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Abstract. The availability of a multitude of data sources has naturally
increased the need for subjects to collaborate for distributed computa-
tions, aimed at combining different data collections for their elaboration
and analysis. Due to the quick pace at which collected data grow, often
the authorities collecting and owning such datasets resort to external
third parties (e.g., cloud providers) for their storage and management.
Data under the control of different authorities are autonomously en-
crypted (using a different encryption scheme and key) for their external
storage. This makes distributed computations combining these sources
hard. In this paper, we propose an approach enabling collaborative com-
putations over data encrypted in storage, selectively involving also sub-
jects that might not be authorized for accessing the data in plaintext
when it is considered economically convenient.

1 Introduction

Our society and economy more and more rely on the knowledge that can be
generated by analysis and computations combining data that are produced and
owned/controlled by different parties. The cloud, thanks to a variety of storage
and computational providers with different costs and performance guarantees,
represents an accelerator for such needs. Data owners can in fact outsource their
data to storage providers, making them (selectively) available for computations
with reduced management burden at their own side. At the same time, users
requiring analysis can (partially) delegate expensive computations to compu-
tational providers, with clear performance and economic benefits [9]. However,
there is no such thing as a free lunch, and the scenario can be complicated by
the fact that some of the data can be sensitive, proprietary, or more in general
subject to access restrictions, all factors that can affect the possibility of relying
on external cloud providers for data management and processing.

To solve this issue and ensure data protection while permitting the con-
sideration of a large spectrum of providers for computations, a recent approach
proposed a simple, yet flexible, authorization model that enriches the traditional
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yes/no visibility that a subject can have over data with a third visibility level,
granting a subject visibility over encrypted versions of the data [9]. In this way,
subjects that are economically convenient, but possibly not fully trusted for ac-
cessing data content, may still be involved in computations over encrypted data.
To enforce the authorization policy, visibility over data is dynamically adjusted
by inserting, before passing a dataset to a subject not trusted for plaintext access,
on-the-fly encryption operations. Similarly, the encryption layer can be dynami-
cally removed through on-the-fly decryption when requested for operations that
cannot be executed over encrypted data.

The authorization model in [9] operates under the assumption that the
datasets involved in the distributed computation are stored in plaintext. This
assumption is however viable only when data are either stored at their owners,
or outsourced at providers that are trusted to access data in plaintext, hindering
the consideration of providers that, while being economically convenient, cannot
be considered fully trusted. Intuitively, the spectrum of potential providers that
could be adopted for storing datasets could be enlarged if data are encrypted, by
their owners, before outsourcing. The joint adoption of the authorization model
in [9] and of encrypted storage would benefit both users requiring computations,
and owners wishing to make their data selectively available to others. Users
might in fact leverage economically convenient providers for the computation,
and owners can outsource their datasets to economically convenient providers
with the guarantee that their data will be improperly accessed neither in stor-
age, nor in computation. The consideration of encrypted storage in collaborative
computations brings however complications, since encryption in storage is not
specifically inserted according to the computations to be performed and may not
support them, which could hence require additional decryption and re-encryption
operations.

In this paper, we build on the authorization model in [9] and propose a solu-
tion for collaborative computations over distributed data that can be stored, in
encrypted form, at external and possibly not fully trusted providers. The main
contributions of this paper can be summarized as follows. First, we re-define
the information flows enacted by a computation, necessary for authorization
enforcement, based on the possibility of some data being stored in encrypted
form (Section 2). Second, we identify the need, and propose a solution for, re-
encryption operations, to be introduced when the encryption adopted in storage
(which is pre-determined by the data owner) does not support operation execu-
tion (Section 3). Third, we provide an approach for computing an economically
convenient assignment of computation operations to subjects in complete obe-
dience of authorizations (Section 4). We discuss related works in Section 5 and
conclude the paper in Section 6.

2 Relation profiles and authorizations

We consider a scenario characterized by three kinds of subjects: 1) data au-
thorities, each owning one or more relational tables possibly stored at external
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Fig. 1. An example of a query plan (a) and of authorizations on relations Flight and
Company (b)

storage providers; 2) users, submitting queries over relations under the control
of different authorities; and 3) computational providers, which can be involved
for query evaluation. Queries can be of the general form “select from where

group by having” and can include joins among relations under control of dif-
ferent data authorities. Execution of queries is performed according to a query
plan established by the query optimizer, where projections are pushed down to
avoid retrieving data that are not necessary for query evaluation. Graphically,
we represent query plans as trees whose leaf nodes correspond to base relations,
after the projection of the subset of attributes of interest for the query. For sim-
plicity, but without loss of generality, we assume that attributes in the relations
have different names.

