© Springer Berlin / Heidelberg, Lecture Notes in Computer Science (2016)
http://link.springer.com/chapter/10.1007%2F978-3-319-41483-6_10

Access Control for the Shuffle Index

Sabrina De Capitani di Vimercati!, Sara Foresti!, Stefano Paraboschi?,
Gerardo Pelosi®, and Pierangela Samarati!

! Universita degli Studi di Milano, Italy — firstname.lastname@unimi . it
2 Universita degli Studi di Bergamo, Italy — parabosc@unibg. it
3 Politecnico di Milano, Ttaly — gerardo.pelosi@polimi.it

Abstract. The shuffie index provides confidentiality guarantees for ac-
cesses to externally outsourced data. In this paper, we extend the shuffle
index with support for access control, that is, for enforcing authoriza-
tions on data. Our approach bases on the use of selective encryption and
on the organization of data and authorizations in two shuffle indexes.
Our proposal enables owners to regulate access to their data supporting
authorizations allowing different users access to different portions of the
data, while at the same time guaranteeing confidentiality of access.

1 Introduction

The rapid advancement in ICT and the increasing adoption of cloud comput-
ing paradigms have produced an ever increasing reliance on external parties for
storing and processing data. Together with the clear benefits in term of low cost
and high availability (e.g., [11]), the involvement of external providers for stor-
ing data and providing services raises also issues of ensuring proper protection
of information against the providers themselves (e.g., [12,15]). The research and
industrial community have recognized these issues and investigated different as-
pects of the problem, with considerable attention paid to the need to maintain
information confidential to the providers themselves that, even if trustworthy
to provide the service, should not be allowed visibility over the stored data. In
addition to the need to protect confidentiality of the stored data (content confi-
dentiality), recent proposals have been devoting attention to the need to protect
confidentiality of the accesses executed on the data (access confidentiality), that
is, protecting confidentiality on the fact that an access aims at a specific piece of
information or that two accesses aim at the same target (this latter also referred
to as pattern confidentiality). There are several reasons for which access confi-
dentiality should be protected, including the simple fact that breaches to access
confidentiality may leak information on access profiles, and, in the end, even
on the data themselves, therefore breaking data confidentiality itself. Among
the recent proposals specifically considering the access confidentiality problem
in database management scenarios (and therefore with attention to efficiency
and functionality guarantees that should be provided) is the shuffle index [5].
The shuffle index provides an index-based hierarchical organization of the data

© Springer Berlin / Heidelberg, Lecture Notes in Computer Science (2016) http://link.springer.com/chapter/10.1007%2F978-3-319-41483-6_10

supporting efficient and effective access execution and provides access confiden-
tiality with limited (compared to classical solutions) performance overhead. The
key idea to provide access confidentiality is a dynamic re-allocation of data at
every access so to breach the otherwise static correspondence between data and
physical blocks in which they are stored.

The shuffle index, while supporting accesses by multiple users [6], assumes
all users to be entitled to access the complete data structure: data are encrypted
with a key shared between the data owner and all users, and all users can re-
trieve and decrypt these data, hence accessing the plaintext content. Encryption
is applied only to provide confidentiality (of content and access) with respect
to the storing server. However, in many situations access privileges may need
to be granted selectively, that is, different users should be authorized to view
only a portion of the stored data. While existing solutions for enforcing autho-
rizations in data outsourcing context in presence of honest-but-curious providers
(e.g., selective encryption [2,3]) have emerged, they cannot be simply applied in
conjunction with the shuffle index, given the specific characteristics of the in-
dex and its access execution, as well as the need to ensure access confidentiality
guarantees.

In this paper, we provide an approach to support access control over the
shuffle index (Section 2) to ensure that access to the data be granted only in re-
spect of authorizations specified by the data owner. Our approach leverages the
availability of selective encryption to provide a self-enforcing layer of protection
over the data themselves. To allow for authorizations enforcement while main-
taining access confidentiality guarantees, our approach makes use of two shuffle
indexes: a primary index, storing and providing access to selectively encrypted
data, and a secondary index, enabling enforcement of access control (Section 3
and Section 4). We show that our proposal correctly enforces the access con-
trol policy established by the data owner and has limited performance overhead
(Section 5).

2 Shuffle Index

The shuffle index [5] is a dynamically allocated data structure offering access and
pattern confidentiality while supporting efficient key-based data organization
and retrieval. A data collection organized in a shuffle index is a set of pairs
(indez_value, resource) with indez_value a candidate key for the collection (i.e.,
no two resources share the same value for indez_value) used for index definition,
and resource the corresponding resource associated with the index value. For
simplicity, we assume the data collection to be a relational table R defined over
a simplified schema R(I,Resource), with I the indexed attribute and Resource
the resource content. At the abstract level, a shuffle index for R over I is an
unchained B+-tree (i.e., there are no links between the leaves) with fan-out F
defined over attribute I, storing the tuples in R in its leaves. Each node stores up
to F' — 1 ordered values vy, v2,...,vq, and has as many children as the number
of values stored plus one. The first child of a node is the root of the subtree

including all values v < wy; its last child is the root of the subtree including all
values v > vg; its i-the child (i = 2,...,q) is the root of the subtree including
all values v;_1 < v < v;. Actual resources are stored in the leaves of the tree in
association with their index value. At the logical level, each node is associated
with a logical identifier. Logical identifiers are used in internal nodes as pointers
to their children and do not reflect the order relationship among the values
stored in the nodes. At the physical level, each node is stored in encrypted form
in a physical block and logical identifiers are translated into physical addresses
at the storing server. For the sake of simplicity, we assume that the physical
address of a block storing a node corresponds to the logical identifier of the node
itself. The encrypted node is obtained by encrypting the concatenation of the
node identifier, its content (values and pointers to children or resources), and a
randomly generated nonce (salt). Formally, block b storing node n is defined as
E(k, salt||id||n), where E is a symmetric encryption function with key k& and
id is the identifier of node n. Encryption protects the confidentiality of nodes
content and the structure of the tree, as well as the integrity of each node and
of the structure overall. Figure 1(c-e) illustrates an example the abstract (c),
logical (d), and physical (e) level, respectively, of a shuffle index storing the 19
tuples in Figure 1(a), indexed according to the values of attribute I. Actual
tuples are stored in the leaves of the index structure, where, for simplicity, we
however report only the index values.

