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Abstract. Cloud computing is a key technology for outsourcing data
and applications to external providers. The current cloud market offers
a multitude of solutions (plans) differing from one another in terms of
their characteristics. In this context, the selection of the right plan for
outsourcing is of paramount importance for users wishing to move their
data/applications to the cloud. The scientific community has then de-
veloped different models and tools for capturing users’ requirements and
evaluating candidate plans to determine the extent to which each of them
satisfies such requirements. In this chapter, we illustrate some of the ex-
isting solutions proposed for cloud plan selection and for supporting users
in the specification of their (crisp and/or fuzzy) needs.
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1 Introduction

The cloud providers offer today a large, rich, and diversified set of services on
which users can rely to store their data and deploy their applications. Usually,
such services are proposed in terms of pre-defined configurations (plans) with dif-
ferent features that make, for example, a solution more suitable for data storage,
another for the deployment of performant applications, and so on. This can be
easily observed by a simple look at the current panorama, where cloud providers
(e.g., Amazon) offer a plethora of different plans (e.g., S3, EC2, just to mention
a few). Although the richness and diversity of the current cloud market can be
beneficial to users since, the more the possible options, the more each user will be
able to find a plan well-aligned to her needs, the selection of a plan among those
available in the market can be a difficult task that requires to address several
problems. First, there is the need to determine the parameters that can be used
to evaluate and compare candidate plans and to select the right one. Typically,
every provider publishes Service Level Agreements (SLAs), which are binding
contracts that specify minimum guarantees on Quality of Service (QoS) param-
eters ensured during service provision. For instance, SLAs include the minimum
uptime percentage that is guaranteed, together with indications on the possible
compensations that the user can get if such minimum level is not met. How-
ever, since there is not a general template for SLA definition, different SLAs can
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include different information, or even the same information but with different
names (e.g., ‘monthly uptime’ in Amazon’s Compute SLA and ‘monthly avail-
ability’ in Rackspace’s Cloud SLA). Hence, while it can seem natural to look
at parameters declared in SLAs to compare cloud plans for their assessment
and selection, the task can be very complex. A second problem consists in iden-
tifying a way to actually perform the assessment of cloud plans. In this case,
the optimization criteria to be met can be multiple and possibly contrasting:
as an example, the cheapest plan might not be the most performant, and yet a
user might want to select a plan which maximizes performance while minimizing
cost. Orthogonally to these problems, another issue relates to providing support
to users in the specification of their requirements to be taken into account in
the assessment and selection of cloud plans. Different users might have differ-
ent (and possibly contrasting) needs to be considered, due to, for example, laws,
regulations, or simply due to the specific applicative scenario. Having means and
techniques for allowing users to specify arbitrary requirements and for enforcing
them is therefore fundamental for responding to users’ desiderata.

The scientific community has devoted many efforts to study and design so-
lutions for the general problem of secure data management (e.g., [28, 29]), also
focusing on the cloud plan selection problem thus generating solutions to: i)
define standardized sets of attributes and/or metrics over which evaluate a can-
didate plan (e.g., [4, 18]); ii) evaluate multiple/conflicting requirements (e.g., [8,
9])s; and iii) support users in a friendly and easy specification of their needs
(e.g. [6, 12, 17]). In this chapter, we present some of the existing models and
solutions proposed for addressing all these aspects.

The remainder of this chapter is organized as follows. Section 2 illustrates ex-
isting techniques for identifying attributes to be used for selecting and assessing
cloud plans. Section 3 focuses on the problem of supporting users towards a flex-
ible and user-friendly specification of requirements and preferences that should
be taken into account in cloud plan selection. Section 4 overviews the possible
use of fuzzy logic in cloud plan selection for specifying user requirements. Finally,
Section 5 concludes the chapter.