Example 1. Consider two data authorities, a flight company and a commercial
company with one relation each: relation Flight(N,D,P,C) reports the social se-
curity Number and Date of birth of passengers, and the Price and Class of their
tickets; relation Company(S,I,J) reports the Social security number, Income,
and Job of the company employees. These relations are stored in encrypted form
at providers F and C, respectively. The system is characterized by computational
providers X, Y, and Z. In our running example, we consider the following query
submitted by user U: “select C, sum(P), sum(I) from Flight join Company

on N=S where J=‘manager’ group by C having sum(P)>10%sum(I)”, re-
trieving the classes for which the overall price of tickets is above the 10% of the
income of the managers who bought such tickets. Figure 1(a) illustrates a plan
for the query.

Relation profile. Besides the attributes included in its schema, a relation re-
sulting from a computation can convey information on other attributes. The



information content explicitly and implicitly conveyed by a (base or derived,
that is, resulting from the evaluation of a sub-query) relation is captured by a
profile associated with the relation. We extend the definition of relation profile
in [9] to model the possible encrypted representation of attributes in storage.

Definition 1 (Relation Profile). Let R be a relation. The profile of R is a
6-tuple of the form [Rvp, Rve, RvE, Rip, Rie, R#] where: Rvp, Rve, and RvE are the
visible attributes appearing in R’s schema in plaintext (Rvp), encrypted on-the-
fly (Rve), and encrypted in-storage (RvE); Rip and Rie are the implicit attributes
conveyed by R, in plaintext (Rip) and encrypted (Rie); R# is a disjoint-set data
structure representing the closure of the equivalence relationship implied by at-
tributes connected in R’s computation.

In the definition, Rvp corresponds to the set of plaintext attributes visible in
the schema of R. We then distinguish between the visible attributes encrypted
on-the-fly (Rve) and the visible attributes encrypted in storage (RvE), due to
their different nature. In-storage encryption is enforced once, independently from
the query to be answered, and uses a scheme and a key (decided by the owning
data authority) that do not change over time and are not shared among different
data authorities. On-the-fly encryption is enforced at query evaluation time and
both the encryption scheme and the encryption key are decided by the user for-
mulating the query and need to be shared among different parties when different
attributes need to be compared (e.g., for a join evaluation). Implicit components
(Rip, Rie) keep track of the attributes that have been involved in query evalua-
tion for producing relation R. Even if they do not appear in R’s schema, query
evaluation has left a trace of their values in the query results (e.g., attributes
involved in selection or group by operations). Note that we do not distinguish
between in-storage and on-the-fly encryption in the implicit component of the
profile. Indeed, the information leaked by the evaluation of an operation over an
encrypted attribute is not influenced by the time at which encryption has been
enforced or the subject enforcing it. The equivalence relationship (R#) keeps
track of the sets of attributes that have been compared for query evaluation
(e.g., for the evaluation of an equi-join). Hence, even if one of the attributes in
the equivalence set has been projected out from the relation schema, its values
are still conveyed by the presence of other (equivalent) attributes.

The profile of a base relation R has all components empty except Rvp and
RvE that contain the attributes appearing in plaintext and in encrypted form,
respectively, in the relation schema. The profile of a derived relation resulting
from the evaluation of an operation depends on both the operation and the profile
of the operand(s). Figure 2 illustrates the profiles resulting from the evaluation of
relational algebra operators, and of encryption and decryption operations, which
are peculiar of our model. Graphically, we represent the profile of a relation as a
tag attached to the relation’s node (or the node of the operator producing it in
case of a derived relation), with three components: v (visible attributes in Rvp

and, on a gray background, Rve and RvE), i (implicit attributes in Rip and, on
a gray background, Rie), and ! (sets of equivalent attributes in R# that have
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Fig. 2. Profiles resulting from relational, encryption, and decryption operations

been compared for R’s computation). We represent encryption and decryption
operations as gray and white boxes, respectively, containing the attributes to be
encrypted/decrypted, attached to the operand relation or the resulting relation,
respectively. Figure 3 illustrates the profiles of the relations resulting from the
evaluation of the operations in the query plan in Figure 1(a), assuming attributes
NS and PI are decrypted for enabling computations over them.

Authorizations. Authorizations aim at regulating data flows intended for com-
putations. Authorizations can specify, for each subject, whether she has plaintext
visibility, encrypted visibility, or no visibility for performing computations over
the attributes in the relations, and are defined as follows.

Definition 2 (Authorization). Let R be a relation and S be a set of subjects.
An authorization is a rule of the form [P ,E]→S, where P⊆R and E⊆R are
subsets of attributes in R such that P∩E=∅, and S∈S∪{any}.

Authorization [P,E]→S states that subject S can access in plaintext at-
tributes in P , in encrypted form attributes in E, and has no visibility over the
attributes in R\(P∪E). Subject ‘any’ can be used to specify a default authoriza-
tion applying to all subjects for which no authorization is defined. Authorizations
regulating access for computation over (encrypted) attributes in relation R are
defined by the data authority who owns the relation, independently from the
provider storing it. Note that the authorizations of storage providers depend on
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whether they are to be considered also for computations, independently from
the fact that they store a specific relation and its (encrypted or plaintext) form.
The user formulating the query is expected to have plaintext visibility over a
subset of the attributes in the relational schemas, and we assume that she is
authorized for the attributes involved in the query.