To retrieve the tuple with a given index value in the shuffle index, the tree
is traversed from the root following the pointers to the children until a leaf is
reached. Since the shuffle index is stored at the server in encrypted form, such a
process is iterative, with the client retrieving from the server (and decrypting)
one node at a time to determine the child node to be read at the next level.
To protect access and pattern confidentiality, in addition to storing nodes in
encrypted form at the server, the shuffle index uses the following three techniques
in access execution.

— Cover searches: in addition to the target value, additional values, called
covers, are requested. Covers, chosen in such a way to be indistinguishable
from the target and to operate on disjoint paths in the tree (also disjoint
from the path of the target), provide uncertainty to the server on the actual
target. If num_cover searches are used, the server will observe access to
num-cover+1 distinct paths and corresponding leaf blocks, any of which
could be the actual target.

— Repeated access: to avoid the server learning when two accesses refer to the
same target since they would have a path in common, the shuffle index
always produces such an observable by choosing, as one of the covers for an
access, one of the values of the access just before it (if the current access is
for the same target as the previous access, a new cover is used). In this way,
the server always observes a repeated access, regardless of whether the two
accesses refer to the same or to a different target.

— Shuffling: at every access, the nodes involved in the access are shuffled (i.e.,
allocated to different logical identifiers and corresponding physical blocks),

Resource

Aresource
Bresource
Cresource
Dresource
Fresource
Gresource
Hresource
Iresource
Jresource
Lresource
Mresource
Nresource
Oresource
Presource
Qresource
Rresource
Sresource
Tresource
Uresource

o e I N

[
S}
cHVNTOYO=EZRNuHIOMUOQW = -

ABSTRACT INDEX

CF- target cover R T - |repeated

[AB- IICD J[FG-J[HI- J[JL-JIMN[OPQ[[RS-|[TU-]

repeated
(C)

(@)

Search
target: C
repeated: S
cover: J

(b)

LocicAL INDEX

cover F - |target
b R

l |__| ,__1 |_|

|
Il |OPQ||_MN IFCD II_S_IIFG |_lL ,||2°

target repeated

(d)

PHysIicAL INDEX
001

101 102 103

202

[2_01 203 204 205 206 207 208 209

(e)

Fig. 1. An example of a relation (a), an access over it (b), and of abstract (c), logical
(d) and physical (e) shuffle index

re-encrypted (with a different random salt and including the new identi-
fier of the block) and re-stored at the server. Shuffling provides dynamic
reallocation of all the accessed nodes, thus destroying the otherwise static
correspondence between physical blocks and their content. This prevents the
server from accumulating knowledge on the data allocation as at any access
such an allocation is refreshed.

To illustrate, consider the shuffle index in Figure 1(c-e) and the search in
Figure 1(b) for the tuple with index value C, assuming S as repeated access and
J as fresh cover. The access entails reading (i.e., retrieving from the server) the
nodes annotated in the figure, with the server only observing downloads of the
corresponding encrypted blocks in Figure 1(e) but not able to learn anything
on the block content or on the roles (target, repeated, cover) of the blocks.
Shuffling could produce, after the access, a re-allocation of the accessed nodes.
For instance, 205—204, 204—207, 207—205 (where X—Y denotes the fact that
the content of node X is moved to Y).

ORIGINAL RELATION PRIMARY INDEX SECONDARY INDEX
I| Resource ACL I Resource I [Resource
1|A|Aresource |...[u1 wu2 wug 12{¢(8)[({?123, E(k123,Aresource)) 10{c1 (A)|[E(k1, c(h))
2 [B|Bresource |...|u; wus 17|¢(B)|(¢12, E(k12,Bresource)) 18|t2 (A)|E(ka2, t(h))
3|C|Cresource |...|u1 wus 4|¢(C)|(€12, E(k12,Cresource)) 22|t3(A)|E(ks, (b))
4 |D | Dresource |... us U3 3|t(D)|(£23, E(k23,Dresource)) 5(t1(B)|E(k1,(B))
5 | F | Fresource |... uz u3 7(t(F)|(€23, E(k23,Fresource)) 6[e2(B)|E(k2, t(B))
6 |G| Gresource |...|u1 us 9|¢(G)|(¢13, E(k13,Gresource)) ole1(C)|E(k1, ¢(C))
7 | H| Hresource |...| u1 us 10(¢(H)|(¢13, E(k13,Hresource)) 25|12 (C)|E(k2,t(C))
8 |I|Iresource |...|u1 8|¢(I)|(€1, E(k1,Iresource)) 27|12 (D)|E(k2, ¢(D))
9| J|Jresource |...|u1 6|¢(J)|(€1, E(k1,Jresource)) a[e3(D)|E(k3, (D))
10 | L | Lresource |...|wu1 11|¢(L)[(£1, E(k1,Lresource)) 19|e2 (F)|E(k2, t(F))
11 | M| Mresource |...|u1 2|¢(M)|(¢1, E(k1,Mresource)) 3les(F)|E(ks, «(F))
12 | N | Nresource |... us 14|¢(N)|(¢2, E(k2,Nresource)) 11{¢1(G)|E(k1, t(G))
13 | 0 | Oresource |... ug 5|¢(0)|(€2, E(k2,0resource)) 7|e3(G)|E(ks, t(G))
14 | P | Presource | ... ug 18|¢(P)|(£2, E(k2,Presource)) 201 (H)|E(k1, c(H))
15 [Q | Qresource | ... uUo 16/¢(Q)|(£2, E(k2,Qresource)) 24|v3(H)|E(ks, t(H))
16 | R | Rresource |... us 15¢(R)|(¢3, E(ks,Rresource)) 15¢1(I)|E(k1, ¢(I))
17 | S | Sresource |... us 19(¢(S)|(¢3, E(ks,Sresource)) 12e1 (D) |E(k1,(3))
18 | T | Tresource |... us 1{¢(T)|(€3, E(k3, Tresource)) 8le1(L)|E(k1, (L))
19 | U| Uresource |... us 13|¢(U)|(£3, E(ks,Uresource)) 1er (M) |E(k1, (M)
14|to (N)|E(k2, L(N))
23[12(0)|E(k2, ¢(0))
26(t2(P)|E(k2, ¢(P))
212 (@) B (k. (1))
13[e3(R)|E(k3, ¢(R))
16(3(S)|E(ks3, L(8))
21(e3(T)|E(ks, ¢(T))
17[e3(U)|E(ks3, (V)

