Selective and Fine-Grained Accessto Data
in the Cloud

Sabrina De Capitani di Vimercati, Sara Foresti, and PiezEn8§amarati

Abstract This chapter surveys some of the research results relatad firotection
and efficient access to data stored and managed by exteondl skrvers. We first
provide an overview of the security and privacy problems eimallenges that need
to be considered, and then illustrate emerging approach@sdtecting data exter-
nally stored, and for enforcing fine-grained (queries) aldcive (access control)
accesses on them. Finally, we show how the combined apiplicat the solutions
discussed may introduce privacy problems that should kefudir considered.

1 Introduction

Emerging paradigms like data outsourcing and cloud computave attracted the
attention of the research and industrial communities tedokheir advantages in
terms of reduced costs for IT resources, increased stofiegéility in resource
management, and higher scalability. These advantagesvieowe not come for
free. In fact, these emerging paradigms also introduce ebeuof privacy and se-
curity risks that may represent a serious obstacle for thigle development and
for their acceptance by users and companies. Security aratpmay relate to dif-
ferent aspects, including resources, data and networtiso| attacks to the cloud
servers, compliance with laws and regulations, religbiit applications and ser-
vices, protection of the confidentiality and integrity oftalaand data availability
(e.g.,[11, 38, 39, 44]). In this chapter, we will provide areoview of the problems
and solutions related to the proper protection of the confidkty of the data and
to the efficient access to them. These problems become quitelex in a cloud
scenario since users release and store their data on éxdermers that are outside

Sabrina De Capitani di VimercatiSara Foresti Pierangela Samarati
Universita degli Studi di Milano — Dipartimento di Inforrtiea

Via Bramante 65, 26013 Crema, Italy

e-mail: firstname.lastnam@unimi.it

2 Sabrina De Capitani di Vimercati, Sara Foresti, and PggnSamarati

their control. Also, the advances in the Information and Gamication Technolo-
gies (ICTs), including the possibility of combining and Bfzing more information
from several data sources, intensify the data protectioblpm.

The protection of potentially sensitive data stored andagad by external cloud
servers poses interesting challenges. In fact, cloud secan be characterized by
different levels of trust, ranging frofmonest-but-curiouservers, meaning that they
are trusted for the management of the data but cannot knaegarthe data they
store, to servers that may intentionally behave impropierthe storing and pro-
cessing of the data. Data are therefore encrypted by theodaiar before their
storage in the cloud. Since cloud servers cannot decrypt ttagre is the problem
of defining techniques (e.g., indexes) for enforcing finahged retrieval of the data
without compromising their privacy. However, techniquesttsupport effective and
efficient accesses to the outsourced data are not enougdctlriffthe server (or a
generic observer) monitors the accesses by users, it maylé&adraw inferences
on which data have been accessed. Also, the presence oplauisiers who rely on
external storage for making their data available to othetyduces the problem of
enforcing selective (read and write) access to the outsdudtata.

In this chapter, after a brief overview of the different séiyuand privacy prob-
lems that can arise in a cloud computing scenario, we suméydacuss research
results related to the protection of the privacy of outsedrdata, and on the fine-
grained and selective retrieval of data. We also show tleattmbination of tech-
niques addressing a specific problem can cause privacyl®eathe remainder of
the chapter is organized as follows. Section 2 provides anviewv of the main secu-
rity and privacy risks in a cloud scenario. Section 3 illags some approaches and
open issues related to the protection of data confidewtialiexing for query sup-
port, and selective access. Section 4 describes how theicatian of indexes for
query support and fragments for data confidentiality carsedeakage of confiden-
tial information. Section 5 describes how the combinatibimdexes and selective
encryption may allow unauthorized users to infer (or redihed uncertainty on)
information that they are not authorized to access. Fin8iction 6 provides our
conclusions.

2 Security and privacy in the cloud

The security and privacy problems that arise when data aredsat external servers
have been the subject of many studies (e.g., [22, 31, 37p)ebding on the con-
sidered aspect, the security and privacy problems can btedeto:i) the privacy
of users;i) the privacy and integrity of data storagi) the privacy and integrity
of queries; andv) the secure and private data computations involving meltipl
providers. Figure 1 illustrates the reference cloud séenénere users interact with
external cloud servers for accessing data and serviceglifiacent cloud servers
collaborate for offering a service or responding to a quierhe remainder of this

Selective and Fine-Grained Access to Data in the Cloud 3

Users Cloud servers

data storage

Privacy of users

Fig. 1 Reference cloud scenario

section, we provide a description of each of the four caiegaf security and pri-
vacy problems mentioned above.

Privacy of users. Cloud services allow users to access applications and data o
demand every-time they need. To successfully completeciipgined access, users
may be asked to provide some information while however wighod protect their
identities for privacy reasons. For instance, a user camteeested in querying a
cloud server for collecting information about a given ibsewithout revealing her
identity to avoid possible correlations between the iltnasd herself or a person
close to her. The techniques developed for supporting anoog communication
between parties and attribute-based access control caelfieltin protecting the
privacy of the users. In fact, anonymous communicationnples allow users to
communicate on the Internet without revealing their ick&agi[9], meaning that an
observer cannot trace who is communicating with whom, or ishisteracting with
which server or searching for which data. Attribute-basszkas control solutions
allow users to access resources or data without revelirigithentities [13]. The
idea is that, instead of declaring their identities, usemy@ that they satisfy the
conditions needed for the access. To this purpose, a uselistadose aredential(a
set thereof) certifying the information necessary for theess. The server verifies
whether the credential is valid and whether the informati@ertifies satisfies the
policy regulating access to the resource. The research caityrhas also devoted
considerable attention to the useasfonymous credentia[46] for access control
(e.g., [4]). An anonymous credential allows a user to maké&estents about at-
tribute values, maintaining the values private. For instga@nonymous credentials
permit to selectively release a subset of the propertiesied@ential or to prove that
they satisfy some conditions, without revealing any infation about their values.
Anonymous credentials can be at the basis of a new generaitiaccess control
policy languages that can be particularly suited to opendymémic scenarios like
the cloud.

4 Sabrina De Capitani di Vimercati, Sara Foresti, and PggnSamarati

Recently, some proposals have started to address the pratbleegulating the
release of users’ personal information according to pyiyareferences expressed
by the users themselves. These proposals have introducgelsmmelying on user
preferences that permit to associate a higher or lowertsatysiith the combined
release of a set of properties/credentials (e.g., [5, 6,07,58]). For instance, a
user may consider the joint release of her name and creditneanber more sensi-
tive than the release of each information singularly talkdthough these solutions
represent a first step towards the definition of a comprehersgpproach for the
protection of users’ privacy, there are still several o=mués: the development of
user-friendly approaches for expressing privacy prefegenthe ability of defin-
ing privacy preferences that depend on the context; anchtbgriation of these ap-
proaches with server-side solutions supporting fine-gdpolicy disclosure, which
permit the server to obfuscate the portions of its polic@ssidered sensitive, while
providing the user with enough information for releasing itiformation necessary
to possibly gain access (e.g., [8]).

Privacy and integrity of data storage. When data are outsourced to an external
server that is outside the control of the data owner, theeptimn of the confi-
dentiality and of the integrity of the data, as well as thecedfit access to them
become clearly of paramount importance. In this contex, résearch commu-
nity has been very active and produced advancements inadeveas: solutions
for protecting data confidentialitfe.g., encryption and fragmentation [1, 21, 37]);
indexesfor supporting queries (e.g., [17, 37]), solutions for sotimg selective
accessto outsourced data (e.g., [23]), solutions for ensuidiaga integrity (e.g.,
signatures [14, 35, 43]). These approaches typically densa scenario where a
data owneroutsources her data to axternal servethat can be trusted to properly
manage the data, making them available to requesiiegs but it is not trusted to
read the content of the data it stores (lh@nest-but-curiouserver). The outsourced
data can be of any type, including files and relational talifethe remainder of this
chapter, for simplicity and without loss of generality, wél\@ssume that the out-
sourced data are organized in a single relatiostored in a (distributed) relational
database. Relationis defined over relational scherf®ay, .. .,an), with attribute

g; defined over domaib;, i = 1,...,n. The presentation of solutions and issues re-
lated to the protection of the privacy of outsourced datd bélthe subject of the
following sections.