Example 2. Figure 1(b) illustrates an example of a set of authorizations regulat-
ing access to relations Flight and Company of our running example. User U
has plaintext visibility over a subset of the attributes of the two relations, storage
providers F and C have encrypted visibility over the attributes in the relation
they store, computational providers X, Y, and Z have plaintext or encrypted
visibility over a subset of the attributes in the two relations.

Authorization verification. To be authorized for a relation, a subject needs
the plaintext visibility over plaintext attributes (Rvp and Rip) and plaintext or
encrypted visibility over encrypted attributes (Rve, RvE , and Rie). Note that
there is no need to distinguish between in-storage and on-the-fly encryption for
authorization verification, as the information conveyed by encrypted attributes is
independent from the time at which it has been applied. The subject also needs
to have the same visibility (plaintext or encrypted) over attributes appearing
together in an equivalence set. This is required to prevent subjects having plain-
text visibility on one attribute in the equivalence set and encrypted visibility on
another to be able to exploit knowledge of plaintext values of the former to infer
plaintext values of the latter.

In the following, for simplicity, we will denote with PS (ES , respectively) the
set of attributes that a subject S can access in plaintext (encrypted, respectively)
according to her authorizations. The following definition identifies subjects au-



thorized to access a relation, extending the definition in [9] to take the two kinds
of encryption into consideration.

Definition 3 (Authorized Relation). Let R be a relation with profile
[Rvp,Rve,RvE,Rip,Rie,R#]. A subject S ∈ S is authorized for R iff:

1. Rvp∪Rip ⊆ PS (authorized for plaintext);
2. Rve∪RvE∪Rie ⊆ PS∪ES (authorized for encrypted);
3. ∀A∈R#, A⊆PS or A⊆ES (uniform visibility).

Example 3. Consider a relation R with profile [P,C,S, , ,{IP}] and the autho-
rizations in Figure 1(a). Provider Z is not authorized for the relation since it
cannot access P in plaintext (Condition 1); C and F are not authorized since
they cannot access P and S, respectively, in any form (Condition 2); X is not
authorized since it does not have uniform visibility on P and I (Condition 3).
Provider Y and user U are instead authorized for the relation.

For simplicity, in the following we will use notation Ri to denote the relation
resulting from the evaluation of node ni in the query tree plan. When clear
from the context, we will use ni to denote interchangeably the node and the
corresponding relation.

3 Extended minimum cost query plan

Given a query plan T(N) corresponding to a query q formulated by a user U,
our goal is to determine, for each node, a subject for its evaluation, possibly
extending the query plan with encryption, decryption, and re-encryption oper-
ations to guarantee the satisfaction of authorizations and enable the evaluation
of operations.

3.1 Candidates

Given a query plan T(N), we first need to identify, for each node, the subjects
authorized for evaluating it (i.e., its candidates). Given a node n in a query
tree plan, a subject S is authorized for its execution if she is authorized for its
operand(s) and for its result. Indeed, S needs to access the operands of the node
for its evaluation, and the profile of the result captures all the information di-
rectly and indirectly conveyed by the evaluation of the operation. Starting from
relations where (a subset of) the attributes are encrypted in storage, it could
be necessary to inject decryption and re-encryption (i.e., decryption followed by
encryption with a different scheme and/or key) to guarantee that operations can
be evaluated when they require plaintext visibility over the involved attributes,
or they are not supported by the encryption scheme adopted in storage, re-
spectively. For instance, we cannot expect different data authorities to use the
same encryption scheme and key for attributes that will be compared in an equi-
join. Hence, even if equality conditions can easily be supported over encrypted



data (e.g., using deterministic encryption), the evaluation of equi-joins requires
re-encryption of the join attributes. Besides decryption and re-encryption for
enabling query evaluation, also encryption operations could be injected for en-
forcing authorizations: encryption could enable a subject to perform an operation
that she would otherwise not be authorized to evaluate, due to the plaintext rep-
resentation of some attributes in the operand relation that she can access only
in encrypted form.

Example 4. With reference to our running example, Y can evaluate the join
operation if attributes N and S are re-encrypted using a deterministic encryption
scheme with the same encryption key. Similarly, attributes P, I, and J must be
encrypted for Z to be authorized for evaluating the group by operation.

