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Abstract The advancements in the Information Technology and the rapid diffu-
sion of novel computing paradigms have accelerated the trend of moving data to the
cloud. Public and private organizations are more often outsourcing their data centers
to the cloud for economic and/or performance reasons, thus making data confiden-
tiality an essential requirement. A basic technique for protecting data confidentiality
relies on encryption: data are encrypted by the owner before their outsourcing. En-
cryption however complicates both the query evaluation and enforcement of access
restrictions to outsourced data. In this chapter, we provide an overview of the issues
and techniques related to the support of selective and private access to outsourced
data in a scenario where the cloud provider is trusted for managing the data but
not for reading their content. We therefore illustrate methods for enforcing access
control and for efficiently and privately executing queries (at the server side) over
encrypted data. We also show how the combined adoption of approaches supporting
access control and for efficient query evaluation may cause novel privacy issues that
need to be carefully handled.

1 Introduction

The increasing amount of information being generated, collected, shared, and dis-
seminated nowadays is making the in-house management of data centers by private
and public companies more and more difficult and economically expensive. The
wide availability of cloud providers offering high-quality services for data storage
and management is then a driving motivation for companies that more often move
their data centers to the cloud. Although this trend has clear economic advantages,
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it also introduces novel security issues. In fact, when moving a data center to the
cloud, the data are no more under the direct control of their owner who needs to
rely on an external system for providing the same guarantees as in their in-house
management (e.g., data availability, protection against external attacks, selective
access to the data, fault tolerance management [32, 33, 34, 39]). However, being
external third parties, cloud providers are often assumed to be honest-but-curious,
and hence trusted to correctly manage the data they store but not trusted to ac-
cess their content. This situation raises several concerns, especially with respect to
the proper protection of the confidentiality of the data. An effective solution con-
sists in encrypting the data before outsourcing them so that non-authorized parties
(including the cloud provider), not knowing the encryption key, cannot access the
data content in plaintext [9, 31]. Data encryption before outsourcing presents how-
ever some disadvantages. First, while effectively hiding plaintext data to the eyes of
the provider, encrypting all data with a single key would require either all users to
have complete visibility of the resources in the data collection, or the data owner to
mediate access requests to the data to enforce selective access. Second, encryption
complicates query evaluation since the cloud provider cannot directly evaluate users
queries over encrypted data. Third, in cases where also the queries posed by users
need to be protected, encryption might not provide sufficient protection guarantees.

To overcome such issues, different techniques have been proposed that aim at
supporting selective and private access to outsourced data. These techniques are
based on the use of selective encryption, meaning that different pieces of data are
encrypted with different keys according to who can access them. Indexes are instead
used by cloud providers to select the data to be returned in response to a query, pos-
sibly even without revealing the target of the query itself. While, singularly taken,
these techniques represent effective solutions, the combined adoption of selective
encryption and indexes may cause violations of confidentiality that still need to be
carefully addressed. In this chapter, we present an overview of the techniques pro-
posed for enabling data to self-enforce the access control policy defined by their
owner, and for supporting query evaluation on encrypted data. Figure 1 illustrates
the reference scenario where a data owner outsources her data to a cloud provider
and users access such data.

The remainder of this chapter is organized as follows. Section 2 shows how en-
crypted data can enforce access control restrictions, without requiring the interven-
tion of the data owner or the collaboration of the storing server. Section 3 presents an
overview of the techniques proposed for supporting query evaluation over encrypted
data. Section 4 describes novel solutions for accessing outsourced data collections
without revealing the target of the query to the storing server. Section 5 illustrates
the privacy issues arising when combining solutions for access control enforcement
with indexing techniques and introduces preliminary solutions to this problem. Fi-
nally, Section 6 presents our closing remarks.
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Fig. 1 Reference scenario

2 Access Control Enforcement

The information stored in data centers can be of any type: relational databases, XML
documents, multimedia files, and so on. For simplicity, but without loss of gener-
ality, in this chapter we assume the data stored in the cloud to be organized in a
relational database, with the note that all approaches illustrated in the following can
be easily adapted to operate on any logical data modeling. We then consider a rela-
tion r defined over schema R(a1, . . . ,an), where attribute ai is defined over domain
Di, i = 1, . . . ,n. At the storing server, relation r is represented through an encrypted
relation rk, defined over schema Rk(tid, enc), with tid a numerical primary key
added to the encrypted relation and enc the encrypted tuple. Each tuple t in r is
represented as an encrypted tuple tk in rk, where tk[tid] is randomly chosen by the
data owner and tk[enc]=Ek(t), with E a symmetric encryption function with key k.

Different techniques have been proposed to enforce access control with the inter-
vention of neither the storing server, for confidentiality reasons, nor the data owner,
for efficiency reasons (e.g., [10, 12, 29]). These solutions are based on the idea that
data self-enforce selective access restrictions through encryption, as illustrated in
the following of this section.

2.1 Selective encryption

A promising solution for enforcing access control to outsourced data is based on
selective encryption, which adopts different encryption keys for different tuples, and
selectively distributes keys to authorized users. Each user can decrypt and therefore
access a subset of tuples, depending on the keys she knows. The authorization policy
regulating which user can read which tuple is defined by the data owner before
outsourcing relation r (e.g., [10, 12]). The authorization policy can be represented
as a binary access matrix M with a row for each user u, and a column for each tuple
t, where: M[u,t]=1 iff u can access t; M[u,t]=0 otherwise. To illustrate, consider
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PATIENTS
SSN Name ZIP MarStatus Illness

t1 123456789 Ann 22010 single gastritis
t2 234567891 Barbara 24027 divorced neuralgia
t3 345678912 Carl 22010 married gastritis
t4 456789123 Daniel 20100 married gastritis
t5 567891234 Emma 21048 single neuralgia
t6 678912345 Fred 23013 married hypertension
t7 789123456 Gary 22010 widow gastritis
t8 891234567 Harry 24027 widow hypertension

Fig. 2 An example of relation

t1 t2 t3 t4 t5 t6 t7 t8
A 1 1 0 1 1 1 1 0
B 1 1 1 1 1 0 0 0
C 1 1 1 0 1 1 0 0
D 0 0 0 1 1 1 0 1
E 0 0 0 1 1 1 0 0

Fig. 3 An example of access matrix

relation PATIENTS in Figure 2. Figure 3 illustrates an example of access matrix
regulating access to the tuples in relation PATIENTS by users A, B, C, D, and E .
The jth column of the matrix represents the access control list acl(t j) of tuple t j,
for each j = 1, . . . , |r|. As an example, with reference to the matrix in Figure 3,
acl(t1)=ABC. The encryption policy, which defines and regulates the set of keys
used to encrypt tuples and the distribution of keys to the users, must be equivalent
to the authorization policy, meaning that each user should be able to decrypt all and
only the tuples she is authorized to access.

Solutions translating an authorization policy into an equivalent encryption pol-
icy (e.g., [12]) have two main design desiderata: i) guarantee that each user has to
manage only one key; and ii) encrypt each tuple with only one key (i.e., no tuple is
replicated). To fulfill these two requirements, selective encryption approaches rely
on key derivation techniques that permit to compute an encryption key k j starting
from the knowledge of another key ki and (possibly) a piece of publicly available
information. To determine which key can be derived from which other key, key
derivation techniques require the preliminary definition of a key derivation hierar-
chy. A key derivation hierarchy can be graphically represented as a directed graph
with a vertex vi for each key ki in the system and an edge (vi,v j) from key ki to key
k j iff k j can be directly derived from ki. Note that key derivation can be applied in
chain, meaning that key k j can be computed starting from key ki if there is a path
(of arbitrary length) from vi to v j in the key derivation hierarchy.

A key derivation hierarchy can have different shapes, as described in the follow-
ing.
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• Chain of vertices (e.g., [40]): the key k j associated with vertex v j is computed
by applying a one-way function to the key ki of its predecessor in the chain. No
public information is needed.