Privacy and integrity of queries. Accessing information from external cloud
servers and performing queries over outsourced data inteodeveral privacy and
integrity issues. Existing data management architectiypgsally assume that the
data obtained from distributed parties have not been taedpsith, and are avail-
able only to authorized parties. Such assumptions do ndy apyymore in cloud
scenarios, where multi-tenant infrastructures orchestidferent services. Assur-
ances on the fact that the privacy of the queries is presanddhat computations
on data are processed in the expected way (integrity anfialslity) are becoming
more and more important. In fact, there is an increasing iheedovel techniques
that support not only data privacy, but also the privacy ef dltcesses that users

Selective and Fine-Grained Access to Data in the Cloud 5

make on such data. This problem has been traditionally adddeby Private In-
formation Retrieval (PIR) proposals (e.g., [18]), whicloyide protocols for query-
ing a database that prevent the external server from infpwhich data are being
accessed. PIR solutions however have high computationgplexity, and alterna-
tive approaches have been proposed. These novel appraathes the Oblivious
RAM structure (e.g., [33, 47, 48]) or on the definition of sifiedree-based data
structures combined with a dynamic allocation of the datg (€9, 30]). The goal
is to support the access to a collection of encrypted datéevpineserving access
and pattern confidentiality, meaning that an observer dan ireither what data are
accessed nor whether two accesses aim to the same dateeBesitecting access
and pattern confidentiality, it is also necessary to desigalranisms for protecting
the integrity and authenticity of the computations, thatasguarantee the correct-
ness, completeness, and freshness of query results. Mtve tdchniques that can
be adopted for verifying the integrity of query results ggeron a single relation
and are based on the idea of complementing the data with@ualilata structures
(e.g., Merkle trees) or of introducing in the data colleatiake tuples that can be ef-
ficiently checked to detect incorrect or incomplete reqieltg., [41, 46, 50, 51, 52]).
Interesting aspects that need further analysis are retatdte design of efficient
techniques able to verify the completeness and correctriéiss results of complex
queries (e.g., join operations among multiple relationssibly stored and managed
by different cloud servers with different levels of trust).

Secure and private data computations. More and more emerging scenarios re-
quire different cloud servers to cooperate to the aim ofiaganformation and/or
performing distributed computations. This sharing pream be clearly selective,
meaning that different servers may have different accegigges. Recently, a sig-
nificant amount of research has addressed the problem oégsing distributed
queries under protection requirements (e.g., [2, 15, Bsjjne proposals are based
on the concept of access pattern, a profile associated withretation/view [15].
For each attribute of the relation/view, the access paiteindes a value that may
be eitheri for input or o for output. When accessing a relation, the values for all
i attributes must be supplied to obtain the correspondingegabfo attributes.
Sovereign joins [2] are an alternative solution for segupbcessing joins. This
solution is based on a secure coprocessor, which is invatvgdery execution, and
exploits cryptography. Other approaches propose an dn#tion model to regulate
the view that each server can have on the data, ensuringubat gomputation ex-
poses to each server only the data that the server can vigwI[2& idea is that a
relation (base or resulting from the evaluation of a queay) loe released to a server
whenever the information it carries (either directly orinedtly when the relation
has been obtained as the result of a query) is visible fromebeiving party. The
proposed authorization model operates at the schema legedugpports the defini-
tion of generic view patterns, thus nicely meeting both egpiveness and simplicity
requirements.

Figure 2 summarizes the main categories of security an@gyiissues discussed
above (gray boxes) along with some of the correspondindisoki (white boxes).

6 Sabrina De Capitani di Vimercati, Sara Foresti, and PggnSamarati

‘ Security and privacy in the cloud ‘

Privacy of users Privacy and integrity of Privacy and integrity of Secure and private

data storage queries data computations

AnonymOU§ Encryption gnd Oblivious RAM) Access patterns
communication fragmentation ata structures for privac

View-based

Dynamic data allocation
authorization model

structures for privacy

User privacy Selective Merkle trees or other
preferences encryption structures for integrity

Digital
signatures

Fig. 2 Summary of security and privacy issues and correspondilujicas

Attribute-based
access control

Indexes ‘

Note that this classification does not aim to be complete blytto provide a quick
overview of the solutions mentioned.

3 Privacy of data storage

The problem of protecting outsourced data while enjoyirfgative and efficient
data management and retrieval operations has attracteattdrgion of many re-
searches, and several investigations have been carried lo@itproblem is quite
complex and involves several aspects, including basiaigales for protecting data
at rest (Section 3.1), techniques for efficiently accessingrypted data without
compromising their confidentiality (Section 3.2), and degatric techniques for
supporting selective access to the outsourced data witblyirig on the data owner
and/or on the honest-but-curious server storing the dageti(® 3.3). We now de-
scribe more in details these aspects.

3.1 Encryption and fragmentation

The problem of protecting the confidentiality of outsourckda has been one of
the first issues investigated in the data outsourcing aneicdeenarios. In fact, the
risk that unauthorized parties (or even the external séisalf) can access sensitive
information is one of the main factors for which users (and owly) are often

reluctant to adopt the cloud for storing their data. The thohs proposed to protect

Selective and Fine-Grained Access to Data in the Cloud 7

PATIENTS
[SSN [Name[YoB[Job [Disease | cq={SSN}
To80[Clerk [Asthma | €1 ={Nane, Di sease}
1980| Doctor |Asthma c; = {Nare, Job}
1970|Nurse |Asthma | €3 ={Job,Di sease}
1970| Lawyer|Bronchitis|
1970| Doctor |Bronchitis|
1960| Doctor |Gastritis
1960| Teache[Gastritis
1960|Nurse |Diabetes

(@) (b)

Fig. 3 An example of plaintext relation (a) and of a set of confidait{i constraints over it (b)

data confidentiality are based encryptionandfragmentationwhich can be used
either singularly or in combination.

Encryption consists in wrapping a protective layer of eptipn around data be-
fore storing them at an external server (e.g., [17, 34, 3]j, &nce the encryption
key is known only to the data owner and to authorized useisstebhnique protects
the data against both external (malicious) parties, andeheer itself. While effec-
tive, this approach is based on the conservative assumtbizdrall the outsourced
data are equally sensitive and must therefore be protddtadever, as first observed
in [1, 20, 21], often data are not sensitive per se but whansisive is their associ-
ation with other data. As an example, the list of the nameseptialized patients
and the list of diseases cured in a hospital are not sendinehe contrary, the as-
sociation of patients’ names with the illness they suffenfris highly sensitive and
should therefore be kept confidential. Data confidentia@iity then be achieved by
properly protecting sensitive associations. Given aiaiat over relation schema
R(a,...,an), both sensitive attribute values and sensitive assoom#ionong them
can be modeled througionfidentiality constraintgl]. A confidentiality constraint
c overR is a subset of the attributes i(i.e.,cCR), modeling a sensitive associa-
tion on the values of the attributesénConstraint states that, for each tupién r:

i) valuet[a] is considered sensitive per secifs a singleton constraint (i.eex{a});

i) the joint visibility of the values of the attributes aris considered sensitive,dfis
an association constraint (i.e.= {a;,...,a;}). For instance, Figure 3(b) illustrates
a set of confidentiality constraints over relatiosTEENTS in Figure 3(a). Singleton
constraintcy states that the list of Social Security Numbers is consitieemsitive
per se. The remaining association constraints state taatdsociation of: patients’
names with the disease they suffer fracy) (patients’ names with their jole£), and
patients’ job with their diseased) are considered sensitive, respectively.

Given a relationr and a se€ of confidentiality constraints over it, the goal is to
combine fragmentation and encryption techniques to gtiegahat sensitive values
and sensitive associations are properly obfuscatedtiwlyi singleton constraints
are enforced by encrypting the attribute values beforecamténg or by not out-
sourcing the attribute values at all. Association constsaare enforced by parti-
tioning the attributes iR in different subsetsflagment$, or by not releasing (in
clear form) at least one of the attributes in the constréifitagmentation correctly

8 Sabrina De Capitani di Vimercati, Sara Foresti, and PggnSamarati

enforces the confidentiality constraints if no fragmentesticat the external server
represents all the attributes in a constraint in clear fand fragments cannot be
joined by unauthorized users.