2 Attributes identification

The problem of cloud plan selection requires to analyze the characteristics of
the plans available in the market to determine the ones that can be considered
acceptable (or more appealing) than others for outsourcing. For instance, the
selection of a plan for outsourcing mission-critical but non-sensitive data might
consider optimal a plan that ensures maximum availability. In this section, we
first illustrate some of the existing solutions that rely on Quality of Service (QoS)
evaluation (Section 2.1), and then discuss proposals that focus on specific aspects
of the problem such as QoS values predictions, dependencies management, and
security parameters (Sections 2.2-2.4).
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Fig. 1. Brokerage-based cloud plan selection

2.1 Quality of Service (QoS) evaluation

The most simple approach for assessing, and hence selecting, cloud plans re-
quires to evaluate its low-level characteristics (e.g., CPU and network through-
put). Typically, the most relevant characteristics considered in the analysis of
cloud plans include cost, which should be low, and performance, which should
be high. CloudCmp [18] compares the performance and cost of different cloud
providers. CloudCmp first identifies common services offered by different cloud
providers (i.e., elastic computing, persistent storage, and networking services)
and then identifies the performance and cost metrics according to which such
common services are compared. The values for these metrics are computed with
a combination of benchmarking tasks (for elastic computing and persistent stor-
age) and service invocations through standard tools such as ping (for networking
services).

Besides the natural need for a performant plan (possibly at affordable cost),
users might have more complex requirements, identifying, for example, minimum
levels for different QoS attributes ensured by a provider during service provision.
The solutions proposed in this context are typically based on the presence of a
middleware in the system architecture playing the role of a broker [14], which can
be trusted or verified for behavior correctness [19]. Figure 1 illustrates a typical
broker-based cloud plan selection process: the selection broker is in charge of
collecting both user’s desiderata and plans’ characteristics (possibly expressed
in a machine-readable format [27]), reasoning over them, and returning to the
user the result of its assessment.
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Attribute Example of sub-attributes

Accountability Auditability, Compliance to standards, Environmental sustainability
Agility Elasticity, Portability, Flexibility
Assurance Reliability, Resiliency
Cost Acquisition cost, On-going cost
Performance Throughput, Efficiency
Security and Privacy Measures for confidentiality, integrity, availability
Usability Ease of usage, Ease of installation

Fig. 2. SMI attributes and an example of their sub-attributes

There have been recent efforts, by both the academia and international stan-
dardization bodies, towards the definition of a standardized set of QoS attributes
that could be used by users to formulate requirements. For instance, the Cloud
Service Measurement Index Consortium (CSMIC) has identified a set of QoS
attributes and sub-attributes, organized in a hierarchical way, composing the
Service Measurement Index (SMI) [14]. Figure 2 lists the seven higher-level SMI
attributes and, for each of them, possible sub-attributes that contribute to it.
For instance, high-level attribute cost depends on two sub-attributes acquisition
cost and on-going cost, meaning that the cost associated with a certain cloud
plan is influenced by both the cost to acquire cloud resources, and the cost to
maintain and use them (e.g., communication, storage, and computation costs
charged by the provider). The SMI attributes form the basis over which the pro-
posal in [14] compares and ranks cloud plans. User requirements set bounds to
the values that the attributes of interest to the user can assume, and the values
assumed by plans (harvested by a broker) are evaluated against such require-
ments. Such an evaluation is however complex as it can also require to solve
conflicts: for instance, when assessing two plans P1 and P2, it might happen that
P1 is better than P2 for an attribute (say, cost) and worse than P2 for another
attribute (say, performance). To solve these issues, in [14] the authors propose
to adopt a Multi-Criteria Decision Method (MCDM) that, among alternative
solutions, identifies the one that optimizes a set of objective functions [2, 7, 26]
(e.g., minimize cost while maximizing performance).

The proposal in [16] adopts a hybrid MCDM-based approach to select cloud
plans, which combines two well-known techniques (AHP-Analytic Hierarchy Pro-
cess, and TOPSIS-Technique for Order of Preference by Similarity to Ideal So-
lution) to reason over QoS attributes and values. MCDM, possibly coupled with
machine learning, has also been proposed to select the instance type (i.e., the
configuration of computing, memory, and storage capabilities) enjoying the best
trade-off between economic costs and performance while satisfying user require-
ments (e.g., [23, 30]). For each of the resources to be employed (e.g., memory
and CPU), these proposals select the provider (or set thereof) to be used for its
provisioning as well as the amount of the resource to be obtained from each of
them, so to satisfy user requirements.

