, P.name, P.dob @SP

@SP

@SP

π T.ssn @ST

@SM

@SM

@SM

@ST

@ST

@ST

(b)

SELECT T.result
FROM Treatment T JOIN Medicine M ON T.mid=M.mid
 JOIN Patient P ON T.ssn=P.ssn
WHERE M.principle=‘expz01’ AND P.disease=‘diabetis’
REQUIRING @p <> SP HOLDS ON <*, {(T.ssn)}, @p>
 AND @p <> SM HOLDS ON <*, {(T.mid)}, @p>

(a)

(a)

1

⋈ T.mid = M.mid

π M.mid π T.ssn, T.mid

σ disease=‘diabetis’

σprinciple=‘expz01’

Treatment Medicine Patient

π T.result @ST

⋈ P.ssn = T.ssn
@ST

π P.ssn, P.name, P.dob @SP

@SP

@SP

π T.ssn @ST

@SM

@SM

@SM

@ST

@ST

@ST

(b)

SELECT T.result
FROM Treatment T JOIN Medicine M ON T.mid=M.mid
 JOIN Patient P ON T.ssn=P.ssn
WHERE M.principle=‘expz01’ AND P.disease=‘diabetis’
REQUIRING @p <> SP HOLDS ON <*, {(T.ssn)}, @p>
 AND @p <> SM HOLDS ON <*, {(T.mid)}, @p>

(a)

(b)

22

attributes to values in their domains and t[A] denotes the mapping for the set A of attributes in t.

Each relation r has a primary key and a set of referential integrity constraints. The primary key K

of a relation r(a1,….,am) is a subset of attributes in {a1,….,am} that univocally identifies the

tuples of r, meaning that there is a functional dependency between the primary key of a relation

and all the other attributes.1 A referential integrity constraint is a pair <Fj,Ki>, with Fj a subset of

the attributes in relation rj and Ki the primary key of relation ri, stating that the set Fj of

attributes, called foreign key, can assume only values that Ki assumes in the tuples of ri. Notation

I is used to denote the set of all referential integrity constraints between relations in R.

Tuples of different relations can be combined through a join operation, working on the attributes

with the same name, which represent the same concept in the real world. In particular, the

considered approach focuses on natural joins where the join conditions are conjunctions of

expressions of the form ax=ay, with ax an attribute of the left operand and ay an attribute of the

right operand. In the following, the conjunction of join conditions between rx and ry will be

represented as a pair J=<Ax,Ay>, with Ax (Ay, respectively) the attributes in rx (ry, respectively)

involved in join conditions. Notation J will be used to denote the set of all possible joins not

implied by referential integrity constraints between relations in R. Figure 15.9 illustrates an

example of referential integrity constraints and of joins defined over the relations in Figure 15.1,

which have been reported in the figure for the sake of readability. A sequence of join operations

that combine tuples belonging to more than two relations is called join path and is formally

defined as follows.

1A functional dependency between two subsets Ai and Aj of attributes means that for each pair of tuples tx, ty in r such that

tx[Ai]=ty[Ai], also tx[Aj]=ty[Aj] holds.

23

Definition 3 (Join path). Given a sequence of relations r1,…,rn, a join path over it, denoted

joinpath(r1,…,rn), is a sequence of n-1 joins J1,…,Jn-1 such that ∀ i=1,…,n-1, Ji=<Ak,Ai>

∈ (J∪ I), with Ak attributes in Jk, k<i, and Ai attributes of relation ri.

15.7.2 Security model

The security model regulating access to data in the distributed system relies on the definition of

permissions, stating which party can access which portion of the dataset, and on relation profiles,

which represent the information content of relations. In the following of this section, we

introduce permissions, relation profiles, and their graphical representation.

Permission

A permission defines a view over data that a given subject can access and is formally defined as

follows.

Definition 4 (Permission). A permission is a rule of the form [A,R]àP where A is a set of

attributes belonging to one or more relations, R is a set of relations such that for each

attribute in A there is a relation in R including it, and P is the subject of the permission.