The approaches that rely on fragmentation and encryptioeritorcing confi-
dentiality constraints differ in how they guarantee thagfnents cannot be joined,
and in how they protect attribute values considered seagier se. Based on these
differences, existing techniques can be classified asfsllo

e Non-communicating pair of servefg¢]. The data owner partitions relatidR
in two fragmentsfF; andF», stored at two non-communicating servers. Those
attributes that cannot be stored at any of the two servet®witviolating confi-
dentiality constraints are encoded and the result is stairéte two servers (e.g.,
the attribute values are encrypted via one-time-pad, amde$ult of encryption
is stored at one server, while the key is stored at the othey. @nly users who
can access both the versions of an encoded attribute camsteact its plaintext
values. Figure 4 illustrates an example of fragmentationd@tion RTIENTS in
Figure 3(a) that satisfies the confidentiality constraintsSigure 3(b). It is com-
posed of fragmentB;={t i d, Nane, YoB, SSN, Di sease*} andF,={ti d,
Job, SSNK, Di seaseX}. Attributeti d is a tuple identifier introduced in the
two fragments to permit authorized users to correctly inandF, to recon-
struct the original content of relatiomPENTS. AttributesSSN¢ andDi seaseX
represent the encoded version of attribil88dlandDi sease, respectively.

e Multiple fragmentg21]. The data owner partitions relatiéhin an arbitrary set
of fragments{F1,...,Fm}, possibly stored at the same server. Fragments are dis-
joint, meaning that no attribute is represented in cleanfiormore than one frag-
ment. All the attributes ifR that are not represented in clear form in a fragment
are however represented in encrypted form in the fragment @ach fragment
is complete). Figure 4 illustrates an example of fragmémafor relation RA-
TIENTS in Figure 3(a) that satisfies the confidentiality constsaintFigure 3(b).
It is composed of three fragmentsj={sal t , enc, Nan®e, YoB}, F,={sal t ,
enc, Job}, andFs={sal t, enc, Di sease}. Attribute sal t is a randomly
chosen value, different for each tuple in each fragmentitiite enc is the
result of the encryption of the attributes in the origindtion that are not repre-
sented in clear form in the fragment, concatenated sgtht . For readability, in
all our examples tuples in fragments are in the same ordertag ioriginal rela-
tion, even if the order in which tuples are stored in fragreénindependent from
the order in which they appear in the original relation. Nibtat the possibility
of using an arbitrary number of fragments has the advantasajeall attributes
that are not involved in singleton constraints can be regies! in clear form in
a fragment (in the worst case, we can have a fragment for @adbuge), as it is
visible from the example above.

e Departing from encryptiof0]. The data owner partitions relatiétin two frag-
ments,F, andFs, and locally stores one of therk(), while the other is out-
sourced to an external servé¥g]. Since only authorized users can accEss
neither the server nor unauthorized users canfgi@ndFs to possibly recon-
struct sensitive associations. Note that fragnfentan both include attributes

Selective and Fine-Grained Access to Data in the Cloud 9

F1 Fa
[tid[Name] YoB [SSN¥ [Diseasé” | [tid[Job [SSN¥ [Diseasé|
Alice [1980|jdkis |hyafdk Clerk |uwqg8hd|jsd7ql
Bob [1980/u9hs9 |j97;gx Doctor |j-0.dl; |0],nid
Carol |{1970|j9und |9jp‘'md Nurse |8ojqdkf |j-0/?n
David |1970pOvp8 |p;nd92 Lawyer |j0il2nd |5lkdpqg
Eva |1970/8nn[|O-mw-n Doctor |mj[9;’s |j0982e
Frank|1960[j9jMK |wqp9[i Doctor |aQ14I[|jnd%d
Gary |1960/87I'D |LOMB2G Teache8gqsdQWOP[’
Hilary | 1960/ 8pm}n| @h8hwu NURSE|0890UD|UPOD@

0 ~NOUIAWN PR
0 ~NOUIAWN PR

Non-communicating pair of servefsvo can keep a secrefl]

Fi F2 F3
[salt[enc [Name] YoB | [saltfenc JJob] saltenc Disease
s11|Bd6!I3 |Alice (1980 Sy1|8de6TO|Clerk s31 [ew3)V! |Asthma
s12|Oij3X. [Bob 1980 S5 | X'mIE3 [Doctor s32 |LKEd69 |Asthma
s13|9KEf6? |Carol |1970] S23|wg.vy0 |Nurse sz3|W8vd66 |Asthma
S14 |ker5/2 |David[1970 S4 [Nh=13a |Lawyer s34 |1"gPdd [Bronchitis|
S15[C:mE91|Eva [1970 S5 |hh%kj) |Doctor 35 | (Mn2eW | Bronchitis|
S16|4IDwqz |Frank]1960| 6 |;vf5eS | Doctor s36 |WD }x1X|Gastritis
s17|me3,op |Gary |1960| s,7|e4+YUp| Teache s37 |00pEIl Gastritis
S18 [zZWf4g> |Hilary [1960 28 |pgtéeC |Nurse S35 | SW@Fez Diabetes

Multiple fragmentg21]

Fo Fs
[tid[SSN [Job [Disease | tid[Name[YoB |
1 |{123456789Clerk |Asthma 1 |Alice 1980
2 |234567891Doctor |Asthma 2 (Bob]1980
3 |345678912Nurse |Asthma 3 |Carol | 1970
4 |456789123Lawyer|Bronchitis| 4 |David | 1970
5 |567891234Doctor |Bronchitis| 5 |Eva |1970
6 |67891234%Doctor |Gastritis 6 |Frank|1960
7 |78912345¢Teache[Gastritis 7 |Gary |1960
8 |891234561Nurse |Diabetes 8 |Hilary| 1960

Departing from encryptioifkeep a feyw[20]

Fig. 4 An example of fragmentation of relatiomPENTS in Figure 3(a) according to the non-
communication pair of servers, multiple fragments, andadiémy from encryption scenarios

considered sensitive per se and sensitive associatiomssdlution completely
departs from encryption, but it requires the data owner ¢allg store a portion

of her data and to cooperate with the external server in gavalyiation. Figure 4
illustrates an example of fragmentation for relati;dTBNTS in Figure 3(a) that
satisfies the confidentiality constraints in Figure 3(bijs tomposed of fragment
Fo={ti d, SSN, Job, Di sease} stored at the data owner side, and fragment
Fs={ti d, Nanme, YoB} stored at the external server side.

Encryption, fragmentation, and their combinations aregréu mechanisms for
protecting data confidentiality. However, there are séilleyal open issues that need
to be further investigated. In fact, fragmentation and gpiton break associations
among attribute values that could be considered of intéoedinal recipients, thus
compromising the utility of released data. Alternativeusions that protect data
while preserving a certain utility are therefore needed.[2dso, confidentiality

10 Sabrina De Capitani di Vimercati, Sara Foresti, and Rggka Samarati

PATIENTSK
[[@[enc_ [lLI0]]
1(T8/10? [m|a|d|n
2 [IwfTg<|m|afe |6
3 |vFeld2 [p|B|d|w
4 (f3iy |p|B||Kk
5 [;x0d9D o |B|e|A
6 |kO6i)G |o|yl|le|u
7 |u2eWb|t|y|l|Vv
8 |vW7'.1 [t]|y|d]|¢&

Fig. 5 An example of encrypted and indexed version of relatianiPNTS in Figure 3(a)

constraints are defined over relation schemas, while thelglde extended to oper-
ate at the instance level (i.e., at the attribute valued)lewée also observe that en-
cryption and fragmentation work under the assumption tietiata collection never
changes. Techniques supporting updates to the outsouatadallection without
compromising confidentiality still need to be designed.

3.2 Indexes

The adoption of encryption for protecting data confideittiahakes query execu-

tion difficult. In fact, confidentiality demands that datacdgption must be possible

only at the user side. Solutions have been then developedatoleacloud servers

to execute queries directly on encrypted data. These snkiiomplement the out-

sourced relation with a set aidexeswhich are metadata information built on the
plaintext values of the attributes [44]. Formally, a redati, defined over schema

R(ay,...,an), is represented at the server side through an encrypteibret& over

schemaR¥(ti d, enc, .. -, 1i;). Attribute t i d is a numerical attribute added to
the original relation and acting as a primary key. Attribatec represents the en-
crypted tuple. Attributed;,, | = 1,...,], is the index defined over attribuég in R.

Each tuple in r is represented by an encrypted tugflén r® wheret<[enc]=E(t),
with E a symmetric encryption function with ke andtk[lil]:l(t[al]), with 1 an
index function defined oved;, . Note thatR has an index only for those attributes
in R on which conditions need to be evaluated. Figure 5 illusgr@n example of
encrypted and indexed version of relationTEENTS in Figure 3(a), with indexes
over attributesNane (1), YoB (ly), Job (1), andDi sease (lq).