• Tree hierarchy (e.g., [41]): the key k j associated with vertex v j is computed by
applying a one-way function to the key ki of its direct ancestor, and a public
label l j associated with k j. Public labels are necessary to guarantee that different
children of the same node in the tree have different keys.

• DAG hierarchy (e.g., [2, 3, 7, 19]): keys in the hierarchy can have more than one
direct ancestor, and each edge in the hierarchy is associated with a publicly avail-
able token [3]. Given two keys ki and k j, and the public label l j of k j, token ti, j
permits to compute k j from ki and l j. Token ti, j is computed as ti, j=k j⊕ f (ki,l j),
where ⊕ is the bitwise XOR operator, and f is a deterministic cryptographic func-
tion. By means of ti, j , all users knowing (or able to derive) key ki can also derive
key k j.

Each of the proposed key derivation hierarchies has advantages and disadvan-
tages. However, the token-based key derivation best fits the outsourcing scenario by
minimizing the need of re-encryption and/or key re-distribution in case of updates
to the authorization policy [12] (for more details, see Section 2.2).

The set containment relationship ⊆ over the set U of users can nicely be used
to define a DAG key derivation hierarchy suited for access control enforcement and
able to satisfy the desiderata of limiting the key management overhead [12]. Such
a hierarchy has a vertex for each of the elements of the power-set of the set U of
users, and a path from vi to v j iff the set of users represented by vi is a subset of that
represented by v j. The correct enforcement of the authorization policy defined by
the data owner is guaranteed iff: i) each user ui is communicated the key associated
with the vertex representing her; and ii) each tuple t j is encrypted with the key of the
vertex representing acl(t j). With this strategy, each tuple can be decrypted and ac-
cessed by all and only the users in its access control list, meaning that the encryption
policy is equivalent to the authorization policy defined by the data owner. Further-
more, each user has to manage one key only, and each tuple is encrypted with one
key only. For instance, Figure 4(a) illustrates the key derivation hierarchy induced
by the set U={A,B,C,D} of users and the subset containment relationship over it (in
the figure, vertices are labeled with the set of users they represent). Figure 4(b) and
Figure 4(c) illustrate the keys assigned to users in the system and the keys used to
encrypt the tuples in relation PATIENTS in Figure 2, respectively. The encryption
policy in the figure enforces the access control policy in Figure 3 restricted to the
set U={A,B,C,D} of users as each user can derive, from her own key, the keys of the
vertices to which she belongs and hence decrypt the tuples she is authorized to read.
For instance, user C can derive the keys used to encrypt tuples t1, t2, t3, t5, and t6,
and then access their content.

Even though this approach correctly enforces an authorization policy and enjoys
ease of implementation, it defines more keys and more tokens than necessary. Since
tokens are stored in a publicly available catalog at the server side, when a user u
wants to access a tuple t she needs to interact with the server to visit the path in
the key derivation hierarchy from the vertex representing u to the vertex represent-
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t1 kABC
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t4 kABD
t5 kABCD
t6 kACD
t7 kA
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(a) (b) (c)

Fig. 4 An example of encryption policy equivalent to the access control policy in Figure 3, con-
sidering the subset {A,B,C,D} of users

ing acl(t). Therefore, keeping the number of tokens low increases the efficiency of
the derivation process, and then also of the response time to users. The problem
of minimizing the number of tokens, while guaranteeing equivalence between the
authorization and the encryption policies, is NP-hard (it can be reduced to the set
cover problem) [12]. It is however interesting to note that: i) the vertices needed
for correctly enforcing an authorization policy are only those representing singleton
sets of users (corresponding to users’ keys) and the access control lists of the tuples
(corresponding to keys used to encrypt tuples) in r; ii) when two or more vertices
have more than two common direct ancestors, the insertion of a vertex representing
the set of users corresponding to these ancestors reduces the total number of tokens.
Elaborating on these two intuitions to reduce the number of tokens, the following
heuristic approach efficiently provides good results [12].

1. Initialization. The algorithm first identifies the vertices necessary to implement
the authorization policy, that is, the vertices representing: i) singleton sets of
users, whose keys are communicated to users and that allow them to derive the
keys of the tuples they are entitled to access; and ii) the access control lists of
the tuples, whose keys are used for encryption. These vertices represent the set
of material vertices of the system.

2. Covering. For each material vertex v corresponding to a non-singleton set of
users, the algorithm finds a set of material vertices that form a non-redundant
set covering for v, which become direct ancestors of v. A set V of vertices is a
set covering for v if for each u in v, there is at least a vertex vi in V such that u
appears in vi. It is non-redundant if the removal of any vertex from V produces a
set that does not cover v.

3. Factorization. For each set {v1, . . .vm} of vertices that have n > 2 common an-
cestors v′1, . . . ,v

′
n, the algorithm inserts an intermediate vertex v representing all

the users in v′1, . . . ,v
′
n and connects each v′i, i = 1, . . . ,n, with v, and v with each

v j, j = 1, . . . ,m. In this way, the encryption policy includes n+m, instead of n ·m
tokens in the catalog.
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Fig. 5 Definition of an encryption policy equivalent to the access control policy in Figure 3

Figure 5 illustrates, step by step, the definition of the key derivation hierarchy
through the algorithm in [12], for the authorization policy in Figure 3. The initial-
ization phase generates the set of (material) vertices in Figure 5(a). The covering
phase generates the preliminary key derivation hierarchy in Figure 5(b), where each
vertex is connected to a set of parents including all and only the users in the vertex
itself. The factorization phase generates the key derivation hierarchy in Figure 5(c),
which has an additional non-material vertex (i.e., ADE , denoted with a dotted line
in the figure) representing the users that belong to both ABDE and ACDE . This fac-
torization saves one token. Figure 5(d) illustrates the keys assigned to users in the
system and the keys used to encrypt the tuples in relation PATIENTS in Figure 2.

2.2 Updates to the access control policy

In case of changes to the authorization policy, the encryption policy must be updated
accordingly, to guarantee their equivalence. Since the key used to encrypt each tu-
ple t in r depends on the set of users who can access it, it might be necessary to
re-encrypt the tuples involved in the policy update with a different key that only the
users in their new access control lists know or can derive. A trivial approach to en-
force a grant/revoke operation on tuple t requires the data owner to: i) download tk

from the server; ii) decrypt it; iii) update the key derivation hierarchy if it does not in-
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clude a vertex representing the new set of users in acl(t); iv) encrypt t with the key k ′
associated with the vertex representing acl(t); v) upload the new encrypted version
of t on the server; and vi) possibly update the public catalog containing the tokens.
For instance, consider the encryption policy in Figures 5(c-d) and assume that user
D is granted access to tuple t1. The data owner should download tk1; decrypt it using
key kABC; insert a vertex representing acl(t1)=ABCD in the key derivation hierarchy;
encrypt t1 with kABCD; and upload the encrypted tuple on the server, together with
the tokens necessary to users A, B, C, and D to derive kABCD. This approach, while
effective and correctly enforcing authorization updates, leaves to the data owner the
burden of managing the update. Also, re-encryption operations are computationally
expensive. To limit the data owner overhead, in [12] the authors propose to use two
layers of encryption (each characterized by its own encryption policy) to partially
delegate to the server the management of grant and revoke operations.

• The Base Encryption Layer (BEL) is applied by the data owner before outsourc-
ing the dataset. A BEL key derivation hierarchy is built according to the autho-
rization policy existing at initialization time. In case of policy updates, BEL is
only updated by possibly inserting tokens in the public catalog (i.e., edges in the
BEL key derivation hierarchy). Note that each vertex v in the BEL key deriva-
tion hierarchy has two keys: a derivation key k (used for key derivation only),
and an access key ka (used to encrypt tuples, but that cannot be exploited for key
derivation purposes).

