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Abstract We discuss some of the main problems related to allowing data owners to
share their data with interested consumers in a controlled way in the context of digital
data markets. Since resorting to the cloud for data storage reduces the burden at the
owner’s side, we first address the problem of supporting owners in selecting suitable
cloud plans for storing their data collections. To this end, we illustrate some recent
proposals for the specification and enforcement, in a friendly and flexible way, of the
owners’ requirements and preferences that should guide the selection process. We
also address the problem of ensuring that data owners remain in control of their data
and that they receive rewards for making their data available to others, and illustrate
recent proposals addressing it.

1 Introduction

It goes without saying that data is the oil fueling a constantly growing number of
activities and businesses of our society. Data are increasingly used to extract useful
information and to create knowledge and predictions, generating an immense profit
for the parties using them. Often, this happens without the involved users (i.e., the
subjects behind the data themselves) being aware of their data being collected and
used, and even more frequently without them being benefiting from the profits that
directly derive from the usage of their data [1]. This has fostered a vision towards
a fairer scenario, where individuals are first-class citizens and active participants
of the data sharing ecosystem. An interesting direction concerns the development
of digital data markets, where datasets can be traded between their owners and
interested consumers (i.e., subjects wishing to access data) to generate knowledge
and profits and where: i) sharing is controlled by the data owners (who can decide

Sabrina De Capitani di Vimercati · Sara Foresti · Giovanni Livraga · Pierangela Samarati
Università degli Studi di Milano, 20133 Milano, Italy
e-mail: {sabrina.decapitani, sara.foresti, giovanni.livraga, pierangela.samarati}@unimi.it

1
The final publication is available at Springer via https://doi.org/10.1007/978-3-030-87049-2_23



2 S. De Capitani di Vimercati, S. Foresti, G. Livraga, P. Samarati

whether to share a piece of their data, and with whom); and ii) the owners get a reward
for sharing their data with consumers (e.g., [2]). The awareness of the importance of
these aspects is becoming more and more common among individuals. It is then easy
to envision the possibility of such data markets being realized and possibly used.

In this context, the first aspect that owners should address concerns reasoning
on how and where their data collections should be stored, for being easily (and
selectively) available to interested data consumers. A possible approach for limiting
the overhead at the owners’ side consists in delegating data storage to external third
parties. A natural possibility is then represented by outsourcing data collections to
the cloud, leveraging one or more cloud plans available from the rich and diverse
cloud market characterizing today’s society. In this way, the overhead of storing and
managing data is pushed from their owners to the chosen cloud providers, reducing
owners’ burden while, at the same time, enjoying the benefits of the cloud for making
data available 24/7 from everywhere in the world. In this context, selecting the most
suitable plan among the multitude available in the market is a critical problem, since
different plans can exhibit different features and characteristics that can make them
suitable to different application scenarios. Seemingly a non-critical and easy-to-solve
problem, it is unfortunately far from being trivial. As a matter of fact, it requires a
careful analysis of the features that can make the difference among plans, and a way to
evaluate those features against possible requirements and preferences of users. It can
also possibly require some technical skills or training, since the scenario is clearly
characterized by cutting-edge ICT solutions. Selecting the right cloud plan hence
represents a key factor for realizing an attractive digital data market: it is intuitive
that if the market is built on cloud plans showing, for example, frequent downtimes
or high latency, this would negatively impact the experience of all involved actors.
In this chapter, we address such selection problem and illustrate recent approaches
that can be adopted for cloud plan selection.

Once data have been moved to the cloud, they can be easily searched for and
accessed by interested consumers. To ensure that owners maintain control over the
sharing of their data, two aspects need to be considered. The first aspect, common
to any scenario where a data owner resorts to external (and hence possibly not fully
trusted) platforms for storing and managing data, consists in guaranteeing that each
piece of data is shared with a subject (e.g., a consumer or the cloud provider) only
with the will of its owner. This also requires to ensure that owners know, at any
time and with high confidence, which consumer has had access to which portion
of their data. A second aspect to be addressed, more specific to market scenarios,
concerns the management of rewards to data owners for contributing their data. This
is a critical aspect, especially when the interacting parties (the data owner, the cloud
provider, and the interested data consumers) do not fully trust each other. In this
chapter, we discuss these two aspects and illustrate recent approaches for solving
them.

The reminder of this chapter is organized as follows. Section 2 addresses the
problem of specifying requirements and selecting cloud plans for realizing a digital
data market. It illustrates recent proposals based on a flexible specification language
for formulating requirements, possibly using natural language expressions. Section 3
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focuses on the issue of ensuring owner-controlled sharing of data. It illustrates a
recent proposal building on selective owner-side encryption to ensure that owners
remain in control of who can access which portions of their data collections. Section 4
addresses the problem of the management of rewards to data owners. It illustrates a
possible solution building on blockchain and smart contracts to ensure that owners
receive an agreed reward whenever an interested consumer gets access to some of
their data. Finally, Section 5 concludes this chapter.

2 Cloud plan selection

A first problem to be addressed when moving data collections to the cloud concerns
the selection of the most suitable set of cloud plans for data storage. This demands
the evaluation of the features of the different candidate cloud plans with respect
to possible requirements and preferences the owner could have, in turn demanding
for approaches supporting owners in formulating such requirements. In this sec-
tion, we first discuss some basic concepts and approaches addressing this problem
(Section 2.1). We then illustrate recent solutions that permit to specify and enforce
arbitrary requirements and preferences (Section 2.2), possibly leveraging natural
language expressions (Section 2.3).