We observe that, if all the attributes in the schema of the operand relation(s)
appear in encrypted form, the set of subjects who are authorized for evaluating
the operation is possibly larger. In fact, encrypted attributes are also accessible
by subjects with plaintext visibility. To determine candidates, we therefore as-
sume that all the attributes in the operand relation(s), but those that have to be
in plaintext for operation execution, are encrypted. We note that the encryption
of the attributes in the operands is always possible, since any attribute can be
encrypted by the subject computing the operand (who can see it in plaintext).
Similarly, any attribute of the operand(s) can be decrypted by the subject who
is in charge for the evaluation of the operation, since otherwise it would not be
authorized to evaluate it. Formally, we define candidates for the evaluation of a
node as follows.

Definition 4 (Candidate). Let T(N) be a query plan, n∈N be a non-leaf node,
and nl,nr∈N be its left and right child (if any), n.Ap be the set of attributes that
need to be in plaintext for the evaluation of n, and S be a set of subjects. A
subject S∈S is a candidate for the execution of a node n iff S is authorized for:

1) nl and nr, assuming the encryption of all the visible attributes (Definition 3);
2) attributes in n.Ap in plaintext;
3) n, assuming the encryption of all the visible attributes in its operand(s) (Def-

inition 3).

The set of candidates for node n is denoted Λ(n).

Example 5. Figure 4(a) reports, for each node in the query plan of Example 1,
the candidates who can evaluate the operation in the node. In the example,
we assume that: i) the selection over J and the computation of the sums over
I and P can be evaluated over their encrypted in storage representation; ii)
the evaluation of the join and of the group by require the re-encryption of the
involved attributes; and iii) the comparison of sum(P) and sum(I) can only be
done over plaintext values.

The set of candidates along a query plan enjoys a nice monotonicity property.
In fact, relation profiles never lose attributes, but can only gain new ones (see
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Fig. 4. Extended query plan with candidates (a) and with assignees (b)

Figure 3). Hence, a subject authorized for n is also authorized for its descen-
dants in the query plan (the set of candidates monotonically decreases going up
in the tree). This is true for all operations that do not require plaintext visibility
over attributes, or which leave a trace in the implicit component of the resulting
relation profile. A query plan T(N) is extended with encryption, decryption, and
re-encryption, generating an extended query plan, denoted T′(N′). Figure 4(a)
illustrates an example of an extended version of the query plan in Figure 1(a),
where attributes NC and S are re-encrypted (graphically represented with the
gray and white rectangles below the join node), and attributes IP are decrypted.



Encryption, decryption, and re-encryption are used to adjust visibility and guar-
antee correct authorization enforcement. Their injection depends on the subjects
to which operations are assigned. The injection of encryption and decryption op-
erations does not affect the monotonicity property: the set of candidates of an
encryption node corresponds to the one of the node to which encryption applies
(i.e., of its child), and the set of candidates of a decryption node corresponds to
the one of the node operating on the result of the decryption (i.e., of its parent).
For example, candidates for the decryption of IP in Figure 4(a) are those for the
selection to which decryption is connected (and hence are not explicitly reported
in the figure). The consideration of re-encryption operations, necessary when the
in-storage encryption scheme does not support operation execution, on the other
hand, deserves a special treatment. Since the subject in charge of re-encryption
must be authorized for the profile of the operand relation, the set of candidates
for a re-encryption operation is a subset of the candidates of its operand node nc.
However, the candidates of the parent np of the re-encryption operation might
not be a subset of the re-encryption candidates. In fact, nothing can be said on
the set containment relationship between re-encryption candidates and those of
its parent np, since a candidate for re-encryption could not be authorized for np

and vice-versa: while a subject must be authorized for plaintext visibility on the
attributes to be re-encrypted to be candidate for re-encryption, np might not re-
quire (and its candidate might not have) plaintext visibility on these attributes.
Indeed, the profile of the result of re-encryption is the same as the one of its
operand (i.e., it does not move attributes from the encrypted to the plaintext
components nor vive-versa). Note that the set of candidates for np is a subset of
the candidates for nc, since a candidate for np needs to have at least visibility
on the relation produced by nc. Figure 4(a) reports, for the two re-encryption
operations, the set of candidates that could re-encrypt the involved attributes.

Given a query plan and the candidates for each of its nodes, it is then neces-
sary to select, for each node, a subject (chosen among its candidates) in charge
of the evaluation of the corresponding operation (i.e., the assignee of node n).
Given a query plan, there can exist different possible assignments that respect
authorizations and permit query execution. In the next section, we discuss how
to determine an authorized assignment.

