
Selective and Fine-Grained Access to Data
in the Cloud

Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati

Abstract This chapter surveys some of the research results related tothe protection
and efficient access to data stored and managed by external cloud servers. We first
provide an overview of the security and privacy problems andchallenges that need
to be considered, and then illustrate emerging approaches for protecting data exter-
nally stored, and for enforcing fine-grained (queries) and selective (access control)
accesses on them. Finally, we show how the combined application of the solutions
discussed may introduce privacy problems that should be carefully considered.

1 Introduction

Emerging paradigms like data outsourcing and cloud computing have attracted the
attention of the research and industrial communities thanks to their advantages in
terms of reduced costs for IT resources, increased storage,flexibility in resource
management, and higher scalability. These advantages however do not come for
free. In fact, these emerging paradigms also introduce a number of privacy and se-
curity risks that may represent a serious obstacle for theirwide development and
for their acceptance by users and companies. Security and privacy may relate to dif-
ferent aspects, including resources, data and network isolation, attacks to the cloud
servers, compliance with laws and regulations, reliability of applications and ser-
vices, protection of the confidentiality and integrity of data, and data availability
(e.g., [11, 38, 39, 44]). In this chapter, we will provide an overview of the problems
and solutions related to the proper protection of the confidentiality of the data and
to the efficient access to them. These problems become quite complex in a cloud
scenario since users release and store their data on external servers that are outside

Sabrina De Capitani di Vimercati· Sara Foresti· Pierangela Samarati
Università degli Studi di Milano – Dipartimento di Informatica
Via Bramante 65, 26013 Crema, Italy
e-mail:firstname.lastname@unimi.it

1

2 Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati

their control. Also, the advances in the Information and Communication Technolo-
gies (ICTs), including the possibility of combining and analyzing more information
from several data sources, intensify the data protection problem.

The protection of potentially sensitive data stored and managed by external cloud
servers poses interesting challenges. In fact, cloud servers can be characterized by
different levels of trust, ranging fromhonest-but-curiousservers, meaning that they
are trusted for the management of the data but cannot know (access) the data they
store, to servers that may intentionally behave improperlyin the storing and pro-
cessing of the data. Data are therefore encrypted by the dataowner before their
storage in the cloud. Since cloud servers cannot decrypt data, there is the problem
of defining techniques (e.g., indexes) for enforcing fine-grained retrieval of the data
without compromising their privacy. However, techniques that support effective and
efficient accesses to the outsourced data are not enough. In fact, if the server (or a
generic observer) monitors the accesses by users, it may be able to draw inferences
on which data have been accessed. Also, the presence of multiple users who rely on
external storage for making their data available to others,introduces the problem of
enforcing selective (read and write) access to the outsourced data.

In this chapter, after a brief overview of the different security and privacy prob-
lems that can arise in a cloud computing scenario, we survey and discuss research
results related to the protection of the privacy of outsourced data, and on the fine-
grained and selective retrieval of data. We also show that the combination of tech-
niques addressing a specific problem can cause privacy breaches. The remainder of
the chapter is organized as follows. Section 2 provides an overview of the main secu-
rity and privacy risks in a cloud scenario. Section 3 illustrates some approaches and
open issues related to the protection of data confidentiality, indexing for query sup-
port, and selective access. Section 4 describes how the combination of indexes for
query support and fragments for data confidentiality can cause leakage of confiden-
tial information. Section 5 describes how the combination of indexes and selective
encryption may allow unauthorized users to infer (or reducetheir uncertainty on)
information that they are not authorized to access. Finally, Section 6 provides our
conclusions.

2 Security and privacy in the cloud

The security and privacy problems that arise when data are stored at external servers
have been the subject of many studies (e.g., [22, 31, 37]). Depending on the con-
sidered aspect, the security and privacy problems can be related to:i) the privacy
of users;ii) the privacy and integrity of data storage;iii) the privacy and integrity
of queries; andiv) the secure and private data computations involving multiple
providers. Figure 1 illustrates the reference cloud scenario where users interact with
external cloud servers for accessing data and services, anddifferent cloud servers
collaborate for offering a service or responding to a query.In the remainder of this

Selective and Fine-Grained Access to Data in the Cloud 3

Fig. 1 Reference cloud scenario

section, we provide a description of each of the four categories of security and pri-
vacy problems mentioned above.

Privacy of users. Cloud services allow users to access applications and data on
demand every-time they need. To successfully complete the required access, users
may be asked to provide some information while however wishing to protect their
identities for privacy reasons. For instance, a user can be interested in querying a
cloud server for collecting information about a given illness without revealing her
identity to avoid possible correlations between the illness and herself or a person
close to her. The techniques developed for supporting anonymous communication
between parties and attribute-based access control can be helpful in protecting the
privacy of the users. In fact, anonymous communication techniques allow users to
communicate on the Internet without revealing their identities [9], meaning that an
observer cannot trace who is communicating with whom, or whois interacting with
which server or searching for which data. Attribute-based access control solutions
allow users to access resources or data without reveling their identities [13]. The
idea is that, instead of declaring their identities, users prove that they satisfy the
conditions needed for the access. To this purpose, a user candisclose acredential(a
set thereof) certifying the information necessary for the access. The server verifies
whether the credential is valid and whether the informationit certifies satisfies the
policy regulating access to the resource. The research community has also devoted
considerable attention to the use ofanonymous credentials[16] for access control
(e.g., [4]). An anonymous credential allows a user to make statements about at-
tribute values, maintaining the values private. For instance, anonymous credentials
permit to selectively release a subset of the properties in acredential or to prove that
they satisfy some conditions, without revealing any information about their values.
Anonymous credentials can be at the basis of a new generationof access control
policy languages that can be particularly suited to open anddynamic scenarios like
the cloud.

4 Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati

Recently, some proposals have started to address the problem of regulating the
release of users’ personal information according to privacy preferences expressed
by the users themselves. These proposals have introduced models relying on user
preferences that permit to associate a higher or lower sensitivity with the combined
release of a set of properties/credentials (e.g., [5, 6, 7, 40, 53]). For instance, a
user may consider the joint release of her name and credit card number more sensi-
tive than the release of each information singularly taken.Although these solutions
represent a first step towards the definition of a comprehensive approach for the
protection of users’ privacy, there are still several open issues: the development of
user-friendly approaches for expressing privacy preferences; the ability of defin-
ing privacy preferences that depend on the context; and the integration of these ap-
proaches with server-side solutions supporting fine-grained policy disclosure, which
permit the server to obfuscate the portions of its policies considered sensitive, while
providing the user with enough information for releasing the information necessary
to possibly gain access (e.g., [8]).

Privacy and integrity of data storage. When data are outsourced to an external
server that is outside the control of the data owner, the protection of the confi-
dentiality and of the integrity of the data, as well as the efficient access to them
become clearly of paramount importance. In this context, the research commu-
nity has been very active and produced advancements in several areas: solutions
for protecting data confidentiality(e.g., encryption and fragmentation [1, 21, 37]);
indexesfor supporting queries (e.g., [17, 37]), solutions for supporting selective
accessto outsourced data (e.g., [23]), solutions for ensuringdata integrity(e.g.,
signatures [14, 35, 43]). These approaches typically consider a scenario where a
data owneroutsources her data to anexternal serverthat can be trusted to properly
manage the data, making them available to requestingusers, but it is not trusted to
read the content of the data it stores (i.e.,honest-but-curiousserver). The outsourced
data can be of any type, including files and relational tables. In the remainder of this
chapter, for simplicity and without loss of generality, we will assume that the out-
sourced data are organized in a single relationr , stored in a (distributed) relational
database. Relationr is defined over relational schemaR(a1, . . . ,an), with attribute
ai defined over domainDi , i = 1, . . . ,n. The presentation of solutions and issues re-
lated to the protection of the privacy of outsourced data will be the subject of the
following sections.