• The Surface Encryption Layer (SEL) is applied by the server over the tuples that
have already been encrypted by the data owner at BEL. It dynamically enforces
the authorization policy updates by possibly re-encrypting tuples and changing
the SEL key derivation hierarchy to correctly reflect the updates. Differently
from BEL, vertices in the SEL key derivation hierarchy are associated with a
single key ks.

Intuitively, with the over-encryption approach, a user can access a tuple t only
if she knows the keys used to encrypt t at BEL and SEL. At initialization time,
the encryption policies at BEL and SEL coincide, but they immediately change and
become different at each policy update. Grant and revoke operations are enforced as
follows.

• Grant. When user u is granted access to tuple t, she needs to know the key used
to encrypt t at both BEL and SEL. Hence, the data owner adds a token in the
BEL key derivation hierarchy from the vertex representing u to the vertex whose
key is used to encrypt t (i.e., the vertex representing acl(t) at initialization time).
The owner then asks the server to update the key derivation hierarchy at SEL and
to possibly re-encrypt tuples. Tuple t in fact needs to be encrypted at SEL with
the key of the vertex representing acl(t)∪{u} (which is possibly inserted into the
hierarchy). Besides t, also other tuples may need to be re-encrypted at SEL to
guarantee the correct enforcement of the policy update. In fact, tuples that are
encrypted with the same key as t at BEL and that user u is not allowed to read
must be encrypted at SEL with a key that u does not know (and cannot derive).
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Fig. 6 Encryption policies at BEL and SEL, equivalent to the access control policy in Figure 3

The data owner must then make sure that each tuple ti sharing the BEL encryption
key with t are encrypted at SEL with the key of the vertex representing acl(ti).
For instance, consider the access matrix in Figure 3 and the encryption policies at
BEL and SEL enforcing it in Figure 6, and assume that user D is granted access
to tuple t1. Figure 7 illustrates the encryption policies at BEL and SEL after the
enforcement of the grant operation. To enforce this change in the access control
policy, the data owner must first add a token that permits user D to derive the
access key of vertex ABC (ka

ABC) used to encrypt t1 at BEL (dotted edge in the
figure). Also, she will ask the server to update the SEL key derivation hierarchy
to add a vertex representing ABCD. Tuple t1 is then over-encrypted at SEL with
the key of this new vertex.

• Revoke. When user u loses the privilege of accessing tuple t, the data owner
simply asks the server to re-encrypt (at SEL) the tuple with the key associated
with the set acl(t)\{u} of users. If the vertex representing this set of users is
not represented in the SEL key derivation hierarchy, the server first updates the
hierarchy inserting the new vertex, and then re-encrypts the tuple. For instance,
consider the encryption policies at BEL and SEL in Figure 7 and assume that
the data owner revokes B the privilege to access t4. The data owner requires the
server to change SEL (BEL is not affected by revoke operations) to guarantee
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Fig. 7 Encryption policies at BEL and SEL in Figure 6 after granting D access to t1

that tuple t4 is encrypted with a key that user B cannot derive. To this aim, t4 is
re-encrypted with key ks

ADE . Figure 8 illustrates the encryption policies at BEL
and SEL after the enforcement of the revoke operation. Note that vertex ABDE is
removed from the hierarchy since it is neither necessary for policy enforcement
nor useful for reducing the number of tokens.

Since the management of (re-)encryption operations at SEL is delegated to the
server, there is the risk of collusions with users. In fact, by combining their knowl-
edge, a user and the server can possibly decrypt tuples that neither the server nor the
user can access. For instance, with reference to the encryption policy in Figure 8,
the server and user D can access to tuple t2 by combining their knowledge. In fact,
this tuple is encrypted with access key ka

ABC at BEL, known to user D as it is used
to encrypt t1, and with key ks

ABC at SEL, known to the server. Collusion represents
a risk to the correct enforcement of the authorization policy, but this risk is limited.
In fact, collusion between a user u and the server permits them to decrypt a tuple
t that they are not authorized to access only if u is granted the privilege to read a
tuple t′ (different from t) that is encrypted with the same key as t at BEL. Indeed,
u knows the key with which t is encrypted at BEL (as it is necessary to access t ′)
while the server knows the key with which it is encrypted at SEL (as it manages
all the encryption keys at SEL). Collusion risk can then be mitigated at the price of
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Fig. 8 Encryption policies at BEL and SEL in Figure 7 after revoking B access to t4

using a higher number of keys at BEL, that is, by using the same encryption key at
BEL only for tuples whose acls are likely to evolve in the same way [12].

2.3 Write privileges

The solution described in the previous section, while effectively enforcing read priv-
ileges and updates to them, assumes the outsourced relation to be read-only (i.e.,
only the owner can modify tuples). To allow the data owner to selectively authorize
other users to update the outsourced data, this approach has been complemented
with a specific technique to manage write privileges. The approach in [11] asso-
ciates each tuple with a write tag (i.e., a random value independent from the tuple
content) defined by the data owner. Access to write tags is regulated through selec-
tive encryption: the write tag of tuple t is encrypted with a key known only to the
users authorized to write t (i.e., the users specified within its write access list, de-
noted aclw(t)) and by the server. In this way, only the server and authorized writers
have access to the plaintext write tag of each tuple. The server will then accept a
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Fig. 9 Encryption policy in Figures 5(c-d) extended to the enforcement of write privileges

write request on a tuple when the requesting user proves knowledge of the corre-
sponding write tag.

Since the key used for encrypting the write tag of a tuple has to be shared be-
tween the server and the tuple writers, it is necessary to extend the key derivation
hierarchy with the storing server. However, the server cannot access the outsourced
tuples in plaintext, and hence it cannot be treated as an additional authorized user
(i.e., with the ability of deriving keys in the hierarchy). The keys used to encrypt
write tags are then defined in such a way that: i) authorized users can compute them
applying a secure hash function to a key they already know (or can derive via a se-
quence of tokens); and ii) the server can directly derive them from a key kS assigned
to it, through a token specifically added to the key derivation hierarchy. Note that
keys used for encrypting write tags cannot be used to derive other keys in the hierar-
chy. For instance, consider the encryption policy in Figures 5(c-d) and assume that
aclw(t1)=aclw(t7)=A, aclw(t2)=aclw(t3)=BC, aclw(t4)=ADE , aclw(t5)=aclw(t8)=D,
and aclw(t6)=E . Figure 9(a) illustrates the key derivation hierarchy, extended with
the key kS assigned to the server S and the keys necessary to encrypt write tags (the
additional vertices and edges are dotted in the figure). Figures 9(b-c) summarize the
keys assigned to users and to the server, and the keys used to encrypt the tuples in
relation PATIENTS and their write tags, respectively.

The over-encryption approach (Section 2.2), while effective for enforcing up-
dates to a read authorization policy, cannot unfortunately be adopted to enforce
grant and revoke of write authorizations. A possible way to enforce dynamic write
privileges [11] operates as follows.

• Grant. When user u is granted the privilege to modify tuple t, the write tag of t
is encrypted with a key known to the server and the users in aclw(t)∪{u}. If the
key derivation hierarchy does not include it, such a key is created and properly
added to the hierarchy. For instance, with reference to the encryption policy in
Figure 9, assume that user B is granted the write privilege over t4. The write tag
of the tuple needs to be encrypted with key, kABDES, which is inserted into the
key derivation hierarchy, while key kADES can be removed.
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• Revoke. When user u is revoked the write privilege over tuple t, a fresh write tag
must be defined for t, having a value independent from the former tag (e.g., it
can be chosen adopting a secure random function). This is necessary to ensure
that u, who is not oblivious, cannot exploit her knowledge of the former write
tag of tuple t to perform unauthorized write operations. After the tag has been
generated, it is encrypted with a key known to the server and to the users in
aclw(t)\{u}. For instance, with reference to the encryption policy in Figure 9,
assume that user C is revoked the write privilege over t3. The write tag of the
tuple needs to be changed and encrypted with key kBS, which should be inserted
into the key derivation hierarchy.