@) (b) ©

Fig. 2. Relation of Figure 1(a) with acls associated with its resources (a), relation for
the primary index (b), relation for the secondary index (c)

3 Primary and Secondary Indexes for Access Control

Providing access control means enabling data owners to regulate access to their
data and selectively authorize different users with different views over the data.
Figure 2(a) illustrates possible authorizations on the data of Figure 1(a), con-
sidering three users (w1, w2, us). The figure reports, for each tuple r in the
dataset, the corresponding acl(r), that is the set of users authorized to access
it. (Note that authorizations do not explicitly report the access privileges, which
is considered to be ‘read’, since we assume access by users to be read-only, with
write operations reserved to the owner.) When clear from the context, with a
slight abuse of notation, in the following we will denote the access control list
of a tuple r as either acl(r) or acl(r[I]), with r[I] its index value. For instance,
acl(A)={u1,u2,us}, while acl(B)={uy,us}.

Before diving into our solution, we note that there could be two natural and
straightforward approaches to enforce authorizations in the shuffle index, each of
which would have however limitations and drawbacks. A first natural approach
would be to simply associate a key k; with each user u; and produce different
replicas of the data. Each tuple would be replicated as many times as the number
of users authorized to access it. Each copy would be encrypted with the key of
the user for which it is produced. For instance, with reference to Figure 2(a)
three copies would be created for index value A and the corresponding resource

Aresource, encrypted with keys ki, ks, and ks, respectively. Different shuffle
indexes would then be defined, one for each user, organizing and supporting
accesses to the tuples that the user is authorized to access. Such an approach,
besides bearing obvious data management problems (as replicas would need to be
maintained consistent) would affect the protection offered by the shuffle index.
In fact, it would organize each shuffle index only on a limited portion of the
data (for each user, only those tuples that she can access, that is, less than half
of the original tuples for each user in our example) with consequent limitations
in the choice of covers. An alternative solution could then be to maintain the
shuffle index as a single structure (so to build it on the complete dataset), and
avoid replicas by producing only one encrypted copy for each tuple. Replicas
can be avoided by considering different encryption keys not only for individual
users but also for user sets (i.e., acls), with a user u; knowing her encryption
key k; as well as those of the acls in which she is included. Each resource would
then be encrypted only once and the encryption key with which it is encrypted
known only to its authorized users. For instance, with reference to Figure 2(a),
Aresource would be encrypted with key k123 known to all users while Bresource
would be encrypted with key k12 known to 41 and uo only. While such selective
encryption correctly enforces access to the encrypted resources, it leaves the
problem of ensuring protection (and controlling the possible exposure) of the
index values with which the shuffle index is organized. As a matter of fact, on
one hand, leaving such index values accessible to all users for traversing the tree
would disclose to every user the complete set of index values, even those of the
tuples she is not authorized to access. On the other hand, such index values
cannot be encrypted with the same encryption key used for the corresponding
resources, as otherwise the ability to traverse the tree by users would be affected.

Starting from these observations, we build our approach essentially providing
selective encryption while protecting index values themselves against unautho-
rized users without affecting their ability to retrieve those tuples they are autho-
rized to access. Our approach is based on the definition of two different indexes.
A primary index, defined over an encoded version of the original index values,
and a secondary index, providing a mapping enabling users to retrieve the value
to look for in the primary index. Both indexes make use of an encoding of the
values to be indexed to make them intelligible only to authorized users. We then
start by defining an encoding function as follows.

Definition 1 (Encoding Function). Let R(I,Resource) be a relation with I
defined over domain D. A function v : D — £ is an encoding function for I iff ¢
is: 1) non-invertible; i) non order-preserving; iii) injective.

Intuitively, an encoding function maps the domain of index values I onto
another domain of values £, avoiding collisions (i.e., Yvg, v, €I with vy # vy,
t(vgy)#i(vy)), and in such a way that the original ordering among values is de-
stroyed. Also, non-invertibility ensures the impossibility of deriving the inverse
function (from encoded to original values). For instance, an encoding function
can be realized as a keyed cryptographic hash function operating on the domain
of attribute I.

The second building block of our solution is the application of selective en-
cryption, namely encryption of each resource with a key known only to au-
thorized users. To apply selective encryption, we then define a key set for the
encryption policy as follows.

Definition 2 (Encryption Policy Keys). Let R(I,Resource) be a relation, U
be a set of users, and, Vr€R, acl(r)CU be the acl of r. The set K of encryption
policy keys for R is a set K={k; | uv; € U} U{ks, . |3Ir € R, {ui,, ..., us} =
acl(r)} of encryption keys. Each key kx €K has a public label £x. Fach user
w; €U knows the set K;={k;} U{kx | kx e KANi € X} of keys.