3.2 Authorized assignment and minimum cost query plan

Given a query plan T(N) and the set Λ(n) of candidates for each node n ∈ N, it
is possible to determine an assignment of nodes to subjects taken from the cor-
responding set of candidates by inserting encryption and decryption operations.
Such an assignment exists if, for each attribute a that needs to be re-encrypted,
there exists a subject who can access a in plaintext, and the other attributes
in the schema of the same base relation in encrypted or plaintext form. En-
cryptions are inserted to enforce authorizations, and decryptions are inserted
to adjust attributes visibility for operation evaluation, and are attached to the
node requiring each of them. These operations can be performed by the same



subject assigned to the nodes to which encryption/decryption are attached. Re-
encryption, on the contrary, could be assigned to a different subject, and can
be inserted at any point in the query plan, before the node that represents the
operation for which re-encryption is needed. We also note that, differently from
encryption and decryption operations, the need for re-encryption of an attribute
a does not depend on the choice of assignments, but only on: i) the in-storage
encryption (scheme and key) of a; and ii) the operations to be evaluated over
a for query execution. Hence, independently from the selected assignment, if
no subject has plaintext visibility over a and encrypted visibility over all the
other attributes in the base relation to which a belongs, there cannot exist any
authorized assignment for the query plan. On the contrary, if such a subject
exists, there is at least an authorized assignment for the query plan. Indeed, the
re-encryption operation can be evaluated as early as when the relation leaves
the storage provider.

Example 6. Consider attribute C of our running example, which needs to be re-
encrypted for the evaluation of group by clause. For an authorized assignment,
we need a subject who can access attributes N and P in encrypted form and C
in plaintext. Since U, X, and Z can access N and P encrypted and C plaintext,
in the worst case scenario, re-encryption of C can be injected as a parent of the
leaf node representing base relation Flight and can be assigned to one among
U, X, and Z.

The existence of an authorized assignment can be formalized by the following
theorem.

Theorem 1 (Existence of an authorized assignment). Let T(N) be a query
plan, ∀n∈N, n.Ae be the set of attributes that need to be re-encrypted for the
evaluation of n, S be a set of subjects and, ∀n∈N, Λ(n) be the set of candidates
for n. If ∀n∈N, Λ(n))=∅ and, ∀a∈n.Ae there exists at least a subject S∈S s.t.
a∈PS and R⊆PS∪ES , with R the base relation to which a belongs, then there
exists at least an extended query plan T′(N′) of T(N) and an assignment λ : N′ →
S of subjects to nodes in T′(N′), with λ(n) ∈ Λ(n), that does not violate any
authorization.

We can then conclude that, if there exists an authorized assignment for the
query plan, any combination of subjects chosen from the candidate sets of the
nodes in the query plan can be made authorized by injecting encryption, de-
cryption, and re-encryption operations. For instance, Figure 4(b) illustrates an
extended query plan that makes the assignment on the left of each node autho-
rized according to the authorizations in Figure 1(a).

Among the possible assignments, we expect the user formulating the query
to be interested in selecting the one that optimizes performance, economic costs,
or both of them. In the considered cloud scenario, we expect the economic cost
to be the driving factor in the choice of the candidates. The economic cost for
the evaluation of a query includes two main factors: i) computational cost for
the evaluation of the operations in the query plan; and ii) data transfer cost



for the relations exchanged between subjects for query evaluation. The cost
of query evaluation is obtained by summing these two cost components, taking
into consideration also the encryption, decryption, and re-encryption operations.
Formally, the problem of computing an assignment that minimizes the cost of
query evaluation is formulated as follows.

Problem 1 (Minimum cost query plan). Let T(N) be a query plan and S be a
set of subjects. Determine an extended query plan T′(N′) of T and an assignment
λ : N′ → S such that:

1. ∀n∈N′, λ(n) ∈ Λ(n), that is, the subject in charge of the evaluation of a
node is one of its candidates;

2. ∀n∈N′, λ(n) is authorized for the profiles of n and of its children;
3. !T′′, λ′ such that T′′ is an extended query plan of T and λ′ an assignment

for T′′ such that ∀n∈N′, λ′(n) ∈ Λ(n) and cost(T′′, λ′)<cost(T′, λ)

The problem of computing a minimum cost query plan is hard. We therefore
propose a heuristic approach for its solution.

4 Computing assignment

The proposed heuristics operates in three phases (see Figure 5). The first phase
identifies the set of candidates associated with the nodes of the query plan given
as input. The second phase chooses, for each operation in the query plan, the
subject (among the corresponding candidates) in charge of its execution, and
inserts the needed re-encryption operations. The third phase inserts the encryp-
tion and decryption operations. The procedures corresponding to these phases
are presented in Figures 5, 6, and 7 and illustrated in the following. In the dis-
cussion and in the procedures, given a node n, we denote with np its parent, and
with nl and nr its left child and right child, respectively.