Privacy and integrity of queries. Accessing information from external cloud
servers and performing queries over outsourced data introduce several privacy and
integrity issues. Existing data management architecturestypically assume that the
data obtained from distributed parties have not been tampered with, and are avail-
able only to authorized parties. Such assumptions do not apply anymore in cloud
scenarios, where multi-tenant infrastructures orchestrate different services. Assur-
ances on the fact that the privacy of the queries is preservedand that computations
on data are processed in the expected way (integrity and verifiability) are becoming
more and more important. In fact, there is an increasing needfor novel techniques
that support not only data privacy, but also the privacy of the accesses that users

Selective and Fine-Grained Access to Data in the Cloud 5

make on such data. This problem has been traditionally addressed by Private In-
formation Retrieval (PIR) proposals (e.g., [18]), which provide protocols for query-
ing a database that prevent the external server from inferring which data are being
accessed. PIR solutions however have high computational complexity, and alterna-
tive approaches have been proposed. These novel approachesrely on the Oblivious
RAM structure (e.g., [33, 47, 48]) or on the definition of specific tree-based data
structures combined with a dynamic allocation of the data (e.g., [29, 30]). The goal
is to support the access to a collection of encrypted data while preserving access
and pattern confidentiality, meaning that an observer can infer neither what data are
accessed nor whether two accesses aim to the same data. Besides protecting access
and pattern confidentiality, it is also necessary to design mechanisms for protecting
the integrity and authenticity of the computations, that is, to guarantee the correct-
ness, completeness, and freshness of query results. Most ofthe techniques that can
be adopted for verifying the integrity of query results operate on a single relation
and are based on the idea of complementing the data with additional data structures
(e.g., Merkle trees) or of introducing in the data collection fake tuples that can be ef-
ficiently checked to detect incorrect or incomplete results(e.g., [41, 46, 50, 51, 52]).
Interesting aspects that need further analysis are relatedto the design of efficient
techniques able to verify the completeness and correctnessof the results of complex
queries (e.g., join operations among multiple relations, possibly stored and managed
by different cloud servers with different levels of trust).

Secure and private data computations. More and more emerging scenarios re-
quire different cloud servers to cooperate to the aim of sharing information and/or
performing distributed computations. This sharing process can be clearly selective,
meaning that different servers may have different access privileges. Recently, a sig-
nificant amount of research has addressed the problem of processing distributed
queries under protection requirements (e.g., [2, 15, 25]).Some proposals are based
on the concept of access pattern, a profile associated with each relation/view [15].
For each attribute of the relation/view, the access patternincludes a value that may
be eitheri for input or o for output. When accessing a relation, the values for all
i attributes must be supplied to obtain the corresponding values ofo attributes.
Sovereign joins [2] are an alternative solution for securely processing joins. This
solution is based on a secure coprocessor, which is involvedin query execution, and
exploits cryptography. Other approaches propose an authorization model to regulate
the view that each server can have on the data, ensuring that query computation ex-
poses to each server only the data that the server can view [25]. The idea is that a
relation (base or resulting from the evaluation of a query) can be released to a server
whenever the information it carries (either directly or indirectly when the relation
has been obtained as the result of a query) is visible from thereceiving party. The
proposed authorization model operates at the schema level and supports the defini-
tion of generic view patterns, thus nicely meeting both expressiveness and simplicity
requirements.

Figure 2 summarizes the main categories of security and privacy issues discussed
above (gray boxes) along with some of the corresponding solutions (white boxes).

6 Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati

Fig. 2 Summary of security and privacy issues and corresponding solutions

Note that this classification does not aim to be complete but only to provide a quick
overview of the solutions mentioned.

3 Privacy of data storage

The problem of protecting outsourced data while enjoying effective and efficient
data management and retrieval operations has attracted theattention of many re-
searches, and several investigations have been carried out. The problem is quite
complex and involves several aspects, including basic techniques for protecting data
at rest (Section 3.1), techniques for efficiently accessingencrypted data without
compromising their confidentiality (Section 3.2), and data-centric techniques for
supporting selective access to the outsourced data withoutrelying on the data owner
and/or on the honest-but-curious server storing the data (Section 3.3). We now de-
scribe more in details these aspects.

3.1 Encryption and fragmentation

The problem of protecting the confidentiality of outsourceddata has been one of
the first issues investigated in the data outsourcing and cloud scenarios. In fact, the
risk that unauthorized parties (or even the external serveritself) can access sensitive
information is one of the main factors for which users (and not only) are often
reluctant to adopt the cloud for storing their data. The solutions proposed to protect

Selective and Fine-Grained Access to Data in the Cloud 7

PATIENTS

SSN Name YoB Job Disease
t1 123456789Alice 1980 Clerk Asthma
t2 234567891Bob 1980 Doctor Asthma
t3 345678912Carol 1970 Nurse Asthma
t4 456789123David 1970 Lawyer Bronchitis
t5 567891234Eva 1970 Doctor Bronchitis
t6 678912345Frank 1960 Doctor Gastritis
t7 789123456Gary 1960 TeacherGastritis
t8 891234567Hilary 1960 Nurse Diabetes

c0 = {SSN}
c1 = {Name, Disease}
c2 = {Name, Job}
c3 = {Job, Disease}

(a) (b)

Fig. 3 An example of plaintext relation (a) and of a set of confidentiality constraints over it (b)

data confidentiality are based onencryptionandfragmentation, which can be used
either singularly or in combination.

Encryption consists in wrapping a protective layer of encryption around data be-
fore storing them at an external server (e.g., [17, 34, 37, 44]). Since the encryption
key is known only to the data owner and to authorized users, this technique protects
the data against both external (malicious) parties, and theserver itself. While effec-
tive, this approach is based on the conservative assumptionthat all the outsourced
data are equally sensitive and must therefore be protected.However, as first observed
in [1, 20, 21], often data are not sensitive per se but what is sensitive is their associ-
ation with other data. As an example, the list of the names of hospitalized patients
and the list of diseases cured in a hospital are not sensitive. On the contrary, the as-
sociation of patients’ names with the illness they suffer from is highly sensitive and
should therefore be kept confidential. Data confidentialitycan then be achieved by
properly protecting sensitive associations. Given a relation r over relation schema
R(a1, . . . ,an), both sensitive attribute values and sensitive associations among them
can be modeled throughconfidentiality constraints[1]. A confidentiality constraint
c overR is a subset of the attributes inR (i.e.,c⊆R), modeling a sensitive associa-
tion on the values of the attributes inc. Constraintc states that, for each tuplet in r :
i) valuet[a] is considered sensitive per se, ifc is a singleton constraint (i.e.,c={a});
ii) the joint visibility of the values of the attributes inc is considered sensitive, ifc is
an association constraint (i.e.,c = {ai, . . . ,a j}). For instance, Figure 3(b) illustrates
a set of confidentiality constraints over relation PATIENTS in Figure 3(a). Singleton
constraintc0 states that the list of Social Security Numbers is considered sensitive
per se. The remaining association constraints state that the association of: patients’
names with the disease they suffer from (c1), patients’ names with their job (c2), and
patients’ job with their disease (c3) are considered sensitive, respectively.

Given a relationr and a setC of confidentiality constraints over it, the goal is to
combine fragmentation and encryption techniques to guarantee that sensitive values
and sensitive associations are properly obfuscated. Intuitively, singleton constraints
are enforced by encrypting the attribute values before outsourcing or by not out-
sourcing the attribute values at all. Association constraints are enforced by parti-
tioning the attributes inR in different subsets (fragments), or by not releasing (in
clear form) at least one of the attributes in the constraint.A fragmentation correctly

8 Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati

enforces the confidentiality constraints if no fragment stored at the external server
represents all the attributes in a constraint in clear form,and fragments cannot be
joined by unauthorized users.

The approaches that rely on fragmentation and encryption for enforcing confi-
dentiality constraints differ in how they guarantee that fragments cannot be joined,
and in how they protect attribute values considered sensitive per se. Based on these
differences, existing techniques can be classified as follows.

• Non-communicating pair of servers[1]. The data owner partitions relationR
in two fragments,F1 andF2, stored at two non-communicating servers. Those
attributes that cannot be stored at any of the two servers without violating confi-
dentiality constraints are encoded and the result is storedat the two servers (e.g.,
the attribute values are encrypted via one-time-pad, and the result of encryption
is stored at one server, while the key is stored at the other one). Only users who
can access both the versions of an encoded attribute can reconstruct its plaintext
values. Figure 4 illustrates an example of fragmentation for relation PATIENTS in
Figure 3(a) that satisfies the confidentiality constraints in Figure 3(b). It is com-
posed of fragmentsF1={tid, Name, YoB, SSNk, Diseasek} andF2={tid,
Job, SSNk, Diseasek}. Attribute tid is a tuple identifier introduced in the
two fragments to permit authorized users to correctly joinF1 andF2 to recon-
struct the original content of relation PATIENTS. AttributesSSNk andDiseasek

represent the encoded version of attributesSSN andDisease, respectively.
• Multiple fragments[21]. The data owner partitions relationR in an arbitrary set

of fragments,{F1, . . . ,Fm}, possibly stored at the same server. Fragments are dis-
joint, meaning that no attribute is represented in clear form in more than one frag-
ment. All the attributes inR that are not represented in clear form in a fragment
are however represented in encrypted form in the fragment (i.e., each fragment
is complete). Figure 4 illustrates an example of fragmentation for relation PA-
TIENTS in Figure 3(a) that satisfies the confidentiality constraints in Figure 3(b).
It is composed of three fragments:F1={salt, enc, Name, YoB}, F2={salt,
enc, Job}, andF3={salt, enc, Disease}. Attribute salt is a randomly
chosen value, different for each tuple in each fragment. Attribute enc is the
result of the encryption of the attributes in the original relation that are not repre-
sented in clear form in the fragment, concatenated withsalt. For readability, in
all our examples tuples in fragments are in the same order as in the original rela-
tion, even if the order in which tuples are stored in fragments is independent from
the order in which they appear in the original relation. Notethat the possibility
of using an arbitrary number of fragments has the advantage that all attributes
that are not involved in singleton constraints can be represented in clear form in
a fragment (in the worst case, we can have a fragment for each attribute), as it is
visible from the example above.