Different indexing techniques have been proposed in tleealitire to support
different kinds of conditions. Most of these indexing teicjugs can be classified in
the following three classes, depending on how the corregipgrindex function
maps the original values to the corresponding index values.

e Directindex Index function maps each plaintext value to a differentindex value
and vice versa. An example of direct index is representedruyyption-based
indexede.g., [22]). For each tuplecr, the value of indeX, defined over attribute

Selective and Fine-Grained Access to Data in the Cloud 11

a, is computed as(t[a])=Ex(t[a]). For instance, indek in relation RTIENTSK
in Figure 5 represents an example of direct index over atgilgoB of relation
PATIENTS in Figure 3(a).

e Bucket-based indexndex functiont maps different plaintext values to the same
index value, generating collisions. Each plaintext vakiéawever mapped to
only one index value. An example of bucket-based index isessnted by
partition-based indexesvhich partition the domaiD of attributea into non-
overlapping subsets of contiguous values, and associateedwith each parti-
tion (e.g., [37]). For each tuplecr, the value of index, defined over attribute
a, corresponds to the label of the unique partition to whiclhue#[a] belongs.
For instance, indek, in relation RTIENTSX in Figure 5 represents an example
of partition-based index over attributane of relation RTIENTS in Figure 3(a).
The domain of attribut®&ame has been partitioned in four intervals depending
on the initial of the name, with labelst for names with initial in the range
[A,B], p for names with initial in the range [C,Dyy for names with initial in
the range [E,F], and for names with initial in the range [G,H]. Another exam-
ple of bucket-based index is represented bythash-based indexgs.g., [17]).
For each tupleger, the value of index, defined over attribute, is computed
as(t[a])=h(t[a]), whereh is a secure hash function that generates collisions.
For instance, index; in relation RTIENTSK in Figure 5 represents an exam-
ple of hash-based index over attributeb of relation RTIENTS in Figure 3(a).
The hash function adopted generates collisions and, ifcpkat, is defined as
follows: h(Clerk)=h(Nurse)d, h(Doctor)=¢, andh(Lawyer)=h(Teacher)<.

e Flattened indexIndex functioni maps each plaintext value to a set of index
values to guarantee that all index values have the same muwhbecurrences
(flattening). Each index value represents one plaintextevahly. The index can
be obtained by applying an encryption function to the pkinhtvalues of the
attribute and a post processing that flattens the distabutf the index values
(e.g., [45]). For instance, inddy in relation RTIENTSX in Figure 5 represents
an example of flattened index over attriblliesease of relation RTIENTS in
Figure 3(a), where each index value has exactly one ocatgren

These indexing techniques support the partial evaluatidheaserver-side of
SQL queries. Given a query it is translated into a queny executed at the server
side on the encrypted relation, and a quesgxecuted at the client side on the de-
crypted result ofgs. Queryq. includes all conditions that cannot be evaluated by
the server and aims at eventually discardingsplirious tupleseturned bygs, that
is, all tuples that do not satisfy the original query subeditby the user. The trans-
lation of queryq into queryqgs andg. depends both on the kind of indexes defined
for the attributes involved in the query and on the kind of rqués an example,
consider query) = “SELECTAtt FROM R WHERE Cond’, where AttCR andCond
is a set of equality conditions of the forexv, with acR andv a constant value
in the domairD of a. Each equality conditioa=v is translated into an equivalent
conditionl IN 1(v), with | the index defined ovea and! the corresponding index
function. Queryq is then translated into quegg = “SELECTenc FROM RK WHERE
Cond”, whereCond includes, for each equality conditi@sv, the equivalent con-

12 Sabrina De Capitani di Vimercati, Sara Foresti, and Rggka Samarati

dition| IN 1(v). The client will decrypt the result afs computed by the server, and
will execute quenyc that eliminates spurious tuples, evaluates conditiortscia:
not be performed at the server side, and projects only thibwtis inAtt to obtain
the result ofg. For instance, querg = SELECT Nane FROM PATIENTS WHERE
Job='Nurse’ AND Di sease="Asthma’ is translated into queny = SELECTenc
FROM PATIENTSK WHERE | j=5 AND 14€{n,0,w}, which returns the first and third
tuples in Figure 5. The client then filters spurious tuplesrfrthe result ofgs by
evaluating querylc = SELECTNane FRom Dy(Re¥) wHERE Job=‘Nurse’, where
Re$ is the encrypted result returned by the server Brttle symmetric decryption
function with keyk. Queryq. returns the value of attributdane of tuplet; in Fig-
ure 3(a), which corresponds to the result of the originalgugormulated by the
user.

Indexing techniques specifically aimed at supporting tlieient evaluation of
range conditions are based on order preserving encryptioensas (e.g., [3, 45]).
Indexes that support aggregate functions and the baslaragiic operators (i.e.,
-+,—,%) rely on homomorphic encryption techniques (e.g., [32).3&flditional in-
dexing techniques, which cannot be classified as mentiobedea are based, for
example, on the definition of data structures (eBg-rtree) coupled with the en-
crypted relation and stored at the server [22].

The definition of indexes over outsourced relations musarozd precision in
query evaluation and privacy of the data [17]. In fact, maecjse indexes provide
more efficient query execution, at the price of a greater supoto possible pri-
vacy violations. Also, the number of indexes complemengingutsourced relation
should be carefully tuned, since each additional index nease a rapid growth to
the risk of privacy violations.

3.3 Selective encryption

In many real-world systems, different users may have diffeprivileges on the
outsourced data. Traditional access control architestare based on the presence
of a trusted component, calledference monitqrthat is in charge of enforcing the
access control policy defined by the data owner. In a cloudas@® however, nei-
ther the data owner (for efficiency reasons) nor the cloudesestoring the data
(for privacy reasons) can enforce the access control pdligyinteresting solution
addressing this issue consists in adoptetective encryptiof23], meaning that
different keys are used for encrypting different data. Thergption keys are then
(directly or indirectly) released only to the users authed to access the corre-
sponding data. The idea of using different keys for enfagy@ncess control is not
new and has been firstintroduced in other contexts. Forinstan [42] the authors
propose to store encrypted XML documents on (potentiag@ure and vulnera-
ble) Web servers. The decisions about access rights taaliffeortions of an XML
document can be made by the document creator and are imelgdipplied to the
XML document by using different encryption keys for diffat@ortions of the same

Selective and Fine-Grained Access to Data in the Cloud 13

—
—
—

t1tr t3 4 t5 tg 7 13
Afl1001011(q(
B|l0O0101111(¢(
Cl0o0o010111
D[011111004
EI0100111(

Fig. 6 An example of access matrix regulating access to relathameRTs in Figure 3(a)

XML document. To enforce access restrictions, users théairobnly the keys as-

sociated with the portions of XML documents for which theyé&an access right.
Other proposals put forward the idea of using hierarchieeded access control in
the context of distributed environments and broadcastpegritent (e.g., [12, 49]).

In the remainder of this section, we describe the main clariatics of the selective

encryption approach in [23], specifically designed for tloaid scenario.

Given a seU of users and a relatian the authorization policy regulating access
to tuples inr is represented by an access mabixwith a row for each useneU
and a column for each tupter. Cell M[u,t] is equal to 1 (0, respectively), if user
u can (cannot, respectively) access tupleor each tuplé, acl(t) denotes the set of
users who can access it (i.e., its access control list).fspamnce, Figure 6 illustrates
an example of access matrix regulating access to the tuptetation RTIENTS in
Figure 3(a) by a séi ={A,B,C,D,E} of users.

The authorization policy defined by the data owner is traadlanto anequiva-
lent encryption policyThe encryption policy regulates keys used to encrypt giple
as well as key distribution to users and must be equivalethiet@ccess control pol-
icy defined by the data owner, that is, each user can dectygnalonly the tuples
she is authorized to access.

The translation of an authorization policy into an equinélencryption policy
is driven by two requirements$) each user must manage at most one key,ignd
each tuple must be encrypted at most once (i.e., no regigaflo satisfy these two
desiderata, the approach in [23] adoptsest derivation techniquieased on public
tokens, which permit to compute the value of an encryptionstarting from the
knowledge of another key and a piece of publicly availabferimation [10]. Each
key ki is associated with a public labkland, given key%; andkj, tokentoken
is computed a&;®h(ki,l;), with ® the bitwise xor operator, arfdla deterministic
cryptographic function. Toketoken j permits to derive kek; from k; and public
labell;. Key derivation techniques are based on the definition kéyaderivation
graph specifying which keys can be derived from other keys. A keyiwdition
graph is a directed acyclic graph whose vertices repressis, land whose edges
represent tokens. The existence of a path fromkkéy keyk; in the key derivation
graph denotes the fact thigt can be (directly or indirectly, via a chain of tokens)
derived fromk;. A key derivation graph correctly enforces an authorizapolicy
M if each usew;cU can derive, starting from the key she knows, the keys used to
encrypt all and only the tupldsger that she can access (i.e., whu;,tj]=1). To
define such a graph, the idea is to exploit the set containneétionshipC over

14 Sabrina De Capitani di Vimercati, Sara Foresti, and Rggka Samarati

user [key| [tuple|key

A Jka t1 [ka
B |ks t2 |kep
C [k tz3 [ko
D |ko ts [kasco
ts |kep
te |Kasco
t7 [kasc
tg ke

(b) ©

Fig. 7 An example of encryption policy equivalent to the accesdrebpolicy in Figure 6, con-
sidering the subsetA, B,C, D} of users

U. A key derivation graph induced by overU has a vertex for each subset of
users inU and a path from vertey; to vertexv; if v represents a subset of the
users represented by. The correct enforcement of the policy is guaranteed if each
user knows the key of the vertex representing herself in taphg and each tuple
is encrypted with the key of the vertex representing its Baot. instance, consider
the portion of the access matrix in Figure 6 defined for thesstfA B,C,D} of
users. The encryption policy in Figure 7 is equivalent todbeess control policy
represented by the first four rows in Figure 6. For readgb#itich vertex in the
graph of Figure 7 is labeled with the set of users it represéxg an example, user
A can decrypt tupless, t4, ts, andt; since she can derive, starting from vertex
labeledA, the keys with which these tuples are encrypted.

