Scalable Distributed Data Anonymization
for Large Datasets

Sabrina De Capitani di Vimercati, Senior Member, IEEE, Dario Facchinetti, Member, IEEE,
Sara Foresti, Senior Member, IEEE, Giovanni Livraga, Member, IEEE, Gianluca Oldani, Member, IEEE,
Stefano Paraboschi, Member, IEEE, Matthew Rossi, Member, IEEE,
Pierangela Samarati, Fellow, IEEE

Abstract—Ek-Anonymity and ¢-diversity are two well-known privacy metrics that guarantee protection of the respondents of a dataset
by obfuscating information that can disclose their identities and sensitive information. Existing solutions for enforcing them implicitly
assume to operate in a centralized scenario, since they require complete visibility over the dataset to be anonymized, and can therefore
have limited applicability in anonymizing large datasets. In this paper, we propose a solution that extends Mondrian (an efficient and
effective approach designed for achieving k-anonymity) for enforcing both k-anonymity and ¢-diversity over large datasets in a
distributed manner, leveraging the parallel computation of multiple workers. Our approach efficiently distributes the computation among
the workers, without requiring visibility over the dataset in its entirety. Our data partitioning limits the need for workers to exchange
data, so that each worker can independently anonymize a portion of the dataset. We implemented our approach providing parallel
execution on a dynamically chosen number of workers. The experimental evaluation shows that our solution provides scalability, while

not affecting the quality of the resulting anonymization.

Index Terms—Distributed data anonymization, Mondrian, k-Anonymity, ¢-Diversity, Apache Spark

1 INTRODUCTION

Guaranteeing privacy in datasets containing possible identi-
fying and sensitive information requires not only refraining
from publishing explicit identities, but also obfuscating data
that can leak (disclose or reduce uncertainty of) such iden-
tities as well as their association with sensitive information.
k-Anonymity [3], [4], extended with ¢-diversity [5], offers
such protection. k-Anonymity requires generalizing values
of the quasi-identifier attributes (i.e., attributes that can ex-
pose to linkage with external sources and leak information
on respondents’ identities) to ensure each quasi-identifier
combination of values to appear at least k times. {-Diversity
considers each sensitive attribute in grouping tuples for
quasi-identifier generalization so to ensure each group of
tuples (whose quasi-identifiers will then be generalized to
the same values) be associated with at least ¢ different values
of the sensitive attribute.

While simple to express, k-anonymity and ¢-diversity
are far from simple to enforce, given the need to balance
privacy (in terms of the desired k and £) and utility (in terms
of information loss due to generalization). Also, the com-

e S. De Capitani di Vimercati, S. Foresti, G. Livraga, and P. Samarati are
with the Universita degli Studi di Milano, Italy.
E-mail: firstname.lastname@unimi.it

e D. Facchinetti, G. Oldani, S. Paraboschi, and M. Rossi are with the
Universita degli Studi di Bergamo, Italy.
E-mail: firstname.lastname@unibyg.it

Preliminary versions of this paper appeared under the titles “Scalable Dis-
tributed Data Anonymization,” in Proc. of the 19th IEEE International
Conference on Pervasive Computing and Communications (PerCom
2021) [1] and “Artifact: Scalable Distributed Data Anonymization,” in Proc.
of the 19th IEEE International Conference on Pervasive Computing and
Communications (PerCom 2021) [2]

putation of an optimal solution requires evaluating (based
on the dataset content) which quasi-identifying attributes
generalize and how, and hence demands complete visibility
of the whole dataset. Hence, existing solutions implicitly
assume to operate in a centralized environment. Such an
assumption clearly does not fit large scale systems where
the amount of data collected is huge (there are widely
circulating estimates that a smart car uploads to the cloud
25GB per hour). While scalable distributed architectures can
help in performing computation on such large datasets,
their use in computing an optimal k-anonymous solution
requires careful design. In fact, a simple distribution of the
anonymization load among workers would affect either the
quality of the solution or the scalability of the computation
(requiring expensive synchronization and data exchange
among workers [6]).

In this paper, we address the problem of efficiently
anonymizing large data collections. We propose a solution
that extends Mondrian [7]], an efficient and effective ap-
proach originally proposed for achieving k-anonymity in
a centralized scenario, to enforce both k-anonymity and
{-diversity in a distributed scenario. With our approach,
anonymization is executed in parallel by multiple workers,
each operating on a portion of the original dataset to be
anonymized. The design of our partitioning approach aims
at limiting the need for workers to exchange data, by split-
ting the dataset to be anonymized into as many partitions as
the number of available workers, which can independently
run our revised version of Mondrian on their portion of
the data. A distinctive feature of our proposal is that the
partitioning approach does not require knowledge of the
entire dataset to be anonymized. Rather, it can be executed
on a sample of the dataset whose size can be dynamically

adjusted. The approach is therefore applicable in scenarios
where the dataset is very large, maybe even distributed, and
does not entirely fit in main memory. We have implemented
our approach providing parallel execution on a dynamically
chosen number of workers. The experimental evaluation
confirms both the goodness of our partitioning strategy with
respect to maintaining utility of the anonymized dataset and
the scalability of our approach. The main contributions of
this paper can be summarized as follows. First, we propose
and evaluate different partitioning strategies for distributing
data to workers. Second, we extend the original Mondrian
algorithm to operate in a distributed scenario without ask-
ing workers to interact, and to enforce both k-anonymity
and /-diversity. Third, we support different strategies for
managing generalization, including the use of generaliza-
tion hierarchies that permit to produce semantically-aware
anonymization. Fourth, we evaluate different metrics for
assessing the information loss caused by the distribution of
the anonymization process.