• Departing from encryption[20]. The data owner partitions relationR in two frag-
ments,Fo andFs, and locally stores one of them (Fo), while the other is out-
sourced to an external server (Fs). Since only authorized users can accessFo,
neither the server nor unauthorized users can joinFo andFs to possibly recon-
struct sensitive associations. Note that fragmentFo can both include attributes

Selective and Fine-Grained Access to Data in the Cloud 9

F1

tid Name YoB SSNk Diseasek

1 Alice 1980 jdkis hyaf4k
2 Bob 1980 u9hs9 j97;qx
3 Carol 1970 j9und 9jp‘md
4 David 1970 p0vp8 p;nd92
5 Eva 1970 8nn[0-mw-n
6 Frank 1960 j9jMK wqp9[i
7 Gary 1960 87l’D L0MB2G
8 Hilary 1960 8pm}n @h8hwu

F2

tid Job SSNk Diseasek

1 Clerk uwq8hd jsd7ql
2 Doctor j-0.dl; 0],nid
3 Nurse 8ojqdkf j-0/?n
4 Lawyer j0i12nd 5lkdpq
5 Doctor mj[9;’s j0982e
6 Doctor aQ14l[jnd%d
7 Teacher8qsdQWOP[’
8 NURSE 0890UD UP0D@

Non-communicating pair of servers(two can keep a secret) [1]

F1

salt enc Name YoB

s11 Bd6!l3 Alice 1980
s12 Oij3X. Bob 1980
s13 9kEf6? Carol 1970
s14 ker5/2 David 1970
s15 C:mE91 Eva 1970
s16 4lDwqz Frank 1960
s17 me3,op Gary 1960
s18 zWf4g> Hilary 1960

F2

salt enc Job

s21 8de6TO Clerk
s22 X’mlE3 Doctor
s23 wq.vy0 Nurse
s24 nh=I3a Lawyer
s25 hh%kj) Doctor
s26 ;vf5eS Doctor
s27 e4+YUp Teacher
s28 pgt6eC Nurse

F3

salt enc Disease

s31 ew3)V! Asthma
s32 LkEd69 Asthma
s33 w8vd66 Asthma
s34 1”qPdd Bronchitis
s35 (mn2eW Bronchitis
s36 wD}x1X Gastritis
s37 0opEl Gastritis
s38 Sw@Fez Diabetes

Multiple fragments[21]

Fo

tid SSN Job Disease

1 123456789Clerk Asthma
2 234567891Doctor Asthma
3 345678912Nurse Asthma
4 456789123Lawyer Bronchitis
5 567891234Doctor Bronchitis
6 678912345Doctor Gastritis
7 789123456TeacherGastritis
8 891234567Nurse Diabetes

Fs

tid Name YoB

1 Alice 1980
2 Bob 1980
3 Carol 1970
4 David 1970
5 Eva 1970
6 Frank 1960
7 Gary 1960
8 Hilary 1960

Departing from encryption(keep a few) [20]

Fig. 4 An example of fragmentation of relation PATIENTS in Figure 3(a) according to the non-
communication pair of servers, multiple fragments, and departing from encryption scenarios

considered sensitive per se and sensitive associations. This solution completely
departs from encryption, but it requires the data owner to locally store a portion
of her data and to cooperate with the external server in queryevaluation. Figure 4
illustrates an example of fragmentation for relation PATIENTS in Figure 3(a) that
satisfies the confidentiality constraints in Figure 3(b). Itis composed of fragment
Fo={tid, SSN, Job, Disease} stored at the data owner side, and fragment
Fs={tid, Name, YoB} stored at the external server side.

Encryption, fragmentation, and their combinations are powerful mechanisms for
protecting data confidentiality. However, there are still several open issues that need
to be further investigated. In fact, fragmentation and encryption break associations
among attribute values that could be considered of interestfor final recipients, thus
compromising the utility of released data. Alternative solutions that protect data
while preserving a certain utility are therefore needed [24]. Also, confidentiality

10 Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati

PATIENTSk

tid enc In Iy I j Id

1 T8/lO? π α δ η
2 1wfTg< π α ε θ
3 vFe!d2 ρ β δ ω
4 f3iJ:y ρ β ζ κ
5 ;x0d9D σ β ε λ
6 kO6i)G σ γ ε µ
7 u2eW[b τ γ ζ ν
8 vY7’.1 τ γ δ ξ

Fig. 5 An example of encrypted and indexed version of relation PATIENTS in Figure 3(a)

constraints are defined over relation schemas, while they could be extended to oper-
ate at the instance level (i.e., at the attribute values level). We also observe that en-
cryption and fragmentation work under the assumption that the data collection never
changes. Techniques supporting updates to the outsourced data collection without
compromising confidentiality still need to be designed.

3.2 Indexes

The adoption of encryption for protecting data confidentiality makes query execu-
tion difficult. In fact, confidentiality demands that data decryption must be possible
only at the user side. Solutions have been then developed to enable cloud servers
to execute queries directly on encrypted data. These solutions complement the out-
sourced relation with a set ofindexes, which are metadata information built on the
plaintext values of the attributes [44]. Formally, a relation r , defined over schema
R(a1, . . . ,an), is represented at the server side through an encrypted relation rk over
schemaRk(tid, enc, I i1, . . . , I i j). Attributetid is a numerical attribute added to
the original relation and acting as a primary key. Attributeenc represents the en-
crypted tuple. AttributeI i l , l = 1, . . . , j, is the index defined over attributeai l in R.
Each tuplet in r is represented by an encrypted tupletk in rk wheretk[enc]=Ek(t),
with E a symmetric encryption function with keyk, andtk[I i l]=ι(t[ai l]), with ι an
index function defined overDi l . Note thatRk has an index only for those attributes
in R on which conditions need to be evaluated. Figure 5 illustrates an example of
encrypted and indexed version of relation PATIENTS in Figure 3(a), with indexes
over attributesName (In), YoB (Iy), Job (I j), andDisease (Id).

Different indexing techniques have been proposed in the literature to support
different kinds of conditions. Most of these indexing techniques can be classified in
the following three classes, depending on how the corresponding index functionι
maps the original values to the corresponding index values.

• Direct index. Index functionι maps each plaintext value to a different index value
and vice versa. An example of direct index is represented byencryption-based
indexes(e.g., [22]). For each tuplet∈r , the value of indexI , defined over attribute

Selective and Fine-Grained Access to Data in the Cloud 11

a, is computed asι(t[a])=Ek(t[a]). For instance, indexIy in relation PATIENTSk

in Figure 5 represents an example of direct index over attributeYoB of relation
PATIENTS in Figure 3(a).

• Bucket-based index. Index functionι maps different plaintext values to the same
index value, generating collisions. Each plaintext value is however mapped to
only one index value. An example of bucket-based index is represented by
partition-based indexes, which partition the domainD of attributea into non-
overlapping subsets of contiguous values, and associate a label with each parti-
tion (e.g., [37]). For each tuplet∈r , the value of indexI , defined over attribute
a, corresponds to the label of the unique partition to which value t[a] belongs.
For instance, indexIn in relation PATIENTSk in Figure 5 represents an example
of partition-based index over attributeName of relation PATIENTS in Figure 3(a).
The domain of attributeName has been partitioned in four intervals depending
on the initial of the name, with labels:π for names with initial in the range
[A,B], ρ for names with initial in the range [C,D],σ for names with initial in
the range [E,F], andτ for names with initial in the range [G,H]. Another exam-
ple of bucket-based index is represented by thehash-based indexes(e.g., [17]).
For each tuplet∈r , the value of indexI , defined over attributea, is computed
as ι(t[a])=h(t[a]), whereh is a secure hash function that generates collisions.
For instance, indexI j in relation PATIENTSk in Figure 5 represents an exam-
ple of hash-based index over attributeJob of relation PATIENTS in Figure 3(a).
The hash function adopted generates collisions and, in particular, is defined as
follows: h(Clerk)=h(Nurse)=δ , h(Doctor)=ε, andh(Lawyer)=h(Teacher)=ζ .