Permission [A,R]àP states that provider P (and hence also any server or user in its

authorization domain) can view the sub-tuples over the set A of attributes belonging to the join

among relations in R. Since the set R of relations is acyclic, the join over relations in R is

unique. Note that only attribute names appear in the set A while the relations to which they

belong are specified in R. This applies also to the attributes appearing in more than one relation,

Figure 15.9 An example of relations, referential integrity constraints, and joins

1

R Insurance(ssn, type, premium)
Patient (ssn, name, dob, disease)
Treatment (ssn, mid, date, result)
Medicine (mid, principle, auth_date)

I <Treatment.ssn, Patient.ssn>
<Treatment.mid, Medicine.mid>

J <Insurance.ssn, Patient.ssn>

24

consistently with the fact that these attributes represent the same entity in the real word. Figure

15.10 illustrates a set of permissions for the relations in Figure 15.9. It is important to note that

while the presence of a relation in the set R of a permission possibly implies the release of

fewer tuples (only the tuples matching the join conditions are released), it does not imply the

release of less information. In fact, the tuples whose release is authorized by a permission

[A,R]àP implicitly give information on the fact that they satisfy the join path joinpath(R),

meaning that they match tuples of other relations. For instance, permission p5 in Figure 15.10

allows Alice to access the identifier and the authorization date of a subset of medicines used to

treat patients. The inclusion of a relation r in the set R does not disclose any additional

information only if there is a referential integrity constraint from a foreign key of a relation in R

referencing attributes in r. For instance, permission p2 in Figure 15.10 and a permission with the

same set of attributes and the set (Treatment, Patient) of relations allows Alice to access

the same information as p2. Note also that the set R of relations may include relations that do

not have any attribute in A. This may occur when a relation is needed to: i) build a correct

association among tuples belonging to different relations (connectivity constraint); or ii) restrict

the values of the attributes in A to only those values appearing in tuples that can be associated

with such a relation (instance-based restriction). For instance, permission p3 includes relation

Treatment that is needed only to correctly associate tuples in Patient with tuples in

Medicine, and permission p5 includes relation Treatment that is only needed to restrict the

information on released medicines.

25

Relation profile

The relation profile of a base or derived (i.e., computed through a query) relation r characterizes

its information content and is necessary to determine whether a provider can access the relation.

The profile of a relation r is a triple [rπ,r⋈,rσ], where rπ is the set of attributes in r, r⋈ is the set

of relations used in the definition/construction of r, and rσ is the set of attributes involved in the

selection conditions in the definition/construction of r. Intuitively, the meaning of a relation

profile [rπ,r⋈,rσ] is that the base or derived relation r brings information on attributes in rπ∪ rσ

appearing in the set r⋈ of joined relations. For instance, the profile of the relation resulting from

the query in Figure 15.4 is [(ssn, name, dob), (Patient, Treatment, Medicine),

(principle, disease)].

Schema and view graph

A set R of relations can be represented through a schema graph, which is a mixed graph with

one node for each attribute of the relations in R, one non-oriented arc for each join in J, one

oriented arc for each referential integrity constraint in I and functional dependency between the

key of a relation and its non-key attributes. Figure 15.11(a) illustrates the schema graph

representing relations, referential integrity constraints, and joins in Figure 15.9.

Each permission [A,R]àP and each relation profile [rπ,r⋈,rσ] can be seen as a view over R that

Figure 15.10 Examples of permissions for the relations in Figure 15.1

1

p1: [(ssn, name, dob, disease), (Patient)] !Alice
p2: [(ssn, tid, date, result), (Treatment)] !Alice
p3: [(name, principle), (Patient, Treatment, Medicine)] !Alice
p4: [(ssn, type, premium), (Insurance)] !Alice
p5: [(mid, auth_date), (Treatment, Medicine)] !Alice

26

is modeled as a pair [Attr, Rel] where: Attr corresponds to the attributes in the

permission/relation profile (i.e, A/rπ∪ rσ), and Rel corresponds to the relations in the

permission/relation profile (i.e., R/r⋈). In the characterization of views, we take into

consideration the fact that the set Rel of relations can be extended by inserting all relations

reachable from those already in Rel via referential integrity constraints without adding

information. Given a set R of relations, we then denote with R* the set of relations obtained

closing R via the set I of referential integrity constraints. For instance, the closure of