Identify candidates. Recursive procedure Identify Candidates (Figure 5)
performs a post-order visit of the query plan to identify, for each node, the can-
didates for its evaluation. For each node n, the procedure computes its profile,
assuming that all the attributes in the operands are encrypted unless demanded
for the evaluation of n (lines 8-12). The procedure then determines the candi-
dates for n, checking among the candidates of n’s operands or, for operations
operating on plaintext attributes that do not leave a trace in the implicit compo-
nent, also among the other subjects (lines 15-21). Note that the set of candidates
for leaf nodes is set to the complete set of subjects (line 6), even if leaf nodes
are assigned to the storing provider, to simplify the computation of the candi-
date sets in the query plan. For simplicity, but without loss of generality, we
assume all the attributes in base relations to be encrypted in storage. Procedure
Identify Candidates also sets variables n.TotAp (n.TotAe, resp.) to the set of
attributes that must be plaintext (encrypted on the fly, resp.) for the evaluation
of the subtree rooted at n (lines 7, 13-14).



MAIN(T(N), S)

1: Compute Cost(T.root)
2: insert a node client as parent of T.root assigned to the user U formulating the query
3: Identify Candidates(T.root) /* Step 1: identify candidates */
4: to enc dec=∅
5: Compute Assignment(T.root) /* Step 2: compute assignment and inject re-encryption */
6: Extend Plan(T.root) /* Step 3: inject encryption/decryption */

Identify Candidates(n)

1: if nl &=null then Identify Candidates(nl)
2: if nr &=null then Identify Candidates(nr)

/* compute the profile of the node over its (encrypted) children */
3: if nl=nr=null /* n is a leaf node */
4: then n.vp=n.ve= n.ip= n.ie= n.eq=∅
5: n.vE=R /* all the attributes in the relation schema are encrypted */
6: Λ(n)=S/* any subject */
7: n.TotAp=n.TotAe=∅
8: else let n.Ap be the set of attributes that need to be plaintext for evaluating n
9: let n.Ae be the set of attributes that need to be (re)encrypted on-the-fly for evaluating n
10: nl=encrypt(nl−n.Ap, decrypt(n.Ap∪ n.Ae, nl))
11: nr=encrypt(nr−n.Ap, decrypt(n.Ap∪ n.Ae, nr))
12: Compute Profile(n) /* compute the relation profile according to Figure 2 */
13: n.TotAp=n.Ap∪nl.TotAp∪nr.TotAp

14: n.TotAe=n.Ae∪nl.TotAe∪nr .TotAe

15: Λ(n)=∅
16: if nl.Ap∪nr.Ap⊆n.ip
17: then Cand=Λ(nl) ∪ Λ(nr)
18: else Cand=S
19: for each S∈Cand do
20: if S is authorized for nl, nr , n
21: then Λ(n)=Λ(n)∪{S}

Fig. 5. Pseudocode of our heuristic algorithm and of procedure Identify Candidates

Choose assignment. Recursive procedure Compute Assignment (Figure 6)
performs a pre-order visit of the query plan. Intuitively, for each visited node,
the procedure chooses between assigning the evaluation of the node to the same
subject as its parent np (without paying any transfer cost), or move it to a
different subject, if economically convenient. Economic convenience is evaluated
comparing the cost of evaluating the whole subtree rooted at n at each subject
S being candidate of the node. To estimate the cost of delegating the evaluation
of the subtree rooted at n to S, we consider the following cost components.

– Data transfer cost (lines 15-16) applies only when n is assigned to a subject
S different from its parent and is computed as the product between the
estimated size of the relation generated by n and the transfer cost of the
subject in charge of evaluating n (in line with cloud market price lists, we
consider only outbound traffic).

– Computational cost (line 18) is the sum of the costs of evaluating all the nodes
in the subtree rooted at n by subject S. Such a cost is pre-computed by re-
cursive procedure Compute Cost, which visits the query plan in pre-order
summing the cost of the evaluation of the subtrees rooted at the children
of n with the cost of evaluating n, which is obtained by multiplying the
estimated computation complexity of evaluating n in n.TotAe and n.TotAp

by the computation price of S. The costs precomputed by procedure Com-



Compute Assignment(n)

1: Smin=null

2: min=+∞
3: if nl=nr=null /* n is a leaf node */
4: then λ(n)=n.S /* storage provider for the corresponding relation */
5: if to enc dec∩R &=∅
6: then insert a re-encrypt node new for to enc dec∩n.vE as parent of n
7: Λ(new)={S∈S: S is authorized for n and to access to enc dec∩n.vE in plaintext}
8: for each S∈Λ(new) do
9: cost = (dec cost(to enc dec)+enc cost(to enc dec))·S.comp price+
10: + n.size·(S.transf price+λ(n).transf price)
11: if cost<min
12: then min=cost, Smin=S
13: λ(new)=Smin

14: else if n is not a re-encryption operation
15: then for each S∈Λ(n) do
16: if S &=λ(np) then cost=n.size·S.transf price /* transfer cost */
17: else cost=0 /* transfer cost */
18: cost = cost+comp cost[n,S] /* computational cost */
19: for each a∈(n.TotAp∪n.TotAe)∩PS do /* S decrypts the attribute */
20: cost=cost+dec cost(a)·S.comp price
21: for each a∈(n.TotAe\PS ) do /* need to delegate re-encrypt of a */
22: cost = cost+(dec cost(a)+enc cost(a))·avg comp price+
23: a.size(avg transf price+S.transf price)
24: for each a∈(to enc dec∩PS) do /* S can re-encrypt a */
25: cost=cost+(dec cost(a)+enc cost(a))·S.comp price
26: if cost<min
27: then min=cost
28: Smin=S