2.1 Basic concepts

The first aspect to address in our scenario concerns determining the features, among
those characterizing the different plans, which are relevant to the needs of the owner,
and which can be used to drive the selection process. As an example, intuitive fea-
tures can encompass the performance or the availability characterizing the different
plans [3, 4]. Traditional proposals for cloud plan selection are based on Quality-of-
Service (QoS) attributes that are guaranteed in Service Level Agreements (SLAs)
by the providers for their services (e.g., [5, 6, 7]). In this regard, the scientific com-
munity has proposed several solutions for selection. These include the evaluation of
low-level characteristics (such as CPU and network throughput) and cost of avail-
able plans (e.g., [8]), the definition of standardized bodies of more complex QoS
attributes (e.g., [9]), the combination of QoS evaluation and other criteria such as
subjective assessment and personal/past experience (e.g., [10, 11, 12, 13]). It is in-
teresting to note that some approaches have suggested to evaluate the user-side QoS
rather than the provider-side QoS, meaning the values of QoS attributes measured at
the user side (i.e., at the owner) rather than those declared by providers (e.g., [14]).
Also, specific approaches have put forward the idea of considering security-related
attributes in the selection (e.g., [15, 16, 17, 18]).

Recently, the scientific community has started to investigate the possibility of
supporting owners in arbitrarily selecting the features and characteristics over which
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P1 P2 P3 P4

prov provA provA provA provB cloud provider
loc locB locA locB locB geographical location of servers
encr AES AES AES 3DES adopted encryption
band 25 25 20 15 bandwidth (Gb/s)
test med top top low penetration test authority
cert certC certA certC certB security certification

aud    1Y security auditing frequency

Fig. 1 Abstract representation of cloud plans

their requirements should be defined (e.g., [19, 20]). This paradigm shift is typically
based on the existence of a broker [19], that is, an entity in charge of collecting and
understanding such arbitrary requirements and assessing their satisfaction by the
candidate plans. By permitting the definition of arbitrary requirements on arbitrary
features (clearly, representing characteristics that can be evaluated), such proposals
allow for greater flexibility and user-friendliness than traditional approaches that
are limited to a pre-defined set of features. In the remainder of this section, we
illustrate two recent proposals that pursue this direction by allowing owners to
leverage a friendly specification language [19] and natural language expressions [21]
to formulate arbitrary requirements and preferences.

2.2 Crisp requirements and preferences

In this section, we illustrate how it is possible for data owners to easily formulate
requirements to guide the selection of the cloud plan that best fits their needs. We
will focus on the framework in [19], since it proposes a flexible and user-friendly
language for supporting the specification of both requirements and preferences (i.e.,
hard and soft constraints, respectively) that can then be used to identify those plans
that can be considered acceptable (requirements) and, among the acceptable ones,
the ones that are preferable (preferences). As mentioned in Section 2.1, the proposal
in [19] permits to formulate requirements and properties over arbitrary attributes

of interest (configuration parameters) such as those appearing in the SLAs of the
different plans, as well as metadata associated with them (e.g., the provider of a
plan, or the nationality of the provider). To this end, plans are represented as vectors
with one element for each attribute of interest reporting the value that such attribute
assumes for the plan (or the special value ‘’ if the value of such attribute is
unknown/unspecified for the plan). Figure 1 presents an example of such vectors for
four plans P1, P2, P3, and P4, defined over seven different attributes. For instance,
P1[prov] = provA means that plan P1 is offered by provider provA. P1[aud] = 
means that the frequency of security auditing for P1 is not specified/unknown.
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Complex requirement Semantics

any(b1, . . . , bn) alternatives among base requirements
all(b1, . . . , bn) sets of base requirements to be jointly satisfied
if all(b1, . . . , bk ) then any(bk+1, . . . , bn) conditional requirements
forbidden(b1, . . . , bn) forbidden configurations
at_least(m, (b1, . . . , bn)) at least m base requirements (m < n)
at_most(m, (b1, . . . , bn)) at most m base requirements (m < n)

(a)

b1 : prov(provA, provB, provC)
b2 : ¬band(0.2, 5)
c1 : all({loc(locA, locB), ¬encr(DES)})
c2 : any({test(top, med), cert(certA, certB)})
c3 : any({loc(locA), cert(certC)})
c4 : if all({loc(locB), encr(3DES)) then any(aud(3M, 6M), cert(certA))
c5 : if all(test()) then any(cert(certA))
c6 : forbidden({¬loc(locA), test(low)})
c7 : at_most(2, {prov(provB), band(15), encr(3DES)})
c8 : at_least(2, {loc(locA), encr(AES), prov(provA, provB)})

(b)

Fig. 2 Complex requirements supported by the language in [19] (a) and an example of a set of
requirements over the plans in Figure 1 (b)

2.2.1 Requirements and preferences specification

The proposal in [19] builds on the idea that requirements and preferences should
identify the values of the attributes that are considered mandatory or preferable for
a plan to satisfy the needs of the data owner. The building block for the definition
of requirements is the concept of base requirement, which is denoted by b. Given
a set {v1, . . . , vn} of values in the domain of an attribute attr, a base require-
ment on attr imposes that attr can assume (attr(v1, . . . , vn)) or cannot assume
(¬attr(v1, . . . , vn)) such a set of values. For instance, a base requirement of the
form prov(provA, provB, provC) states that, to be acceptable, a plan must be offered
by provider provA, provB, or provC.