The remainder of this paper is organized as follows.
Section [2] discusses basic concepts over which our solution
builds. Section [3| presents an overview of our approach for
distributed anonymization, modeling the reference scenario
and illustrating the actors involved, and a sketch of our
anonymization approach. Section] discusses our approach
for partitioning the dataset to be anonymized in fragments
to be assigned to the workers for anonymization. Section
illustrates how workers can independently anonymize the
fragments allocated to them. Section [6] describes how infor-
mation loss is assessed. Section [7] presents the implementa-
tion of our distributed anonymization algorithm. Section
illustrates experimental results. Section 9] discusses related
work. Finally, Section [10]concludes the paper.

2 BASIC CONCEPTS

Our solution is based on three main pillars: k-anonymity,
¢-diversity, and Mondrian.

k-Anonymity. k-Anonymity [3]] is a privacy property aimed
at protecting respondents identities in data publication. k-
Anonymity starts from the observation that a dataset, even
if de-identified (i.e., with explicit identifying information
removed) can contain other attributes, called quasi-identifiers
(abbreviated Ql) such as gender, date of birth, and living
area, that can be exploited for linking the dataset with other
data sources and enable observers to reduce uncertainty
on the identity (or identities) to whom the tuples in the
de-identified dataset refer. k-Anonymity demands that no
tuple in a released dataset can be related to less than a
certain number k of respondents. k-Anonymity operates
on the values of the QI attributes to ensure that no tuple
can be uniquely associated with the identity of its respon-
dent through its QI values, and vice versa. In practice,
k-anonymity is enforced by ensuring (through generaliza-
tion of data values) that each combination of values of
the quasi-identifier in a dataset appears with at least k
occurrences. In this way, any linking attack exploiting the
quasi-identifier will always find at least k individuals to
which each anonymized tuple can correspond and vice
versa. k-Anonymity can be guaranteed in different ways.
The original proposal of k-anonymity applies generalization

North America

‘Canada H Greenland ‘ ‘China ‘ ‘]apan‘

Fig. 1: Generalization hierarchy for attribute Country

Age|Country|TopSpeed Age |Country|TopSpeed

25 |Ttaly 132

25 [Ttaly 132 |Country

30 |France 128 | Canada ol

42 |Italy 110 usA 3 [42,50][World 110

50 |France 115 France| 1 ol [42,50]|World 115

43 |Canada 115 Italy| o2 ol [42,50]|World 115

38 |[USA 126 SR 2% 45 43 T0 AT 38 |USA 126
25 30 38 42 43 50 A

38 [USA 127 8| 38 |usa 127

38 |USA 140 38 |USA 140

(a) (b) (0)

Fig. 2: An example of a dataset (a), its spatial representation
and partitioning (b), and a 3-anonymous and 2-diverse
version (c), considering quasi-identifier Ql={Age,Country}
and sensitive attribute TopSpeed

to the QI attributes [3]. Generalization is a data protection
technique that replaces attribute values with other, more
general values. For instance, an individual’s Age may be
generalized in age ranges (e.g., replacing all age values from
25 to 30 with a single interval [25, 30]). While numeric at-
tributes (i.e., attributes defined on a totally ordered domain)
naturally generalize to ranges of values, the generalization
of categorical attributes (i.e., attributes defined on a non-
ordered domain) can leverage generalization hierarchies
(e.g., Figure [I| illustrates a generalization hierarchy for at-
tribute Country). Since generalization (while maintaining
data truthfulness) removes details from data, it reduces the
risk of finding unique correspondences for QI values with
external data sources. For example, the dataset in Figure[2c)
is a 3-anonymous version of the dataset in Figure 2(a),
considering attributes Age and Country as quasi-identifer.
In the figure, quasi-identifying attributes Age and Country
have been generalized so that their values appear with at
least 3 occurrences (for readability, the i'" tuple in Fig-
ure a) corresponds to the *" tuple in Figure c)). For
example, the Age and Country of the respondents of the
first three tuples have been generalized to range [25, 30] and
to value Europe, respectively. Note that neither the values for
Age nor the values for Country of the last three tuples have
been generalized to obtain 3-anonymity, since they already
share the same values for the quasi-identifier (38 and USA,
respectively). It is easy to see that no record in external data
sources can be linked, through Age and Country, to less
than three tuples in the 3-anonymous dataset.