Note that, since the server is authorized to know the write tag of each and every
tuple to correctly enforce write privileges, the data owner can delegate to the storing
server both the generation and encryption (with the correct key) of the write tag of
the tuples [11].

2.4 Attribute-based encryption

An alternative solution to selective encryption for the enforcement of access restric-
tions is represented by Attribute-Based Encryption (ABE [29]). ABE is a partic-
ular type of public-key encryption that regulates access to tuples on the basis of
policies defined on descriptive attributes, associated with tuples and/or users. ABE
can be implemented as either Ciphertext-Policy ABE (CP-ABE [47]), or Key-Policy
ABE (KP-ABE [29]), depending on how attributes and authorization policies are
associated with tuples and users. Both the strategies have been recently widely in-
vestigated, and several solutions have been proposed, as briefly illustrated in the
following.

CP-ABE. CP-ABE associates with each user u a set of descriptive attributes,
and a private key that is generated on the basis of these attributes. Each tuple t in a
relation r is associated with an access structure modeling the access control policy
regulating accesses to t. Graphically, an access structure is a tree whose leaves rep-
resent attributes and whose internal nodes represent logic gates (e.g., conjunctions
and disjunctions). Figure 10 illustrates an example of access structure associated
with tuple t2 in relation PATIENTS in Figure 2. This access structure corresponds
to the Boolean formula (job=‘doctor’∨ job=‘nurse’)∧ ward=‘neurology’, meaning
that only doctors or nurses working in the neurology ward can access the medical
data of Barbara (i.e., tuple t2). CP-ABE key generation technique guarantees that
the key k of user u can decrypt tuple t only if the set of attributes used when gen-
erating k satisfies the access policy represented by the access structure considered
when encrypting t. Although CP-ABE effectively and efficiently enforces access
control policies, one of its main drawbacks is related to the management of attribute
revocation. Intuitively, when a user loses one of her attributes, she should not be
able to access tuples that require the revoked attribute for the access – which how-
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Fig. 10 An example of access structure associated with tuple t2 of relation PATIENTS in Figure 2

ever is hard to enforce while guaranteeing efficiency. A solution to this problem is
presented in [51], where the authors illustrate an encryption scheme able to manage
attribute revocation, ensuring the satisfaction of both backward security (i.e., a user
cannot decrypt the tuples requiring the attribute revoked to the user) and forward se-
curity (i.e., a new user can access all the tuples outsourced before her join, provided
het attributes satisfy the access control policy). In [44], the authors instead define a
hierarchical attribute-based solution that relies on an extended version of CP-ABE
in which attributes associated with users are organized in a recursive set structure,
and propose a flexible and scalable approach to support revocations.

KP-ABE. KP-ABE associates an access structure with each user and a set of
descriptive attributes with each tuple. The key associated with each user is then
generated on the basis of her access structure, while the key used to encrypt each
tuple depends on its attributes. Thanks to the properties of KP-ABE key generation
techniques, each user u can decrypt only tuples t such that the attributes of tuple t
satisfy the access structure associated with user u. Since ABE is based on public-
key encryption, to reduce the overhead caused by asymmetric encryption, the tuple
content can be encrypted with a symmetric key, which is in turn protected through
KP-ABE [53]. Only authorized users can remove the KP-ABE encryption layer to
retrieve the symmetric key use to protect the content of the tuples. This solution
also efficiently supports policy updates and couples ABE with proxy re-encryption
to delegate to the storing server most of the re-encryption operations necessary to
enforce policy updates.

The support of write privileges is provided by the adoption of Attribute-Based
Signature (ABS) techniques. The proposal in [21] combines CP-ABE and ABS
techniques to enforce read and write access privileges, respectively. This approach,
although effective, has the disadvantage of requiring the presence of a trusted party
for correct policy enforcement. A similar approach, based on the combined use of
ABE and ABS for supporting both read and write privileges, is illustrated in [38].
This solution has the advantage over the approach in [21] of being suited also to
distributed scenarios.
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PATIENTS
SSN Name ZIP MarStatus Illness

t1 123456789 Ann 22010 single gastritis
t2 234567891 Barbara 24027 widow neuralgia
t3 345678912 Carl 22010 married gastritis
t4 456789123 Daniel 20100 married gastritis
t5 567891234 Emma 21048 single neuralgia
t6 678912345 Fred 23013 married hypertension
t7 789123456 Gary 22010 widow gastritis
t8 891234567 Harry 24027 divorced hypertension

PATIENTSk

tid enc Iz Im Ii

1 aD4%l α ζ η
2 7Eoi) β κ ξ
3 Gx?b3 α θ µ
4 dn4$z γ θ η
5 2Cyl= δ ζ ξ
6 Joi2s ε θ ρ
7 (ceWm α κ µ
8 w2!qk β κ ρ

(a) (b)

Fig. 11 An example of plaintext relation (a) and the corresponding encrypted and indexed relation
(b)

3 Efficient Access to Encrypted Data

Since data stored in the cloud are encrypted for confidentiality reasons, the storing
server cannot directly evaluate users’ queries since it is not trusted to access the data
content. This makes access to outsourced data time consuming and computation-
ally expensive (the client would need to download the data and locally evaluate her
query). To limit such an overhead, either keyword search or index-based approaches
can be adopted, which enable query evaluation at the server side without the need
to decrypt data [39]. Keyword search techniques (e.g., [6, 8, 25, 42, 45]) permit to
search for documents including a keyword of interest in an encrypted data collec-
tion. Indexes are metadata that depend on the plaintext values of the attributes in
the original relation, and are stored in the encrypted relation as additional attributes.
Given a relation r, defined over schema R(a1, . . . ,an), the corresponding encrypted
and indexed relation rk has schema Rk(tid, enc, Ii1 , . . . , Ii j ), where Iil , l = 1, . . . , j,
is the index defined over attribute ail in R. Note that not all the attributes in R need
to have a corresponding index in Rk, but only those that are expected to be involved
in queries. For instance, Figure 11(b) represents an example of an encrypted ver-
sion of relation PATIENTS in Figure 2 (also reported in Figure 11(a) for the reader’s
convenience), where attributes ZIP, MarStatus, and Illness are associated
with indexes Iz, Im, and Ii, respectively. In this and in the following examples, for
readability, we will denote index values with Greek letters.

To provide efficient access to the outsourced data collection, different indexing
techniques have been proposed, aimed at supporting the server-side evaluation of
a variety of conditions and clauses in SQL queries. The most important indexing
approaches can be classified in three main categories, depending on how the index
function ι maps the original attribute values to the corresponding index values, as
illustrated in the following.

• Direct Index. Each plaintext value is represented by a different index value and
vice versa. An example of direct index (e.g., [9]) is adopted by encryption-based
indexes, which map plaintext value val to index value Ek(val), where E is a sym-
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metric encryption function with key k. Index Iz in Figure 11(b) is an example of
a direct index defined over attribute ZIP in Figure 11(a).

• Bucket-based Index. Each plaintext value is represented by one index value, but
different plaintext values are mapped to the same index value, generating col-
lisions. There are different approaches for defining which plaintext values are
represented by the same index value. The two most common techniques are
partition-based and hash-based indexes. Partition-based indexes (e.g., [31]) par-
tition the domain D of attribute a into subsets of contiguous values and associate
a label with each of them. The index value representing a value in a partition is
the label of the partition. Hash-based indexes (e.g., [5]) instead rely on a secure
hash function h generating collisions. Given plaintext value val, its correspond-
ing index value is computed as h(val). Index Im in Figure 11(b) is an example
of hash-based index over attribute MarStatus in Figure 11(a), where values
divorced and widow generate a collision and are both represented by index value
κ .

• Flattened Index. Each plaintext value is represented by different index values,
each characterized by the same number of occurrences (flattening). Each index
value, however, represents one plaintext value only. A flattened index can be
obtained by properly combining encryption with a flattening post-processing that
guarantees that the frequency of index values be the same (e.g., [46]). Index Ii
in Figure 11(b) is an example of a flattened index over attribute Illness in
Figure 11(a), where plaintext value gastritis is represented by index values η and
µ .