• Flattened index. Index functionι maps each plaintext value to a set of index
values to guarantee that all index values have the same number of occurrences
(flattening). Each index value represents one plaintext value only. The index can
be obtained by applying an encryption function to the plaintext values of the
attribute and a post processing that flattens the distribution of the index values
(e.g., [45]). For instance, indexId in relation PATIENTSk in Figure 5 represents
an example of flattened index over attributeDisease of relation PATIENTS in
Figure 3(a), where each index value has exactly one occurrence.

These indexing techniques support the partial evaluation at the server-side of
SQL queries. Given a queryq, it is translated into a queryqs executed at the server
side on the encrypted relation, and a queryqc executed at the client side on the de-
crypted result ofqs. Queryqc includes all conditions that cannot be evaluated by
the server and aims at eventually discarding allspurious tuplesreturned byqs, that
is, all tuples that do not satisfy the original query submitted by the user. The trans-
lation of queryq into queryqs andqc depends both on the kind of indexes defined
for the attributes involved in the query and on the kind of query. As an example,
consider queryq = “SELECT Att FROM R WHERE Cond”, whereAtt⊆R andCond
is a set of equality conditions of the forma=v, with a∈R andv a constant value
in the domainD of a. Each equality conditiona=v is translated into an equivalent
conditionI IN ι(v), with I the index defined overa andι the corresponding index
function. Queryq is then translated into queryqs = “SELECTenc FROM Rk WHERE

Condk”, whereCondk includes, for each equality conditiona=v, the equivalent con-

12 Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati

dition I IN ι(v). The client will decrypt the result ofqs computed by the server, and
will execute queryqc that eliminates spurious tuples, evaluates conditions that can-
not be performed at the server side, and projects only the attributes inAtt to obtain
the result ofq. For instance, queryq = SELECT Name FROM PATIENTS WHERE

Job=‘Nurse’ AND Disease=‘Asthma’ is translated into queryqs = SELECTenc
FROM PATIENTSk WHERE I j=δ AND Id∈{η ,θ ,ω}, which returns the first and third
tuples in Figure 5. The client then filters spurious tuples from the result ofqs by
evaluating queryqc = SELECTName FROM Dk(Resk) WHEREJob=‘Nurse’, where
Resk is the encrypted result returned by the server andD the symmetric decryption
function with keyk. Queryqc returns the value of attributeName of tuplet1 in Fig-
ure 3(a), which corresponds to the result of the original query q formulated by the
user.

Indexing techniques specifically aimed at supporting the efficient evaluation of
range conditions are based on order preserving encryption schemas (e.g., [3, 45]).
Indexes that support aggregate functions and the basic arithmetic operators (i.e.,
+,−,×) rely on homomorphic encryption techniques (e.g., [32, 36]). Additional in-
dexing techniques, which cannot be classified as mentioned above, are based, for
example, on the definition of data structures (e.g.,B+-tree) coupled with the en-
crypted relation and stored at the server [22].

The definition of indexes over outsourced relations must balance precision in
query evaluation and privacy of the data [17]. In fact, more precise indexes provide
more efficient query execution, at the price of a greater exposure to possible pri-
vacy violations. Also, the number of indexes complementingan outsourced relation
should be carefully tuned, since each additional index may cause a rapid growth to
the risk of privacy violations.

3.3 Selective encryption

In many real-world systems, different users may have different privileges on the
outsourced data. Traditional access control architectures are based on the presence
of a trusted component, calledreference monitor, that is in charge of enforcing the
access control policy defined by the data owner. In a cloud scenario, however, nei-
ther the data owner (for efficiency reasons) nor the cloud server storing the data
(for privacy reasons) can enforce the access control policy. An interesting solution
addressing this issue consists in adoptingselective encryption[23], meaning that
different keys are used for encrypting different data. The encryption keys are then
(directly or indirectly) released only to the users authorized to access the corre-
sponding data. The idea of using different keys for enforcing access control is not
new and has been first introduced in other contexts. For instance, in [42] the authors
propose to store encrypted XML documents on (potentially insecure and vulnera-
ble) Web servers. The decisions about access rights to different portions of an XML
document can be made by the document creator and are immediately applied to the
XML document by using different encryption keys for different portions of the same

Selective and Fine-Grained Access to Data in the Cloud 13

t1 t2 t3 t4 t5 t6 t7 t8
A 1 0 0 1 0 1 1 0
B 0 1 0 1 1 1 1 0
C 0 0 0 1 0 1 1 1
D 0 1 1 1 1 1 0 0
E 0 1 0 0 1 1 1 0

Fig. 6 An example of access matrix regulating access to relation PATIENTS in Figure 3(a)

XML document. To enforce access restrictions, users then obtain only the keys as-
sociated with the portions of XML documents for which they have an access right.
Other proposals put forward the idea of using hierarchical-based access control in
the context of distributed environments and broadcast pay tv content (e.g., [12, 49]).
In the remainder of this section, we describe the main characteristics of the selective
encryption approach in [23], specifically designed for the cloud scenario.

Given a setU of users and a relationr , the authorization policy regulating access
to tuples inr is represented by an access matrixM, with a row for each useru∈U
and a column for each tuplet∈r . Cell M[u,t] is equal to 1 (0, respectively), if user
u can (cannot, respectively) access tuplet. For each tuplet, acl(t) denotes the set of
users who can access it (i.e., its access control list). For instance, Figure 6 illustrates
an example of access matrix regulating access to the tuples of relation PATIENTS in
Figure 3(a) by a setU={A,B,C,D,E} of users.

The authorization policy defined by the data owner is translated into anequiva-
lent encryption policy. The encryption policy regulates keys used to encrypt tuples
as well as key distribution to users and must be equivalent tothe access control pol-
icy defined by the data owner, that is, each user can decrypt all and only the tuples
she is authorized to access.

The translation of an authorization policy into an equivalent encryption policy
is driven by two requirements:i) each user must manage at most one key, andii)
each tuple must be encrypted at most once (i.e., no replication). To satisfy these two
desiderata, the approach in [23] adopts akey derivation techniquebased on public
tokens, which permit to compute the value of an encryption key starting from the
knowledge of another key and a piece of publicly available information [10]. Each
key ki is associated with a public labell i and, given keyski andk j , tokentokeni, j
is computed ask j⊕h(ki ,l j), with ⊕ the bitwise xor operator, andh a deterministic
cryptographic function. Tokentokeni, j permits to derive keyk j from ki and public
label l j . Key derivation techniques are based on the definition of akey derivation
graph, specifying which keys can be derived from other keys. A key derivation
graph is a directed acyclic graph whose vertices represent keys, and whose edges
represent tokens. The existence of a path from keyki to keyk j in the key derivation
graph denotes the fact thatk j can be (directly or indirectly, via a chain of tokens)
derived fromki . A key derivation graph correctly enforces an authorization policy
M if each userui∈U can derive, starting from the key she knows, the keys used to
encrypt all and only the tuplest j∈r that she can access (i.e., withM[ui ,t j]=1). To
define such a graph, the idea is to exploit the set containmentrelationship⊆ over

14 Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati

�� ��
�� ��AB

''NN
NN

NN
N

��=
==

==
==

==
=

�� ��
�� ��A

88qqqqqqq //

&&MM
MM

MM
M

�� ��
�� ��AC //

��=
==

==
==

==
=

�� ��
�� ��ABC

''OO
OO

OO
O

�� ���� ��B

AA����������

&&MM
MM

MM
M

��;
;;

;;
;;

;;
;

�� ��
�� ��AD //

''NN
NN

NN
N

�� ��
�� ��ABD //�� ��

�� ��ABCD

�� ��
�� ��C

AA���������� //

��;
;;

;;
;;

;;
;

�� ��
�� ��BC

@@����������

''NN
NN

NN
N

�� ��
�� ��ACD

77ooooooo

�� ���� ��D

AA���������� //

&&MM
MM

MM
M

�� ���� ��BD

@@���������� //�� ��
�� ��BCD

??�����������

�� ��
�� ��CD

@@����������

77ppppppp

user key

A kA

B kB
C kC

D kD

tuple key

t1 kA

t2 kBD
t3 kD
t4 kABCD

t5 kBD
t6 kABCD

t7 kABC
t8 kC

(a) (b) (c)

Fig. 7 An example of encryption policy equivalent to the access control policy in Figure 6, con-
sidering the subset{A,B,C,D} of users

U . A key derivation graph induced by⊆ overU has a vertex for each subset of
users inU and a path from vertexvi to vertexv j if vi represents a subset of the
users represented byv j . The correct enforcement of the policy is guaranteed if each
user knows the key of the vertex representing herself in the graph, and each tuple
is encrypted with the key of the vertex representing its acl.For instance, consider
the portion of the access matrix in Figure 6 defined for the subset{A,B,C,D} of
users. The encryption policy in Figure 7 is equivalent to theaccess control policy
represented by the first four rows in Figure 6. For readability, each vertex in the
graph of Figure 7 is labeled with the set of users it represents. As an example, user
A can decrypt tuplest1, t4, t6, and t7 since she can derive, starting from vertex
labeledA, the keys with which these tuples are encrypted.