(a) schema graph (b) p1 (c) p2

(d) p3 (e) p4 (f) p5

Figure 15.11 Schema graph for the relations in Figure 15.9 (a) and view graphs of the permissions in Figure

15.10(b-f)

27

R={Treatment} is R*={Treatment, Patient, Medicine}. In fact, all the values of

attribute ssn in Treatment also appear in Patient; analogously, all the values of attribute

mid in Treatment also appear in Medicine.

A view V=[Attr, Rel] can be graphically represented as a view graph GV obtained coloring the

schema graph with three colors: white, black, and clear. The graph coloring is performed

according to the following rules [8]: i) all nodes appearing in Attr, and all arcs belonging to

joinpath(Rel*) or going from the key of a relation in Rel* to an attribute in Attr∪ joinpath(Rel*)

are black; ii) all nodes belonging to a relation in Rel* that are not black and all arcs going from

the key of a relation in Rel* to one of its attributes that neither belongs to Attr nor appears in

joinpath(Rel*) are white; iii) the remaining nodes and arcs are clear. Figure 15.11(b-f) illustrates

the view graphs corresponding to the permissions in Figure 15.10. In the figure, black nodes and

arcs are represented by filled nodes and bold lines, white nodes and arcs are represented by

continuous nodes and lines, and clear nodes and arcs are represented by dashed nodes and lines.

15.7.3 Authorized views

Given a subject and the set P of her permissions, the release of a base or derived relation to her

is authorized when the information directly or indirectly conveyed by the relation is included in a

permission. (In the following discussion, we refer to permissions of a specific subject and

therefore we omit it). The indirect information release that a relation r computed through a query

q may cause is related to: i) the attributes used in the WHERE clause but not appearing in the

SELECT clause of q (i.e., the attributes not appearing in r), which are however captured by the

relation profile (rσ); and ii) the presence of join conditions in q that restrict its set of tuples. A

permission p=[A,R] authorizes the release of a relation r if and only if p includes: i) at least all

28

the attributes that directly or indirectly belong to r (i.e., (rπ∪ rσ) ⊆ A); and ii) all and only the

join conditions evaluated to determine r (i.e., R* = r⋈*). Note that the set of joins (extended to

consider those corresponding to referential integrity constraints) must be exactly the same for the

authorizing permission and the authorized relation. This guarantees that p and r refer to the same

set of tuples (i.e., the tuples belonging to the join result). As an example, consider the set of

permissions in Figure 15.10 and suppose that Alice submits a query for retrieving the name of all

patients. Permission p1 authorizes the execution of the query. In terms of the view graphs, this is

equivalent to say that the view graph Gr of the derived relation and the view graph Gp1 of the

permission have exactly the same black arcs among attributes in different relations, and that all

nodes that are black in the view graph of the query are also black in the view graph of the

permission.

Note that while a subject may not have a single permission p authorizing the release of a relation

r, she may be able to compute r by joining other authorized relations. For instance, consider

query “SELECT name FROM Patient JOIN Insurance ON Patient.ssn=Insurance.ssn”.

Even if no permission in Figure 15.10 authorizes Alice for this query, such a query does not

provide any information that she cannot access (Alice could execute two separate queries on

Patient and Insurance and join their results). The release of a relation r should therefore

be allowed whenever there is a permission or a composition thereof that authorizes it. However,

the composition of permissions has to be carefully performed to avoid that the composed

permission authorizes releases that the original permissions do not authorize. In particular, two

permissions pi=[Ai,Ri] and pj=[Aj,Rj] can be composed if and only if the join between the two

corresponding views over R is lossless (i.e., the join produces a correct result w.r.t. R), meaning