Intuitively, the fact that the outsourced relation is encrypted and enriched with
indexes must be transparent to the final users. The basic indexing techniques illus-
trated above nicely support the server-side evaluation of simple SQL queries in-
cluding equality conditions in the WHERE clause. Consider a query q submitted by
a user of the form “SELECT Att FROM R WHERE Cond”, where Att⊆R and Cond is
a set of equality conditions of the form a=val, with a∈R and val a constant value in
the domain D of a. To determine the query that should be submitted to the storing
server, each condition a=val in Cond is first translated into an equivalent condition
of the form: I=ι(val), if I is a direct or a bucket-based index; and I IN ι(val), if I is a
flattened index and hence ι(val) may return a set of values. The query qs submitted
to the server is then “SELECT enc FROM Rk WHERE Condk”, where Condk is ob-
tained as illustrated above. The result returned by the server must then be decrypted
by the client, to retrieve the plaintext content of the tuples. The client may also need
to perform a projection over the attributes in Att, if they represent a proper subset
of R, and to filter spurious tuples, that is, tuples that satisfy Condk but that do not
belong to the query result (i.e., they do not satisfy Cond). Note that the presence of
spurious tuples may depend on collisions possibly caused by bucket-based indexes,
where multiple plaintext values are mapped to the same index value. The client then
evaluates a query qc of the form “SELECT Att FROM D(Resk) WHERE Cond”, where
Resk is the relation returned by the server as the result of the evaluation of query qs.
The result of query qc is returned to the requesting user. Consider, as an example,
a query q = SELECT SSN, Name FROM PATIENTS WHERE MarStatus=“widow”
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AND Illness=“gastritis” operating on relation PATIENTS in Figure 11(a). The
query qs to be sent to the server is SELECT enc FROM PATIENTSk WHERE Im=κ
AND Ii IN {η ,µ}, which returns tuple t7. The client will then decrypt the result re-
turned by the server and evaluate query SELECT SSN, Name FROM D(Resk) WHERE
MarStatus=“widow” AND Illness=“gastritis” to check whether tuple t7 sat-
isfies both the conditions and to project the attributes of interest for the requesting
user.

Besides the techniques illustrated and classified above, many other approaches
have been proposed for efficiently delegating to the server the evaluation of com-
plex conditions and/or SQL clauses. As an example, order preserving encryption
has been proposed as an effective solution for supporting range conditions, as well
as grouping and ordering clauses (e.g., [1, 46]). Aggregate functions can instead be
computed if the index over the attribute of interest has been defined through homo-
morphic encryption techniques, which support the evaluation of arithmetic opera-
tors on encrypted data (e.g., [24, 30]). Different techniques, which do not fit into the
classification above, have also been proposed to the aim of enjoying the advantages
of traditional database indexing techniques also in the outsourcing scenario (e.g.,
in [9] the authors propose to use encrypted B+-trees for the efficient evaluation of
range queries).

4 Protecting Access Privacy

Besides protecting the confidentiality of the outsourced data collection, it is also
paramount to protect the privacy of the accesses to the data themselves. In fact,
queries can be exploited for inference, making both users’ and data privacy at risk.
As an example, consider a scenario where the outsourced data contain medical in-
formation. Revealing that a user submitted a query looking for the symptoms of lung
cancer implicitly reveals that (with high probability) either her or a person close to
her suffers from such a disease. Also, users accesses may be exploited to infer the
private content of the outsourced data collection. Indeed, by monitoring patterns of
frequently accessed tuples, an observer can draw inferences on their specific val-
ues thanks to additional knowledge she may have on how frequently each piece of
data in a given domain is accessed. In this case, it is necessary to protect both access
confidentiality (i.e., each query singularly taken) and pattern confidentiality (i.e., the
fact that two queries aim at the same target value). A first attempt to protect access
confidentiality is represented by keyword search approaches (e.g., [6, 8, 25, 42, 45]),
which do not reveal to the server any information about the outsourced data and the
target keyword. A similar approach consists in defining a set of tokens that can be
adopted by users to evaluate queries on outsourced data without disclosing the con-
ditions in their queries to the storage server [18, 36]. Protection of accesses to a
B+-tree index structure can instead be obtained by grouping the nodes in the tree
into buckets [37]. The use of homomorphic encryption techniques then permits to
access the node of interest in each bucket, while preventing the server from pre-
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cisely identifying the node target of each access. These approaches represent a first
step towards the definition of privacy-preserving indexing approaches, but they fall
short in protecting the confidentiality of repeated accesses and, more in general, of
patterns thereof. In the remainder of this section, we will illustrate some of the most
important approaches recently proposed to address both access and pattern confi-
dentiality in a scenario where data need to remain confidential (i.e., outsourced data
are encrypted).

4.1 Oblivious RAM

One of the first approaches [49] proposed to protect access and pattern confiden-
tiality in a scenario where also the confidentiality of the data must be protected is
based on the Oblivious RAM (ORAM) data structure [26]. The outsourced database
is organized as a set of n encrypted blocks, which are stored in a pyramid-shaped
data structure. Each level l of the ORAM structure stores 4l blocks and is character-
ized by a Bloom filter and a hash table that permit to quickly determine whether an
index value is stored in the level and, if this is the case, to identify the block where
it is stored. Access and pattern confidentiality are provided by guaranteeing that: i)
the search process does not reveal the level in the structure where the target block
is stored, and ii) a block in the hash table is never accessed more than once with the
same search key.

The search algorithm visits the ORAM structure level by level, starting from the
top of the pyramid. For each level l, the search algorithm uses the Bloom filter to
determine whether the target of the search is stored in the level. If this is the case,
the item of interest is extracted from the level (by accessing the block identified by
the hash table), decrypted, re-encrypted with a different nonce, and inserted into a
cache. Otherwise, the algorithm extracts a random element from the level and inserts
it into the cache. We note that, even when the target element is retrieved, the search
process visits all the lower levels in the ORAM structure extracting at each level a
random (fake) element. This guarantees that, by observing accesses to the structure,
the server is not able to identify the level where the target of the search was stored.
The search process terminates when the last level in the ORAM structure is visited.

When the cache is full, it is merged with the first level of the ORAM structure
and the items in the resulting new level are re-shuffled, to destroy any correspon-
dence between old and new items in the level. As a consequence, the Bloom filter
associated with the level is re-defined, to correctly refer to the new level content.
The same process applies to each level in the structure: when level l is full, it is
merged with level l+1, the blocks are re-shuffled, and the Bloom filter is redefined.
The cost of accessing the ORAM clearly depends on the possible need to reorganize
a level in the indexing structure while visiting it, and on the specific level that needs
to be redefined. The amortized cost per query, which takes into consideration the
impact of periodic reorganizations of the structure, is O(logn loglogn), under the
assumptions of O(

√
n) temporary client storage and of O(n) server storage over-
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head. However, the cost of reorganizing the bottom level of the pyramid is O(n),
where n is the number of index values in the dataset. Response time of any access
request submitted during the reordering of lower levels of the database is therefore
high and not acceptable in many real-world scenarios.

To mitigate the cost of query evaluation when low levels in the ORAM structure
need to be reorganized, the proposal in [20] puts forward the idea of limiting the
shuffling operation to the blocks that store accessed tuples. This approach is based
on the presence of a secure coprocessor on the server that locally manages a cache
of size k, which is empty at initialization time. Each tuple in the dataset is associated
with a label, initially set to value ‘white’. Once a tuple is accessed, its label becomes
‘black’. For each access to the dataset, the search algorithm fetches a black tuple and
a white tuple. If the target tuple is already in cache, the algorithm retrieves two ran-
domly chosen fake tuples (a black one and a white one), otherwise it accesses the
target tuple and a randomly chosen fake tuple. When the cache is full, the secure co-
processor shuffles black tuples (performing a partial shuffling) only and re-encrypts
them before re-writing the blocks on the server. Partial shuffling provides access and
pattern confidentiality, since white tuples have not been accessed and hence it is not
necessary to move their content to hide the traces that an access could have left. The
amortized cost per query of this solution is O(

√
n logn/k), which is lower than the

proposal in [49]. It however relies on a secure coprocessor for guaranteeing access
and pattern confidentiality.