Although effective for enforcing the authorization policy, the solution above de-
fines more keys and tokens than necessary. Since the number oftokens in the system
influences the access time, the proposal in [23] reduces the number of tokens by re-
moving from the key derivation graph the vertices and edges that are not necessary
to enforceM. The problem of minimizing the number of edges in a key derivation
graph is however NP-hard. In [23] the authors propose an heuristic approach, which
has been proved to obtain good results, based on two observations: i) the vertices
needed for correctly enforcing an authorization policy arethose representing sin-
gleton sets of users and the acls of tuples inr ; ii) when two or more vertices have
more than two common direct ancestors, the insertion of a vertex representing the
set of users corresponding to these ancestors reduces the total number of tokens.
Figure 8(a) illustrates an example of key derivation graph obtained adopting the ap-
proach in [23] over the access matrix in Figure 6. As it is visible from the figure,
the graph includes a vertex for each user and for each acl of a tuple in the system.
It also includes an additional vertex (i.e.,ABC), introduced to limit the number of
tokens in the system. Clearly, the encryption policy in Figure 8 is more convenient
than the one in Figure 7, as it reduces both the number of keys and the number of
tokens in the system, while managing an additional user.

Selective and Fine-Grained Access to Data in the Cloud 15

�� ��
�� ��A

''PP
PP

PP
PP

�� ���� ��B //

��0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

�� ��
�� ��ABC

((QQ
QQQ

QQQ

��7
7
77

77
77

77
77

77
7

�� ��
�� ��C

77nnnnnnnn �� ��
�� ��ABCD

%%J
JJ

JJ

�� ��
�� ��ABCDE

�� ���� ��D

66nnnnnnnnnnnnnnnnnnn

''PP
PP

PP
PP

�� ��
�� ��ABCE

99ttttt

�� ���� ��E

33ffffffffffffffffff //�� ���� ��BDE

user key

A kA
B kB

C kC
D kD
E kE

tuple key

t1 kA
t2 kBDE
t3 kD

t4 kABCD
t5 kBDE

t6 kABCDE
t7 kABCE
t8 kC

(a) (b) (c)

Fig. 8 An example of encryption policy equivalent to the access control policy in Figure 6

Since the keys used to encrypt tuples depend on their access control lists, when-
ever the authorization policy changes, the tuples involvedin the policy update may
need to be re-encrypted to guarantee the equivalence of the encryption policy. For
instance, assume that userE is revoked the privilege to read tuplet6. Such a tuple
should be first decrypted using keykABCDE, and then encrypted using keykABCD.
However, re-encryption requires the direct involvement ofthe data owner and can
be computationally expensive. The number of re-encryptionoperations are therefore
minimized by adopting two layers of encryption that allow the server to manage pol-
icy update operations [23]. TheBase Encryption Layer(BEL) is applied by the data
owner before transmitting the relation to the server and consists in encrypting the
tuples according to the authorization policy existing at initialization time. TheSur-
face Encryption Layer(SEL) is performed by the server over the tuples already
encrypted by the data owner. It enforces the dynamic changesover the policy. The
basic idea consists in over-encrypting the tuples so that a user can access a tuple
only if she knows or can derive the key used for encrypting thetuples at both levels.

The solution in [23] enforces read privileges only and has been complemented
with another technique that allows the management of write operations [27]. This
work associates each tuple with awrite tag. The write tag is a random value chosen
by the data owner independently from the tuple content, and is encrypted with a key
known only to users who can modify the tuple and to the external server. The server
will then enforce a write operation on a tuple only if the requesting user proves to
know the write tag of the tuple. The proposal in [27] extends the key derivation
graph with a key for the server and the keys necessary for protecting write tags.
For instance, consider the read privileges in Figure 6 over relation PATIENTS in
Figure 3(a), and assume that: tuplest1, t4, andt7 can be modified by userA only;
tuplest2 andt6 can be modified byB, D, andE; tuplest3 andt5 can be modified by
D; and tuplet8 can be modified byC. Figure 9 illustrates the encryption policy in
Figure 8, extended to properly enforce write privileges. Inthe figure, we denote the
external server asS.

16 Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati

�� ��
�� ��A

((QQ
QQQ

QQQ
Q // AS

�� ���� ��B //

��2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

�� ��
�� ��ABC

))TT
TTT

TTT
TT

��=
==

==
==

==
==

==
==

==

�� ��
�� ��C

66mmmmmmmmm // CS
�� ��
�� ��ABCD

%%J
JJ

JJ

S

>>

II

&&

�� ��
�� ��ABCDE

�� ��
�� ��D

55kkkkkkkkkkkkkkkkkkkkkk

((QQ
QQQ

QQQ
Q // DS

�� ��
�� ��ABCE

99ttttt

�� ��
�� ��E

22eeeeeeeeeeeeeeeeeeeee //�� ��
�� ��BDE // BDES

user key

A kA
B kB

C kV
D kD
E kE

tuple read key write key

t1 kA kAS
t2 kBDE kBDES
t3 kD kDS

t4 kABCD kAS
t5 kBDE kDS

t6 kABCDE kBDES
t7 kABCE kAS

t8 kC kCS

(a) (b) (c)

Fig. 9 Encryption policy in Figure 8, extended to enforce write authorizations

Open issues that still need to be addressed are related to theexpressive power
of the supported access control policy, especially considering the ever-increasing
bring-your-own-device (BYOD) trend. In fact, it would be interesting to develop
solutions that will allow the specification of fine-grained restrictions, based on the
users’ context and on the specific device adopted for accessing data.

4 Indexes and fragmentation

The fragmentation works illustrated in Section 3.1 permit to delegate to the server
the evaluation of any condition over attributes appearing plaintext in a fragment.
However, the client still needs to evaluate those queries that operate on encrypted
attributes, or that involve attributes that are not represented in plaintext in the same
fragment. For instance, consider the fragmentation in Figure 4 of relation PATIENTS

in Figure 3(a). Queryq = SELECTName FROM PATIENTS WHEREYoB=1980AND

Disease=‘Asthma’ cannot be evaluated by the server, since attributesYoB and
Disease do not appear in the clear in the same fragment and the server can neither
decrypt attributeenc nor joinF1 andF3. Hence, one of the two conditions inq must
be evaluated by the client. To mitigate the client’s overhead in query evaluation,
fragments can be complemented with indexes over encrypted attributes. Figure 10
illustrates three versions of fragmentF1 in Figure 4, complemented with indexId

over attributeDisease, which has been computed using each of the three kinds
of indexes illustrated in Section 3.2. The presence of indexes in a fragment could
however cause unintended leakage of sensitive information[28]. The exposure to
leakage varies depending on the knowledge that a curious observer (e.g., the external
server) can exploit and the kind of indexes. In particular, the following two kinds of
knowledge can be exploited for breaching data confidentiality.

Selective and Fine-Grained Access to Data in the Cloud 17

F1

salt enc Name YoB Id

s11 Bd6!l3 Alice 1980 α
s12 Oij3X. Bob 1980 α
s13 9kEf6? Carol 1970 α
s14 ker5/2 David 1970 β
s15 C:mE91 Eva 1970 β
s16 4lDwqz Frank 1960 γ
s17 me3,op Gary 1960 γ
s18 zWf4g> Hilary 1960 δ

F1

salt enc Name YoB Id

s11 Bd6!l3 Alice 1980 ε
s12 Oij3X. Bob 1980 ε
s13 9kEf6? Carol 1970 ε
s14 ker5/2 David 1970 η
s15 C:mE91 Eva 1970 η
s16 4lDwqz Frank 1960 θ
s17 me3,op Gary 1960 θ
s18 zWf4g> Hilary 1960 ε

F1

salt enc Name YoB Id

s11 Bd6!l3 Alice 1980 κ
s12 Oij3X. Bob 1980 λ
s13 9kEf6? Carol 1970 µ
s14 ker5/2 David 1970 ν
s15 C:mE91 Eva 1970 ξ
s16 4lDwqz Frank 1960 π
s17 me3,op Gary 1960 ρ
s18 zWf4g> Hilary 1960 σ

(a) (b) (c)

Fig. 10 FragmentF1 in Figure 4 complemented with a direct index (a), a bucket-based index (b),
and a flattened index (c) over attributeDisease

Disease

Asthma
Asthma
Asthma
Bronchitis
Bronchitis
Gastritis
Gastritis
Diabetes

Name Disease

Alice Asthma

(a) (b)

Fig. 11 An example of vertical (a) and horizontal (b) knowledge by anobserver

• Vertical knowledgeis the knowledge of the projection of attributea over relation
r , and is due to the presence of attributea in the clear in one fragment and indexed
in other fragments. Vertical knowledge does not require anyadditional external
information for an observer since, apart from the case wherethe attribute appears
in a singleton constraint, it refers to information immediately present in other
accessible fragments. For instance, fragmentF3 in Figure 4 makes visible the
plaintext values (and their number of occurrences) of attributeDisease (see
Figure 11(a)).