29

(in our scenario) that the attributes in the intersection Ai ∩ Aj form the key of one of the two

views. For instance, permissions p1 and p4 in Figure 15.10 can be composed because the

common attribute ssn is the key for relation Patient (and also for relation Insurance). On

the contrary, p1 and p3 cannot be composed, because name is not the key of the views

corresponding to the two permissions. In terms of the view graphs, two permissions pi and pj can

be composed if and only if there is a path of black edges from a node n that is black in both Gpi

and Gpj to each black node in Gpi (or to each black node in Gpj). The composition of two

permissions pi=[Ai,Ri] and pj=[Aj,Rj] is a new permission pi ⊗ pj = [Ai ∪ Aj, Ri∪Rj]. Figure 15.12

illustrates some of the permissions resulting from the composition of the permissions in Figure

 (a) p1 (b) p2 (c) p1⊗ p2

 (d) p1 (e) p4 (f) p1⊗ p4

Figure 15.12 Examples of composed permissions

30

15.10. Note that permission pi ⊗ pj may in turn be composed with another permission pk that

could be composed with neither pi nor pj. Notation P⊗ denotes the closure of P with respect to

the composition operation. For instance, the closure of the permissions in Figure 15.10 is P⊗ =

{p1, p2, p3, p4, p5, p1⊗ p2, p1⊗ p4, p2⊗p4, p2⊗ p5, p1⊗ p2⊗ p4, p1⊗p2⊗p5, p1⊗p2⊗ p4⊗p5}. Given the

set P of permissions granted to a subject, she is authorized for r if there is a permission p in P⊗

that authorizes r. The work in [8] presents an efficient algorithm to verify whether a relation is

authorized by a set of permissions without computing all possible compositions of permissions in

P.

15.7.4 Safe query plan

Given a query tree plan for a query q, it is necessary to assign each operation to a server

responsible for its execution. Such an assignment should be safe, meaning that the server should

be authorized to execute the corresponding operation. Since each server is authorized to view the

relations it holds, every unary operation (i.e, selection and projection) can be executed by the

server holding the relation itself. Join operations instead require cooperation between the servers

that hold the relations to be joined. Given a join operation rx ⋈J ry, with rx a relation of server Sx

and ry a relation of server Sy, the join can be executed as a regular join or as a semi-join. Regular

join means that the slave sends to the master its relation, and then the master computes the join.

Semi-join means that the master sends to the slave the projection of its relation over the attributes

involved in the join, and the slave computes the join with its relation. The slave then returns the

result of such join operation to the master that in turn computes the final result. Figure 15.13

summarizes the data exchanges occurring during the execution of a relational operation as well

as the profile of the relation communicated at each exchange. In the figure, before each

31

operation, we report the server Si executing it. Column [m,s] reports the assignment as a pair,

where the first element is the server serving as a master and the second element is the server

serving as a slave. For an unary operation applied over relation r, the master is the server where r

is stored and the slave is NULL. In [9] the authors present an approach that, given a query tree

plan, computes a safe assignment (if it exists), meaning that each node of a query tree plan is

assigned to a pair of servers so that there are only authorized information flows.

As an example, consider the additional permissions in Figure 15.14 and assume that Alice

submits query q in Figure 15.4. The algorithm verifies whether Alice is authorized for the

relation profile resulting from q. In this case, it is immediate to see that the profile of q, [(ssn,

name, dob), (Patient, Treatment, Medicine), (principle, disease)], is authorized by the

permission resulting from p1⊗p2 = [(ssn, name, dob, disease, mid, date, results), (Patient,

Treatment, Medicine)]. The algorithm then determines a safe assignment for all operations

appearing in the query tree plan. Figure 15.15 illustrates the relation profile associated with each

!

Oper.& [m,&s]& Operation/Flow& Views&(Sx)& Views&(Sy)& View&Profiles&
πX!(rx)! [Sx,!NULL]! Sx%:!πX!(rx)! ! ! !
σX!(rx)! [Sx,!NULL]! Sx%:!σX!(rx)! ! ! !
rx!⋈Jxy%ry! [Sx,!NULL]! Sy%:!ry!!%Sx%

Sx%:%rx!⋈J%ry!%
ry! ! [ry%π,ry⋈,ryσ]!