Starting from base requirements, the specification language in [19] permits to
express a variety of complex requirements, summarized in Figure 2(a). An any

requirement models alternatives among base requirements, and demands that at
least one base requirement in the set {b1, . . . , bn} be satisfied. Similarly, an all

requirement demands that all the listed base requirements be satisfied. A conditional
if-then requirement demands that if all the requirements appearing in the if part are
satisfied, then at least one of those in the then part must be satisfied. A forbidden

requirement demands that the involved requirements must not be satisfied together
in a plan, since they represent a forbidden configuration. An at_least (at_most,
respectively) requirement demands that at least (at most, respectively) m out of
the n related base requirements be satisfied. Figure 2(b) illustrates an example of
a set of base (b1 and b2) and complex (c1, . . . , c8) requirements specified over the
plans in Figure 1. For instance, base requirements b1 and b2, respectively, demand
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Fig. 3 Preferences for the plans in Figure 1

that an acceptable plan must be offered by provider provA, provB, or provC (b1),
and must not have a bandwidth equal to 0.2 Gb/s or 5 Gb/s (b2). Complex all

requirement c1 states that a plan can be considered acceptable only if its servers are
geographically located in locA or locB, and if the adopted encryption is different
from DES. Complex forbidden requirement c6 states that a plan whose servers are
not located in locA and for which the penetration test is enforced by the authority
named ‘low’ cannot be considered acceptable.

As for the preferences, the framework in [19] permits two levels of specification,
on the attribute values and on the attributes themselves. In particular, preferences
on attribute values model the fact that, for a certain attribute, some values are
preferred over other ones. A natural and intuitive interpretation can then model
such preferences as a total order relationship among sets of values that the different
attributes can assume. In other words, specifying preferences on attribute values can
be done by first partitioning the values that an attribute can assume (indeed, those
that are acceptable according to the requirements) in sets of equivalently-preferred
values, and then specifying an order relationship among these value sets. Such kind
of preference can be graphically represented as a hierarchy where, for example,
preferred elements appear higher than less preferred ones. Figure 3 illustrates an
example of preferences over attribute values for the plans in Figure 1. Here, for
example, value locA is preferred over value locB for attribute loc. The figure also
reports, for each value, its score (used in the enforcement phase) given by its relative
position in the induced ranking. Given the number h of partitions in which the
values are grouped, the least preferred value(s) has score of 1/h. Going up in the
hierarchy, scores increase of 1/h at each step. The most preferred value(s) has then
a score equal to 1. To illustrate, consider attribute prov in Figure 3: its values have
been partitioned in three sets (h = 3), and hence value provB (the least preferred)
has score of 1/h = 1/3. Value provA, immediately better than provB, has score
1/3 higher than that of provB, and hence equal to 1/3 + 1/3 = 2/3. Value provC,
immediately better than provA, has score 1/3 higher than that of provA, and hence
equal to 2/3 + 1/3 = 1.

Preferences on attributes, on the other hand, can be used to specify the rela-
tive importance that the data owner assigns to the attributes. The proposal in [19]
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provA locA AES 25 top certA –
1/4

provA locB AES 20 top certC –
1/2 3/4 1/4

provA locB AES 25 med certC –
1/2 1/4

provA locA AES 25 top certA –
2/3 1 1 1 1 1 1/4

provA locB AES 25 med certC –
2/3 1/2 1 1 3/4 3/5 1/4

provA locB AES 20 top certC –
2/3 1/2 1 3/4 1 3/5 1/4

provA locA AES 25 top certA –
2/3 1 1 10 1 1 1/4

provA locB AES 25 med certC –
2/3 1/2 1 10 3/4 3/5 1/4

provA locB AES 20 top certC –
2/3 1/2 1 15/2 1 3/5 1/4
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(a) Pareto-based ranking
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(b) Distance-based rankings

Fig. 4 Rankings of plans P1, P2, and P3 in Figure 1 according to the preferences in Figure 3

models them through a weight function assigning higher weights to more important
attributes. Figure 3 illustrates also an example of weights assigned to the attributes
of our running example, reported as the number appearing in brackets close to the
name of the attributes. In this example, all attributes have weight 1, except attribute
band, which has weight 10.

2.2.2 Requirements and preferences evaluation

As mentioned above, the framework in [19] leverages requirements to determine
acceptable plans, which are then ranked according to how much they respond to
preferences.

A plan can be considered acceptable if and only if it satisfies all the stated
requirements. The approach in [19] for determining the acceptable plans is based
on a Boolean interpretation of the requirements, which also offers the possibility of
checking whether the overall set of requirements is satisfiable or there are conflicting
requirements (e.g., a requirement demands a certain value for an attribute, and
another requirement excludes that value from those acceptable). With reference to
the plans in Figure 1 and the requirements in Figure 2(b), it is easy to see that plans
P1, P2, and P3 are acceptable, while P4 is not (since it does not satisfy requirements
c3, c4, c6, c7, c8).

As for preferences, the solution in [19] proposes different approaches for ranking
plans. The first, and more intuitive, is a Pareto-based ranking, where a plan Pa is
ranked better then a plan Pb iff Pa shows values that are equally or more preferred
than those showed by Pb for all attributes and, for at least one attribute, Pa shows
a value that is preferred than that showed by Pb. For instance, as illustrated in
Figure 4(a), plan P2 Pareto-dominates (and is hence preferable to) P1 and P3, which
are instead not comparable between them. To overcome the possibility of returning
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incomparable solutions, a distance-based approach can be used instead of the Pareto-
based ranking. The distance-based approach is based on the notion of ideal plan,
a plan that shows the most preferred values for all attributes. The ‘closer’ a plan
is to such an ideal plan, the better it satisfies the stated preferences. Plans are then
modeled as points in an m-dimensional space, with m the number of attributes
characterizing plans. Given a plan, its position in the space is given by a set of
coordinates being the scores assigned to its attribute values based on the ranking
induced by the preferences. For instance, plan P2 has coordinates [2/3, 1, 1, 1, 1,
1, 1/4] given by the scores of its attribute values in the ranking in Figure 3 (e.g.,
2/3 is the score associated with value P2[prov] = provA). Clearly, the values of the
coordinates of the ideal plan will be, by definition, 1 for all dimensions. Leveraging
such interpretation of plans it is then immediate, for example through a simple
computation of the Euclidean distance, to evaluate how close the plans are to the
ideal plan. Such distance-based approach also permits to consider the preferences on
attributes, by simply weighting the different elements in the coordinates of a plan by
the weight given to the corresponding attribute. Figure 4(b) graphically illustrates the
distance-based rankings over the acceptable plans of our running example (where the
figure on the right-hand side considers attribute weights). In the figure, the distance
of each plan to the ideal plan is reported in boldface on the right-hand side of each
plan in the ranking.