QoS evaluation has also been adopted in combination with other criteria for
cloud plan selection (e.g., subjective assessments and personal experience [10,
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15, 24, 33]) as well as with other reasoning techniques (e.g., fuzzy logic [5, 11,
22], as we will illustrate in Section 4), and consensus-based voting techniques
(e.g., [2]).

2.2 QoS prediction

The values assumed by a cloud plan for QoS attributes are usually harvested
by brokers from the SLAs published by cloud providers. However, it should not
be forgotten that the interaction between a user and a cloud platform oper-
ates through an Internet connection. For this reason, the values declared by the
provider (provider-side QoS) can differ from those observed by a user (user-side
QoS). Also, different users can observe different user-side QoS values for the same
plan. For instance, the response time experienced by two different users might be
different if they are located in different geographical areas or if they have access
to networks with different latencies. Therefore, assessing cloud plans only based
on provider-side QoS might fall short in real-world scenarios, as the criteria over
which the selection operates might not consider what is actually locally observed
by the user. To overcome this problem, some techniques introduced the idea of
selecting cloud plans based on the user-side values of QoS attributes (e.g., [34]).
A precise evaluation of user-side QoS values can however be a difficult task, as
it can require actual invocations and/or usage of cloud services, causing both
communication overhead and economic charges. Moreover, due to the possible
differences in the values observed by different users, the same plan might be as-
sessed differently by different users. A possible solution to this issue can consider
past usage experiences of ‘similar users’ (e.g., users expecting to observe similar
values). Measured or estimated QoS parameters are finally used to rank all the
(functionally equivalent) providers among which the user can choose (e.g., [34]).

2.3 Dependencies management

Recent lines of work have investigated the problem of supporting users in spec-
ifying arbitrary requirements that can be considered in cloud plan selection and
in SLA definition (e.g., see Section 3). Recent approaches have specifically pro-
posed the definition of a brokering service in charge of interpreting requirements
on arbitrary attributes, and of querying candidate providers on their satisfac-
tion [9, 32]. However, when using arbitrary attributes, it may happen that certain
service guarantees can be satisfied by a provider only if other conditions (maybe
even insisting at the user side) are also satisfied. This is because there might be
some dependencies among conditions: for example, the response time of a system
may depend on the incoming request rate (i.e., the number of incoming requests
per second). In a scenario where the user is free to set arbitrary conditions on
the response time of a service, the process of evaluating requirements should
carefully consider whether a candidate provider is able to respect such a require-
ment only if an upper bound is enforced on the number of requests per time
unit. Note that, clearly, different providers/plans might entail different depen-
dencies (e.g., two plans with different hardware/software configurations might
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accept different request rates to guarantee the same response time). This clearly
further complicates the cloud plan selection problem. Recent approaches have
designed solutions for negotiating an SLA between a user and a cloud provider
based on generic user requirements and on the automatic evaluation of depen-
dencies existing for the provider (e.g., [9]). The solution in [9] takes as input a set
of generic user requirements and a set of dependencies for a provider, and deter-
mines (if any) a valid SLA (vSLA) that satisfies the conditions expressed by the
user as well as further conditions possibly triggered by dependencies. With refer-
ence to the example above, if the user requirements include a condition over the
response time, the generated vSLA will also include a condition on the maximum
supported request rate. Given a set of requirements and a set of dependencies,
different valid SLAs might exist. The approach in [8] extends the work in [9]
by allowing users to specify preferences over conditions that can be considered
for selecting, among the valid SLAs, the one that the user prefers. Preferences
are expressed over the values that can be assumed by the attributes involved in
requirements and dependencies (e.g., response time and request rate). Building
on the approach proposed in [9], these preferences are used to automatically
evaluate vSLAs, ranking higher those that better satisfy the preferences of the
user.

2.4 Security parameters

Security is undoubtedly a key requirement for many users when moving to the
cloud since, by delegating the management of their resources to an external
provider, they lose control over them. The selection of the cloud provider offering
the best plan with respect to the required needs should then be based also
considering the security guarantees ensured during service provision.