¢-Diversity. (-Diversity [5] extends k-anonymity to pre-
vent attribute disclosure, that is, to protect against possible
inferences aimed at associating a value for the sensitive
attribute to the respondent’s identity. With reference to the
datasets in Figure 2} suppose that the TopSpeed of the
respondent aged 30 from France (third tuple) were 132.
The 3-anonymous dataset in Figure () would have, for
the first three tuples, the same sensitive value (132). While,

thanks to the protection offered by 3-anonymity, no record
in an external data source (e.g., a voter list) can be uniquely
mapped to any of these tuples, this 3-anonymous dataset
would still leak the fact that European respondents with
Age between 25 and 30 have TopSpeed equal to 132. /-
Diversity extends k-anonymity by demanding that each
equivalence class E (i.e., each set of tuples sharing the same
generalized values for the quasi-identifier) have at least ¢
well-represented values for the sensitive attribute(s). Several
definitions of well-represented have been proposed, and a nat-
ural interpretation requires at least ¢ different values for the
sensitive attribute(s). For example, the 3-anonymous dataset
in Figure c) is also 2-diverse, since each equivalence class
contains at least two different values for TopSpeed.

Mondrian. Mondrian [7] is a multi-dimensional algorithm
that provides an efficient and effective approach for achiev-
ing k-anonymity. Mondrian leverages a spatial representa-
tion of the data, mapping each quasi-identifier attribute to
a dimension and each combination of values of the quasi-
identifier attributes to a point in such a space. Mondrian
operates a recursive process to partition the space in regions
containing a certain number of points (which corresponds
to splitting the dataset represented by the points in the
space in fragments that contain a certain number of records).
In particular, at each iteration Mondrian cuts the set of
tuples in each fragment F' computed at the previous it-
eration (the whole dataset at the first step) based on the
values (e.g., for numerical attributes, whether lower/higher
than the median) for a quasi-identifying attribute chosen
for each cut. The algorithm terminates when any further
cut would generate only sub-fragments with less than k
tuples, at which point values of the quasi-identifying at-
tributes in each fragment are substituted with their gen-
eralization. Figure P[b) shows the spatial representation
and partitioning of the dataset in Figure P[a), where the
number associated with each data point is the number
of tuples with such values for quasi-identifier Age and
Country in the dataset. The 3-anonymous version of the
dataset in Figure [2[c) has been obtained by first partitioning
the dataset in Figure [2(a) based on attribute Age: frag-
ment Fjge<3g includes all the tuples with Age less than or
equal to the median value 38, and F)g.~35 the remaining
tuples. Fige<3s is further partitioned based on attribute
Country, obtaining Fyge<3s, country N {Canada,usA} including
all tuples with Country equal to Canada or USA, and
Fige<38, country v {France Italy} including the remaining tuples.
No further partitioning is possible (all fragments include
exactly three tuples), and the quasi-identifying attributes in
each fragment can be generalized. The dataset in Figure 2c)
has been obtained generalizing the dataset in Figure[2(a) ac-
cording to the partitioning in Figure 2[b) and leveraging the
generalization hierarchy in Figure 1| for attribute Country.

3 DISTRIBUTED ANONYMIZATION

We consider a scenario where a large and maybe distributed
dataset D needs to be anonymized, and may not entirely
fit into the main memory of a single machine. Our goal
is then to distribute the anonymization of D to a set
W = {wi,...,w,} of workers so that they can operate
in parallel and independently from one another, to have

Worker 1

—

Storage Coordinator

/
Dataset \
Sample

Worker N

Fig. 3: Overall view of the distributed anonymization pro-
cess

benefits in terms of performance while not compromising
on the quality of the solution (with respect to a traditional
centralized anonymization of D). To this purpose, we extend
Mondrian to operate in such a way that workers in W
are assigned (non-overlapping) partitions of D (i.e., sets of
tuples of D, which we call fragments) and can operate lim-
iting the need for data exchanges with other workers. Each
worker w € W can independently anonymize its fragment
satisfying k-anonymity and /-diversity, with the guarantee
that the combination of the anonymized fragments is a k-
anonymous and {-diverse version of D. The overall process
is overseen by a Coordinator, and includes a pre-processing
phase (which partitions the dataset D in fragments and
assigns fragments to workers) and a wrap-up phase (which
collects the anonymized fragments from the workers, re-
combines them, and evaluates the quality of the computed
solution). Our reference scenario (as graphically represented
in Figure [3) is then characterized by a (distributed) storage
platform, storing and managing the dataset D to be anonymized
(as well as its anonymized version 75, after workers have
anonymized their fragments), the anonymizing workers, and
the Coordinator. In the remainder of this paper, given a
dataset D with quasi-identifier Ql={a1, . .., a,} and privacy
parameters k and £, we denote with D the k-anonymous and
¢-diverse version of D; with teD the generalized version
of ¢ in the anonymized dataset, Vt€D; and with F the
anonymized version of fragment F' (ie., Vt € F, 3t e F
s.t. 1 is the generalized version of).