[Sy,!NULL]! Sx%:!rx!!%Sy%
Sy%:%rx!⋈J%ry!

! rx! [rxπ,rx⋈,rxσ]!

[Sx,!Sy]! Sx%:!rJx!:=!πJx!(rx)!
Sx%:!rJx%!!Sy%
Sy%:%rJxy!:=%rJx%⋈J%ry%
Sy%:%rJxy%!!Sx%
Sx%:%rJxy!⋈J%rx!

!
!
!
πJx!(rx)!⋈J%ry!
!

!
πJx!(rx)!

!
[Jx,rx⋈,rxσ]!

!

[Jx∪ ry%
π,rx⋈∪ ry⋈,rxσ∪ %ry

σ]!

[Sy,!Sx]! Sy%:!rJy!:=!πJy!(ry)!
Sy%:!rJy%!!Sx%
Sx%:%rxJy!:=%rx%⋈J%rJy%
Sx%:%rxJy%!!Sy%
Sy%:%rxJy!⋈J%ry!

!
πJy!(ry)!

!
!
!
rx%⋈J!πJy!(ry)!

!
[Jy,ry⋈,ryσ]!

!

[ryπ∪ Jy,rx⋈∪ ry⋈,rxσ∪ %ry
σ]!

!
Figure 15.13 Execution of relational operations and required views and profiles [9]

32

node in the corresponding query tree plan, and a safe executor assignment for the same.

p6: [(ssn, type, premium), (Insurance)] à Insurance
p7: [(ssn, name, dob, disease),(Patient)] à Hospital
p8: [(ssn, result, principle), (Patient, Treatment, Medicine)] àHospital
p9: [(ssn, mid, date, result), (Treatment)] à Research Center
p10: [(mid, principle, auth_date), (Medicine)] à Pharmaceutical Company
p11: [(ssn, mid, results), (Treatment)] à Pharmaceutical Company
p11: [(ssn), (Patient)] à Pharmaceutical Company

 Figure 15.15 Examples of permissions for the relations in Figure 15.9

⋈ T.mid = M.mid

π M.mid

M.M.mid

π T.ssn, T.mid

σ disease=‘flu’

σ principle=‘paracetamol’

Treatment Medicine Patient

π P.ssn, P.name, P.dob @[SP, NULL]

⋈ P.ssn = T.ssn
@[SP, SM]

π P.ssn, P.name, P.dob π T.ssn @[SM, NULL]

@[SM, NULL]

@[SM, NULL]

@[SM, NULL]

@[SM, NULL]

@[ST, NULL]

@[ST, NULL]

@[SP, NULL]

@[SP, NULL]

@[SP, NULL]

Figure 15.14 An example of a safe assignment for the query in Figure 15.4

33

15.8 Summary

The need of a party to share information and to cooperate with others is growing every day. This

situation requires the definition of approaches for easily defining and effectively enforcing the

selective sharing requirements of information stored at different providers, possibly also crossing

administrative and enterprise domains. In this chapter, we have surveyed recent solutions aimed

at providing effective control to data owners interested in selectively sharing their data for

collaborative distributed computations. We have also illustrated approaches for defining query

evaluation plans that satisfy all the restrictions to data release defined by the different

collaborating parties.

Acknowledgements

This work was supported in part by the EC within the 7FP under grant agreement 312797

(ABC4EU) and within the H2020 program under grant agreement 644579 (ESCUDO-CLOUD),

and by the Italian Ministry of Research within PRIN project “GenData 2020” (2010RTFWBH).

References

[1] R. Agrawal, D. Asonov, M. Kantarcioglu, and Y. Li. “Sovereign joins.” In Proc. of the

22nd International Conference on Data Engineering (ICDE 2006), Atlanta, GA, USA,

April 2006.

[2] V. Barany, M. Benedikt, and P. Bourhis. “Access patterns and integrity constraints

revisited.” In Proc. of the 16th International Conference on Database Theory (ICDT

2013), Genoa, Italy, March 2013.