Definition 2 defines all the keys needed (and the knowledge of users on them)
to apply selective encryption, meaning to encrypt the data selectively so that
only authorized users can access them while optimizing key management and
avoiding data replication. The public label associated with a key allows referring
to the key without disclosing its value. Note that knowledge by a user of all
the keys of the access control lists to which she belongs does not require direct
distribution of the keys to the user, since hierarchical organization of keys and use
of publicly available tokens enabling key derivation can provide such a knowledge
to the user [3].

We are now ready to define the first index used by our approach. This first
index, called primary, is the one storing the actual data on which accesses should
operate (i.e., tuples in R). To provide selective access as well as enable all users
to traverse the index without leaking to them information (index values and
resources) they are not authorized to access, the index combines value encoding
and selective encryption. Formally, the primary index is defined as follows.

Definition 3 (Primary Index — Data). Let R(I,Resource) be a relation,
I be the indexing attribute, ¢ be an encoding function for I computable only
by the data owner, and K be the set of encryption policy keys for R. A pri-
mary index for R over I is a shuffle index over relation P(I,Resource) hav-
ing a tuple p for each tuple r€R such that p[I] = u(r[I]) and p[Resource]=
iy .. ins E(kiy ... in, T[Resource])), with E a symmetric encryption function,
acl(r) ={uy,...,ui }, and kyy 5 €K

coyln

The primary index stores original data in encrypted form, encrypting each tu-
ple with the key corresponding to its acl (i.e., known only to the users authorized
to read the tuple). The inclusion in r[Resource] of the label enables authorized
users to know the key to be used for the decryption of the resource. The primary
index is built on encoded values computable only by the data owner. For in-
stance, the encoding function can be implemented through a cryptographic hash
function, using a key k&, known only to the data owner (i.e., the encoded value
t(v) for a tuple r with index value v can be computed as hash(v,k,)). Note that,
although each resource singularly taken appears encrypted in the leaves of the
primary index, all the nodes are (also) encrypted with a key & known to every
user in the system. This second encryption layer is necessary to enable shuffling
(Section 2).

(D) (0)- |/(G):,(L)- (Q) (P)-

[-] [«)| {0 - [@ - | [ee)m- | faymy | [v) - | @) - | [@ s)- |

Fig. 3. Primary shuffle index for the relation in Figure 2(b)

Building the index on the encoded values provides protection of the original
index values, and their order relationship, against users and storing server that
observe the index on the encoded values. In fact, the encoding is non-invertible
(hence the encoded values do not leak any information on the original values),
and destroys the original ordering (hence the order relationship between encoded
value does not leak anything on the order relationship among the original values).

Figure 2(b) illustrates a primary index P for our running example. The order-
ing among the encoded values is reported with numbers on the left of the table.
Figure 3 illustrates the tree structure for such primary index. Note how the dif-
ferent order among the values to be indexed causes a different content within
the leaves and a different ordering among them, with respect to the shuffle index
in Figure 1(a) built over the original (non-encoded) index values.

While the index on the encoded values provides the ability to traverse the
tree to look for the resource associated with an encoded value, to retrieve a given
resource (i.e., the resource corresponding to an original value for the indexing
attribute) one would need to know the encoding of such value. For instance,
resource Aresource would be stored in association with index value ¢(A). The
encoding (i.e., the fact that ¢(A) corresponds to A) is however known only to the
data owner.

The second index of our approach allows the data owner to selectively disclose
to users the mapping of encoding ¢, releasing to every user the mapping for (all
and only) those values she is authorized to access. Such knowledge is provided
to each user u; encrypted with the user key k; (so to make it non intelligible to
other users and to the server) and is indexed with a user-based encoding, so to
provide a distinct mapping for every user u;, which can be computed only by
u;. The second index of our approach is therefore a secondary index providing
user-based mapping as follows.

Definition 4 (Secondary 1Index — User-based Mapping). Let
R(I,Resource) be a relation, I be the indexing attribute, P be a primary
index for R over I with encoding function v, U be a set of users, {¢; | u; € U} be
a set of encoding functions for I such that v; is computable only by user u; and
by the data owner, and KC be the set of encryption policy keys for R. A secondary
index for R and P is a shuffle index over relation S(I,Resource) having a

oz

Fig. 4. Secondary shuffle index for the relation in Figure 2(c)

tuple s for each pair (r,u;), r€R and u;€acl(r), such that s[I|= «;(r[I])
and s[Resource] = E(k;,u(r[I])), with E a symmetric encryption function and
ki € K.

For instance, the encoding function of each user w; can be implemented
as a cryptographic hash function, using a key k; known to user u; only (i.e.,
ti(v)=hash(v,k;)). Figure 2(c) illustrates a secondary index for our running ex-
ample. Again, the number on the left of the table is the ordering among the
index values of the secondary index. Notice how, once again, the encoding does
not convey any information on the ordering of the original index values. Note
that the secondary index has a larger number of tuples than the original index,
since the encoding of an original index value is encrypted as many times as the
number of users who can access it. For instance, in our example, there are three
instances of ¢(4). Figure 4 illustrates the tree structure for the index in Fig-
ure 2(c). We note however that the secondary index is very slim as the resources
are simply the encryption, with the key of a user, of the owner encoding. While
in our examples, for simplicity, we maintain the same topology, the structure
of the secondary index is independent from the structure of the primary index,
meaning that they may have different fan-out and height.