In the context of cloud service provision, security is typically guaranteed
by providers through the adoption of certifications that are based on estab-
lished standards, possibly specifically designed for the cloud environment [20].
Among cloud-specific solutions, the Cloud Security Alliance Cloud Controls Ma-
trix (CSA CCM) [4] is a framework designed to provide security concepts and
principles to cloud providers and to allow users to assess the security risks as-
sociated with a provider. The CSA CCM organizes concepts and principles in
domains including, for example, application & interface security, identity & ac-
cess management, and encryption & key management. For each domain, the
CCM introduces a set of security principles: for example, a principle within
domain ‘encryption & key management’ is ‘keys must have identifiable owners
(binding keys to identities) and there shall be key management policies’. With
each principle, the CCM identifies the security standards and regulations whose
satisfaction requires the implementation of the principle. By verifying the satis-
faction of the principles declared by a provider, a user can evaluate the security
guarantees of the plans offered by the provider. The Cloud Controls Matrix is
well aligned to the Cloud Security Alliance guidance as well as to the Consensus
Assessments Initiative Questionnaire (CAIQ), which is a set of Boolean yes/no
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security-related questions (e.g., ‘are all requirements and trust levels for cus-
tomers’ access defined and documented?’) that can further help a user to assess
security guarantees.

We close this section by highlighting some recent attempts towards incorpo-
rating security guarantees into SLAs, also known as secSLAs (e.g., [3, 20]). The
key idea is that secSLAs should include information on the security controls im-
plemented by the provider, their associated metrics (i.e., criteria and techniques
for their evaluation), and the values guaranteed by the provider during service
delivery. In this way, traditional approaches (e.g., approaches based on QoS) for
assessing and selecting cloud plans could automatically take into account the
security requirements of users as well as the security guarantees offered by cloud
providers [7].

3 Requirements specification

The techniques illustrated in the previous section mainly deal with the prob-
lems of identifying attributes relevant for the evaluation of candidate plans or
of developing techniques for the evaluation process. Orthogonally to these prob-
lems, there is also the need of allowing users to easily express their requirements
to discriminate those plans that are suitable for outsourcing. The framework
in [6] addresses this need by proposing a high-level and user-friendly language
for expressing requirements and preferences . Requirements are hard constraints
that a plan must satisfy to be acceptable for outsourcing. Preferences are soft
constraints evaluated against acceptable plans (i.e., plans satisfying the require-
ments) and that can help in producing a rank among such acceptable plans: the
higher the position of a plan in the ranking, the closer the plan to the needs of
the user. The evaluation of requirements and preferences is executed by a bro-
ker, which verifies them against the characteristics of the plans, called attributes
in [6], and returns to the user the computed plan ranking (Figure 3). Attributes
might be metadata associated with the provider of a plan or, in general, any mea-
surable property. We now illustrate more in details the specification language for
requirements and preferences and the strategies for enforcing them. We will refer
our examples to a set of attributes modeling, for each plan, the provider (prov),
the geographical location of its servers (loc), the adopted encryption scheme
(encr), the guaranteed availability (avail), the authority running penetration
testing (test), the possessed security certification (cert), and the security au-
diting frequency (aud).

Requirements specification and enforcement. The building block of the
requirements specification language is the attribute term. An attribute term
t states that an attribute must assume a certain set of values (denoted
attribute(v1, . . . , vn)) or that, on the contrary, cannot assume a certain set of
values (denoted ¬attribute(v1, . . . , vn)) in its domain. For instance, attribute
term ‘t = prov(Ghost,Mist,Cloudy)’ states that a plan must be offered by
providers Ghost, Mist, or Cloudy. Starting from this building block, the pro-
posed requirement specification language allows users to specify in a flexible way
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Fig. 3. Cloud plan selection and ranking with requirements and preferences [6]

a variety of requirements. The language supports the definition of the following
requirements.

– Base requirement. It corresponds to an attribute term t, requiring that an
attribute assumes/does not assume a certain set of values. For instance, a
basic requirement of the form ‘prov(Ghost,Mist,Cloudy)’ states that a plan
is considered acceptable only if it is offered by providers Ghost, Mist, or
Cloudy.