Although effective for enforcing the authorization polite solution above de-
fines more keys and tokens than necessary. Since the nuntbkeos in the system
influences the access time, the proposal in [23] reducesuiimder of tokens by re-
moving from the key derivation graph the vertices and edgatsére not necessary
to enforceM. The problem of minimizing the number of edges in a key déiova
graph is however NP-hard. In [23] the authors propose andteuapproach, which
has been proved to obtain good results, based on two obiesva) the vertices
needed for correctly enforcing an authorization policy #r@se representing sin-
gleton sets of users and the acls of tuples;iii) when two or more vertices have
more than two common direct ancestors, the insertion of eexeepresenting the
set of users corresponding to these ancestors reducestdhaumber of tokens.
Figure 8(a) illustrates an example of key derivation grajptaimed adopting the ap-
proach in [23] over the access matrix in Figure 6. As it ishissifrom the figure,
the graph includes a vertex for each user and for each aclwgile in the system.
It also includes an additional vertex (i.&BC), introduced to limit the number of
tokens in the system. Clearly, the encryption policy in F&@8 is more convenient
than the one in Figure 7, as it reduces both the number of kayshee number of
tokens in the system, while managing an additional user.

Selective and Fine-Grained Access to Data in the Cloud 15

A
[userTkey] [tuple[key]
kA t1 kA

ks t2 |kepe
kp

ko ta |Kasco
Ke ts |kepe

te |kascoE
t7 [Kasce

ts ke

mooOw>
&
&

(b) ©

Fig. 8 An example of encryption policy equivalent to the accesgrobpolicy in Figure 6

Since the keys used to encrypt tuples depend on their acer®ldists, when-
ever the authorization policy changes, the tuples invoirdtle policy update may
need to be re-encrypted to guarantee the equivalence ohtrgmion policy. For
instance, assume that udeiis revoked the privilege to read tuple Such a tuple
should be first decrypted using ké&ygcpe, and then encrypted using ké&yscp.
However, re-encryption requires the direct involvementhef data owner and can
be computationally expensive. The number of re-encrypijfmrations are therefore
minimized by adopting two layers of encryption that allow gerver to manage pol-
icy update operations [23]. THease Encryption LayeBEL) is applied by the data
owner before transmitting the relation to the server andsist® in encrypting the
tuples according to the authorization policy existing @iatization time. TheSur-
face Encryption LayefSEL) is performed by the server over the tuples already
encrypted by the data owner. It enforces the dynamic chamggrsthe policy. The
basic idea consists in over-encrypting the tuples so thatea can access a tuple
only if she knows or can derive the key used for encryptinguipées at both levels.

The solution in [23] enforces read privileges only and haasnbeomplemented
with another technique that allows the management of wperations [27]. This
work associates each tuple witlneite tag The write tag is a random value chosen
by the data owner independently from the tuple content, siedérypted with a key
known only to users who can modify the tuple and to the exteseraer. The server
will then enforce a write operation on a tuple only if the regiing user proves to
know the write tag of the tuple. The proposal in [27] exterus key derivation
graph with a key for the server and the keys necessary foeging write tags.
For instance, consider the read privileges in Figure 6 ogktion RTIENTS in
Figure 3(a), and assume that: tuptgsts, andt; can be modified by usek only;
tuplest, andtg can be modified by, D, andE; tuplests andts can be modified by
D; and tupletg can be modified bC. Figure 9 illustrates the encryption policy in
Figure 8, extended to properly enforce write privilegeghkafigure, we denote the
external server aS.

16 Sabrina De Capitani di Vimercati, Sara Foresti, and Rggka Samarati

[userTkey] [tuple]read key[writekey]

A [ka tr [ka Kas
B |ks t2 |kepe Kepes
C |kv tz |ko kps
D |ko ta |Kagco [Kas
E |ke ts |kepe kps

te [kascoe |Kepes
t7 |kasce |Kas

tg ke kes

(b) ©

Fig. 9 Encryption policy in Figure 8, extended to enforce writehauizations

Open issues that still need to be addressed are related &xphessive power
of the supported access control policy, especially comsigehe ever-increasing
bring-your-own-device (BYOD) trend. In fact, it would beténesting to develop
solutions that will allow the specification of fine-grainessirictions, based on the
users’ context and on the specific device adopted for acwpdsita.

4 Indexes and fragmentation

The fragmentation works illustrated in Section 3.1 permitielegate to the server
the evaluation of any condition over attributes appearilangext in a fragment.
However, the client still needs to evaluate those queriasdperate on encrypted
attributes, or that involve attributes that are not repneesgin plaintext in the same
fragment. For instance, consider the fragmentation infeigwof relation RTIENTS

in Figure 3(a). Query = SeLECTNanme FROM PATIENTS WHERE YOB=1980AND

Di sease="Asthma’ cannot be evaluated by the server, since ateib¥oB and
Di sease do notappear in the clear in the same fragment and the semersither
decrypt attributenc nor joinF; andFs. Hence, one of the two conditionsgmust
be evaluated by the client. To mitigate the client’s ovedthgaquery evaluation,
fragments can be complemented with indexes over encryptieioudes. Figure 10
illustrates three versions of fragmdrt in Figure 4, complemented with indeéy
over attributeDi sease, which has been computed using each of the three kinds
of indexes illustrated in Section 3.2. The presence of irdéx a fragment could
however cause unintended leakage of sensitive inform§28h The exposure to
leakage varies depending on the knowledge that a curioeswdrge.g., the external
server) can exploit and the kind of indexes. In particuta,fbllowing two kinds of
knowledge can be exploited for breaching data confidetytiali

Selective and Fine-Grained Access to Data in the Cloud

17

F1 F1 Fi1
[saltenc [Name[YoBJlq] [salt]enc — [Name[YoBJl4] [saltfenc [Name[YoBJlq4]
s11|Bd6!3 [Alice {1980 a s11|Bd6!3 [Alice {1980 ¢ s11|Bd6!3 [Alice {1980 k
s12|0ij3X. [Bob (1980 o s12|0ij3X. |Bob (1980 ¢ s12|0ij3X. [Bob |1980 A
s13|9KEf6? [Carol {1970 a s13|9KEf6? [Carol {1970 € s13|9KEf6? [Carol {1970 u
S14 |ker5/2 |David|1970| B S14 |ker5/2 |David|1970| n S14|kers/2 |David|1970 v
s15|C:mE91|Eva 1970 B s15|C:mE91{Eva (19701 n s15|C:mE91|Eva |1970| &
S16|4IDwqz |Frank{1960| y S16|4IDwqz |Frank{1960| 6 s16|4IDwqz |Frank|1960| it
s17|me3,op |Gary |1960| y s17|me3,op |Gary (1960 6 si17|me3,op |Gary |1960 p
S8 | ZWF4g>|Hilary [1960| & S8 | ZWF4g>|Hilary [1960] £ S8 |ZWFAg> |Hilary 1960 o

a) (b) (c)

Fig. 10 Fragment~; in Figure 4 complemented with a direct index (a), a buckeedandex (b),
and a flattened index (c) over attribidesease

[Disease

| [Name]Disease]

Asthma
Asthma
Asthma
Bronchitis|
Bronchitis|
Gastritis
Gastritis
Diabetes

(@)

Alice Asthmg

(b)

Fig. 11 An example of vertical (a) and horizontal (b) knowledge byoaserver

e \ertical knowledgés the knowledge of the projection of attribigever relation
r,and is due to the presence of attribaia the clear in one fragment and indexed
in other fragments. Vertical knowledge does not require afgitional external
information for an observer since, apart from the case wiherattribute appears
in a singleton constraint, it refers to information immeeig present in other
accessible fragments. For instance, fragntentn Figure 4 makes visible the
plaintext values (and their number of occurrences) oflatté Di sease (see
Figure 11(a)).

e Horizontal knowledgés the knowledge of the presence of a tupléor a set
thereof) inr, and is due to external knowledge by an observer. For instac

observer may know that Alice suffers from Asthma (see Figur@®)).