[3] M. Benedikt, J. Leblay, and E. Tsamoura. “Querying with access patterns and integrity

34

constraints.” Proceedings of the VLDB Endowment, 8(6):690-701, February 2015.

[4] P. Bonatti and P. Samarati. “A uniform framework for regulating service access and

information release on the web.” Journal of Computer Security (JCS), 10(3):241-271,

2002.

[5] A. Calì and D. Martinenghi. “Querying data under access limitations.” In Proc. of the

24th International Conference on Data Engineering (ICDE 2008), Cancun, Mexico,

April 2008.

[6] E. Damiani, S. De Capitani di Vimercati, and P. Samarati. “New paradigms for access

control in open environments.” In Proc. of the 5th IEEE International Symposium on

Signal Processing and Information, Athens, Greece, December 2005.

[7] S. Dawson, S. Qian, and P. Samarati. “Providing security and interoperation of

heterogeneous systems.” Distributed and Parallel Databases, 8(1):119-145, January

2000.

[8] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.

“Assessing query privileges via safe and efficient permission composition.” In Proc. of

the 15th ACM Conference on Computer and Communications Security (CCS 2008),

Alexandria, VA, USA, October 2008.

[9] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.

“Authorization enforcement in distributed query evaluation.” Journal of Computer

Security (JCS), 19(4):751-794, 2011.

[10] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.

“Controlled information sharing in collaborative distributed query processing.” In Proc. of

the 28th International Conference on Distributed Computing Systems (ICDCS 2008),

35

Beijing, China, June 2008.

[11] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati. “Access control

policies and languages.” International Journal of Computational Science and Engineering

(IJCSE), 3(2):94-102, 2007.

[12] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati. “Access control

policies and languages in open environments.” Secure Data Management in Decentralized

Systems, T. Yu, S. Jajodia (eds.), Springer-Verlag, 2007.

[13] S. De Capitani di Vimercati and P. Samarati. “Access control in federated systems.” In

Proc. of the ACM SIGSAC New Security Paradigms Workshop, Lake Arrowhead, CA,

USA, September 1996.

[14] S. De Capitani di Vimercati and P. Samarati. “Authorization specification and enforcement

in federated database systems.” Journal of Computer Security (JCS), 5(2):155-188, 1997.

[15] S. De Capitani di Vimercati, P. Samarati, and S. Jajodia. “Policies, models, and languages

for access control.” In Proc. of the Workshop on Databases in Networked Information

Systems, Aizu-Wakamatsu, Japan, March 2005.

[16] A. Deutsch, B. Ludascher, and A. Nash. “Rewriting queries using views with access

patterns under integrity constraints.” In Proc. of the 10th International Conference on

Database Theory (ICDT 2005), Edinburgh, Scotland, January 2005.

[17] N.L. Farnan, A.J. Lee, P.K. Chrysanthis, and T. Yu. “Don’t reveal my intension:

Protecting user privacy using declarative preferences during distributed query processing.”

In Proc. of the 16th European Symposium On Research In Computer Security (ESORICS

2011), Leuven, Belgium, September 2011.

[18] N.L. Farnan, A.J. Lee, P.K. Chrysanthis, and T. Yu. “PAQO: A preference-aware query

36

optimizer for PostgreSQL,” Proceedings of the VLDB Endowment, 6(12):1334-1337,

August 2013.

[19] N.L. Farnan, A.J. Lee, P.K. Chrysanthis, and T. Yu. “PAQO: Preference-aware query

optimization for decentralized database systems.” In Proc. of the 30th IEEE International

Conference on Data Engineering (ICDE 2014), Chicago, IL, USA, March-April 2014.

[20] N.L. Farnan, A.J. Lee, and T. Yu. “Investigating privacy-aware distributed query

evaluation.” In Proc. of the 9th ACM Workshop on Privacy in the Electronic Society

(WPES 2010), Chicago, IL, USA, October 2010.

[21] D. Florescu, A.Y. Levy, I. Manolescu, and D. Suciu. “Query optimization in the presence

of limited access patterns.” In Proc. of the 1999 ACM SIGMOD International Conference

on Management of Data (SIGMOD 1999), Philadelphia, PA, USA, June 1999.