Note that the property of the encoding function of destroying the ordering
among original index values is particularly important to guarantee protection.
In fact, users will know all encoded values computed by the data owner (i.e.,
the co-domain of function ¢), but will know the actual mapping (i.e., the actual
value v corresponding to ¢(v)) only for the values they are allowed to access.
Figure 5(a-b) illustrates a possible logical organization for the primary and sec-
ondary index of our example, where for simplicity of illustration we assume the
logical organization to reflect (at this initial time) the abstract organization of
the tree. We distinguish blocks of the primary and secondary index by adding
prefix P and S, respectively, to their identifiers. The coloring represents the visi-
bility of users u;. Encoded values with grey background are those which remain
non intelligible to u; as they are encoded with the mapping of other users (for

the secondary index) or their owner encoding is not disclosed to u; (for the
primary index).

Since encoding does not preserve ordering, encoded values non intelligible to
a user will remain protected, as no inference can be drawn on them from their
presence or order relationships with respect to other encoded values which are
intelligible to her. For instance, consider the primary index in Figure 5(b). User
u1, being authorized for B will know that ¢(B) is the corresponding encoding. At
the same time, however, ¢(Q), stored in the same node, remains non intelligible
to her. User u; simply observes the presence of another encoded value but will
be able to infer neither its corresponding original value nor its order relationship
with respect to B.

4 Access Execution

We now illustrate how the two indexes described in the previous section are
jointly used for accessing a tuple of interest. To retrieve a tuple in R with value
v for I, a user u; would need to perform the following steps:

1. compute the user-based mapping ¢;(v)=hash(v,k;);

2. search ¢;(v) in the secondary index S, retrieving the corresponding encoded
value ¢(v);

3. search ¢(v) in the primary index P, retrieving the corresponding target tuple.

As an example, consider the indexes in Figure 5(a-b) and suppose that user uq
searches index value C. User u; computes 1 (C)=hash(C,k1) and then searches it
in the secondary index in Figure 5(a). The search returns block S205, from which
¢(C) is retrieved. Hence, uy searches ¢(C) in the primary index in Figure 5(b).
The search returns block P202, from which u; can retrieve resource Cresource.

Note that the steps above assume the searched value to be present in the
index. If the value is not present in the secondary index, its user-based mapping
does not appear in the block returned by step 2. In such a case, the process will
continue providing a random value for the search in step 3, so to provide to the
server the same observation as a successful search. Note also that the search for
a value that is present in the dataset but for which the searching user is not
authorized, present to the searching user the same observable as the search for a
missing value (hence not disclosing anything to the user about values she is not
authorized to access).

The steps above simply illustrate how to retrieve a target value. However,
both the primary and the secondary index are shuffle indexes and accesses should
not simply aim at the target value but should also be protected with the tech-
niques (cover, repeated searches, and shuffling) devoted to protect access confi-
dentiality. The application of these techniques on the two indexes is completely
independent, meaning that the choice of covers, repeated searches, and shuffling
can be completely independent in the two indexes. The only dependency among
the two indexes is the fact that - clearly - the target to be searched in the primary
index is the tuple retrieved by the search on the secondary index.

SECONDARY INDEX

S001

13(G)e2(N)e3(A)

s104 l

t3(H)ia(P) - |

S$210y S$211 S212

t3(A) [[es(H) [[e2(P)
©2(0)| [e(C)| [w(D)

repeated

PRIMARY INDEX

p102 §lepeated

«(G) e(L)- Q) u(P)-

P201 P202 P206 P209
v] [eor.e] fron.or] iena] firaon] fo o] [] e] [imisr |
target repeated cover
()

SECONDARY INDEX

S001

13(G)e2(N)e3(A)

5102 $103 l $104
t3(F)e1(B) - 11 (C)ea(J) - t3(H)e2(P) -
s 1oszzu 5:1

t3(A)| ea(H)[|e(P)
12(0) 12(C) 12(D)

PRIMARY INDEX

P0O01

¢(F)(N)-
1

P101 l P102

P103

«(G)u(L)- | Q) u(P)- (D) «(0)-

T
P201 P202 P203 P204 P205 onsl P207 P208 P209 l
[iemow] [0 0] [wono] e 7] i@rcer-] forwiae] [awiawre] [s10r] [erasy]

(d)
Fig. 5. Secondary and primary index before (a-b) and after (c-d) the access by u1 over
C. Secondary index: i) cover: ¢2(F), ii) repeated access: [S001,5101,5202], iii) shuffling:
S101—S102, S102—S103, S103—S101, S202—S205, S205—S5209, S209—S202. Primary
index: i) cover: ¢(Q), ii) repeated access: [P001,P102,P205], iii) shuffling: P101—P103,
P102—P101, P103—P102, P202—P208, P205—P202, P208—P205. The gray back-
ground denotes encoded values non intelligible to u1

Covers, repeated searches, and shuffling on the primary and secondary index
work essentially in the same way as they work in the shuffle index in absence of
authorizations (Section 2). However, the nature of these indexes requires minor
adjustments in their application, as follows.

— Cover searches. For both the secondary and the primary indexes, cover
searches should be chosen from the set of encoded wvalues, in contrast to
the set of original values. The reason for this is that every user has limited
knowledge on the set of original index values while she can have complete
knowledge of the encoded values in the indexes (i.e., of the complete co-
domains of all the encodings of all the users and the complete co-domain of
the encoding of the owner). Since the encoding is non-invertible, this knowl-
edge does not leak any information and allows the widest possible choice to
the user.

— Repeated accesses. Repeated accesses for the primary and secondary indexes
should refer to blocks, instead of specific values. The reason for this is that
two subsequent accesses can be performed by two different users and there-
fore considering repeated searches referred to values would leak to the second
user the target of the search of the previous user. Although such a leakage
would be only on encoded values, we avoid it simply by assuming repeated
accesses to be referred to blocks (and not to values) and to consider all ac-
cessed blocks, not only the target. At every access we then store at the server
the identifiers of the blocks (target, covers, or repeated accesses) accessed
during the last search. The knowledge of such identifiers is sufficient for a
user to repeat an access to one of the paths visited by the search just before
hers without revealing to the user the target of the previous search (which
might have been performed by others).