– any requirement. It models alternatives among base requirements. For in-
stance, a requirement of the form ‘any({loc(EU), cert(cert γ)})’ states
that a plan is considered acceptable only if its servers are geographically
located in the EU or if it has certification ‘cert γ’.

– all requirement. It represents sets of base requirements that must be jointly
satisfied. For instance, ‘all({loc(EU,US),¬encr(DES)})’ states that a plan
is considered acceptable only if servers are located in the EU or the US, and
if the adopted encryption is not DES.

– if–then requirement. It specifies that certain base requirements (those ap-
pearing in the then part) must be satisfied every time other base require-
ments (those appearing in the if part) are also satisfied. For instance,
‘if all({loc(US), encr(3DES)) then any(audit(3M, 6M), cert(cert α))’
states that if a plan has servers in the US and encrypts with 3DES, then it
must be audited for security every three or six months, or have certification
‘cert α’.
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– forbidden requirement. It identifies forbidden configurations, that
is, combinations of base requirements that cannot be all sat-
isfied at the same time by an acceptable plan. For instance,
‘forbidden({¬loc(EU), test(authC)})’ states that a plan with servers not
located in the EU and tested by authC is not acceptable.

– at least requirement. It demands that at least n among
a set of base requirements be satisfied. For instance,
‘at least(2, {loc(EU), encr(AES), prov(Mist, Ghost)})’ states that a
plan is acceptable only if at least two among the conditions ‘having servers
within the EU’, ‘adopting AES encryption’, and ‘having Mist or Ghost as
provider’ are satisfied.

– at most requirement. It demands that at most n
among a set of conditions be satisfied. For instance,
‘at most(2, {prov(Ghost), avail(M, MH), encr(3DES)})’ states that
a plan is acceptable only if at most two among the conditions ‘being
offered by provider Ghost’, ‘having a medium (M) or medium-high (MH)
availability’, and ‘adopting 3DES encryption’ are satisfied.

A plan is considered acceptable by a user iff it satisfies all her requirements.
Given a set of requirements and a set of cloud plans, the approach in [6] checks
whether the plans are acceptable using a Boolean interpretation of the require-
ments. For example, consider the plans in Figure 4(a) (abstractly represented
as vectors with one element for each attribute reporting the value assumed by
the attribute in the plan or symbol ‘—’ if not specified) and the set r1, . . . , r10
of requirements in Figure 4(b). It is easy to see that only plans P1, P2, and P3

are acceptable, as P4 does not satisfy requirements r3, r4, r8, and r10.

Preferences specification and enforcement. Like requirements, also prefer-
ences (used by the broker to rank acceptable plans) can be specified by the user,
and the approach in [6] aims to support users with an intuitive specification
model. In particular, we consider the following two levels of specifications for
preferences:

– attribute values, to specify that certain values are more preferred than others
(e.g., for attribute encr, a user might state that she prefers AES over 3DES);
and

– attributes, to specify the importance that each attribute has for the user
(e.g., a user interested in outsourcing mission-critical but non-sensitive data
might state that attributes related to performance are more important than
attributes related to security).

Preferences on attribute values are expressed as a total order relationship
among sets of values that attributes can assume (i.e., the attribute domain is
partitioned and preferences represent a total order relationship among partitions
of values). For instance, if attribute prov can assume values Cloudy, Mist, and
Ghost, a user might specify an ordering stating that Cloudy is preferred over
Mist, which is in turn preferred over Ghost. Preferences on attributes are instead
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P1 P2 P3 P4

prov Mist Mist Mist Cloudy cloud provider

loc US EU US JP geographical location of servers

encr AES AES AES DES adopted encryption

avail H VH VH ML availability level

test authA authA authB authC penetration test authority

cert cert γ cert α cert γ cert γ security certification

aud — — — 3M security auditing frequency

(a)

r1 : prov(Ghost,Mist,Cloudy)
r2 : ¬avail(VL,L)
r3 : all({loc(EU,US),¬encr(DES)})
r4 : any({test(authA, authB), cert(cert α, cert β)})
r5 : any({loc(EU), cert(cert γ)})
r6 : if all({loc(US), encr(3DES)) then any(audit(3M, 6M), cert(cert α))
r7 : if all(test(—)) then any(cert(cert α))
r8 : forbidden({¬loc(EU), test(authC)})
r9 : at most(2, {prov(Ghost), avail(M, MH), encr(3DES)})
r10 : at least(2, {loc(EU), encr(AES), prov(Mist, Ghost)})