The pre-processing phase is crucial for our distributed
anonymization. The first problem to be addressed is the
definition, by the Coordinator, of a fragmentation strategy,
regulating which tuples belong to which fragment. An effec-
tive strategy, as demonstrated by our experimental results
(Section , is to fragment D based on the values of (some of
the) quasi-identifying attributes aq,...,ap, in such a way
that a tuple ¢ of D is assigned to a fragment I’ based
on the values of t[ay],...,t[as]. To illustrate, consider the
dataset in Figure [(a) and suppose to define two fragments
F, and F, based on the values of Age. The Coordinator
may define a strategy such that F) contains all tuples of
D with values lower than or equal to 38 (i.e., the first three
and last three tuples of the table), and F> the remaining
tuples of D. In principle, this would require the Coordinator
to have complete visibility over D for defining fragments.
However, D might be too large to fit into the main memory
of the Coordinator. We then propose a strategy in which the
Coordinator can define the conditions that regulate the frag-
mentation of D based on a sample of D, whose size can be

dynamically adjusted according to the storage capabilities
of the Coordinator. The Coordinator then communicates the
conditions to the workers, which will then download the
tuples in D that satisfy such conditions directly from the
storage platform (i.e., without the need for the Coordinator
to send any dataset to the workers). With reference to the
example above, where fragments are defined based on the
values of Age, the Coordinator communicates to workers
the value ranges (e.g., lower than or equal to 38, and greater
than 38) for the tuples in their fragments. The anonymiza-
tion phase following the pre-processing operates in parallel
at the workers. For the design of this phase, we specifically
focus on the support, for categorical attributes, of gener-
alization hierarchies to the aim of producing semantically-
aware generalized (anonymous) data. Our pre-processing
phase is discussed in Section [4, while the anonymization
and wrap-up phases are described in Sections [5] and [6]
respectively.

4 DATA PRE-PROCESSING

The pre-processing phase of our approach operates on a
sample D of D, whose size is tuned depending on the
storage capabilities of the Coordinator. For the sake of
readability, we refer our discussion to a generic dataset D
with the note that D is a sample of the original dataset
D to be anonymized (clearly the quasi-identifier attributes
considered for D are those defined for D).

4.1 Partitioning strategies

Selecting a strategy for partitioning the dataset D is crucial
in our scenario, since a random partitioning may cause
considerable information loss. Indeed, if fragments include
tuples with heterogeneous values for the quasi-identifier,
each worker (which independently operates on its fragment)
would need a considerable amount of generalization to
satisfy k-anonymity. On the contrary, information loss is
mitigated if partitioning does not spread across fragments
tuples that assume similar values for the quasi-identifier.
To illustrate, consider a dataset with four tuples ¢;,...,t4
having values 25, 25, 60, and 60 for Age, which needs to be
partitioned in two fragments. If partitioning generates two
fragments F1={t1,t2} and Fo={t3, t4}, no generalization is
needed to enforce 2-anonymity. On the contrary, fragments
Fi1={t1,t3} and Fo={t2,t4} requires generalizing Age to
the range [25,60] in each fragment, causing higher informa-
tion loss.

To limit the information loss implied by the partition-
ing of a dataset D with quasi-identifier QI among a set
W={w1,...,w,} of workers, we propose two strategies.

o The quantile-based approach selects an attribute a from
the Ql, and partitions D in n fragments Fy,..., F),
according to the n-quantiles of a in D.

o The multi-dimensional approach recursively partitions
D in a similar way as the Mondrian approach (see
Section [2). Given a fragment F (the entire dataset D
at the first iteration), the multi-dimensional strategy
selects an attribute a€Ql and partitions F' in two
fragments according to the median value of a in

Q_PARTITION(D, W)

: let a be the attribute used to partition D

: R:= {rank(t[a]) | te D} /* rank of a’s values in the ordering */
: let ¢; be the i" |W|-quantile for R,Vi = 1,...,|W|

: F1:={teD | rank(t[a]) < q1}

: foreachi =2,...,|W|do

Fy :={teD| qi—1 < rank(tla]) < ¢;}

Fig. 4: Quantile-based partitioning

DU AW N

F. Each of the resulting fragments is then further
partitioned, until n fragments have been obtained.

Both the quantile-based and the multi-dimensional par-
titioning approaches rely on an ordering among the values
that the attribute a selected for partitioning assumes in D
to compute quantiles (for the quantile-based approach) and
median values (for the multi-dimensional approach). In fact,
given a sample D of the dataset and the attribute a selected
for partitioning, the tuples in D are first ordered accord-
ing to their value of a, establishing a ranking among the
attribute values. Quantiles and the median values are then
computed on such a ranking. When a is numerical, ordering
among values is naturally defined. When a is categorical
and has a generalization hierarchy #(a), attribute values are
considered with the order in which they appear in the leaves
of H(a), aiming at keeping in the same fragment values
that generalize to a more specific value. Indeed, leaf values
that are close in the hierarchy will have a common ancestor
(to which they would be generalized) at a lower level in
the hierarchy (see Section [5), thus limiting information loss.
For instance, with reference to the hierarchy in Figure
we use order (Italy, France, Spain, USA, Canada, Greenland,
China, Japan, India). This ordering would combine in the
same fragment values Italy and France, which generalize to a
more specific value (i.e., Europe) than a fragment with values
Italy and Canada (i.e., World).