Let us now examine the exposure risk of indexed fragmentemutig assump-
tions of horizontal and vertical knowledge and of the presesf indexes belonging

to the three categories discussed in Section 3.2 [28].

e Direct index Index functioni preserves the frequency distribution of plaintext
values, which can be exploited to reconstruct the valuexrabsociation by an
observer with vertical and/or horizontal knowledge. \@tiknowledge permits
to precisely reconstruct the value-index association &ues characterized by a
uniqgue number of occurrences (outliers). For instancesidenthe indexed frag-
ment in Figure 10(a) and the vertical knowledge in Figureal.1¢ is immediate
to see that (Asthma)=x and(Diabetes)® since these are the only plaintext

18 Sabrina De Capitani di Vimercati, Sara Foresti, and Rggka Samarati

and index values with 3 occurrences and 1 occurrence, riagggcHence, an
observer can infer that Alice, Bob, and Carol have Asthmalditaty has Di-
abetes. Horizontal knowledge permits to precisely recansthe value-index
association for the plaintext valwet[a] known by the observer, exposing all the
tuples inr with valuev for attributea. For instance, in the example above, know-
ing that Alice suffers from Asthma permits an observer teifiatt (Asthma)=or
and then that also Bob and Carol suffer from the same illness.

e Bucket-based indeindex function does not preserve the frequency distribution
of plaintext values. However, the index value correspogdaplaintext value
v will have a frequency equal to or higher than (in case of sidlfis) the fre-
quency ofv. Values with a high number of occurrences (outliers) are ttdl
exposed. Vertical knowledge permits to identify the indaebues associated with
frequent plaintext values, and then to reconstruct theevaidex association for
such values with a known probability of error. For instaremmsider the indexed
fragment in Figure 10(b) and the vertical knowledge in Fggld(a). Clearly,

1 (Asthma)=¢ since this is the only index value with at least 3 occurrendé&so,

I (Diabetes)= since Diabetes is the only plaintext value with 1 occurredae
observer can then infer that 3 patients among Alice, BobolCand Hilary has
Asthma (each with probability 0.75) and 1 has Diabetes (@@t probability
0.25). Horizontal knowledge permits to identify the indeue representing the
known plaintext value/=t[a]. This index value may however correspond also
to other plaintext values, limiting the observer’s abilityprecisely reconstruct
value-index associations. For instance, in the exampleglimowing that Alice
suffers from Asthma permits an observer to infer th@tsthma)=. However,
nothing can be said about Bob, Carol, and Hilary siaguld also represent
other plaintext values (different from Asthma). By combigihorizontal with
vertical knowledge, however, she can infer that 2 among Bpl, and Hi-
lary suffer from Asthma (each with probability 0.66) and ffets from Diabetes
(each with probability 0.33).

e Flattened indexindex functiont flattens the frequency distribution of index val-
ues. Vertical knowledge does not help in establishing epwadences between
plaintext values and index values. Horizontal knowledgenits to identify one
of the index values representing the known plaintext vaiiga], exposing only
the tuples associated with this index value (in contrashéopossibly larger set
of tuples with valuer for a). For instance, consider the indexed fragment in Fig-
ure 10(c) and the horizontal knowledge in Figure 11(b). Aseslser can only
learn thati (Asthma)=«. However, no other association is exposed, because
has only one occurrence iy (although Asthma has frequency 3kg).

An index functioni that flattens the frequency distribution of index values and
that generates collisions provides protection againgt bhotizontal and vertical
knowledge. In fact, as illustrated above, inference agaeakused by vertical knowl-
edge can be counteracted by flattening the frequency distribof index values.
Inference attacks caused by horizontal knowledge are aétthby index functions
that map different plaintext values to the same index vajeserating collisions.
For instance, Figure 12 illustrates fragméntin Figure 4 complemented with a

Selective and Fine-Grained Access to Data in the Cloud 19

Fi1
[saltJenc— [Name[YoBTl4]
511 [Bd6!3 |Alice [1980| o
s12 [Oij3X. |Bob 1980 a
s13 |9KEf6? |Carol [1970| &
S14 |ker5/2 | David|1970| B
s15[C:mE91|Eva [1970| B
Y
4
o

S16|4IDwqz |Frank|1960)|
s17[me3,0p |Gary 1960
s18 |ZWf4g> [Hilary | 1960

Fig. 12 Fragmenf in Figure 4 complemented with a flattened index with collsiover attribute
Di sease

flattened index with collisions over attribu@ sease. This indexed fragment is
protected against both vertical and horizontal knowleddégure 11. Indeed, verti-
cal knowledge cannot be exploited for frequency-basedlatéll the index values
have 2 occurrences). Horizontal knowledge permits to itifati (Asthma)=or but,
sincer generates collisions, the observer cannot say anything téfdisease from
which Bob suffers. Although the proposal in [28] is focusextioe adoption of one
index, the discussion can easily be extended to the caseifagiments are com-
plemented with multiple indexes. In fact, flattening andisimns provide adequate
protection in different scenarios (e.g., multiple indeiesne fragment, a same at-
tribute indexed in different fragments, two attributes @ggpng one in plaintext and
the other indexed in one fragment and reversed in anothgmieat).

Although effective to protect data at rest, a flattened indexction with colli-
sions has the disadvantage of reducing the performanceeiy gualuation. In fact,
flattening requires to retrieve differentindex values whearching for one plaintext
value, and collisions require a post-processing at thattiiele to remove spurious
tuples in the query result computed by the server. As an ekgmpnsider frag-
mentF1 in Figure 12, conditiorDi sease='Asthma’ translates into conditiohy
IN {a,0}. The evaluation of this condition would however return déupith value
Diabetes for attribut®i sease (i.e., tupletg), since Asthma and Diabetes are both
mapped to valud. Also, flattened indexes with collisions remain still vulakle
to dynamic observations (i.e., to adversaries who can gbagsers’ queries). In
fact, by observing a long enough sequence of queries, amasen easily infer
the index values to which each plaintext value has been ndggpee they always
appear together in query conditions. With reference to #@mple above, every
query including conditioli sease="Asthma’ is translated into a query including
conditionlg IN {a,0}. An observer can then easily infer thatand é represent
the same plaintext value (Asthma, in our example). The ptiote against dynamic
observations represents an open issue that still needsaddvessed, along with
the problem of defining an efficient index function that pr®s both flattening and
collisions.

20 Sabrina De Capitani di Vimercati, Sara Foresti, and Rggka Samarati

PATIENTS PATIENTSK
[SSN_ [Name[YoB [Job [Disease | [tid[enc TIa[1,]1;]1d]
T A 1980 Clerk [Asthma 1|T8/M0? |mfa|d]n
t,|BDE 2 |lwfTg<|m|a|e|6
t3|D 3 |vFeld2 [p|B|d|w
t4|ABCD 1970 Lawyer|Bronchitis| 4 |f3idy |p|B|{|K
ts|BDE 5 (;x0d9D |o|B|e|A
ts | ABCDE 1960 Doctor |Gastritis 6 [kO6I)G |o|y|e|u
t;| ABCE 1960| TeachefGastritis 7 (u2eW[b|t|y||V
tg|C 8 |vY7.1 |t|y|d|¢&
() (b) (c)

Fig. 13 Knowledge of useA over relation RTIENTS (b) and RTIENTSK (C)

5 Indexes and selective encryption

Selective encryption approaches illustrated in Secti@e®force access control
restrictions over outsourced data by guaranteeing that eser can decrypt all and
only the tuples she is authorized to access. However, wharagamade selectively
available, the combination of selective encryption witdéres used for enabling
efficient query execution on encrypted data may open thetddoferences. In fact,

users may have visibility of indexes even of tuples they arteatiowed to access.
Such visibility, together with their ability to view datarfarhich they are authorized,
can allow them to possibly infer plaintext values of tuplesyt should not be able
to read. In the following, for clarity in the exposition buitiwout loss of generality,

we will refer the discussion to one attribaenly.

The knowledge that a usercan exploit for inferences can be summarized as
follows: i) index functioni used to define indek over attributea (necessary to
translate user’ queries into queries that operate at theisside);ii) plaintext tu-
ples that the user can access (itesych thaueacl(t)); i) all the encrypted tuples
in rk. For instance, consider relatioaENTS in Figure 3(a) and the authorization
policy in Figure 6 (which is also summarized in Figure 13@@)the reader’s conve-
nience), Figures 13(b) and (c) illustrate the knowledgesefrid over the plaintext
and encrypted relation. Gray cells denote valuesAhatnot authorized to read.