— Shuffling. Shuffling works just like in the original proposal. We note that
when shuffling, a user may move also content which is not intelligible to
her. However, she will not be able to change the content for which she is
not authorized (since she would not know the encryption key and tampering
would be detected). Note that since all physical blocks stored at the server
are encrypted (with a key shared between all users and the data owner) and
encryption of the block as a whole is refreshed at every shuffle, the server
cannot detect whether the content of a block (or part of it) has changed or
not. Hence, the fact that a user can operate only on a portion of the block
does not prevent correct execution of the shuffling operation.

The pseudocode of the algorithm accessing and managing the primary and
the secondary index is reported in Appendix.

Figure 5(a-b) illustrates an example of access execution for search of
value C by user wj, assuming :(F) as cover and path [S001,5101,5202]
as repeated access for the secondary index, and ¢(Q) as cover and path
[P001,P102,P205] as a repeated access for the primary index. Accessed nodes
are, besides the root, those annotated (as target, cover, or repeated) in the
figure. Figure 5(c-d) illustrates the new structure of the indexes that would re-
sult assuming shuffling: for the secondary index as S101—S102, S102—S103,

S103—S101, S202—S205, S205—5209, and S209—S202; for the primary in-
dex as P101—P103, P102—P101, P103—P102, P202—P208, P205—P202,
P208—P205.

5 Analysis

We discuss the protection guarantees (i.e., the correct enforcement of authoriza-
tions and the protection of access and pattern confidentiality) and the perfor-
mance of our approach.

Access control enforcement. To demonstrate that the primary and secondary
indexes described in Section 3 guarantee the correct enforcement of the access
control policy, we need to prove that each user u; can access all and only the
resources and index values in R she is authorized to access. Formally, Vu; € U:
i) u; can access resource r|[Resource] iff w;€acl(r); i) u; can see an index value
v iff IreR s.t. r[I]=v and u;€acl(r).

Consider a user u; s.t. acl(r)={wi,,...,u; } and w;€{u;,...,u; }. We
need to show that wu; can retrieve the plaintext content of tuple r. A user
u; can retrieve and decrypt r iff: i) u; can compute ¢;(r[I]); i) s € S s.t.
s[Il=t;(r[I]) and s[Resource]=FE(k;,(r[I])); iii) Ip € P s.t. p[I]=u(r[I]) and
p[Resourcel={l;, . ., E(kiy .. i, ,r[Resource])); and i) u; can visit S and P.
User u; can compute ¢;(r[I]) since it is defined as hash(r[I], k;) and u; knows
key k;, by Definition 2. Tuple s exists and belongs to & by Definition 4. Tuple
p exists and belongs to P by Definition 3. User w; can decrypt the content of
s[Resource] as she knows k;€K;, and the content of p[Resource] as she knows
iy i, €Ki because u;€acl(r), by Definition 2. Any authorized user, including
ui, can visit both & and P since she knows both the encryption key k used by
the data owner to encrypt nodes content to enable shuffling, and the co-domain
of the encoding functions.

Consider now a user u; s.t. acl(r)={u;,,...,u;, } and w;&{u;,,..., u; }. We
need to show that u; can access neither the plaintext content of r[Resources|,
nor index value r[I]. It is immediate to see that u; cannot access the plaintext
content of the tuple since it is encrypted with a key kx (Definition 3) that u;
does not know. In fact, by Definition 3, since u; does not belong to acl(r), she
does not know the corresponding encryption key. User u; cannot compute or
guess index value r[I] because r[I] is never represented in internal or leaf nodes
of the primary and secondary indexes; it is instead represented via its encoded
value (i.e., ¢(r[I]) in the primary index and ¢;(r[I]), Yu;€acl(r), in the secondary
index). Since the encoding function is, by Definition 1, non-invertible, u; cannot
exploit her knowledge of encoded values to retrieve the corresponding original
index values. Also, the traversal of the primary (and secondary) index does not
reveal u; anything about the original index values. In fact, by Definition 1, the
encoding function does not preserve the order relationship among values. Hence,
similar encoded values (e.g., represented in the same leaf) may not correspond
to similar original values (and vice versa).

Access confidentiality. We first consider the storing server as our observer and
analyze the protection offered by our proposal for the novel aspects introduced
with respect to the shuffle index proposal in [7]. Like in the original proposal, we
focus the analysis on the leaves of the shuffle index. In fact, nodes at a higher
level are subject to a greater number of accesses, due to the multiple paths that
pass through them, and are then involved in a larger number of shuffling oper-
ations, which increase their protection. A search operation on the primary and
secondary index operates as in the original proposal. Hence, it enjoys the pro-
tection guarantees given by the combined adoption of covers, repeated searches,
and shuffling. In the considered scenario, however, we operate with two indexes
and each search for a value entails an access to the secondary index followed by
an access to the primary index. The targets of the two accesses are related as
they are the encoding of the same original index value. However, both indexes
protect the target of accesses (as well as patterns thereof) and the covers and
repeated searches adopted for the two indexes are different. This practice pre-
vents the server from identifying any correspondence between the values in the
leaves of the two indexes.

We now consider a user as our observer. A user can observe the blocks accessed
by another user in a previous access (for repeated accesses), but she cannot
identify the target of the access. In fact, this set of blocks includes the target,
covers, and repeated accesses. Furthermore, each leaf stores multiple encoded
values, which correspond to index values that are not close to each other since
the encoding function is not order-preserving. A user can also possibly trace
shuffling operations, but this would require her to download the whole index at
each access.