/* select the subject in charge of the evaluation of n */
29: λ(n)=Smin

30: if to enc dec∩Pλ(n) &=∅
31: then insert a re-encrypt node new for to enc dec∩Pλ(n) as parent of n
32: λ(new)=λ(n)
33: to enc dec=to enc dec\Pλ(n)

34: to enc dec=to enc dec∪(n.Ae\Pλ(n)) /* delegated re-encryption */
35: if n.Ae∩Pλ(n) &=∅
36: then insert a re-encrypt node new for n.Ae∩Pλ(n) as child of n
37: λ(new)=λ(n)
38: if nl &=null then Compute Assignment(nl)
39: if nr &=null then Compute Assignment(nr)

Compute Cost(n)

1: if nl &=null then Compute Cost(nl)
2: if nr &=null then Compute Cost(nr)
3: for each S∈S do
4: comp cost[n,S] = comp cost[nl,S] + comp cost[nr ,S] + n.comp cost·S.comp price

Fig. 6. Pseudocode of procedures Compute Assignment and Compute Cost

pute Cost are stored in a matrix, comp cost[n,S], with a row for each node
and a column for each subject.

– Decryption cost (lines 19-20) is the cost of decrypting the attributes that
need to be plaintext (or encrypted on-the-fly) for the evaluation of n or one
of its descendants (i.e., any node in the subtree rooted at n that S is in
charge of evaluating). The decryption cost is estimated by multiplying the
decryption cost of each attribute a by the computation price of S.

– Re-encryption cost (lines 21-25) includes the cost of re-encryption operations
performed by S as well as of re-encryption operations necessary to S for
the evaluation of n but that need to be delegated to a different subject.



To keep track of the attributes that require re-encryption, we use variable
to enc dec, which keeps track of the attributes that require re-encryption
for the evaluation of the ancestors of n. If S can access a subset of the
attributes in to enc dec in plaintext, the algorithm assumes that S will take
care of their re-encryption (lines 24-25). If S needs to operate on an attribute
encrypted on-the-fly on which she does not have plaintext visibility, the
algorithm estimates the cost of injecting a re-encryption operation into the
query plan, performed by a third party authorized for it. Such a cost is
estimated as the sum of the costs for encrypting and decrypting the attribute
of interest (assuming the average computation price of the subjects in the
system), and the transfer cost for sending the relation to the subject in
charge of re-encryption and then back to S (lines 21-23).

Among the candidates for the node, procedure Compute Assignment se-
lects the subject Smin with minimum estimated cost (line 29). Depending on
the chosen assignee λ(n), the procedure injects re-encryption operations and
updates variable to enc dec: λ(n) is assigned the re-encryption of attributes in
to enc dec that she is authorized to access in plaintext (lines 30-33), and these
attributes are removed from to enc dec. Attributes in n.Ae that λ(n) cannot
access in plaintext are instead inserted into to enc dec, to push re-encryption
down in the query plan (line 34). Attributes in n.Ae that λ(n) can access in
plaintext are re-encrypted by λ(n). To this purpose, the algorithm injects a re-
encryption operation, assigned to λ(n), as a child of n (lines 35-37). Note that
λ(n) can decide to decrypt the attributes that need to be re-encrypted before
evaluating n, and encrypt them (on the fly) after the evaluation of n. Since
re-encryption operations are assigned to a subject upon injection in the tree,
procedure Compute Assignment does not need to operate over them.

Leaf nodes deserve a special treatment, since they do not represent operations
and can only be assigned to the provider storing the corresponding base relation
(line 3-4). We note however that, when the visit reaches a leaf node, it is necessary
to verify whether to enc dec is empty. If to enc dec is not empty, it is necessary
to insert a re-encryption operation for the attributes in to enc dec, which is
assigned to the less expensive subject who can access attributes in to enc dec
in plaintext (lines 5-13). The need to involve a subject only for re-encryption
operations happens only if no subject assigned to other operations in the query
plan can access the attribute(s) of interest in plaintext.