Alternative techniques that can be adopted to limit the response time of the
ORAM structure are based on the idea of minimizing the number of interactions
between the client and the server [27, 48]. Indeed, the communication costs have
a high impact on response times and reducing the number of interactions provides
benefits to users. Other approaches instead rely on enhancing the support of concur-
rent accesses [28, 50]. These solutions basically define copies of the levels of the
ORAM structure. Searches operate on a read-only copy of the level of interest, while
the master copy of the same level is dynamically updated and used for reordering
purposes only. In this way, exclusive locks blocking access to a level of the structure
during its reorganization process do not delay users’ accesses.

Path-ORAM has recently been proposed as an alternative approach to provide ac-
cess and pattern confidentiality without paying the high price of re-shuffling, which
characterizes traditional ORAM structures [43]. Path-ORAM is a tree-shaped data
structure whose nodes are buckets storing a fixed number of blocks (which can ei-
ther be dummy or contain actual data). Each block is mapped to a randomly chosen
leaf in the tree and it is stored either at the client side (in a local cache, which is
called stash) or in one of the buckets along the path to the leaf to which it is associ-
ated. Read operations download from the server and store in the stash all the buckets
in the path from the root to the leaf to which the block of interest is mapped. The
mapping of the target block is randomly updated (i.e., the block is mapped to a new,
randomly chosen, leaf). The path read from the server is then written back, inserting
into the buckets the blocks in the local stash (provided the bucket is along the path
to the leaf to which the block is mapped).
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4.2 Dynamically allocated data structures

Dynamic data allocation solutions aim at destroying the otherwise static relationship
between disk blocks and the information they store. These approaches are based on
the definition of a dynamically allocated index structure (e.g., a B+-tree, a hash
table, a flat index) that guarantees private and efficient access to the data.

If the data are organized in a tree-shaped index structure, access confidentiality
is provided by guaranteeing that the storing server does not know (nor can infer)
which is the node in the tree target of the access, as it would otherwise reveal the
value target of the search. The first step to protect the confidentiality of the dataset
content consists in encrypting the nodes in the tree before outsourcing, and in stor-
ing each encrypted node in a different disk block. However, repeated accesses to the
same physical block inevitably represent repeated accesses to the same node content
and hence queries aiming to the same value (or to values within a small interval). If
the storing server knows the relative frequency of accesses to the plaintext values,
it can reconstruct the correspondence between node contents and encrypted blocks,
by simply matching access frequencies. A preliminary approach aimed at protect-
ing access confidentiality through a privacy-preserving tree relies on the combined
adoption of the following three protection techniques [35]:

• access redundancy: each access request visits, besides the node target of the ac-
cess, m additional blocks (at least one of which should be empty) for each level
in the tree to hide the target of the access in a set of m+ 1 equally-probable
candidate nodes;

• node swapping: the node target of the access is swapped with one of the empty
blocks downloaded from the server for the same level, meaning that the target
node is stored in an empty block and viceversa;

• node re-encryption: all the nodes downloaded from the server are re-encrypted,
to hide the swap.

Although effective for protecting content and access confidentiality, this proposal
falls short in providing pattern confidentiality, since frequently accessed blocks can
easily be identified by the server and then exploited for inference purposes.

An alternative approach, which does not operate on a tree-shaped index structure,
is based on the adoption of a lightweight scheme that provides access and pattern
confidentiality by combining the following three protection techniques [52]:

• dummy data items: each access request visits, besides the block target of the
access, two additional blocks;

• swapping: the target of the access is swapped with one of the dummy data items
downloaded from the server;

• repeated patterns: dummy data items are selected in such a way that, out of the
three blocks downloaded from the server, two (and only two) are among the ones
accessed during the previous search.

The goal of the combined adoption of these three protection techniques is to make
each access to the outsourced data collection indistinguishable from the server’s
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point of view. In fact, each access has two blocks in common with the previous one,
while the third one is fresh. Swapping protects repeated accesses and is combined
with re-encryption of the content of all the accessed blocks, to prevent the server
from reconstructing which swap has been performed (thus possibly recognizing re-
peated accesses).

4.3 Shuffle index

A recent technique addressing the need of providing efficient query execution, while
protecting access and pattern confidentiality, is based on the definition of a shuffle
index [14].

Data structure. A shuffle index is a privacy-preserving indexing technique, used
for organizing data in storage and for efficiently executing users’ queries. It can be
seen at three different abstraction levels (i.e., abstract, logical, and physical), as
illustrated in the following. At the abstract level, the shuffle index is an unchained
B+-tree with fan-out F, built over a candidate key K of relation r . Each internal node
of the tree represents the root of a sub-tree with q ≥ 
F/2� children (except for the
root node, where 1 ≤ q ≤ F), and stores q−1 ordered values val1 ≤ . . .≤ valq−1 of
attribute K. The leaves store the tuples of the outsourced relation, together with their
key value, but (in contrast to traditional B+-tree structures) are not connected in a
chain, so not to allow the server storing the data to discover the relative order among
the values in the leaves. Figure 12(a) illustrates an example of unchained B+-tree.

At the logical level, each node n of the unchained B+-tree is represented by a pair
〈id, n〉 where id is the logical identifier associated with the node and n is its content.
Pointers to children of internal nodes of the abstract data structure are represented,
at the logical level, through the identifier of child nodes. Figure 12(b) illustrates an
example of logical representation of the unchained B+-tree in Figure 12(a). Note
that the order of logical identifiers does not necessarily reflect the value-order rela-
tionship between the node contents. For readability, in the figure nodes are ordered
according to their logical identifier (reported on the top of each node), whose first
digit corresponds to the level of the node in the tree.

At the physical level, each node 〈id, n〉 is concatenated with a random salt, to
destroy plaintext distinguishability, and then encrypted in CBC mode, using a sym-
metric encryption algorithm. The logical identifier of the node easily translates into
the physical address where the block representing the encrypted node is stored at the
server side (for simplicity, we assume that the physical address of a block coincides
with the logical identifier of the corresponding node). Figure 12(c) illustrates the
physical representation of the logical index in Figure 12(b). Note that the physical
representation of the shuffle index coincides with the view of the storage server over
the outsourced data collection. In fact, although the server does not have knowledge
of the encryption key, it can establish the level in the tree associated with each block
by observing a long enough history of accesses to the B+-tree structure, because
accesses visit the tree level by level.
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(a)

(b)

(c)

Fig. 12 An example of abstract (a), logical (b), and physical (c) representation of a shuffle index

Protection techniques. To protect content, access, and pattern confidential-
ity, encryption is complemented with three protection techniques: cover searches,
cached searches, and shuffling. These protection techniques apply to every access
to the shuffle index, which proceeds by visiting the B+-tree level by level from the
root to the leaves.

• Cover searches. Cover searches aim at hiding the target of an access within a set
of other potential targets, in such a way that the server cannot recognize the value
of interest for the user. Cover searches are fake searches, which are not recogniz-
able as such by the storage server, that are executed in conjunction with the search
for the target value (i.e., the value of interest for the requester). For each level of
the shuffle index (but the root level) the client downloads num cover+ 1 blocks:
one for the node along the path to the target, and num cover for the nodes along
the paths to the covers. Hence, at the server’s eyes, each of the num cover+ 1
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leaf blocks accessed during a visit of the shuffle index has the same probabil-
ity of storing the target. To provide sufficient protection to the target of the ac-
cess, cover searches must guarantee: i) indistinguishability with respect to target
searches, meaning that the server should not be able to determine whether an ac-
cessed block is a cover or the target; and ii) block diversity, meaning that paths
to covers and to the target must be disjoint (except for the root node).