Figure [illustrates the procedure implementing
quantile-based partitioning executed by the Coordinator.
Given a dataset D and a set W of workers, the procedure
selects the attribute a for partitioning, orders the tuples in D
according to t[a], and determines the rank rank(t[a]) of each
value t[a] (lines 1-2). It then computes the |W|-quantiles of
such ranking R (line 3). The first fragment F} is obtained
by including all the tuples t€D with rank of t[a] lower
than or equal to the first computed quantile (line 4). The
remaining fragments F5, . .., Fjy| are obtained by including
in F; all the tuples t€D with ranks of t[a] in the interval
(qi—1,q:], with g; the i*" |W|-quantile of the computed ranks
(lines 5-6). To illustrate, consider partitioning in 4 fragments
the dataset in Figure 2(a) with the quantile-based approach
over attribute Age (for simplicity, we consider the dataset
in Figure a) as a sample). For the first tuple ¢;, we have
that rank(ti[Age])=rank(25)=1, since 25 is the first value
(i.e., the smallest) in the ordering for Age. Similarly, for
the third tuple t3 we have that rank(t3[age])=rank(30)=2,
since 30 is the second value in the ordering for Age. The
4-quantiles ¢y, ..., qa for such ranks are ¢;=2, ¢2=3, g3=4,
and ¢4=6. The first fragment F then includes all the tuples
t such that rank(t[Age])<2, that is, all the tuples such
that t[Age]<30. Fragment F; includes all tuples ¢ such that

M_PARTITION(D, W, 4)

: let a be the attribute used to partition D

: R:= {rank(t[a]) | te D} /* rank of a’s values in the ordering */
: let m be the median of R

. Fy:= {teD | rank(tla]) < m}

. Fy:={teD | rank(tla]) > m}

. if i < [log, |W|] then

M_Partition(Fy, Wi+ 1)

M_Partition(F», W,i + 1)

Fig. 5: Multi-dimensional partitioning

© N U WN =

2<rank(t[rge])<3. Fragments F3 and Fj are computed in
a similar way.

Figure illustrates the recursive procedure imple-
menting multi-dimensional partitioning executed by the
Coordinator. The procedure takes as input a dataset D, the
set W of workers, and the recursive level of iteration 7
(1 at the first invocation). The procedure first selects the
attribute a for partitioning, orders the tuples in D according
to t[a], and determines the rank rank(t[a]) of each value
t[a] (lines 1-2). It then computes the median value m for R
(line 3), and defines two fragments F1, including the tuples ¢
of D having rank for t[a] lower than or equal to m, and F5,
including the remaining tuples (lines 4-5). The procedure
then recursively calls itself on the two computed fragments
(lines 7-8) with ¢ 4 1 to further fragment them, unless the
necessary number of iterations have already been executed
(i.e., ¢ = [logy |W]], since at each iteration the number of
fragments doubles and [log, |W|] fragments are sufficient
to assign at least a fragment to each worker) (line 6). To
illustrate, consider partitioning in 4 fragments the (sample)
dataset in Figure 2[a) with the multi-dimensional approach,
and suppose that at the first iteration (i=1) the attribute
chosen for partitioning is Age. The median of the ranks
for the values of Age is 3, and the sample is split in two
fragments F2 and F34 such that F5 includes all tuples ¢ for
which rank(t[Age)]<3, and F34 the remaining ones. At the
second (and last) iteration (¢=2), the procedure selects an
attribute (which could possibly be different from Age) for
fragment F5 and an attribute for F34, and partitions each
fragment in two more fragments based on the median of
the ranks of such attribute values in Fy5 (F34, respectively).
Since 4 fragments have been obtained, the partitioning
process terminates.

The quantile-based and the multi-dimensional partition-
ing exhibit different behavior in the definition of the frag-
ments. The quantile-based partitioning ensures balancing
among the fragments, since all n fragments will include (ap-
proximately) the same number of tuples, but its application
can be limited by the domain of the attribute a chosen for
partitioning (it cannot be used if the number n of workers
is larger than the domain of a). On the contrary, while
being always applicable, the multi-dimensional approach
may result in some workers being assigned twice the work-
load of other workers. Since multi-dimensional partitioning
doubles the number of fragments at each iteration, when
the number n of workers is a power of 2, the recursive
process can be executed log, n times, obtaining n fragments
of (approximately) the same size. However, n may not
be a power of 2. Aiming at using all the workers, the

5

partitioning strategy stops when n < 2¢ (multi-dimensional
partitioning generates 2° fragments at the i-th iteration) and
2" — n workers are assigned two fragments, resulting in
some workers having twice the workload of the others. For
instance, assume W = {wy, ..., wr} and |D| = 1000. Multi-
dimensional partitioning needs 3 iterations for generating at
least 7 fragments 22<7< 23). Since 2°—n = 8—7 =1, one
worker (e.g., wi) will be assigned two fragments, resulting
in a workload of nearly 250 tuples for w; and of 125 tuples
for each of the other workers.

The computational complexity of the two approaches is
slightly different, with quantile-based partitioning resulting
more efficient than multi-dimensional partitioning (as con-
firmed by the experimental results in Section 8). Procedure
Q_Partition costs O(|D|), while procedure M_Partition
costs O(|D|log |[W]). The first two steps (lines 1-2) are the
same for the two procedures and cost O(|D|), and the com-
putation of quantiles has the same cost as the computation
of the median and cost O(|D|). The for each loop at line 5 of
procedure Q_Partition has cost O(|W]), and therefore the
overall cost of quantile-based partitioning is O(|D|), since
the number of workers is smaller than the number of tuples
in the dataset. The recursive calls of procedure M_Partition
imply a cost of O(|D|log|W]) since the procedure recur-
sively calls itself with ¢ from 1 to [log, |W|] and, for each
value of i, the overall size of the fragments input to the
different recursive calls is | D|.