2.3 Requirements with natural language

The approach illustrated in Section 2.2 provides data owners with a flexible and user-
friendly language for specifying arbitrary requirements and preferences. However,
such approach can still show the complication, intrinsic to the definition of crisp
and precise requirements, of demanding domain-specific technical knowledge to
fully understand the attributes characterizing cloud plans and the meaning of their
values. As a matter of fact, requirement evaluation crosses out plans simply based
on acceptable/unacceptable values. Whenever the owner formulating requirements
is not technically skilled or trained, this may represent a barrier to requirement
specification, ultimately leading to non-optimal solutions. Intuitively, it would be
easier for non-skilled owners to specify their requirements using linguistic labels
(such as ‘high’ or ‘low’ or ‘important’) instead of crisp values, and possibly on
high-level properties (such as ‘security’, or ‘performance’) instead of on attributes
representing low-level (configuration) parameters such as those in SLAs. In this
section, we present how it is possible to support owners in an easy and intuitive
requirement specification, leveraging natural language and high-level properties [21].
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2.3.1 Requirements specification

The proposal in [21] builds on the definition of abstract parameters and abstract

concepts. Abstract parameters permit owners to specify their requirements over low-
level configuration parameters (e.g., attribute bandwidth used in the example for
the framework in Section 2.2) through natural language expressions. For instance, an
owner could state a requirement for ‘high’ bandwidth, without specifying a precise
threshold and using instead the linguistic label ‘high’. Abstract concepts complement
abstract parameters by representing higher-level abstractions over parameters. For
instance, an owner could state a requirement over performance, which intuitively
represents an abstraction over lower-level parameters throughput and bandwidth.
Owners (and especially non-skilled or non-trained ones) can then operate on abstract
parameters and concepts to specify in a friendly and flexible manner their desiderata.

Operating with abstract parameters and concepts requires the existence of a set of
linguistic labels that can be associated with them as values (in contrast to domain-
specific values). Such sets can be arbitrarily defined in such a way to ‘quantify’ a
parameter or a concept. As an example, abstract parameter bandwidth could be
associated with a set {small, large} of linguistic labels. Similarly, abstract concept
performance could be associated with a set {low, med, high} of linguistic labels.

As already mentioned, abstract concepts and parameters are clearly strictly con-
nected, since concepts represent abstractions over parameters, more easily accessible
by non-skilled owners. For instance, with reference to the example above, a high

throughput and a large bandwidth can result in a high performance value. Fol-
lowing this intuition, the relationship between concepts and the involved parameters
is modeled through a set of implication rules, specifying conditions on which com-
bination of values (linguistic labels) for parameters imply a given value (linguistic
label) for concepts. To avoid ambiguities, each label associated with a concept should
be regulated by an implication rule. For instance, since concept performance is
associated (in the examples above) with three linguistic labels, it is governed by three
inference rules:

〈throughput = high〉 ∨ 〈bandwidth = large〉 =⇒ 〈performance = high〉;
〈throughput = med〉 =⇒ 〈performance = med〉;
〈throughput = low〉 ∨ 〈bandwidth = small〉 =⇒ 〈performance = low〉.

Equipped with a vocabulary for reasoning over parameters and concepts with lin-
guistic labels, it is then possible to formulate requirements. Intuitively, in line with
the ‘quantitative’ approach permitted for parameters and concepts, requirements
represent how much a certain combination of values (linguistic labels) for the ab-
stract parameters and concepts satisfies the owner formulating them. The ratio-
nale is to support the specification of rules that say that a certain combination of
characteristics is, for example, highly satisfactory, while another combination is
not satisfactory. Requirements are then modeled as the implication rules above-
mentioned: a combination of linguistic expressions over a set of parameters and
concepts implies a certain linguistic expression (e.g., ‘low’ or ‘high’) of ad-hoc
variable satisfaction, modeling the overall satisfaction for a plan. For instance,
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“〈performance = high〉 =⇒ 〈satisfaction = high〉” is an example of a require-
ment, defined over concept performance, stating that a high level of performance
highly satisfies the owner.