Performance evaluation. The performance of the system is assessed as the
average response time experienced by an authorized client when submitting an
access request. System configurations providing a primary index and a secondary
index with fixed heights and different fan-outs exhibit similar average response
times for the client request. Moreover, varying the number of authorized users
and the size of the access control lists do not significantly influence the perfor-
mance of the system as long as the fan-out of the secondary index is chosen to
be reasonably large. Our experiments show that the latency of the network is
the factor with the greatest impact in a large-bandwidth LAN/WAN scenario.
To assess the performance of our algorithm, we configured the primary index
and the secondary index as 3-layer unchained B+-trees with fan-out 512, both
of them built on a numerical candidate key of fixed-length to allow the indexing
of more than 200K different values. The size of the blocks (nodes) of each in-
dex was 8KiB. The hardware used in the experiments included a client machine
with an Intel Core i5-2520M CPU at 2.5GHz, L33MiB, 8 GiB RAM DDR3 1066,
running an Arch Linux OS. The server machine run an Intel Core i7-920 CPU
at 2.6GHz, L38MiB, 12GiB, RAM DDR3 1066, 120GiB SSD disk running an
Ubuntu OS. The network environment was configured through the NetEm suite
for Linux operating systems to emulate a typical WAN interactive traffic with
a round-trip time modeled as a normal distribution with mean of 100ms and

standard deviation of 2.5ms. The performance figures obtained for accessing the
secondary and the primary index exhibit an average value equal to 750ms, which
compares favorably with the response time of 630ms experienced by the client
when accessing two plain encrypted indexes (i.e., without shuffling).

6 Related Work

Classical works on data outsourcing protect data (content) confidentiality
by wrapping a layer of encryption around them, and support query evalua-
tion through indexes (i.e., metadata complementing the outsourced encrypted
dataset) or through specific cryptographic techniques that support keyword-
based searches (e.g., [10,18]). Solutions for protecting access and pattern con-
fidentiality are based on Private Information Retrieval (PIR) techniques or
on dynamically allocated data structures, which change the physical location
where data are stored at each access (e.g., [1,5,6,7,8,13,14,16,17,19]). PIR so-
lutions are computationally expensive and do not protect content confiden-
tiality (e.g., [1,14]). The Oblivious RAM (ORAM) dynamic structure, which
has been extensively studied, guarantees content, access, and pattern confiden-
tiality (e.g., [19]). While preliminary proposals suffer from high computational
and communication overheads, recent attempt to make ORAM more practi-
cal in real-world scenarios (e.g., ObliviStore [16] and Path ORAM [17]). Be-
sides ORAM structure, also tree-based dynamically allocated structures have
been studied that provide a good trade-off between privacy and performance
(e.g., [5,6,7,8,13]). In particular, the shuffle index has first been proposed in [5]
and then extended to support concurrent accesses by different users [6], to op-
erate in a distributed scenario characterized by the presence of multiple (three)
storage servers [8], and to support insertion and removal of tuples in the out-
sourced relation [7]. All these solutions, however, are based on the implicit as-
sumption that a user can access either all the tuples in the leaves of the shuffle
index or none of them.

A related line of work addresses the problem of enforcing access control re-
strictions over outsourced data. These solutions are based on the idea that the
data themselves should enforce the access control policy. Current approaches fol-
low two different strategies: selective encryption (e.g., [3]), and attribute-based
encryption (e.g., [9]). Our work extends selective encryption proposals since we
combine the shuffle index with selective encryption to enable efficient access to
the data through a tree-based index, while not revealing to users index values
they are not authorized to access [4].

7 Conclusions

We have presented an approach to enrich the shuffle index with access control.
The enriched shuffle index provides guarantees of access confidentiality while en-
abling data owners to regulate access to their data selectively granting visibility
to users. Also, like the original proposal, it has limited performance overhead.

Acknowledgements. This work was supported in part by the EC within the
7TFP under grant agreement 312797 (ABC4EU) and within the H2020 under
grant agreement 644579 (ESCUDO-CLOUD).

References

10.

11.

12.

13.

14.

15.

Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Proc. of EUROCRYPT. Prague, Czech
Republic (May 1999)

. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:

Over-encryption: Management of access control evolution on outsourced data. In:
Proc. of VLDB. Vienna, Austria (September 2007)

De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Encryption policies for regulating access to outsourced data. ACM TODS 35(2),
12:1-12:46 (April 2010)

De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Private data indexes for selective access to outsourced data. In: Proc. of WPES
2011. Chicago, IL (October 2011)

De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Efficient and private access to outsourced data. In: Proc. of ICDCS. Minneapolis,
MN (June 2011)

De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Supporting concurrency and multiple indexes in private access to outsourced data.
JCS 21(3), 425461 (2013)

De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Shuffle index: Efficient and private access to outsourced data. ACM TOS 11(4),
19:1-19:55 (October 2015)

De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Three-server swapping for access confidentiality. IEEE TCC (2016), pre-print
Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for
fine-grained access control of encrypted data. In: Proc. of CCS. Alexandria, VA
(October-November 2006)

Hacigiimiis, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted data
in the database-service-provider model. In: Proc. of SIGMOD. Madison, WI (June
2002)

Jhawar, R., Piuri, V.: Fault tolerance management in iaas clouds. In: Proc. of
ESTEL. Rome, Italy (October 2012)

Jhawar, R., Piuri, V., Samarati, P.: Supporting security requirements for resource
management in cloud computing. In: Proc. of CSE. Paphos, Cyprus (December
2012)

Lin, P., Candan, K.: Hiding traversal of tree structured data from untrusted data
stores. In: Proc. of WOSIS. Porto, Portugal (April 2004)

Ostrovsky, R., Skeith, ITII, W.E.: A survey of single-database private information
retrieval: Techniques and applications. In: Proc. of PKC. Beijing, China (April
2007)