4.2 Fragments retrieval

While the Coordinator operates on a sample D of the dataset
D to be anonymized for defining fragments, workers need
to operate on the whole fragment assigned to them. To
minimize communication overhead, our approach defines
fragments assigned to workers according to the partition-
ing conditions identified by the Coordinator to partition D.
These conditions, comparing the attribute a selected for
partitioning with the values in its domain corresponding
to the quantiles or median value of the ranking of tuples
in D according to a, are communicated to workers (see
Section [7). Each worker can then retrieve the tuples in its
fragment directly, without need for the Coordinator to re-
trieve and communicate such tuples. For instance, consider
two fragments F; and F, computed over a sample D of D
with the multi-dimensional approach, and assume to adopt
attribute Age for partitioning and that the median of the
ranking corresponds to value 38 in the attribute domain. The
worker in charge of the anonymization of F; will retrieve all
the tuples in D having Age <38, while the worker in charge
of the anonymization of F% will retrieve all the tuples in D
having Age>38.

Given a set W={wy,...,w,} of workers, ¢; denotes
the condition describing the fragment F; assigned to wj,
i = 1,...,n. When using the quantile-based approach,
condition ¢;, ¢ = 1,...,n, describes the values for a
that are included in the i-th n-quantile of D (i.e., its
endpoints). For example, with reference to the example
in Section for the quantile-based partitioning of the
dataset in Figure [§(a) in 4 fragments over attribute Age,
the conditions identifying fragments Fi, ..., Fy would be
defined as ¢1="(2ge<30)"; co="(Age>30) AND (Age<38)”;

c3="(Age>38) AND (Age<42)”; and c4="(Age>42) AND
(Age<50)”. When using the multi-dimensional approach,
condition ¢;, ¢ = 1,...,n, is a conjunction of conditions
of the form a < v or a > v describing the recursive par-
titioning performed by the Coordinator to obtain fragment
F;. Intuitively, each recursive call to M_Partition (Figure
partitions the input fragment D into two fragments F}
and F3, described by condition ¢ AND (a < v) or ¢ AND
(a > v), respectively, with ¢ the condition describing the in-
put fragment D (empty at the first iteration), a the attribute
selected for partitioning, and v the value in the domain of
a corresponding to the median m of the ranking of the
tuples in D according to a (i.e., v=t[a] s.t. rank(t][a])=m).
To illustrate, consider the example in Section for the
multi-dimensional partitioning of the dataset in Figure 2(a)
in 4 fragments. The first partitioning, based on attribute
Age, produces F2 and F34 described by conditions Age <38
and Age>38, respectively. At the second iteration, assume
that Fyp is split into fragments F; and F, according to
the value of attribute Country, which is Ifaly or France
in Iy and USA or Canada in F». The conditions describing
fragments F'; and F5 (and communicated to the correspond-
ing workers) would be ¢; = “(Age<38) AND (Country
IN {Italy, France})”; co = “(Age<38) AND (Country IN
{USA, Canada})”. Figures [f(a)~(b) graphically illustrate the
pre-processing operated by the Coordinator to partition a
sample D of D assuming to produce 4 fragments (to be then
assigned to 4 workers) adopting quantile-based and multi-
dimensional partitioning. In the figure, we denote with ¢; . ;
the condition describing the fragment of D that will be
further partitioned to generate F;, ..., Fj.

We close this section with a note on the possibility
of leveraging the availability of multiple workers for the
pre-processing. The multi-dimensional approach (Figures [j|
and [p{b)) could in fact be performed in parallel by workers
(see Figure @c)). Intuitively, each of the two fragments
Fy and F, produced by the partitioning of a fragment F
(D at the first iteration) can be assigned to two different
workers for further partitioning, so that partitioning can
run in parallel (i.e., one fragment can be partitioned by the
same worker in charge of splitting F' while the other can
be delegated to a different worker). We investigated this
strategy, both theoretically and experimentally and, while
clearly permitting to reduce the computation effort for the
Coordinator, it would require data transfer among workers,
resulting in lower performance than the traditional (non
parallelized) multi-dimensional partitioning.

4.3 Attributes for partitioning

The first step for partitioning the dataset, regardless of
the approach (i.e.,, quantile-based or multi-dimensional)
adopted, is the selection of the quasi-identifying attribute
a used to split (line 1 in procedures Q_Partition in Figure [4]
and M_Partition in Figure 5).

For quantile-based partitioning, we select the attribute
a;€Ql with more distinct values in D. This strategy dis-
tributes the values for a; among different fragments, limit-
ing the necessary amount of generalization over a;. Indeed,
generalization needs to operate only over the subset of
values for a; appearing in the fragment, which are expected

Coordinator Storage
c, ‘

[IFI]

+C « /

(a) Quantile-based partitioning

Coordinator Storage

c | [R

1
c12 (|)
| G

-0 @&
A& /

Coordinator Storage

o))

Computation Worker Fraér%ent

Fig. 6: Partitioning strategies

to be close. On the contrary, partitioning according to a
different attribute a; having a limited number of values
might cause excessive generalization for a;, if a fragment
has tuples with values at the extremes of the domain for the
attribute.