(b)

Fig. 4. Abstract representation of cloud plans (a) and set of user requirements (b)

defined through a weight function that assigns a weight to each attribute. For
instance, with reference to the example above, attributes related to performance
can be assigned higher weights than attributes related to security. Figure 5 il-
lustrates an example of preferences for the plans in Figure 4(a). Preferences on
attribute values are graphically represented as a hierarchy among attribute val-
ues, with preferred elements appearing higher in the hierarchy. For each value,
the figure also represents the relative position of the value in the ordering (with
the most preferred value having preference 1, and the least preferred value hav-
ing preference 1/k, with k the number of partitions). Preferences on attributes
are instead reported in round brackets on the right side of each attribute: in this
example, all attributes have the same weight (1) except attribute avail (which
has weight 10).

To rank plans based on preferences, the approach in [6] defines three possible
strategies, including the intuitive Pareto-based ranking, and two distance-based
rankings. According to the Pareto-based ranking, a plan Pi is preferred over a
plan Pj if, for all attributes, its values are equally or more preferred than those in
Pj and for at least one attribute, Pi has a more preferred value than Pj . For in-
stance, Figure 6(a) illustrates the Pareto-based ranking computed over the plans
in Figure 4(a), considering the preferences in Figure 5. As it is visible from this
figure, P1 dominates P2 since they have the same value for prov, encr, avail,
and aud, but P1 has more preferred values for loc, test, and cert. On the
contrary, P2 and P3 are not comparable. Distance-based rankings consider plans
as points in an m-dimensional space (with m the number of attributes), located
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EU AES Cloudy VH authA cert α 3M

3DES Mist H authB cert β 6M

ML

cert γ 1YGhost

cert δ −

MH, M
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1/2
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1
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1/3

1

3/4

2/4

1/4

1

3/4

2/4

1/4
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3/5

2/5

1/5−

−

1

3/4

2/4

1/4

authC

loc (1) encr (1) prov (1) avail (10) test (1) cert (1) aud (1)

Fig. 5. User preferences for the plans in Figure 4(a)

through coordinates that are the relative positions assumed by their attribute
values in the rankings induced by the preferences. For instance, with reference
to the plans in Figure 4, plan P1 has coordinates [2/3, 1, 1, 1, 1, 1, 1/4] since, for
example, it assumes value Mist for attribute prov which has a relative position
of 2/3 in the preferences in Figure 5. The ranking of cloud plans is then based on
how distant each plan is from an ideal plan (i.e., a possibly non-existing plan that
assumes, for each attribute, one of the top preferred values and has therefore co-
ordinate equal to 1 for each attribute), with closer plans ranked higher. Distance
can possibly be measured taking into account attribute weights. In the latter
case, the relative position of each attribute value is multiplied by the weight of
the corresponding attribute (i.e., attribute preferences are interpreted as scaling
factors on the m-dimensional space). Figure 6(b) illustrates the distance-based
rankings over the plans in Figure 4(a), considering the preferences in Figure 5.
The ranking on the left does not consider preferences among attributes, while
the one on the right takes attributes preferences into consideration. For each
plan, the figure reports the scores assumed by attribute values, and used as
coordinates in the m-dimensional space, and the distance (in boldface on the
right-hand-side of each node) from the ideal plan.

4 Fuzzy logic for flexible requirements specification

The approaches illustrated in the previous sections mainly operate on crisp val-
ues assumed by generic attributes of cloud plans. However, reasoning directly
over crisp, and possibly low-level, characteristics of cloud plans implicitly as-
sumes that users are familiar with technical details of the cloud environment to
differentiate, for example, the attractiveness of a plan offering an availability of
99.99% from that of a plan offering 99.98%. This assumption might be limiting
in some real-world scenarios, for two main reasons. First, users might not possess
technical skills allowing them to fully understand the low-level characteristics of
a cloud plan, and hence to formulate complete and/or sound requirements pre-
cisely capturing their needs. Second, operating on crisp values inevitably intro-
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Mist EU AES VH authA cert α {
1/4