2.3.2 Requirements evaluation

To evaluate the specified requirements, it is necessary to establish a mapping between
the elements included in the requirements (i.e., expressions using natural language
and possibly referred to abstract concepts) to the actual (crisp) characteristics of the
different plans. This requires to map: i) concepts to actual configuration parameters;
and ii) linguistic labels to crisp (domain-specific) values. An intuitive approach for
this second problem could involve associating with a certain linguistic label a set
of crisp values. For instance, given the set of crisp values that can be assumed by
parameter bandwidth (e.g., [0.2Gb/s, 25Gb/s]), one may partition such set in disjoint
intervals (e.g., [0.2Gb/s, 10Gb/s), [10Gb/s, 25Gb/s]), and associate each interval with
a linguistic label (e.g., [0.2Gb/s, 10Gb/s)with small and [10Gb/s, 25Gb/s]with large).
This solution, while indeed viable, carries the drawback of creating sharp boundaries
among the sets of values that correspond to the different linguistic labels. With
reference to the example above, a sharp boundary is created around value 10 Gb/s: a
value of 9.99Gb/s would be considered small, while the slightly larger value 10Gb/s
would be considered large. A more flexible approach, which enjoys the advantage of
also providing with a means to manage the correspondence between abstract concepts
and actual parameters, can be based on the adoption of fuzzy logic [21]. Abstract
parameters and concepts can be interpreted as fuzzy variables, and the adopted
linguistic labels as fuzzy sets. Fuzzy variables are variables that can assume crisp
values and linguistic labels, while fuzzy sets are sets whose elements have a degree of
membership, expressed as a value in the continuous interval [0, 1]. Given an element,
in classical set theory it either belongs or does not belong to a set. In fuzzy set theory,
an element belongs to a fuzzy set with a certain degree of membership (and of course
can belong to different fuzzy sets, possibly with different degrees of membership).
The degree of membership µ of elements to a fuzzy set is governed by the definition
of membership functions, which can assume different shapes and permit a gradual
assessment of the membership of elements to sets. Figure 5(a) illustrates an example
of membership functions that can be associated with parameter bandwidth, one for
each linguistic label that can be associated with it (i.e., small and large). As it can
be seen in the figure, the functions operate over the domain of crisp values that can
be assumed by the parameter, and define how much a certain value belongs to the
fuzzy set represented by the linguistic labels, meaning how much a certain value
is ‘representative’ of each linguistic label. For instance, consider a value x in the
domain [0.2, 25] of bandwidth and the membership function regulating label large:
it is immediate to see that the more value x grows, the more it belongs (i.e., the
higher its degree µ of membership) to the fuzzy set large. Similarly, considering
the membership function regulating label small, the more value x grows, the less it
belongs (i.e., the lower its degree µ of membership) to the fuzzy set small.
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Fig. 5 An example of membership functions for parameter bandwidth (a), concept performance
(b) and the ad-hoc variable satisfaction (c)

Abstract parameters have then a natural interpretation in terms of fuzzy logic,
establishing a correspondence (through membership functions) between the linguis-
tic labels adopted in the requirements and the original crisp values assumed by a
configuration parameter. A similar approach can be used also for managing abstract
concepts and the variable satisfactionused in the requirements with the note that,
being abstractions, they do not have a natural domain of crisp values. An intuitive
approach is then to arbitrarily define their domains, for example in the continuous
interval [0, 1], and then again establish a mapping through membership functions.
Figures 5(b)–(c) illustrate examples of membership functions for the abstract concept
performance and for the ad-hoc variable satisfaction.

To quantify concepts and the satisfaction of the owner as well as to reason
about and evaluate the requirements, the proposal in [21] uses fuzzy logic and, more
precisely, fuzzy inferences. In a nutshell, a fuzzy inference process takes as input a
(set of) crisp value(s), interprets it (them) with a fuzzy modeling as illustrated before,
evaluates a set of if-then rules based on such fuzzy modeling obtaining a (fuzzy)
result, and returns such result after having transformed it again into a crisp value.
Fuzzy inference can then easily provide the framework in which evaluating require-
ments: a first inference process leverages the implication rules linking concepts and
parameters as the if-then rules of the process. It takes as input the crisp parameter
values characterizing the plans under analysis and quantifies the concepts used in
the requirements. A second inference process leverages instead the requirements
themselves as if-then rules. It takes as input the quantification of the concepts done
in the first inference (and, if present in the requirements, also the crisp values for
parameters) and quantifies the level of satisfaction.

To illustrate the working of the fuzzy inference process, consider requirement
“〈performance = high〉 =⇒ 〈satisfaction = high〉”, taken from a set of re-
quirements, and suppose that concept performance depends on low-level parame-
ters throughput and bandwidth. Clearly, candidate plans exhibit values (e.g., in
their SLAs) for throughput and bandwidth but not for performance. The frame-
work in [21] would then apply a first inference process as follows: i) the crisp values
for throughput and bandwidth are taken as input; ii) the inference rules governing
concept performance are used as if-then rules and applied to the (fuzzified) input
values; iii) depending on the input values and on the evaluated rules, a quantification
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Fig. 6 Fuzzy inference processes for evaluating requirements1

of performance is then produced. With such value for performance, a second
inference process would then operate to assess owner’s satisfaction. The second in-
ference process operates exactly as the first one, with the difference that it takes as
input the quantification of performance and operates on it with the rules expressed
in the requirements. Figure 6 graphically illustrates this two-steps approach. We
close this section with the note that the inference processes require the definition of
different domain-specific operations, such as the fuzzification of crisp values and the
defuzzification of fuzzy values, which can be performed adopting different existing
approaches.

3 Controlled sharing

While moving data to the cloud reduces the overhead left at the owners’ side, it
also causes the owners to lose direct control over their data and on who can access
them [22]. To ensure a fair data market, it is crucial to empower the owners with
control over the sharing of their data, and to guarantee that they receive rewards
for making their data available to others (which is addressed in Section 4). In this
section, after briefly recalling some basic concepts (Section 3.1), we illustrate a
recent approach enabling controlled sharing. This approach allows owners to share
their data (to which, for the sake of generality, to which we refer with the term
‘resources’) to interested consumers ensuring that owners remain in control of who
can access which resources (Section 3.2).