• Cached searches. Cached searches aim at protecting repeated accesses to a node
content, by making them indistinguishable from non-repeated accesses to the
eyes of the server. The cache is a layered structure with a layer for each level in
the shuffle index. It is maintained at the client side and stores the nodes along the
paths to the targets of the num cache most recent accesses to the shuffle index.
Being stored at a trusted party, the cache is maintained in plaintext. Each layer
of the cache is managed according to the Least Recently Used (LRU) policy,
which guarantees the property that the parent of each cached node (and hence
also the path connecting it to the root of the tree) is also in cache. Whenever
the target of an access is in cache, it is replaced by an additional cover for the
access, to guarantee that num cover + 1 blocks are downloaded for each level
of the tree (but the root level). This makes repeated accesses look like accesses
to nodes that have not been previously accessed. The adoption of a local cache
prevents short-time intersection attacks, which could be exploited by the server
to identify repeated accesses when subsequent searches download non-disjoint
sets of blocks. In fact, accesses within a time frame of num cache accesses do
not have nodes in common.

• Shuffling. Shuffling aims at breaking the relationship between node content and
block where it is stored, to avoid that accesses to the same physical block cor-
respond to accesses to the same node content. By changing the node-block allo-
cation, the server cannot draw conclusions on the content of the accessed nodes
by observing accessed blocks. In fact, repeated accesses to the same block do
not necessarily correspond to repeated accesses to the same node content. Shuf-
fling consists in moving the content of accessed (either as target or as covers) and
cached nodes to different blocks (i.e., shuffling assigns a different block address
to each accessed node, choosing among the downloaded blocks). To prevent the
server from reconstructing node shuffling, every time a node content is moved
to a different block, it is re-encrypted using a different random salt. Its parent
is also updated to guarantee that the parent-child relationship between them is
preserved.

Search process. Each search operation for a value then combines these three
protection techniques, as described in the following.

Given the value target value, target of the access to the outsourced relation,
the search algorithm (operating at the client side) first randomly chooses a set of
num cover+1 cover values in the actual domain of the key attribute K on which the
shuffle index has been defined. Since these values should act as cover searches for
target value, this choice must guarantee both indistinguishability and block diver-
sity, as described above. Note that the algorithm chooses one additional cover (i.e.,
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num cover + 1 instead of num cover) as it is needed if the target of the access is
in the local cache. The search algorithm then visits the shuffle index level by level,
starting from the root. For each level l of the shuffle index, the search algorithm first
checks whether the node in the path to target value is in the local cache and, if a
cache miss occurs, it discards one of the cover searches initially chosen proceeding
the search with num cover covers. It then determines the address of the blocks stor-
ing the nodes along the paths to target value and to the num cover cover searches
(num cover+ 1 covers if a cache hit occurred). These blocks are then downloaded
from the server, decrypted to retrieve the content of the nodes they store, and ran-
domly shuffled together with the nodes at level l in the local cache. To preserve the
correctness of the shuffle index data structure, the parents of shuffled nodes are up-
dated, guaranteeing that pointers refer to the blocks where the children of each node
are stored. The search algorithm also updates the local cache structure, according to
the LRU policy. If the node along the path to target value is in cache, the algorithm
simply refreshes its timestamp; otherwise, the node along the path to the target is
inserted as the most recently accessed node and the least recently accessed node is
removed from the cache. Before moving to the next level, the nodes shuffled during
the previous iteration (i.e., accessed and cached nodes at level l − 1) are encrypted
with a fresh random salt and sent to the server for storage. Upon receiving the en-
crypted blocks, the server replaces the old block stored at each physical address with
the new one received from the client. The process terminates when the visit of the
shuffle index reaches the leaf level. The leaf along the path to target value is then
returned to the requesting user, since it contains the tuple with value target value for
attribute K, if such a tuple exists in r. For instance, consider a search for value ‘W’
on shuffle index in Figure 12 that adopts one cover. Also, assume that the cache has
size 2 and that it stores: the root node at level 0; nodes 103[J,L,–] and 102[W ,Y ,–]
at level 1; and leaves 211[J,K,–] and 210[Y ,Z,–] at level 2. The client first chooses
two covers for the target ‘W’, say ‘E’ and ‘Q’, and visits the root node (block 001),
which is stored in the local cache. It then identifies the block at level 1 along the
paths to the target (i.e., 102) and to the two covers (i.e., 104 and 101, respectively).
Since block 102 is in cache, the client downloads from the server blocks 104 and
101, decrypts their content, and shuffles the accessed and cached blocks (i.e., 101,
102, 103, and 104) as illustrated in Figure 13(b). It then updates the pointers to
children in the root node, encrypts its content and sends it back to the server for
storage. Moving to the next level, the client first identifies the leaf blocks along the
path to the target (i.e., 201) and to the two covers (i.e., 212 and 202, respectively).
Since block 201 is not in cache, one of the two covers is discarded, say 202, and the
client downloads from the server and decrypts blocks 201 and 212. The client then
shuffles blocks 201, 210, 211, and 212, updates the pointer to them in their parents,
encrypts nodes 101, 102, 103, and 104, and sends the resulting blocks to the server
for storage. Then, it updates the cache at level 2 inserting leaf node 212[W ,X ,–] and
removing leaf node 211[Y ,Z,–]. Finally, the client encrypts the shuffled leaves and
sends the resulting blocks to the server. Figure 13(c) illustrates the logical shuffle
index resulting after the access.

24



(a)
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Fig. 13 An example of evolution of the logical shuffle index in Figure 12(b) as a consequence of
a search for value ‘W’ with ‘E’ and ‘Q’ as covers

The search algorithm operates in logarithmic time in the size
of the outsourced database (i.e., its computational complexity is
O((1+num cover+num cache)logF(n)), with n the number of tuples in r),
since for each search the algorithm visits num cover + 1 different paths of the
shuffle index.

Extensions of the shuffle index. The original shuffle index proposal has been
extended in several directions to support: i) concurrent accesses to the data; ii)
searches over attributes different from K; and iii) data storage at different servers.
Concurrency is provided by the adoption of delta versions [17], which are copies
of portions of the shuffle index that are dynamically created/updated by subsequent
accesses. Each access to the shuffle index is assigned to a different delta version
with exclusive write lock. Accessed blocks are downloaded from the delta version
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(if the delta version includes the node of interest) or from the shuffle index (oth-
erwise), while shuffled blocks are written on the delta version. Periodically, delta
versions are reconciled and applied to the shuffle index, to preserve the effects of
the different shuffling operations performed by different users.

To efficiently support private accesses to r based on attributes different from K,
in [17] the authors propose to complement the primary shuffle index with differ-
ent secondary shuffle indexes, built on candidate keys that are expected to be often
involved in query evaluation. A secondary index defined on attribute a is a shuffle
index that stores, in association with value val for a, the values that attribute K has
in tuple t (i.e., t[K]), such that t[a]=val. A search for the tuples in r with value val
for attribute a proceeds then in two steps: 1) search for value val in the secondary
index, retrieving the value valK of attribute K in the tuples of interest; and then 2)
search for value valK in the primary index, retrieving the tuple of interest.

The distribution of the shuffle index over different servers, which are not aware
one of each other, increases the protection offered to the confidentiality of users’
accesses. According to the proposal in [16], in a distributed scenario cover searches,
cached searches, and shuffling protection techniques can be complemented with
shadowing. Shadowing guarantees that the observations by each server of accessed
blocks make it believe to be the only server storing the whole data collection. In
fact, each server observes the same number of blocks read (written, respectively) at
each level of the tree.