For multi-dimensional partitioning, similarly to the orig-
inal Mondrian approach, we select the attribute a€Ql that
has, in the fragment F' to be partitioned, the highest repre-
sentativity of the values it assumed in D. If a is numerical,
its representativity is defined as the ratio between the span
(i.e., the width of the range) of the values in F' and the
span of the values in the entire dataset D. If a is categorical,
its representativity can be defined as the ratio between the
number of distinct values in F' and the number of distinct
values in D. Formally, the representativity rep(a) of a quasi-
identifying attribute a € QI is defined as follows:

:112::; EEH:EEZ f{tt[[i]ﬁ if a is numerical

rep(a) = ey

count p(distinct ¢[a]) . . .
count p (distinct t[a]) if a is Categorlcal

where maxp{t[a]} and ming{t[a]} (maxp{t[a]} and
minp{t[a]}, resp.) are the maximum and minimum values
for a assumed by the tuples in fragment F' (in dataset
D, resp.); and count g(distinct t[a]) (countp(distinct ¢[a]),
resp.), is the number of distinct values assumed by attribute
a in I (in D, resp.). For both numerical and categorical
attributes, rep(a) € (0, 1]. For example, consider a fragment
Fwith QI = {a1, a2, asz}, where a; is categorical and ay and
a3 are numerical. Suppose that: i) the distinct values for a;
are 1000 in D and 100 in F} ii) the values for as are in a
range of width 1000 in D and of width 500 in F} and iii) the
values of ag are in a range of width 1000 in D and of width
700 in F. Since rep(a;) = 100/1000 = 0.1 < rep(ag) =
500/1000 = 0.5 < rep(as) = 700/1000 = 0.7, a3 is chosen
for partitioning F.

Note that, at the first iteration of multi-dimensional
partitioning, all quasi-identifying attributes have represen-
tativity equal to 1 because F=D (the entire dataset D is to
be partitioned). In these cases, we select the attribute with
the maximum number of distinct values in the dataset (like
in quantile-based partitioning).

5 DATA ANONYMIZATION

During the anonymization phase of our approach, each
worker anonymizes the fragment assigned to it, indepen-
dently (i.e., without interacting with other workers) exe-
cuting our distributed version of the Mondrian algorithm.
In particular, our version of the algorithm enforces also /-
diversity, besides k-anonymity considered by the original
approach [7]. To this end, the recursive partitioning at the
core of the anonymization algorithm (Section [2) terminates
when any further sub-partitioning would generate frag-
ments that have less than k occurrences for the combina-
tion of values for the quasi-identifying attributes (which
would violate k-anonymity), or less than ¢ values for the
sensitive attributes (which would violate ¢-diversity). The
anonymization phase of our distributed Mondrian has com-
putational complexity O(|F|log|F|), with F the fragment
input to function Anonymize in Figure [7} Indeed, the cost
of lines 1-8 is O(]F]), as discussed in Section |4l Due to the
recursive calls on a partition of F'including two fragments
of size @, the overall complexity is O(|F]|log |F]|), which
is in line with the complexity of the original Mondrian
algorithm [7].

Figure [7] illustrates the anonymization algorithm exe-
cuted by each worker for anonymizing the fragment as-
signed to it. The recursive partitioning (lines 3-10), which
operates according to the same logic as multi-dimensional
partitioning in the pre-processings phase (Section [, ter-
minates when any further sub-partitioning of a fragment
would violate k-anonymity or (-diversity (lines 1-2). The
attribute ¢ with maximum representativity (Equation [1)) is
chosen for partitioning (line 4). Clearly, since during the
anonymization phase each worker w; has visibility only
on its fragment Fj, representativity is computed over F;

ANONYMIZE(F)
1: if no partitioning can be done without violating
k-anonymity or /-diversity then
. generalize F[QI]
: else
: let a be the attribute for partitioning
. R:= {rank(t[a]) | teF} /* rank of a’s values in the ordering */
: let m be the median of R
: Py = {teF | rank(t[a]) < m}
. Fp = {teF | rank(t[a]) > m}
: Anonymize(F)
0: Anonymize(F>)

2
3
4
5
6
7
8
9

—_

Fig. 7: Anonymization algorithm for a fragment F’

(in contrast to the entire dataset D in Equation [I). Like in
multi-dimensional partitioning, at the first recursive call,
representativity is equal to 1 for all quasi-identifying at-
tributes. Our approach then selects the attribute that has the
highest number of distinct values in the fragment. When
a fragment F' cannot be further partitioned as this would
violate k-anonymity or (-diversity, the anonymization al-
gorithm produces the anonymized version of F, obtained
generalizing the values of the quasi-identifying attributes to
guarantee that all the tuples share the same (generalized)
quasi-identifier values (line 2). Our distributed Mondrian
approach supports the following generalization strategies.

o Generalization hierarchies: applicable to categorical at-
tributes only, the values for attribute a €Ql are substi-
tuted with their lowest common ancestor in the gen-
eralization hierarchy #(a) defined for a (Section [B).
To illustrate, consider the dataset in Figure a) and
suppose, for simplicity, it is a fragment retrieved by
a worker for anonymization. Its anonymized ver-
sion in Figure () is obtained generalizing attribute
Country according to the generalization hierarchy
in Figure [T} considering the partitions in Figure 2(b).
For example, values Italy, Italy, and France of the
first three tuples (partition at the bottom-left of Fig-
ure Ekb)) are generalized to their lowest common
ancestor in the hierarchy (i.e., Europe).