• Horizontal knowledgeis the knowledge of the presence of a tuplet (or a set
thereof) inr , and is due to external knowledge by an observer. For instance, an
observer may know that Alice suffers from Asthma (see Figure11(b)).

Let us now examine the exposure risk of indexed fragments under the assump-
tions of horizontal and vertical knowledge and of the presence of indexes belonging
to the three categories discussed in Section 3.2 [28].

• Direct index. Index functionι preserves the frequency distribution of plaintext
values, which can be exploited to reconstruct the value-index association by an
observer with vertical and/or horizontal knowledge. Vertical knowledge permits
to precisely reconstruct the value-index association for values characterized by a
unique number of occurrences (outliers). For instance, consider the indexed frag-
ment in Figure 10(a) and the vertical knowledge in Figure 11(a). It is immediate
to see thatι(Asthma)=α and ι(Diabetes)=δ since these are the only plaintext

18 Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati

and index values with 3 occurrences and 1 occurrence, respectively. Hence, an
observer can infer that Alice, Bob, and Carol have Asthma andHilary has Di-
abetes. Horizontal knowledge permits to precisely reconstruct the value-index
association for the plaintext valuev=t[a] known by the observer, exposing all the
tuples inr with valuev for attributea. For instance, in the example above, know-
ing that Alice suffers from Asthma permits an observer to infer thatι(Asthma)=α
and then that also Bob and Carol suffer from the same illness.

• Bucket-based index. Index functionι does not preserve the frequency distribution
of plaintext values. However, the index value corresponding to plaintext value
v will have a frequency equal to or higher than (in case of collisions) the fre-
quency ofv. Values with a high number of occurrences (outliers) are then still
exposed. Vertical knowledge permits to identify the index values associated with
frequent plaintext values, and then to reconstruct the value-index association for
such values with a known probability of error. For instance,consider the indexed
fragment in Figure 10(b) and the vertical knowledge in Figure 11(a). Clearly,
ι(Asthma)=ε since this is the only index value with at least 3 occurrences. Also,
ι(Diabetes)=ε since Diabetes is the only plaintext value with 1 occurrence. An
observer can then infer that 3 patients among Alice, Bob, Carol, and Hilary has
Asthma (each with probability 0.75) and 1 has Diabetes (eachwith probability
0.25). Horizontal knowledge permits to identify the index value representing the
known plaintext valuev=t[a]. This index value may however correspond also
to other plaintext values, limiting the observer’s abilityto precisely reconstruct
value-index associations. For instance, in the example above, knowing that Alice
suffers from Asthma permits an observer to infer thatι(Asthma)=ε. However,
nothing can be said about Bob, Carol, and Hilary sinceε could also represent
other plaintext values (different from Asthma). By combining horizontal with
vertical knowledge, however, she can infer that 2 among Bob,Carol, and Hi-
lary suffer from Asthma (each with probability 0.66) and 1 suffers from Diabetes
(each with probability 0.33).

• Flattened index. Index functionι flattens the frequency distribution of index val-
ues. Vertical knowledge does not help in establishing correspondences between
plaintext values and index values. Horizontal knowledge permits to identify one
of the index values representing the known plaintext valuev=t[a], exposing only
the tuples associated with this index value (in contrast to the possibly larger set
of tuples with valuev for a). For instance, consider the indexed fragment in Fig-
ure 10(c) and the horizontal knowledge in Figure 11(b). An observer can only
learn thatι(Asthma)=κ . However, no other association is exposed, becauseκ
has only one occurrence inF1 (although Asthma has frequency 3 inF3).

An index functionι that flattens the frequency distribution of index values and
that generates collisions provides protection against both horizontal and vertical
knowledge. In fact, as illustrated above, inference attacks caused by vertical knowl-
edge can be counteracted by flattening the frequency distribution of index values.
Inference attacks caused by horizontal knowledge are mitigated by index functions
that map different plaintext values to the same index value,generating collisions.
For instance, Figure 12 illustrates fragmentF1 in Figure 4 complemented with a

Selective and Fine-Grained Access to Data in the Cloud 19

F1

salt enc Name YoB Id

s11 Bd6!l3 Alice 1980 α
s12 Oij3X. Bob 1980 α
s13 9kEf6? Carol 1970 δ
s14 ker5/2 David 1970 β
s15 C:mE91 Eva 1970 β
s16 4lDwqz Frank 1960 γ
s17 me3,op Gary 1960 γ
s18 zWf4g> Hilary 1960 δ

Fig. 12 FragmentF1 in Figure 4 complemented with a flattened index with collisions over attribute
Disease

flattened index with collisions over attributeDisease. This indexed fragment is
protected against both vertical and horizontal knowledge in Figure 11. Indeed, verti-
cal knowledge cannot be exploited for frequency-based attacks (all the index values
have 2 occurrences). Horizontal knowledge permits to inferthatι(Asthma)=α but,
sinceι generates collisions, the observer cannot say anything about the disease from
which Bob suffers. Although the proposal in [28] is focused on the adoption of one
index, the discussion can easily be extended to the case where fragments are com-
plemented with multiple indexes. In fact, flattening and collisions provide adequate
protection in different scenarios (e.g., multiple indexesin one fragment, a same at-
tribute indexed in different fragments, two attributes appearing one in plaintext and
the other indexed in one fragment and reversed in another fragment).

Although effective to protect data at rest, a flattened indexfunction with colli-
sions has the disadvantage of reducing the performance in query evaluation. In fact,
flattening requires to retrieve different index values whensearching for one plaintext
value, and collisions require a post-processing at the client side to remove spurious
tuples in the query result computed by the server. As an example, consider frag-
mentF1 in Figure 12, conditionDisease=‘Asthma’ translates into conditionId

IN {α,δ}. The evaluation of this condition would however return a tuple with value
Diabetes for attributeDisease (i.e., tuplet8), since Asthma and Diabetes are both
mapped to valueδ . Also, flattened indexes with collisions remain still vulnerable
to dynamic observations (i.e., to adversaries who can observe users’ queries). In
fact, by observing a long enough sequence of queries, an observer can easily infer
the index values to which each plaintext value has been mapped, since they always
appear together in query conditions. With reference to the example above, every
query including conditionDisease=‘Asthma’ is translated into a query including
condition Id IN {α,δ}. An observer can then easily infer thatα andδ represent
the same plaintext value (Asthma, in our example). The protection against dynamic
observations represents an open issue that still needs to beaddressed, along with
the problem of defining an efficient index function that provides both flattening and
collisions.

20 Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati

t acl(t)

t1 A
t2 BDE
t3 D
t4 ABCD
t5 BDE
t6 ABCDE
t7 ABCE
t8 C

PATIENTS

SSN Name YoB Job Disease
t1 123456789Alice 1980 Clerk Asthma
t2
t3
t4 456789123David 1970 Lawyer Bronchitis
t5
t6 678912345Frank 1960 Doctor Gastritis
t7 789123456Gary 1960 TeacherGastritis
t8

PATIENTSk

tid enc In Iy I j Id

1 T8/lO? π α δ η
2 1wfTg< π α ε θ
3 vFe!d2 ρ β δ ω
4 f3iJ:y ρ β ζ κ
5 ;x0d9D σ β ε λ
6 kO6i)G σ γ ε µ
7 u2eW[b τ γ ζ ν
8 vY7’.1 τ γ δ ξ

(a) (b) (c)

Fig. 13 Knowledge of userA over relation PATIENTS (b) and PATIENTSk (c)

5 Indexes and selective encryption

Selective encryption approaches illustrated in Section 3.3 enforce access control
restrictions over outsourced data by guaranteeing that each user can decrypt all and
only the tuples she is authorized to access. However, when data are made selectively
available, the combination of selective encryption with indexes used for enabling
efficient query execution on encrypted data may open the doorto inferences. In fact,
users may have visibility of indexes even of tuples they are not allowed to access.
Such visibility, together with their ability to view data for which they are authorized,
can allow them to possibly infer plaintext values of tuples they should not be able
to read. In the following, for clarity in the exposition but without loss of generality,
we will refer the discussion to one attributea only.