3.1 Building blocks

The solution in [23] ensures controlled data sharing by leveraging two main building
blocks: i) selective owner-side encryption and ii) key derivation.

1 ©2019 IEEE. Reprinted, with permission, from [21].
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Fig. 7 An example of key derivation structure (a) and token catalog (b)

Selective owner-side encryption. Selective owner-side encryption protects the con-
fidentiality of the resources to which it is applied through encryption. It is particularly
appealing in scenarios of selective sharing as it consists in encrypting, at the owner-
side, different resources with different keys. Keys are then distributed to consumers
in such a way that each consumer can decrypt all and only the resources she is au-
thorized to access. Since the encryption layer is applied at the owner side, resources
self-enforce the access restrictions defined over them. Also, owner-side encrypted
resources are protected against the cloud provider storing them as, without encryp-
tion keys, it cannot perform decryption. This represents a convenient feature in the
considered scenario, since the owner can enjoy the benefits of resorting to the cloud
for data storage while resting assured that only consumers knowing the encryption
keys will be able to decrypt resources. A straightforward solution to enforce access
restrictions through selective encryption consists in encrypting each resource with a
different key, and in distributing to each consumer the keys of the resources she can
access. However, this practice would imply a considerable key management burden
for owners and consumers. To mitigate such overhead, the proposal in [23] leverages
key derivation.

Key derivation. Key derivation permits to derive an encryption key ky from the
knowledge of another encryption key kx and of a public label ly (i.e., a piece of
information) associated with ky [24, 25]. The derivation of ky from kx is enabled
by a public token tx,y computed as ky⊕H(kx, ly), with ⊕ the bitwise xor operator,
and H a cryptographic hash function. The derivation of ky from kx can be direct,
leveraging a single token tx,y , or indirect, through a chain 〈tx,z1, . . . , tzn,y〉 of tokens.
Key derivation structures can be graphically represented as directed acyclic graphs,
where vertices represent encryption keys (and their labels), and edges represent
tokens among them. Since tokens do not need to be kept private, they can be
physically stored in a public catalog T . Figure 7 illustrates an example of derivation
among three keys kα, kβ , and kγ (Figure 7(a)) and the corresponding token catalog
T (Figure 7(b)) . For simplicity, in our examples, we use x to denote the label of
key kx and, in the figures, we use the label x of key kx to denote the corresponding
vertex vx (e.g., vertex vα, denoted α, in Figure 7 represents key kα and its label α). In
the following, when clear from the context, we will use the terms keys and vertices
(tokens and edges, respectively) interchangeably.
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3.2 Ensuring controlled sharing

We now illustrate how selective owner-side encryption and key derivation can be
used to effectively enforce the authorization policy specified by the data owner, hence
providing for owner-controlled sharing in the data market.

In principle, the authorization policy can be represented in different ways, in-
cluding access control lists (reporting, for each resource, the list of consumers au-
thorized for access) as well as capability lists (reporting, for each consumer, the list
of authorized resources). Given the dynamic scenario considered, characterized by
consumers leveraging the market to purchase sets of resources, it is natural to think
in terms of sets of resources and hence to represent authorizations as capability lists.
Given a consumer c, cap(c) represents the set of resources for which c has purchased
access (see Section 4). The capability cap(c) is then updated whenever c purchases
access to a new resource r and is then authorized for r (i.e., cap(c):=cap(c)∪{r}).

Ensuring controlled sharing requires that the content of the resources remains
protected and only authorized consumers can access it. Moreover, despite resorting
to the cloud for storage and hence losing direct control over their resources, the
data owners must be aware, at all times, of which consumers have access to which
resources. Selective owner-side encryption (Section 3.1) represents a promising
solution that enjoys the advantage of maintaining resources confidential also to the
cloud provider. We will now illustrate how sharing of resources can be controlled.

With selective owner-side encryption, the owner needs to agree a key kc with
every consumer c with which she wants to share resources. To grant c access to the
resources in her capability list cap(c), the owner publishes a set of tokens enabling
the derivation of the keys used to encrypt the resources in cap(c) starting from kc . A
(basic) key derivation structure includes a vertex vc for each consumer c (representing
kc , which is known to c), a vertex vr for each resource r (representing kr , which is
used to encrypt r), and a set of edges (representing tokens for derivation) connecting,
for each consumer c, vertex vc to vertex vr for each r ∈ cap(c). This means that it is
possible to derive, from key kc , the encryption key kr for each resource r in cap(c).
To keep the size of the token catalog under control, the key derivation structure can
be enriched with additional vertices representing keys used for derivation purposes
only. In line with the authorization policy being represented as capability lists, such
additional vertices represent sets of resources [23]. A possible approach for correctly
enforcing an authorization policy in a market consists in connecting vertices through
edges (i.e., keys through tokens) in such a way that [23]:

• for each consumer c, vertex vc is connected to vertex vcap(c) representing the set
of resources in her capability list;

• each vertex vRi , representing a set Ri of resources, is directly connected to other
vertices according to the subset containment relationship (i.e., for each edge
(vRi, vR j ), Ri ⊃ Rj) and in such a way that set Ri is fully covered by the resources
represented by these other vertices;

• for each consumer c, there is a path connecting vertex vc to all vertices vr such
that r∈cap(c).