Mist US AES H authA cert γ {
1/2 3/4 1/4

Mist US AES VH authB cert γ {
1/2 1/4

Mist EU AES VH authA cert α {
2/3 1 1 1 1 1 1/4

Mist US AES VH authB cert γ {
2/3 1/2 1 1 3/4 3/5 1/4

Mist US AES H authA cert γ {
2/3 1/2 1 3/4 1 3/5 1/4

Mist EU AES VH authA cert α {
2/3 1 1 10 1 1 1/4

Mist US AES VH authB cert γ {
2/3 1/2 1 10 3/4 3/5 1/4

Mist US AES H authA cert γ {
2/3 1/2 1 15/2 1 3/5 1/4

0:82

1:07

0:82

1:07

2:70

(a) Pareto-based ranking

1:07

P1

P2 P3

P1

P3

P2

P1

P2

P3

(b) Distance-based rankings

Fig. 6. Rankings of plans P1, P2, P3 in Figure 4(a) that satisfy the requirements in
Figure 4(b) and considering the preferences in Figure 5

duces sharp boundaries between ‘good’ and ‘bad’ values, while human reasoning
is typically more flexible and good and bad values might slightly overlap.

To overcome these limitations, a possible solution relies on the adoption
of fuzzy logic [7, 12]. In fact, by permitting to reason with linguistic values
(such as ‘high’, ‘low’, ‘good’, and ‘bad’) and imprecise information (and pro-
viding the mathematical foundation for approximate reasoning, mapping lin-
guistic/imprecise information to the actual characteristics of cloud plans), fuzzy
logic can help users in formulating requirements and preferences in a way that is
more similar to human reasoning, which entails intrinsic imprecision and vague-
ness. Fuzzy logic can then allow users to define their application needs in a
flexible way, capturing natural linguistic expressions, when users are not spe-
cialists in information systems and technologies and when requirements are not
easily definable.

In particular, the proposal in [12] uses fuzzy logic to support the definition
of both user requirements in terms of fuzzy parameters and fuzzy concepts , as
well as the importance of (crisp) requirements.

Fuzzy parameters. Fuzzy parameters permit to define requirements when
users are unable to determine a specific value of a characteristic of the cloud
environment, but they are fully conscious of the required size of the considered
characteristic and are linguistically able to describe it (e.g., with adjectives of
periphrases). To illustrate, suppose that a provider allows users to choose among
several key lengths for encrypting data at rest or in transit, and consider a non
technically skilled user who wishes to outsource her medical data. Being her data
sensitive, the user wants confidentiality to be guaranteed and, for this reason, she
would like to use a long encryption key. If the user does not have a precise idea of
the needed key length, she may prefer to simply state that ‘key length should
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Fuzzy label Range

very short 1-32 bit
short 16-128 bit
medium 64-256 bit
long 128-1024 bit
very long 512-2048 bit

Fuzzy concept Parameters

high data security

encryption: AES
min. key length: 256 bit
HMAC: SHA-512
hash key length: 512 bit

(a) (b)

Fig. 7. An example of fuzzy specification of key length parameter (a) and of data
security concept (b)

be long’, accepting a conventional definition of ‘long’ key as a fuzzy range of
values. A common vocabulary about the meaning of linguistic expressions must
be shared between the user and the provider to understand and satisfy user re-
quirements. Figure 7(a) illustrates an example of fuzzy vocabulary for the key
length property. The separation between ranges of values for key length is not
crisp, but ranges may overlap. Note that, besides helping users in formulating
requirements, such a fuzzy specification of requirements allows cloud providers to
manage with higher elasticity their resources. Indeed, fuzzy specification enables
users to express flexible requirements that cloud providers can satisfy without
leaving resources unused when applications do not explicitly demand for them.
Consider, as an example, two applications expressing requirements on storage
space and a cloud provider with 1.9TB of free space. The provider could not
accommodate two applications requiring 1TB of storage space, while it could
manage them if requesting large storage space, where large is between 0.7TB
and 1TB and the first application actually uses 0.8TB and the second one uses
0.95TB. The definition of fuzzy parameters enables for better resource alloca-
tion, with higher quality of service at lower costs for both the provider and the
users.