The knowledge that a useru can exploit for inferences can be summarized as
follows: i) index functionι used to define indexI over attributea (necessary to
translate user’ queries into queries that operate at the server side);ii) plaintext tu-
ples that the user can access (i.e.,t such thatu∈acl(t)); iii) all the encrypted tuples
in rk. For instance, consider relation PATIENTS in Figure 3(a) and the authorization
policy in Figure 6 (which is also summarized in Figure 13(a) for the reader’s conve-
nience), Figures 13(b) and (c) illustrate the knowledge of userA over the plaintext
and encrypted relation. Gray cells denote values thatA is not authorized to read.

The information that a user with this knowledge can infer depends on the kind of
index adopted (see Section 3.2), as illustrated in the following [26].

• Direct index. Index functionι is a bijective function that maps each plaintext
value to one index value (and vice versa). It then exposes allthe tuples with the
same plaintext value for attributea of a tuple that the user is authorized to access.
For instance, indexIy over attributeYoB in Figure 13(c) has been computed
using a direct index function. Since userA can access tuplet1, she knows that
ι(1980)=α. She can then infer thatt2[YoB]=1980, even if she is not authorized
to access tuplet2. In a similar way,A can also infer thatι(1970)=β and that
ι(1960)=γ (i.e., she knows the plaintext value of attributeYoB of each tuple
in PATIENTS). The user also knows index functionι. Hence, she can compute
the index valueι(v) associated with each valuev in the domain of attributea,

Selective and Fine-Grained Access to Data in the Cloud 21

t acl(t)

t1 A
t2 BDE
t3 D
t4 ABCD
t5 BDE
t6 ABCDE
t7 ABCE
t8 C

PATIENTS

SSN Name YoB Job Disease
t1 123456789Alice 1980 Clerk Asthma
t2 1980 Asthma
t3 1970 Asthma
t4 456789123David 1970 Lawyer Bronchitis
t5 1970 Bronchitis
t6 678912345Frank 1960 Doctor Gastritis
t7 789123456Gary 1960 TeacherGastritis
t8 1960

PATIENTSk

tid enc In Iy I j Id

1 T8/lO? π α δ η
2 1wfTg< π α ε θ
3 vFe!d2 ρ β δ ω
4 f3iJ:y ρ β ζ κ
5 ;x0d9D σ β ε λ
6 kO6i)G σ γ ε µ
7 u2eW[b τ γ ζ ν
8 vY7’.1 τ γ δ ξ

(a) (b) (c)

Fig. 14 Knowledge inferred by userA over relation PATIENTS

and possibly reconstruct the value that attributea assumes in each tuplet of the
outsourced relation, independently from her access privileges overt.

• Bucket-based index. Index functionι is a surjective function that maps multiple
plaintext values to one index value. The inference risks described for direct in-
dexes are mitigated by collisions. In fact, multiple occurrences of a same index
value may correspond to different plaintext values. The user’s knowledge of in-
dex functionι could however reduce the uncertainty over the value assumedby
attributea in a tuplet that she is not authorized to access. For instance, indexI j

over attributeJob in Figure 13(c) has been computed using a bucket-based index
function. Since userA can access tuplet1, she knows thatι(Clerk)=δ . However,
she does not know with certainty whethert3[Job]=Clerk andt8[Job]=Clerk
since functionι may generate collisions and map different plaintext valuesto
index valueδ .

• Flattened index. Index functionι is an injective function that maps a plaintext
value to multiple index values, guaranteeing a flat distribution of the number of
occurrences of index values. Like direct indexes, flattenedindexes expose all the
tuples with the same plaintext value for attributea of a tuple that the user is au-
thorized to access. In fact, when decrypting a tuplet that she can access, the user
knows one of the index values representing valuev=t[a]. By computingι(v), she
exactly knows which tuples inrk have valuev for attributea. For instance, index
Id over attributeDisease in Figure 13(c) has been computed using a flattened
index function. Since userA can access tuplet1, she knows thatι(Asthma)=η
and, since she can computeι(v) for anyv in the domain of attributeDisease,
she can compute the set of index values representing Asthma,that is,{η ,θ ,ω}.
She can then infer thatt2[Disease]=t3[Disease]=Asthma.

Inferences by userA over relation PATIENTS are summarized in Figure 14, where
light-gray cells represent values, reported in italic, that A is not authorized to access
but that she can infer from her knowledge.

From the observations above, we note that inference is mainly caused by the
presence of the same index value associated with tuples characterized by different
authorizations. In [26] the authors proposed a solution, which is focused on direct
indexes since they represent the worst case scenario, basedon the principle that

22 Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati

PATIENTSk

tid enc Iy

1 T8/lO? αA
2 1wfTg< αB, αD, αE

3 vFe!d2 βD
4 f3iJ:y βA, βB, βC, βD
5 ;x0d9D βB, βD, βE

6 kO6i)G γA, γB, γC, γD, γE
7 u2eW[b γA, γB, γC, γE

8 vY7’.1 γC

PATIENTSk

tid enc Iy

1 T8/lO? αA
2 1wfTg< αB, αD, αE

3 vFe!d2 βD
4 f3iJ:y βA, βB, βC, β ′

D
5 ;x0d9D β ′

B, β ′′
D , βE

6 kO6i)G γA, γB, γC, γD, γE
7 u2eW[b γ ′A, γ ′B, γ ′C, γ ′E
8 vY7’.1 γ ′′C

(a) (b)

Fig. 15 An example of encrypted and indexed version of relation PATIENTS with index Iy over
YoB computed using a user-dependent function (a) and a salted user-dependent function (b)

different occurrences of the same index value must be mappedto different index
values when they should be visible to different subsets of users. The index value
to which t[a] should be mapped therefore depends, not only on valuev=t[a], but
also onacl(t). To this purpose, each useru has its own index functionιu, which
depends on a private piece of information that she shares with the data owner. Given
a tuplet, the data owner computes a different index valueιu(t[a]) for eachu∈acl(t).
Each user will then use her index functionιu to formulate queries to be evaluated
by the external server over indexes. For instance, Figure 15(a) illustrates relation
PATIENTSk, where the index over attributeYoB has been computed adopting a user-
dependent function. In the figure, for simplicity, we indicate with a sub-script the
user whose index function generated the value (i.e.,vu is a value generated byιu).
Note thatvui 6= vu j .

Since all the index values associated with a specific plaintext value of attribute
a are visible to all the users in the system, the adoption of user-dependent index
functions is not sufficient to block all the inferences. In fact, tuples sharing the same
value for attributea that are characterized by different but overlapping acls, called
conflicting tuples, are exposed to inferences by users who can access at least one of
these tuples. For instance, with reference to relation PATIENTSk in Figure 15(a), user
A cannot exploit her knowledge of tuplet1 to infer the value oft2[YoB]. However,
by observing thatβD appears in tuplest4 together withβA, A can infer thatβD

represents value 1970 and hence thatt3[YoB]=t4[YoB]=t5[YoB]=1970. To block
this inference channel, conflicting tuples must be associated with disjoint sets of
index values. To impose diversity of indexes, the value computed by index function
ιu is differentiated by applying different randomly generated salts to conflicting
tuples. For instance, Figure 15(a) illustrates relation PATIENTSk, where the index
over attributeYoB has been computed adopting a salted user-dependent function. In
the figure, we denote salted versions of valuev asv′ andv′′.

While effective, the solution illustrated above presents similar privacy risks to
the one described in Section 4. More precisely, this indexing technique remains vul-
nerable to dynamic observations, since monitoring a sufficient number of queries
would permit an observer to reconstruct which (salted) index values represent the
same plaintext value. Furthermore, collusion between authorized users and the ex-

Selective and Fine-Grained Access to Data in the Cloud 23

ternal server may put data confidentiality at risk. The protection against these threats
still remains an open issue.

6 Conclusions

Cloud computing offers a variety of new opportunities to users and companies, and
many efforts have been therefore dedicated to the design of cloud-based services,
applications, and infrastructures. While appealing, cloud computing however intro-
duces new security and privacy issues. In this chapter, we analyzed the data pro-
tection issues, and described approaches for the protection of data confidentiality,
and for the efficient and selective access to data. We also illustrated open problems
arising from the combined application of such solutions andhighlighted possible
directions to address them.

Acknowledgements The chapter is based on joint work with Sushil Jajodia and Stefano Para-
boschi. This work was supported in part by the Italian Ministry of Research within PRIN 2010-
2011 project “GenData 2020” (2010RTFWBH), and by Google under the Google Research Award
program.