The information that a user with this knowledge can inferadefs on the kind of
index adopted (see Section 3.2), as illustrated in theviafig [26].

e Direct index Index functioni is a bijective function that maps each plaintext
value to one index value (and vice versa). It then exposdbaliuples with the
same plaintext value for attribuéeof a tuple that the user is authorized to access.
For instance, indexy over attributeYoB in Figure 13(c) has been computed
using a direct index function. Since uskrcan access tuphg, she knows that
1(1980)=u. She can then infer tha&[YoB]=1980, even if she is not authorized
to access tuplé,. In a similar way,A can also infer that(1970)=3 and that
1(1960)=y (i.e., she knows the plaintext value of attribiteB of each tuple
in PATIENTS). The user also knows index functieonHence, she can compute
the index valua (v) associated with each valwein the domain of attribute,

Selective and Fine-Grained Access to Data in the Cloud 21

PATIENTS PATIENTSK
[SSN_ [Name[YoB [Job [Disease | [tid[enc TIa[1,]1;]1d]
T A 1980 Clerk [Asthma 1|T8/10? |m|a|d]|n
t,|BDE 1980 Asthma 2 |1wfTg<|m|a|e| B
t3|D 1970 Asthma 3 |vFeld2 [p|B|d|w
t4|ABCD 1970 Lawyer|Bronchitis| 4 |f3idy |p|B||K
ts|BDE 1970 Bronchitis 5 (;x0d9D o |B|e|A
ts | ABCDE 1960 Doctor |Gastritis 6 [kO6I)G |o|y|e|u
t;| ABCE 1960| TeachefGastritis 7 (u2eW[b|1|y||V
tg|C 1960 8 |vY7'.1 |t|y|d|¢&
() (b) (c)

Fig. 14 Knowledge inferred by usek over relation RTIENTS

and possibly reconstruct the value that attribugsssumes in each tupief the
outsourced relation, independently from her access pges ovet.

e Bucket-based indexndex functioni is a surjective function that maps multiple
plaintext values to one index value. The inference risk&rilesd for direct in-
dexes are mitigated by collisions. In fact, multiple ocemges of a same index
value may correspond to different plaintext values. The'sig@owledge of in-
dex functioni could however reduce the uncertainty over the value assiyed
attributea in a tuplet that she is not authorized to access. For instance, ihdex
over attributel ob in Figure 13(c) has been computed using a bucket-based index
function. Since useA can access tuplg, she knows that(Clerk)=0. However,
she does not know with certainty whethigfJob]=Clerk andtg[Job]=Clerk
since functioni may generate collisions and map different plaintext valoes
index valued.

e Flattened indexIndex functioni is an injective function that maps a plaintext
value to multiple index values, guaranteeing a flat distrdsuof the number of
occurrences of index values. Like direct indexes, flatténdexes expose all the
tuples with the same plaintext value for attribatef a tuple that the user is au-
thorized to access. In fact, when decrypting a tupheat she can access, the user
knows one of the index values representing vattg¢a]. By computingi (v), she
exactly knows which tuples irf have valuer for attributea. For instance, index
I4 over attributeDi sease in Figure 13(c) has been computed using a flattened
index function. Since usek can access tuplg, she knows that(Asthma)=
and, since she can compui@) for anyv in the domain of attribut® sease,
she can compute the set of index values representing Asthatas,{n,0,w}.
She can then infer tha¢[Di sease]=t3[Di sease]=Asthma.

Inferences by usek over relation RTIENTS are summarized in Figure 14, where
light-gray cells represent values, reported in italic thé not authorized to access
but that she can infer from her knowledge.

From the observations above, we note that inference is ynamised by the
presence of the same index value associated with tupleaatbared by different
authorizations. In [26] the authors proposed a solutiorickvis focused on direct
indexes since they represent the worst case scenario, bastt principle that

22 Sabrina De Capitani di Vimercati, Sara Foresti, and Rggka Samarati

PATIENTSK PATIENTSK

[T, | [denc T, |
1|T8/N07? |aa 1 (T8/07? |aa
2 |1wfTg<|ag, op, O 2 |1wfTg<|ag, ap, 0
3 |vFeld2 |Bp 3 |vFeld2 |fBp
411313y (Ba, B, Be: Po 411313y (Ba, Be, Be. Bp
5 |;x0d9D |Bs, Bo, Be 5 |;x0d9D |Bg, B5, Be
6 |KOBI)G |ya, ¥, Y. Vb VE 6 |KOBIG |ya, ¥, Y. Vb VE
7 (u2eW[b|ya, V&, Y&, ¥ 7 u2eW[b|va, V&, V&, YE
8|vW7.1l |y 8 |vY7'.1 c/

@ (b)

Fig. 15 An example of encrypted and indexed version of relatiameNTs with index|y over
YoB computed using a user-dependent function (a) and a salkkedlapendent function (b)

different occurrences of the same index value must be mafapdiferent index
values when they should be visible to different subsets efuusThe index value
to whicht[a] should be mapped therefore depends, not only on vadtfg], but
also onacl(t). To this purpose, each userhas its own index functiomy, which
depends on a private piece of information that she sharéshétdata owner. Given
atuplet, the data owner computes a different index valg¢[a]) for eachucacl(t).
Each user will then use her index functiqnto formulate queries to be evaluated
by the external server over indexes. For instance, Figu(e)ifustrates relation
PATIENTSK, where the index over attribu¥B has been computed adopting a user-
dependent function. In the figure, for simplicity, we ind&avith a sub-script the
user whose index function generated the value {igs a value generated hy).
Note thatvy, # vy -

Since all the index values associated with a specific plain@ue of attribute
a are visible to all the users in the system, the adoption of-dependent index
functions is not sufficient to block all the inferences. lotfauples sharing the same
value for attributea that are characterized by different but overlapping acfed
conflicting tuplesare exposed to inferences by users who can access at least on
these tuples. For instance, with reference to relationeN s in Figure 15(a), user
A cannot exploit her knowledge of tupleto infer the value of,[YoB]. However,
by observing tha3p appears in tuples, together withfa, A can infer thatBp
represents value 1970 and hence thfYoB]=t4][YOB]=t5[YoB]=1970. To block
this inference channel, conflicting tuples must be assediatith disjoint sets of
index values. To impose diversity of indexes, the value astegbby index function
1y is differentiated by applying different randomly genedasalts to conflicting
tuples. For instance, Figure 15(a) illustrates relatismeNTsK, where the index
over attributeYoB has been computed adopting a salted user-dependent furlatio
the figure, we denote salted versions of vahasy andv’.

While effective, the solution illustrated above presersilar privacy risks to
the one described in Section 4. More precisely, this indgtéchnique remains vul-
nerable to dynamic observations, since monitoring a saffichumber of queries
would permit an observer to reconstruct which (salted) xneldues represent the
same plaintext value. Furthermore, collusion betweenaizthd users and the ex-

Selective and Fine-Grained Access to Data in the Cloud 23

ternal server may put data confidentiality at risk. The pridoe against these threats
still remains an open issue.

6 Conclusions

Cloud computing offers a variety of new opportunities torasad companies, and
many efforts have been therefore dedicated to the desigloofldased services,
applications, and infrastructures. While appealing, dloomputing however intro-

duces new security and privacy issues. In this chapter, \a&y/zed the data pro-
tection issues, and described approaches for the pratestidata confidentiality,

and for the efficient and selective access to data. We aissirdited open problems
arising from the combined application of such solutions highlighted possible

directions to address them.

Acknowledgements The chapter is based on joint work with Sushil Jajodia andaStePara-
boschi. This work was supported in part by the Italian Minyisif Research within PRIN 2010-
2011 project “GenData 2020” (2010RTFWBH), and by Googleauride Google Research Award
program.

References

1. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, Hntkapadi, K., Motwani, R., Sri-
vastava, U., Thomas, D., Xu, Y.: Two can keep a secret: Aibigted architecture for secure
database services. In: Proc. of CIDR 2005. Asilomar, CA, W$kuary 2005)

2. Agrawal, R., Asonov, D., Kantarcioglu, M., Li, Y.: Sovége joins. In: Proc. of ICDE 2006.
Atlanta, GA, USA (April 2006)

3. Agrawal, R., Kierman, J., Srikant, R., Xu, Y.: Order pmeggg encryption for numeric data.
In: Proc. of SIGMOD 2004. Paris, France (June 2004)

4. Ardagna, C., Camenisch, J., Kohlweiss, M., Leenes, RveiNeG., Priem, B., Samarati, P.,
Sommer, D., Verdicchio, M.: Exploiting cryptography foiiyaicy-enhanced access control: A
result of the PRIME project. JCS 18(1), 123-160 (2010)

5. Ardagna, C., De Capitani di Vimercati, S., Foresti, StaPaschi, S., Samarati, P.: Minimizing
disclosure of private information in credential-base@iattions: A graph-based approach. In:
Proc. of PASSAT 2010. Minneapolis, MN, USA (August 2010)

6. Ardagna, C., De Capitani di Vimercati, S., Foresti, SraBaschi, S., Samarati, P.: Supporting
privacy preferences in credential-based interactionsPioc. of WPES 2010. Chicago, IL,
USA (October 2010)

7. Ardagna, C., De Capitani di Vimercati, S., Foresti, SraBaschi, S., Samarati, P.: Minimis-
ing disclosure of client information in credential-basetkeractions. 1JIPSI 1(2/3), 205-233
(2012)

8. Ardagna, C., De Capitani di Vimercati, S., ParaboschiP&drini, E., Samarati, P., Verdicchio,
M.: Expressive and deployable access control in open walicseapplications. IEEE TSC
4(2), 96-109 (April-June 2011)