Towards Owner-Controlled Data Sharing 15

Consumer c cap(c)

w α, β, γ

x γ, δ, ε, ζ

y α, β, γ

z β, γ

α β γ δ ε ζ

αβγ

γδεζ

βγ

zyw x

(a) (b)

Fig. 8 An example of an authorization policy for four consumers and six resources (a), and of a
key derivation structure that enforces it (b)

Figure 8 illustrates an example of an authorization policy regulating access to a
set {α, β, γ, δ, ε, ζ} of six resources for four consumers w, x, y, and z (Figure 8(a)),
and of a key derivation structure that enforces it (Figure 8(b)). The structure contains
a vertex for each consumer (gray vertices), representing the key agreed between the
owner and the consumer (and known to the consumer herself), and a vertex for each
resource. It also contains three additional vertices βγ, αβγ, and γδεζ representing
the capability lists of the consumers. Vertices of consumers are directly connected
to the vertices of their capability lists, which are in turn connected to other vertices
respecting the subset containment relationship and such that they are covered (e.g.,
vertex αβγ is connected to vertices α and βγ, in turn connected to vertices β
and γ). The derivation structure correctly enforces the authorization policy in the
figure, since there is a path linking each consumer vertex to all and only the vertices
representing the resources in her capability list. For instance, consider consumer w
with cap(w) = {α, β, γ}. From her key kw, she can use token tw,αβγ to derive kαβγ

(note that this key is used for derivation purposes only and does not encrypt any
resource). From kαβγ , she can then use token tαβγ,α to derive key kα, and token
tαβγ,βγ to derive key kβγ , from which she can then use tokens tβγ,β and tβγ,γ to
derive kβ and kγ , respectively. Hence, starting from the knowledge of a single key
kw, w can derive the keys of all the resources shared with her.

Having illustrated how the key derivation structure can be built, we now illustrate
how it can be updated to reflect changes to the authorization policy. The structure
must be updated when: i) new resources are placed in the market; and ii) new accesses
are requested by (and granted to) consumers. We note that authorization revocation
is not in line with the fact that access is provided upon payment [23].

The insertion of a new resource r into the market is reflected in the key derivation
structure by simply adding a vertex vr . This requires the owner to generate an
encryption key kr and a label lr , encrypt r with kr , and place the encrypted version
of r in the market (i.e., outsource r to the chosen cloud platform). For instance, with
reference to the structure in Figure 8(b) and assuming that the owner publishes all
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six resources before any consumer request, the derivation structure includes only the
leaves of the structure.

The purchase of a set R of resources by consumer c is reflected in the key
derivation structure by ensuring that there is a path from vertex vc of the consumer c

to the vertices of all the resources in the updated capability list cap(c)=cap(c)∪R. It
is first necessary to create, if not already in the structure, vertices vc for c and vcap(c)

for the updated capability list of c (creating also the corresponding encryption
keys and labels). Vertex vc is then connected to vertex vcap(c) that, as illustrated
previously, is connected to the other vertices in the hierarchy following the subset
containment relationship and coverage principle. Each added edge corresponds to
a token, which is inserted into the catalog. Figure 8(b) illustrates a possible key
derivation structure after a series of granted requests, allowing the consumers to
access resources according to the policy in Figure 8(a).

4 Rewards to owners

In this section, we illustrate a possible approach for ensuring that owners receive a re-
ward every time they grant access to some of their resources to interested consumers.
This approach nicely complements the selective owner-side encryption approach il-
lustrated in Section 3.

Ensuring rewards is a complex aspect in the addressed scenario, for two main
reasons: i) consumers and owners might not completely trust each other, and ii) both
parties could in principle misbehave to obtain illicit benefits. The main misbehaviors
that may happen are related to the payment of a reward (i.e., a malicious consumer
does not pay the reward for a resource she accessed, or a malicious owner falsely
claims that a reward has not been paid, demanding a new payment) as well as to the
access to a resource (where a malicious owner does not grant access despite having
received a payment, or a malicious consumer falsely claims that access has not been
granted despite the payment, requesting her money back). All misbehaviors could
hamper the adoption of markets to trade (personal) data, disincentivizing owners to
contribute with their data. In this section, after a discussion of some basic concepts
(Section 4.1), we illustrate how the solution in [23] ensures rewards to owners, while
preventing possible misbehaviors (Section 4.2).

4.1 Building blocks

The solution in [23] ensures rewards to owners leveraging two main building blocks:
i) blockchain and ii) smart contracts.

Blockchain. A blockchain is a shared and public ledger of transactions organized
as a list of blocks, linked in chronological order [26]. Each block contains a certain
number of transaction records as well as a cryptographic hash of the previous block.
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The blockchain is then maintained in a distributed way by a decentralized network
of peers. While the single peers might not trust each other, the content and status
of the blockchain is continuously agreed upon since each transaction is validated by
the network of peers, and is then included in a block through a consensus protocol.
A peculiarity of blockchains, which provide trust even if the peers singularly taken
are not fully trusted, is that everyone can inspect a blockchain but no single peer can
tamper with it, since modifications to the content of a blockchain requires mutual
agreement among peers. Consequently, nobody can modify a committed block, and
possible updates are reflected in a new block containing the updated information.
This permits to trust the content and the status of a blockchain, while not trusting
the single peers.

Smart contracts. Smart contracts can be used to establish an agreement among
multiple, possibly distrusting, parties through a blockchain. A smart contract is a
piece of software deployed on a blockchain, and is typically composed of a set of
rules on which the interacting parties have to agree. The rules are of the form ‘if-then’
and define events and subsequent actions. Such rules formalize the clauses of the
contract to be agreed upon (and virtually signed) by the parties. By leveraging the
underlying blockchain consensus protocol, the execution of a smart contract can be
trusted for correctness, meaning that all the conditions of the agreement have been
met (as validated by the network). However, smart contracts and their execution
do not provide confidentiality and privacy guarantees, as open visibility over the
content of a contract and over the data it manipulates is a necessary condition for
validation [27].