References

1. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Motwani, R., Sri-
vastava, U., Thomas, D., Xu, Y.: Two can keep a secret: A distributed architecture for secure
database services. In: Proc. of CIDR 2005. Asilomar, CA, USA(January 2005)

2. Agrawal, R., Asonov, D., Kantarcioglu, M., Li, Y.: Sovereign joins. In: Proc. of ICDE 2006.
Atlanta, GA, USA (April 2006)

3. Agrawal, R., Kierman, J., Srikant, R., Xu, Y.: Order preserving encryption for numeric data.
In: Proc. of SIGMOD 2004. Paris, France (June 2004)

4. Ardagna, C., Camenisch, J., Kohlweiss, M., Leenes, R., Neven, G., Priem, B., Samarati, P.,
Sommer, D., Verdicchio, M.: Exploiting cryptography for privacy-enhanced access control: A
result of the PRIME project. JCS 18(1), 123–160 (2010)

5. Ardagna, C., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Samarati, P.: Minimizing
disclosure of private information in credential-based interactions: A graph-based approach. In:
Proc. of PASSAT 2010. Minneapolis, MN, USA (August 2010)

6. Ardagna, C., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Samarati, P.: Supporting
privacy preferences in credential-based interactions. In: Proc. of WPES 2010. Chicago, IL,
USA (October 2010)

7. Ardagna, C., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Samarati, P.: Minimis-
ing disclosure of client information in credential-based interactions. IJIPSI 1(2/3), 205–233
(2012)

8. Ardagna, C., De Capitani di Vimercati, S., Paraboschi, S., Pedrini, E., Samarati, P., Verdicchio,
M.: Expressive and deployable access control in open web service applications. IEEE TSC
4(2), 96–109 (April-June 2011)

9. Ardagna, C., Jajodia, S., Samarati, P., Stavrou, A.: Providing users’ anonymity in mobile hy-
brid networks. ACM TOIT (2013)

24 Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati

10. Atallah, M., Blanton, M., Fazio, N., Frikken, K.: Dynamic and efficient key management for
access hierarchies. ACM TISSEC 12(3), 18:1–18:43 (January2009)

11. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: On the propagation of faults and
their detection in a hardware implementation of the advanced encryption standard. In: Proc.
of ASAP 2002. San Jose, CA, USA (July 2002)

12. Blanton, M., Frikken, K.: Efficient multi-dimensional key management in broadcast services.
In: Proc. of ESORICS 2010. Athens, Grece (September 2010)

13. Bonatti, P., Samarati, P.: A uniform framework for regulating service access and information
release on the Web. JCS 10(3), 241–272 (2002)

14. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures
from bilinear maps. In: Proc. of EUROCRYPT 2003. Warsaw, Poland (May 2003)

15. Calı̀, A., Martinenghi, D.: Querying data under access limitations. In: Proc. of ICDE 2008.
Cancun, Mexico (April 2008)

16. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous creden-
tials with optional anonymity revocation. In: Proc. of EUROCRYPT 2001. Innsbruck, Austria
(May 2001)

17. Ceselli, A., Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Modeling and assessing inference exposure in encrypteddatabases. ACM TISSEC 8(1),
119–152 (February 2005)

18. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. Journal of
ACM 45(6), 965–981 (April 1998)

19. Cimato, S., Gamassi, M., Piuri, V., Sassi, R., Scotti, F.: Privacy-aware biometrics: Design and
implementation of a multimodal verification system. In: Proc. of ACSAC 2008. Anaheim, CA,
USA (December 2008)

20. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Keep a few: Outsourcing data while maintaining confidentiality. In: Proc. of ESORICS 2009.
Saint Malo, France (September 2009)

21. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Combining fragmentation and encryption to protect privacyin data storage. ACM TISSEC
13(3), 22:1–22:33 (July 2010)

22. Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati, P.: Balancing
confidentiality and efficiency in untrusted relational DBMSs. In: Proc. of CCS 2003. Wash-
ington, DC, USA (October 2003)

23. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Encryption
policies for regulating access to outsourced data. ACM TODS35(2), 12:1–12:46 (April 2010)

24. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Frag-
ments and loose associations: Respecting privacy in data publishing. PVLDB 3(1), 1370–1381
(September 2010)

25. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Authorization
enforcement in distributed query evaluation. JCS 19(4), 751–794 (2011)

26. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Private data
indexes for selective access to outsourced data. In: Proc. of WPES 2011. Chicago, IL, USA
(October 2011)

27. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Support for
write privileges on outsourced data. In: Proc. of SEC 2012. Heraklion, Crete, Greece (June
2012)

28. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: On informa-
tion leakage by indexes over data fragments. In: Proc. of PrivDB 2013. Brisbane, Australia
(April 2013)

29. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.: Efficient and
private access to outsourced data. In: Proc. of ICDCS 2011. Minneapolis, MN, USA (June
2011)

30. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.: Support-
ing concurrency in private data outsourcing. In: Proc. of ESORICS 2011. Leuven, Belgium
(September 2011)

Selective and Fine-Grained Access to Data in the Cloud 25

31. De Capitani di Vimercati, S., Foresti, S., Samarati, P.:Protecting data in outsourcing scenar-
ios. In: Das, S., Kant, K., Zhang, N. (eds.) Handbook on Securing Cyber-Physical Critical
Infrastructure. Morgan Kaufmann (2012)

32. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. of STOC 2009.
Bethesda, MA, USA (May 2009)

33. Goodrich, M., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-preserving group
data access via stateless Oblivious RAM simulation. In: Proc. of SODA 2012. Kyoto, Japan
(January 2012)

34. Hacigümüs, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: Proc. of ICDE
2002. San Jose, CA, USA (February 2002)

35. Hacigümüs, H., Iyer, B., Mehrotra, S.: Ensuring integrity of encrypted databases in database
as a service model. In: Proc. of DBSec 2003. Estes Park, CO, USA (August 2003)

36. Hacigümüs, H., Iyer, B., Mehrotra, S.: Efficient execution of aggregation queries over en-
crypted relational databases. In: Proc. of DASFAA 2004. Jeju Island, Korea (March 2004)

37. Hacigümüs, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted data in the
database-service-provider model. In: Proc. of SIGMOD 2002. Madison, WI, USA (June 2002)

38. Jhawar, R., Piuri, V.: Fault tolerance management in IaaS clouds. In: Proc. of ESTEL 2012.
Rome, Italy (October 2012)

39. Jhawar, R., Piuri, V., Samarati, P.: Supporting security requirements for resource management
in cloud computing. In: Proc. of CSE 2012. Paphos, Cyprus (December 2012)

40. Kärger, P., Olmedilla, D., Balke, W.T.: Exploiting preferences for minimal credential disclo-
sure in policy-driven trust negotiations. In: Proc. of SDM 2008. Auckland, New Zealand (Au-
gust 2008)

41. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index structures
for outsourced databases. In: Proc. of SIGMOD 2006. Chicago, IL, USA (June 2006)

42. Miklau, G., Suciu, D.: Controlling access to published data using cryptography. In: Proc. of
VLDB 2003. Berlin, Germany (September 2003)

43. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in outsourced
databases. ACM TOS 2(2), 107–138 (May 2006)

44. Samarati, P., De Capitani di Vimercati, S.: Data protection in outsourcing scenarios: Issues
and directions. In: Proc. of ASIACCS 2010. Beijing, China (April 2010)

45. Wang, H., Lakshmanan, L.: Efficient secure query evaluation over encrypted XML databases.
In: Proc. of VLDB 2006. Seoul, Korea (September 2006)

46. Wang, H., Yin, J., Perng, C., Yu, P.: Dual encryption for query integrity assurance. In: Proc. of
CIKM 2008. Napa Valley, CA, USA (October 2008)

47. Williams, P., Sion, R.: Single round access privacy on outsourced storage. In: Proc. of CCS
2012. Raleigh, NC, USA (October 2012)

48. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: Practical access pattern
privacy and correctness on untrusted storage. In: Proc. of CCS 2008. Alexandria, VA, USA
(October 2008)

49. Wong, C., Gouda, M., Lam, S.: Secure group communications using key graphs. IEEE/ACM
TON 8(1), 16–30 (February 2000)

50. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of outsourced data. In: Proc. of VLDB
2007. Vienna, Austria (September 2007)

51. Xie, M., Wang, H., Yin, J., Meng, X.: Providing freshnessguarantees for outsourced databases.
In: Proc. of EDBT 2008. Nantes, France (March 2008)

52. Yang, Y., Papadias, D., Papadopoulos, S., Kalnis, P.: Authenticated join processing in out-
sourced databases. In: Proc. of SIGMOD 2009. Providence, RI, USA (June-July 2009)

53. Yao, D., Frikken, K., Atallah, M., Tamassia, R.: Privateinformation: To reveal or not to reveal.
ACM TISSEC 12(1), 1–27 (October 2008)