9. Ardagna, C., Jajodia, S., Samarati, P., Stavrou, A.:iBlirmy users’ anonymity in mobile hy-
brid networks. ACM TOIT (2013)

24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Sabrina De Capitani di Vimercati, Sara Foresti, and Rggta Samarati

Atallah, M., Blanton, M., Fazio, N., Frikken, K.: Dynaténd efficient key management for
access hierarchies. ACM TISSEC 12(3), 18:1-18:43 (Jar2@09)

Bertoni, G., Breveglieri, L., Koren, |., Maistri, P.,U?i, V.: On the propagation of faults and
their detection in a hardware implementation of the advaresgryption standard. In: Proc.
of ASAP 2002. San Jose, CA, USA (July 2002)

Blanton, M., Frikken, K.: Efficient multi-dimensionaék management in broadcast services.
In: Proc. of ESORICS 2010. Athens, Grece (September 2010)

Bonatti, P., Samarati, P.: A uniform framework for regirg service access and information
release on the Web. JCS 10(3), 241-272 (2002)

Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregatk\erifiably encrypted signatures
from bilinear maps. In: Proc. of EUROCRYPT 2003. WarsawaRdl(May 2003)

Cali, A., Martinenghi, D.: Querying data under accésstations. In: Proc. of ICDE 2008.
Cancun, Mexico (April 2008)

Camenisch, J., Lysyanskaya, A.: An efficient system éormansferable anonymous creden-
tials with optional anonymity revocation. In: Proc. of EURRYPT 2001. Innsbruck, Austria
(May 2001)

Ceselli, A., Damiani, E., De Capitani di Vimercati, Sajatlia, S., Paraboschi, S., Samarati,
P.: Modeling and assessing inference exposure in encryfatabases. ACM TISSEC 8(1),
119-152 (February 2005)

Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.\Mate information retrieval. Journal of
ACM 45(6), 965-981 (April 1998)

Cimato, S., Gamassi, M., Piuri, V., Sassi, R., ScottiPRvacy-aware biometrics: Design and
implementation of a multimodal verification system. In: @rof ACSAC 2008. Anaheim, CA,
USA (December 2008)

Ciriani, V., De Capitani di Vimercati, S., Foresti, Sajatia, S., Paraboschi, S., Samarati, P.:
Keep a few: Outsourcing data while maintaining confideityialn: Proc. of ESORICS 2009.
Saint Malo, France (September 2009)

Ciriani, V., De Capitani di Vimercati, S., Foresti, Sajatia, S., Paraboschi, S., Samarati, P.:
Combining fragmentation and encryption to protect privatylata storage. ACM TISSEC
13(3), 22:1-22:33 (July 2010)

Damiani, E., De Capitani di Vimercati, S., Jajodia, SraBoschi, S., Samarati, P.: Balancing
confidentiality and efficiency in untrusted relational DB&$n: Proc. of CCS 2003. Wash-
ington, DC, USA (October 2003)

De Capitani di Vimercati, S., Foresti, S., Jajodia, @raBoschi, S., Samarati, P.: Encryption
policies for regulating access to outsourced data. ACM TGB@), 12:1-12:46 (April 2010)
De Capitani di Vimercati, S., Foresti, S., Jajodia, @raboschi, S., Samarati, P.: Frag-
ments and loose associations: Respecting privacy in datespung. PVLDB 3(1), 1370-1381
(September 2010)

De Capitani di Vimercati, S., Foresti, S., Jajodia, &taBoschi, S., Samarati, P.: Authorization
enforcement in distributed query evaluation. JCS 19(4)-794 (2011)

De Capitani di Vimercati, S., Foresti, S., Jajodia, &raBoschi, S., Samarati, P.: Private data
indexes for selective access to outsourced data. In: PFAWRES 2011. Chicago, IL, USA
(October 2011)

De Capitani di Vimercati, S., Foresti, S., Jajodia, &raBoschi, S., Samarati, P.: Support for
write privileges on outsourced data. In: Proc. of SEC 201&raklion, Crete, Greece (June
2012)

De Capitani di Vimercati, S., Foresti, S., Jajodia, &ragBoschi, S., Samarati, P.: On informa-
tion leakage by indexes over data fragments. In: Proc. D®i2013. Brisbane, Australia
(April 2013)

De Capitani di Vimercati, S., Foresti, S., ParaboschiP8losi, G., Samarati, P.: Efficient and
private access to outsourced data. In: Proc. of ICDCS 20idnéépolis, MN, USA (June
2011)

De Capitani di Vimercati, S., Foresti, S., ParaboschiP8losi, G., Samarati, P.: Support-
ing concurrency in private data outsourcing. In: Proc. oORSCS 2011. Leuven, Belgium
(September 2011)

Selective and Fine-Grained Access to Data in the Cloud 25

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

De Capitani di Vimercati, S., Foresti, S., SamaratiPPotecting data in outsourcing scenar-
ios. In: Das, S., Kant, K., Zhang, N. (eds.) Handbook on Segu€yber-Physical Critical
Infrastructure. Morgan Kaufmann (2012)

Gentry, C.: Fully homomorphic encryption using idedtitas. In: Proc. of STOC 2009.
Bethesda, MA, USA (May 2009)

Goodrich, M., Mitzenmacher, M., Ohrimenko, O., Tamas8.: Privacy-preserving group
data access via stateless Oblivious RAM simulation. IncPod SODA 2012. Kyoto, Japan
(January 2012)

Hacigumus, H., lyer, B., Mehrotra, S.: Providing detse as a service. In: Proc. of ICDE
2002. San Jose, CA, USA (February 2002)

Hacigumus, H., lyer, B., Mehrotra, S.: Ensuring imiiggof encrypted databases in database
as a service model. In: Proc. of DBSec 2003. Estes Park, C@,(W&gust 2003)

Hacigimus, H., lyer, B., Mehrotra, S.: Efficient exéon of aggregation queries over en-
crypted relational databases. In: Proc. of DASFAA 20041 J&dand, Korea (March 2004)
Hacigimus, H., lyer, B., Mehrotra, S., Li, C.: ExeagtiSQL over encrypted data in the
database-service-provider model. In: Proc. of SIGMOD 200&dison, WI, USA (June 2002)
Jhawar, R., Piuri, V.: Fault tolerance management i8 lelauds. In: Proc. of ESTEL 2012.
Rome, Italy (October 2012)

Jhawar, R., Piuri, V., Samarati, P.: Supporting segueduirements for resource management
in cloud computing. In: Proc. of CSE 2012. Paphos, Cypruséb®er 2012)

Karger, P., Olmedilla, D., Balke, W.T.: Exploiting feesnces for minimal credential disclo-
sure in policy-driven trust negotiations. In: Proc. of SDPD8. Auckland, New Zealand (Au-
gust 2008)

Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.:ypamic authenticated index structures
for outsourced databases. In: Proc. of SIGMOD 2006. Chickhg®SA (June 2006)

Miklau, G., Suciu, D.: Controlling access to publishedadusing cryptography. In: Proc. of
VLDB 2003. Berlin, Germany (September 2003)

Mykletun, E., Narasimha, M., Tsudik, G.: Authenticati@and integrity in outsourced
databases. ACM TOS 2(2), 107-138 (May 2006)

Samarati, P., De Capitani di Vimercati, S.: Data pradecin outsourcing scenarios: Issues
and directions. In: Proc. of ASIACCS 2010. Beijing, Ching(A2010)

Wang, H., Lakshmanan, L.: Efficient secure query evadoaiver encrypted XML databases.
In: Proc. of VLDB 2006. Seoul, Korea (September 2006)

Wang, H., Yin, J., Perng, C., Yu, P.: Dual encryption foexy integrity assurance. In: Proc. of
CIKM 2008. Napa Valley, CA, USA (October 2008)

Williams, P., Sion, R.: Single round access privacy otsawrced storage. In: Proc. of CCS
2012. Raleigh, NC, USA (October 2012)

Williams, P., Sion, R., Carbunar, B.: Building castleg of mud: Practical access pattern
privacy and correctness on untrusted storage. In: ProcG8 2008. Alexandria, VA, USA
(October 2008)

Wong, C., Gouda, M., Lam, S.: Secure group communicsiismg key graphs. IEEE/ACM
TON 8(1), 16-30 (February 2000)

Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditind autsourced data. In: Proc. of VLDB
2007. Vienna, Austria (September 2007)

Xie, M., Wang, H., Yin, J., Meng, X.: Providing freshngsgrantees for outsourced databases.
In: Proc. of EDBT 2008. Nantes, France (March 2008)

Yang, VY., Papadias, D., Papadopoulos, S., Kalnis, Rheticated join processing in out-
sourced databases. In: Proc. of SIGMOD 2009. Providence)®8A (June-July 2009)

Yao, D., Frikken, K., Atallah, M., Tamassia, R.: Privatormation: To reveal or not to reveal.
ACM TISSEC 12(1), 1-27 (October 2008)