Fuzzy concepts. While supporting users in requirements formulation, fuzzy
parameters can still require some technological competence to users (with ref-
erence to the example above, a user formulating a fuzzy requirement over the
key length parameter should still know that the length of an encryption key
typically impacts the offered protection). Fuzzy logic can also provide a further
level of support, by operating on an abstract level more easily accessible also to
non-skilled users. To this end, fuzzy logic can operate on fuzzy concepts, that
is, high level features that do not directly correspond to a cloud characteristic
or parameter, but map on an appropriate combination of them. In this context,
fuzzy logic can provide the mathematical foundation for merging real charac-
teristics and metrics, translating the linguistic high-level description given by
the user. To illustrate, consider the example above and suppose that the user is
agnostic about the security provided by different encryption algorithms and key
lengths. If the user is still wishing to protect her medical data upon outsourcing,
she may simply prefer to request ‘high data security’ instead of specifying which
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Fig. 8. Possible applications of fuzzy logic in cloud selection and management

algorithm or key length is appropriate (Figure 7(b)). Such high-level requirement
can then be formalized and processed through fuzzy logic, translating it into an
equivalent combination of parameter values to be guaranteed by the provider.

Weighting crisp requirements. Fuzzy logic might also be used to assign a
weight, or importance level, to a set of crisp requirements specified by the user
(e.g., like those illustrated in Section 3). Weighting requirements becomes more
relevant when, for any reason, not all of them can be satisfied at the same time
(e.g., when the response time grows above the requested threshold in case of
a burst of incoming requests, or heavy workload). If requirements do not have
the same relevance to the user, fuzzy logic might be employed to specify the
importance of each requirement in such a way to discriminate between critical
requirements (whose satisfaction must always be guaranteed) and secondary ones
(whose satisfaction is important, but less than that of critical ones). For instance,
when outsourcing a mission-critical application that needs to be up and running
24/7 with no delays, the user might specify that the availability requirement has
‘high importance’, while storage requirement has ‘medium importance’ and user
interface and interaction have ‘low importance’.

Fuzzy parameters, fuzzy concepts, and fuzzy importance of crisp require-
ments can then be transformed in a format that can be processed in a homo-
geneous way with other crisp requirements having a crisp weight, to take all of
them into account in a comprehensive strategy.

We close this section observing that, besides being applicable at the user
side for specifying requirements, fuzzy logic can prove beneficial also at the
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provider side, that is, in the low-level management of the cloud resources (e.g.,
CPU or virtual machine instances allocation) [1, 5, 11–13, 21, 22, 25, 31]. Figure 8
graphically illustrates a high-level representation of a cloud management system,
including a user (with requirements and preferences over the characteristics of
cloud plans), and a set of provider-side technological components that man-
age the overall service provision. We graphically highlight the possible adoption
of fuzzy logic with a star on the corresponding component/interaction among
parties. In particular, by making available flexible reasoning possibly with im-
precise/partial information, fuzzy logic can be used at the provider side to: i)
continuously monitor the cloud infrastructure (cloud infrastructure monitor in
the figure) to identify and characterize the current status of the cloud environ-
ment; ii) predict the future status of the infrastructure (cloud status predictor in
the figure), for example, to forecast peaks in incoming requests; and iii) flexibly
allocate resources to the tasks required by the user applications (resource allo-
cation engine in the figure), for example, to scale up or down allocated resources
when higher or lower demands are forecasted or observed.

5 Conclusions

Selecting the right cloud plan when outsourcing data and applications to the
cloud is a key issue for ensuring a satisfying experience for users. The problems
related to cloud plan selection are challenging and diverse, and the scientific com-
munity has recently addressed them by proposing models and techniques that
support users in assessing a set of cloud plans to select the right one. In this
chapter, we have illustrated some of the existing techniques for determining at-
tributes for evaluating cloud plans, for practically evaluating users’ requirements
and desiderata to assess a set of candidate plans, and for supporting users in
the specification of their requirements and preferences. We have also highlighted
how fuzzy logic can be beneficial in cloud plan selection.
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