Samarati, P., De Capitani di Vimercati, S.: Cloud security: Issues and concerns.
In: Murugesan, S., Bojanova, I. (eds.) Encyclopedia on Cloud Computing. Wiley
(2016)

16. Stefanov, E., Shi, E.: ObliviStore: High performance oblivious cloud storage. In:
Proc. of IEEE S&P. San Francisco, CA (May 2013)

17. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.: Path
ORAM: An extremely simple Oblivious RAM protocol. In: Proc. of CCS. Berlin,
Germany (November 2013)

18. Wang, C., Cao, N., Ren, K., Lou, W.: Enabling secure and efficient ranked keyword
search over outsourced cloud data. IEEE TPDS 23(8), 1467-1479 (2012)

19. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: Practical access
pattern privacy and correctness on untrusted storage. In: Proc. of CCS. Alexandria,
VA (October 2008)

A Access Execution Algorithm

Figure 6 illustrates the algorithm, executed at the client side, searching for a
value in the primary and secondary index. The algorithm operates as discussed
in Section 4 and relies on function Search to access the primary and secondary
index structures.

Function Search receives as input the shuffle index 7 on which it should
operate, the index value target_value target of the access, and the number
num_cover of covers to be adopted. It returns the tuple r with index value
target_value (if any). The function randomly chooses num_cover—+1 values in the
domain of the (primary or secondary) index and it downloads from the server
the identifiers of the blocks visited by the previous search (lines 1-3). It then
visits the shuffle index level by level, starting from the root. At each level level,
the function determines the identifiers of the nodes along the path to the target,
covers, and repeated access (lines 5-8). If the block along the path to the target
has been accessed by the previous search, it is repeated (an additional cover is
used). The function downloads from the server and decrypts the blocks of inter-
est (line 13) and shuffles their content (line 16). To guarantee the correctness of
the search and of the index structure, the function updates the references to chil-
dren of the nodes accessed at level level-1 (which are the parents of the nodes
shuffled at level level), variables target, repeated, and cover[l,..., num_cover]
(lines 17-21). The nodes at level level-1 are then encrypted and written at the
server. The identifiers of the nodes accessed at level level are then used to update
repeated _search[level] (line 23). Once the leaf node where target_value is possibly
stored has been reached, the function extracts and returns the tuple with index
value equal to target_value (lines 25-27).

Given the request by user u; to search for value target_value, the algorithm
computes the user-based mapping ¢;(target_value) and invokes function Search
to search for such a value in the secondary index (lines 1-4). It decrypts the
tuple retrieved by function Search, obtaining the encoded value ((target_value)
for target_value (line 5). If such a value is not NULL (meaning that there is a
tuple that u; can access with index value equal to target_value), the algorithm
invokes function Search over the primary index, looking for ¢(target_value). It
then computes/retrieves the encryption key necessary to decrypt the retrieved
resource and decrypts it. It returns the plaintext resource to the user (lines 7-11).

If the result of function Search over the secondary index is NULL, the algorithm
runs a fake search over the primary index (not to disclose any information to
other users and to the server about u;’s privileges) and returns an empty resource
to the user (lines 12-14).

/* P, S : primary and secondary index */

/* num_cover : number of cover searches */

/* wi,k; : user performing the access and her key */

/* hash : non-invertible cryptographic hash function */

INPUT target_value : value to be searched in the shuffle index

OUTPUT resource with index value target_-value

MAIN
. /* Phase 1: compute the user-based mapping ¢;(target_value) */

1:
2. target_idz := hash(target_value, k;)
3: /* Phase 2: search ¢;(target_value) in the secondary index */
4: s := Search(S,target_idz,num_cover)
5. target_idez := decrypt s[Resource] with k; /* encoded value t(target_value) */
6: /* Phase 3: search t(target_value) in the primary index */
7: if target_ide # NULL then
8: p := Search(P,target_idz,num_cover)
9: k := retrieve key k with label ¢, where p[Resource]=({,content)
10: result := decrypt content with k
11: return(result)
12: else target_idz := randomly choose a value for ((target-value)
13: Search(P,target_idz,num_cover)
14: return(NULL)
SEARCH(T ,target_value,num_cover)
1: repeated_searchl0, . .., T .height] := download and decrypt the blocks of accesses for T

2:randomly choose cover_value[l...num_cover+1] for target-value in the co-domain of hash
3:repeated := repeated_search[0] /* identifier of the root block */

4:for level:=1...T .height do

5. /* identify the blocks to read from the server */

target := identifier of the node at level level along the path to target-value

6:
7 cover[i] := id of the node at level level along the path to cover_valueli], i=1...num_cover+1
8: repeated := block identifier in repeated_search[level] that is a descendant of repeated
9: if target is the identifier of a node in repeated_search|[level] then

10: repeated := target, num-_cover := num-_cover—1

11: ToGet := {target,repeated} U cover[l...num_cover] /* ids of the blocks to be downloaded */
12: /* read blocks */

13: Nodes := download and decrypt the blocks with identifier in ToGet

14: /* shuffle nodes */

15: let m be a permutation of the identifiers of nodes in Nodes

16: shuffle nodes in Nodes according to

17: update pointers to children of the parents of nodes in Nodes according to m
18: encrypt and write at the server nodes accessed at iteration level — 1

19: target := w(target)

20: cover[i] := mw(coverl[i]), i=1...num_cover+1

21: repeated := m(repeated)
22: /* update the repeated search at level level */
23: repeated_search[level] := ToGet

24: encrypt and write at the server nodes accessed at iteration 7 .height and repeated_search
25: let n€ Nodes the node with n.id=target

26: let 7€n be the tuple such that r[I]=target_value

27: return(r)

Fig. 6. Shuffle index access algorithm