Extend query plan. Recursive procedure Extend Plan (Figure 7) performs a
post-order visit of the query plan to inject encryption and decryption operations
as needed. For the root node, the procedure injects a decryption of the encrypted
attributes in the root (lines 3-5). For each non-root node n, the procedure injects
a decryption operation (as child of n and assigned to λ(n)) for those attributes
that must be in plaintext for the evaluation of n but that are encrypted in its
operands. The procedure also injects an encryption operation (as parent of n
and assigned to λ(n)) for the attributes appearing in plaintext in the profile
of n and that the assignee of np can access only in encrypted form (lines 6-



Extend Plan(n)

1: if nl &=null then Extend Plan(nl)
2: if nr &=null then Extend Plan(nr)
3: if n=T.root
4: then insert a decryption node new for n.ve∪n.vE as parent of n
5: λ(new)=U

6: else if nl &=null and n.Ap\nl.vp &=∅
7: then insert a decryption node new for n.Ap\nl.vp as parent of nl

8: if nr &=null and n.Ap\nr .vp &=∅
9: then insert a decryption node new for n.Ap\nr.vp as parent of nr

10: if Eλ(np)∩n.vp &=∅ then insert an encryption node new for Eλ(np)∩n.vp as parent of n
11: λ(new)=λ(n)
12: Compute Profile(new); Compute Profile(n); Compute Profile(np)

Fig. 7. Pseudocode of procedure Extend Plan

11). The procedure finally updates the profiles of the nodes impacted by the
encryption/decryption operation (line 12).

Example 7. Considering the query plan and authorizations in Figure 1, the al-
gorithm first visits the tree in post-order and identifies the candidates for each
node (Figure 4(a)). The algorithm then visits the tree in pre-order and selects,
for each node, the candidate that is more promising from an economic point of
view (Figure 4(b)). For instance, assuming that Y is less expensive, the root node
is assigned to Y. Similarly, we assume that evaluating the group by clause at
Y is more convenient than moving it to X or Z. However, since Y cannot access
attribute C∈n.Ae in plaintext, C is inserted into to enc dec and its re-encryption
pushed down in the tree. Assuming that the less expensive alternative for join
evaluation is Z, since Z can re-encrypt C, a re-encryption operation for C is
inserted in the tree as child of the join node. Also, since both S and N need
to be re-encrypted for the evaluation of the join operation and Z is authorized
do so, Z decrypts and re-encrypts also S and N. We note that Z can evaluate
the join over plaintext values, being authorized for such visibility, and encrypt
their values before sending the join result to Y. Finally, we assume that the
selection over J can be evaluated over the attribute encrypted in storage and is
then evaluated by the provider storing relation Company (i.e., C). The third
step of the algorithm injects encryption and decryption operations as needed: in
the example, the decryption of P and I by Y for the evaluation of the root node.

The algorithm illustrated in this section represents a heuristic approach for
solving Problem 1 and operates in O(|N|·|S·|A|) time, with A the set of attributes
involved in the query.

5 Related work

Traditional solutions aimed at distributed query evaluation and data analytics
do not take into consideration access restrictions (e.g., [2, 4, 15, 17, 20]). Solutions
aimed at enforcing access restrictions in the relational database scenario (e.g.,



view based access control [8, 13, 21], access patterns [3, 6], data masking [16])
instead do not consider encryption as a solution for protecting confidentiality.

The use of encryption for protecting data confidentiality, while supporting
query evaluation, has been widely studied (e.g., [1, 14, 19, 24]). Alternative solu-
tions studied the adoption of secure multiparty computation (e.g., [5, 7]) and of
trusted hardware components (e.g., [23]) to support query evaluation. All these
solutions are complementary to our work, which can rely on these techniques to
partially delegate query evaluation over encrypted data to subjects who are not
authorized for plaintext visibility over (a subset of) the attributes.

Recent works have addressed the problem of protecting data confidentiality
in distributed computation. The proposed solutions aim at controlling (explicit
and implicit) information flows among subjects as a consequence of distributed
computations (e.g., [10, 18, 22, 25]). The work closest to ours is represented by
the solution in [9], on which our proposal builds. Indeed, the approach proposed
in [9] for distributed query evaluation under access restrictions first proposed the
idea of distinguishing between plaintext and encrypted visibility over the data,
to the aim of enabling the delegation of computations over encrypted data to
non-fully trusted subjects. This authorization model has been integrated into a
real world query optimizer in [11]. The work in [9] is based on the assumption
that base relations are stored on the premises of the authorities owning them.
Hence, base relations are available in plaintext and can be selectively encrypted
on the fly, based on the needs for query evaluation. Our proposal extends such
an approach to consider the more general scenario where base relations might
be stored at an external provider, possibly in encrypted form.

In [12] the authors address a complementary problem allowing users to specify
confidentiality requirements in query evaluation to protect the objective of their
queries to some providers.

6 Conclusions

We proposed an approach for leveraging storage and computational providers
to enable distributed query execution, combining data possibly stored in en-
crypted form at external storage providers. Our solution allows data authorities
to delegate the storage of their data to external providers, while still enabling
collaborative query evaluation, selectively involving computational providers to
limit the costs of query evaluation. The proposed heuristics aims at limiting the
economic cost of query evaluation by choosing, for each node, the candidate that
is (locally) more economically convenient.
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