5 Combining Access Control and Indexing Techniques

Access control enforcement and query evaluation over encrypted outsourced data
has been widely studied, as testified by the different approaches illustrated in the
previous sections of this chapter. However, the problem of combining them is still
an open issue. The joint adoption of selective encryption (Section 2) and indexing
techniques (Section 3) may permit authorized users to infer information they are not
entitled to access. In fact, authorized users can infer the values that attributes have
in tuples they should not be able to read, by exploiting their visibility over the index
values for the tuples they are entitled to access. For instance, with reference to the
encrypted relation in Figure 11(b) and the access control policy regulating it in Fig-
ure 3, user B can infer that t7[ZIP]=22010 even if B �∈acl(t7), because tk7[Iz]=tk1[Iz]
and B knows that t1[ZIP]=22010 since B belongs to acl(t1).

The problem of jointly adopting selective encryption and indexing techniques has
recently been investigated, leading to the identification of different privacy risks that
vary depending on the technique adopted for index definition (see Section 3) [13].
Before illustrating these risks, we summarize the knowledge of an authorized user u
(i.e., a user who can access a subset of the tuples in r). Each authorized user knows:
i) index function ι used to define index I over attribute a (necessary for query eval-
uation); ii) the plaintext tuples that the user can access; iii) all the encrypted tuples
in rk (they are publicly available). For instance, consider the encrypted relation in
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t acl(t)
t1 ABC
t2 ABC
t3 BC
t4 ABDE
t5 ABCDE
t6 ACDE
t7 A
t8 D

PATIENTS
SSN Name ZIP MarStatus Illness

t1 123456789 Ann 22010 single gastritis
t2 234567891 Barbara 24027 widow neuralgia
t3
t4 456789123 Daniel 20100 married gastritis
t5 567891234 Emma 21048 single neuralgia
t6 678912345 Fred 23013 married hypertension
t7 789123456 Gary 22010 widow gastritis
t8

PATIENTSk

tid enc Iz Im Ii

1 aD4%l α ζ η
2 7Eoi) β κ ξ
3 Gx?b3 α θ µ
4 dn4$z γ θ η
5 2Cyl= δ ζ ξ
6 Joi2s ε θ ρ
7 (ceWm α κ µ
8 w2!qk β κ ρ

(a) (b) (c)

Fig. 14 Access control lists (a), knowledge of user A over relation PATIENTS (b), and over relation
PATIENTSk (c)

Figure 11(b) and the access control policy regulating it in Figure 3. User A knows
the index functions used by the data owner to define Iz, Im, and Ii; all the plaintext
tuples but t3 and t8; and the encrypted relation in Figure 11(b). The knowledge of
user A is summarized in Figure 14, where gray cells denote plaintext values that
user A is not authorized to read.

The inferences that an authorized user can draw on index I representing attribute
a can be summarized as follows.

• Direct index. Since each plaintext value is associated with one index value and
viceversa, if tki [I]=tkj[I ] then also ti[a]=t j[a] and viceversa. Hence, each user
u can infer the plaintext value of attribute a for all those tuples in r that have
the same value as a tuple that u is authorized to access. Consider, as an exam-
ple, direct index Iz in relation PATIENTSk in Figure 14(c). User A knows that
t1[ZIP]=t3[ZIP]=t7[ZIP]=22010 even if she cannot read t3, since all these tu-
ples have the same value for index Iz.

• Bucket-based index. Since different plaintext values are mapped to the same in-
dex value, the information leakage illustrated for direct indexes is mitigated by
the presence of collisions. Hence, if tki [I ]=tkj[I ] there is a certain (greater than
zero) probability that also ti[a]=t j[a], but there is no guarantee that this equal-
ity condition holds. Consider, as an example, index Im in relation PATIENTSk in
Figure 14(c). Since the value for Im is the same for t2, t7, and t8, user A can infer
that probably t2[MarStatus]=t7[MarStatus]=t8[MarStatus]=widow. We
note however that plaintext values ‘widow’ and ‘divorced’ are represented by the
same index value κ .

• Flattened index. Although less straightforward, the inference risk caused by flat-
tened indexes is the same as illustrated for direct indexes. In fact, each index
value represents one plaintext value only and then if tki [I]=tkj[I ], also ti[a]=t j[a].
The viceversa is instead not true, that is, not all the occurrences of a value val are
represented by the same index value. However, each authorized user knows the
index function ι adopted by the data owner and can then compute ι(val), retriev-
ing all the index values representing val. For instance, consider flattened index
Ii in relation PATIENTSk in Figure 14(c). Although user A is not authorized to
read tuple t3, she can infer that t3[Illness]=gastritis as t3 and t7 have the same
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PATIENTSk

tid enc Iz

1 aD4%l α ′
A, αB, αC

2 7Eoi) βA, βB , βC
3 Gx?b3 α ′

B, α ′
C

4 dn4$z γA, γB , γD, γE
5 2Cyl= δA, δB, δC , δD, δE
6 Joi2s εA, εC, εD, εE
7 (ceWm αA
8 w2!qk βD

Fig. 15 An example of encrypted and indexed version of relation PATIENTS with index Iz over
ZIP defined according to a salted user-dependent function

value for index Ii. Also, since she can compute ι(gastritis)={η , µ}, she can infer
that also t1 and t4 have this value for attribute Illness.

From the observations above, it is easy to see that attribute values are exposed
when the same index value appears in association with tuples characterized by dif-
ferent access control lists. Consider two tuples ti and t j in r such that acl(ti)�=acl(t j),
and tki [I ]=tkj[I ]. All the users in acl(ti) (acl(t j), respectively) can draw inferences
on the value of t j[a] (ti[a], respectively). For instance, tuples t1, t3, and t7 have
the same value for attribute ZIP, but different acls. This permits A to infer that
t3[ZIP]=22010 even if she should not be able to read such a tuple. A first solution
to limit such a leakage of information is based on the idea that the index value repre-
senting value t[a]=val should not only depend on val but also on acl(t). In [13] the
authors present a solution that operates on direct indexes, which represent the worst-
case scenario. This approach associates a different index function ιu with each user
u (depending on a piece of secret information shared between u and the data owner).
Function ιu is salted (i.e., a randomly chosen salt is applied) to avoid that tuples
with the same plaintext value v but different acl are associated with the same index
value ιu (v) for user u, which could easily be exploited for inferences. For instance,
consider direct index Iz in relation PATIENTSk in Figure 14(c). Figure 15 illustrates
relation PATIENTSk, where index Iz has been defined using a different (salted) index
function for each user in the system. For readability, in the figure we use a subscript
to indicate the user to which the index value refers (e.g., αA is a value computed by
ιA) and symbol ′ do denote the salted version of index values (e.g., α ′

A is the salted
version of αA).

While interesting, the proposal illustrated in [13] and mentioned above considers
one specific indexing technique only. Even if it can be easily extended to operate
with bucket-based and flattened indexing functions, it cannot be combined with the
privacy-preserving indexing approaches described in Section 4. Furthermore, user-
based indexing techniques are suitable for static scenarios, as dynamic observations
of repeated accesses to the data can reveal to an observer which index values repre-
sent the same plaintext value. In fact, index values representing the same plaintext
value are often accessed together by authorized users. For instance, with reference
to relation PATIENTSk in Figure 15(b), every time user A needs to access all the
tuples with ZIP=22010, she will query the encrypted relation with the condition
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Iz=αA OR Iz=α ′
A. The server can then easily conclude that αA and α ′

A represent the
same plaintext value.

6 Conclusions

Public and private organizations are more and more resorting to cloud systems for
outsourcing their own data centers. While bringing intuitive benefits in terms of
economies of scale, moving to the cloud raises new privacy risks, since data are
no more under the direct control of their owner. The research and development
communities have dedicated many efforts in the design and development of novel
techniques for protecting outsourced data and accesses to them. In this chapter, we
surveyed recent approaches that, while protecting confidentiality of the data to the
eyes of the storing server through encryption, enforce access control restrictions and
efficiently evaluate queries over encrypted data, possibly without even revealing to
the server the target of accesses. We also described the main issues arising when
these techniques are adopted in combination, illustrating a preliminary approach for
their solution.
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