[22] S. Foresti. Preserving Privacy in Data Outsourcing, Springer, 2011.

[23] M. Gamassi, V. Piuri, D. Sana, and F. Scotti. “Robust fingerprint detection for access

control.” In Proc. of the Workshop RoboCare, Rome, Italy, May 2005.

[24] G. Gottlob and A. Nash. “Data exchange: Computing cores in polynomial time.” In Proc.

of the 25th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems (PODS 2006), Chicago, IL, USA, June 2006.

[25] M. Guarnieri and D. Basin. “Optimal security-aware query processing.” Proceedings of

the VLDB Endowment, 7(12):1307-1318, August 2014.

[26] R. Jhawar and V. Piuri. “Fault tolerance management in IaaS clouds.” In Proc. of the

2012 IEEE Conference in Europe about Space and Satellite Telecommunications (ESTEL

2012), Rome, Italy, October 2012.

[27] R. Jhawar, V. Piuri, and P. Samarati. “Supporting security requirements for resource

37

management in cloud computing.” In Proc. of the 2012 IEEE International Conference on

Computational Science and Engineering (CSE 2012), Paphos, Cyprus, December 2012.

[28] R. Jhawar, V. Piuri, and M. Santambrogio. “A comprehensive conceptual system-level

approach to fault tolerance in cloud computing.” In Proc. of the 2012 IEEE International

Systems Conference (SysCon 2012), Vancouver, BC, Canada, March 2012.

[29] M. Le, K. Kant, and S. Jajodia. “Consistency and enforcement of access rules in

cooperative data sharing environment.” Computers and Security, 41:3-18, March 2014.

[30] C. Li. “Computing complete answers to queries in the presence of limited access

patterns.” VLDB Journal, 12(3):211-227, October 2003.

[31] A. Motro. “An access authorization model for relational databases based on algebraic

manipulation of view definitions.” In Proc. of the 5th International Conference on Data

Engineering (ICDE 1989), Los Angeles, CA, USA, February 1989.

[32] A. Nash and A. Deutsch. “Privacy in GLAV information integration.” In Proc. of the

10th International Conference on Database Theory (ICDT 2005), Barcelona, Spain,

January 2007.

[33] N.R. Ong, S.E. Rojcewicz, N.L. Farnan, A.J. Lee, P.K. Chrysanthis, and T. Yu.

“Interactive preference-aware query optimization.” In Proc. of the 31st IEEE International

Conference on Data Engineering (ICDE), Seoul, Korea, April 2015.

[34] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. “Extending query rewriting

techniques for fine-grained access control.” In Proc. of the 2004 ACM SIGMOD

International Conference on Management of Data (SIGMOD 2004), Paris, France, June

2004.

[35] A. Rosenthal and E. Sciore. “Administering permissions for distributed data: Factoring

38

and automated inference.” In Proc. of the 15th IFIP Annual Working Conference on

Database and Application Security (DBSec 2001), Niagara on the Lake, Ontario, Canada,

July 2001.

[36] A.C.C. Yao. “How to generate and exchange secrets.” In Proc. of the 27th Annual

Symposium on Foundations of Computer Science, Toronto, Canada, October 1986.

[37] T. Yu, M. Winslett, and K.E. Seamons. “Supporting structured credentials and sensitive

policies trough interoperable strategies for automated trust.” ACM TISSEC, 6(1):1-42,

February 2003.

[38] Q. Zeng, M. Zhao, P. Liu, P. Yadav. S. Calo , and J. Lobo. “Enforcement of autonomous

authorizations in collaborative distributed query evaluation.” IEEE Transactions on

Knowledge and Data Engineering (TKDE), 27(4):979-992, April 2015.

[39] M. Zhao, P. Liu, and J. Lobo. “Towards collaborative query planning in multi-party

database networks.” In Proc. of the 29th Working Conference on Data and Applications

Security and Privacy (DBSec 2015), Fairfax, VA, USA, July 2015.