4.2 Ensuring rewards to owners

The possibility of consumers not paying for a granted resource (and conversely the
possibility of a malicious owner claiming that she did not receive a payment for a
resource, while she actually has) can be easily prevented adopting blockchain and
smart contracts. The basic idea consists in ensuring that access to a resource be
granted upon a monetary transaction (i.e., the payment of the reward) occurring
between the owner and the consumer purchasing access. In this way, the money
transfer can be inspected and validated by the blockchain network. Considering that
access is granted through the possibility of decrypting resources, two straightforward
approaches could be envisioned. A first approach could directly trade encryption
keys through a smart contract. A second approach could trigger the updates to the
derivation hierarchy (see Section 3.2) to ensure access directly through the smart
contract, computing and communicating tokens within the smart contract. However,
neither of these approaches is feasible since, as mentioned above, smart contracts
are public and hence their simple observation would disclose the traded secrets (i.e.,
the encryption keys in both approaches, since also updating the derivation structure
requires knowledge of the keys used in the system).
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Fig. 9 Interaction protocol for token catalog update in [23]

A possible solution to such issues leverages blockchain and smart contracts only
to finalize the monetary transaction and, at the same time, obtain a public and
verifiable commitment of the owner to grant the paid access. The smart contract can
then be arbitrarily formulated in such a way to securely keep track of the purchase,
according to the following logic: “upon receiving price from c for the set R of
resources, cap(c):=cap(c)∪R, and the token catalog is updated to grant c access
to cap(c)” [23], where price is the agreed price to be paid by consumer c to the
owner to get access to R. The overall interplay between the owner and consumer c,
including the deployment of the smart contract on the blockchain, is then regulated
by the interaction protocol in Figure 9, which works as follows.

1. Consumer c communicates off-chain the set R of resources that she wants to
purchase to the owner.

2. If necessary (i.e., in the first interaction, where c has not yet received the encryp-
tion key kc from the owner), the owner generates kc and sends it off-chain to c,
who signs it with her own private key and sends back to the owner the signed
key, denoted in Figure 9 as [kc]privc (the signature is needed for the audit process
described next).

3. The owner deploys the smart contract following the logic illustrated above.
4. Consumer c accesses, executes and signs the smart contract, triggering the money

transfer to the owner.
5. The owner updates the key derivation structure as needed to grant c the agreed

accesses.
6. The owner stores the updated token catalog on the blockchain.

It is interesting to note that such a slim interaction protocol prevents the possibility
for a malicious consumer of not paying for a resource (the key derivation structure
is updated after the execution of the smart contract) as well as for a malicious
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owner of claiming that she has not received the agreed money (thanks to the public
nature of blockchains). Also, keys are safe since the derivation structure is updated
locally by the owner. However, the interaction protocol cannot prevent malicious
owners from refusing to update the derivation structure after receiving a payment,
nor malicious consumers from claiming that access has not been provided despite
the payment. Unfortunately, such misbehaviors cannot be prevented since the key
derivation structure is updated locally. However, they can be easily detected and
exposed, through a very simple audit process that can be executed whenever they
are suspected. The audit protocol leverages the fact that the token catalog and the
capability lists are stored on-chain (and hence are tamper-proof), and that the keys
agreed with consumers are signed by them.

The audit process can be invoked by both owners and consumers, and simply
requires a designated trusted auditor to explicitly check whether, starting from the
key kc of the involved consumer c, the set of tokens stored on-chain actually permits
to correctly derive the keys kr for all r∈cap(c). This is simply done by querying the
token catalog and performing the key derivation that is allowed by tokens. If the entire
derivation succeeds, then the owner has behaved correctly and hence the malicious
behavior is at c’s side, falsely claiming of not having being granted an access
that actually is enabled. On the contrary, if the derivation fails, the owner has not
done what she promised in the smart contracts, preventing a legitimate access. The
availability of an audit process detecting and exposing not only misbehaviors, but also
the misbehaving party, counteracts the possibility of misbehaviors and incentivizes
all parties to behave correctly not to reduce their credibility and reputation that
(like in any real-world transaction) are key factors for having subjects engaging in
negotiations and transactions.

We close this section with some notes on the audit process. The reliability of
its results is based on the correctness and freshness of the tokens and labels, of
the capability lists, and of the starting key kc . Correctness and freshness of tokens,
labels, and capability lists are guaranteed by the fact that they are stored on-chain.
For keys, these properties are guaranteed by the fact that they are signed by the
respective owners (the owner cannot forge and c cannot repudiate her signature).
This is the reason why keys are signed in the interaction protocol (and signed keys
are of course used in the computation and update of tokens in the key derivation
structure). It is also interesting to note that the combined adoption of on-chain storage,
interaction protocol, and audit process permits to arbitrarily check the correctness of
the derivation structure at any point in time, since all communications and relevant
data (i.e., tokens and capability lists) are stored on-chain and hence tamper-proof.

5 Conclusions

We have addressed the problem of allowing data owners to share data with interested
consumers in the context of digital data markets. First, we have investigated the
specification and enforcement of requirements and preferences that can be used by
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owners to select the most suitable cloud plans for storing their data collections. Then,
we have investigated the problem of controlled data sharing in the market, ensuring
that owners remain in control of who accesses which portions of their data, and that
they receive incentives for trading and sharing their data with others. For both issues,
we have illustrated recent solutions that can be adopted. These are two key aspects,
out of many, to ensure that owners remain in control in digital data markets. Other
relevant aspects include, but are not limited to, the specification and enforcement of
complex access and usage policies, possibly based on purpose and secondary use,
and the enforcement of privacy-aware retrieval and analytics.
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