o Common prefix: applicable to categorical and numeri-
cal attributes interpreted as strings, the values for at-
tribute a€Ql are replaced with a string that includes
their common prefix (substituting with a wildcard
character the characters that differ). For example,
values 10010, 10020, 10030 for attribute ZIP can be
generalized to 100x*, maintaining common prefix
100 and redacting the last two characters.

e Set definition: applicable to both categorical and nu-
merical attributes, the values for attribute a€Ql are
replaced with the set of values including all of
them. For example, values Italy, Italy, and France
for attribute Country can be generalized to the set
{Italy, France}.

o Interval definition: applicable to numerical attributes
defined on a totally ordered domain, the values for
attribute a<€Ql are replaced with a range of values
including all of them. While the smallest range con-
taining all the values to be generalized (i.e., the one
delimited by the minimum and maximum value) is

the most natural choice, also larger (possibly pre-
defined) intervals may be adopted. Note that this
generalization is different from set definition: while
the set definition explicitly maintains all the (origi-
nal) values generalized in a set, interval definition
maintains only the extremes of the range. To illus-
trate, consider the dataset in Figure (a) and sup-
pose, for simplicity, it is a fragment retrieved by a
worker for anonymization. Its anonymized version
in Figure fc) is obtained generalizing attribute Age
by grouping its values in intervals, considering the
partitions in Figure 2(b). For example, values 42, 50,
and 43 (fourth, fifth, and sixth tuples, corresponding
to the partition on the right-hand-side of Figure 2(b))
are generalized to [42,50].

6 WRAP UP AND INFORMATION LOSS ASSESS-
MENT

The wrap-up phase of our approach is aimed at collecting
anonymized fragments, and at assessing information loss.
To this purpose, each worker stores the anonymized frag-
ment F assigned to it in the storage platform, and computes
the information loss implied by the anonymization of F. The
information loss characterizing the anonymized fragments
are collected and combined by the Coordinator to assess the
information loss of the entire dataset. In the following, we
describe the information loss metrics we adopt. For the sake
of readability, we refer to a dataset D and its anonymized
version D, with the note that each worker operates on the
fragment I’ (and its anonymization I3 assigned to it.

o Discernibility Penalty (DP [7], [8]) assigns a penalty to
each tuple in D based on the size of the equivalence
class I (the larger an equivalence class, the larger the
penalty) to which the tuple belongs (i.e., number of
tuples generalized to the same values). Formally, the
Discernibility Penalty of an anonymized dataset D is
computed as follows:

DP(D) = Y_ |E]? 2

EeD

e Normalized Certainty Penalty (NCP [9]) assigns penal-
ties based on the amount of generalization (more
generalization resulting in higher penalties) applied
to the values of the quasi-identifying attributes. NCP
is applicable to numerical attributes generalized in
intervals, and to categorical attributes for which a
generalization hierarchy exists. Given a tuple t€D,
the normalized certainty penalty NCP,, (f) of its gen-
eralization £€D for attribute a€Ql is computed as
follows:

Ymax —VUmin
Range(a)
|Ind(?)]

[Dom(a)]

if @ is numerical

NCP, (f) = ®)

if a is categorical

where t[a]=[Umaz, Umin] and Range(a) is the range
of the values assumed by a, if a is a numerical at-
tribute generalized in intervals; t[a]=9 and Ind(?) is
the set of values in Dom(a) that could be generalized

| Age |Country |TopSpeed
Storage i 25 | ey | 132 Spark cluster
: 33 | USA 140 Cluster Manager

Age |Country TopSpeed l

25 | haly | 132 i c,| [
; : 30 |France | 128 L |Age>=25, =
' 1 | lConditions '
H H Fragments | '

e ———r !
i

Age |Country | TopSpeed 3 ;
[25-30]| Europe| 132 ; !
[25-30] Europe | 128 } S

Workers

Anonymized Fragments

Fig. 8: Spark-based distributed anonymization system

to ¥ (i.e., the number of leaves of the generalization
hierarchy #(a) for a that are descendants of ¥), if a is
a categorical attribute with generalization hierarchy.
Given an anonymized dataset D with quasi-
identifier Ql, the Normalized Certainty Penalty of
D is computed summing the Normalized Certainty
Penalties of the attributes in Ql for all the tuples in D

as follow:
NCP(D)=>" > NCP,(f) 4)
ieD a€Ql
Given the information loss measures

DP(F),...,DP(Ejw|) (NCP(F}),...,NCP(Ejy)), resp.) for
the fragments, the Coordinator can compute the information
loss for the whole dataset by simply summing them.
We consider both DP and NCP metrics since they take a
different approach in the assessment: DP is independent
from the amount of generalization adopted and only
considers the size of equivalence classes, while NCP
precisely assesses the amount of generalization, regardless
of the number of tuples in equivalence classes.

7 IMPLEMENTATION

In this section, we illustrate the architectural design and
the deployment of our distributed anonymization approach.
The implementation is available at https://github.com/
mosaicrown/mondrian.

7.1 Architecture

Our implementation is based on an Apache Spark cluster,
whose nodes perform the three phases (pre-processing,
anonymization, and wrap-up) of our approach. Figure
illustrates the components and working of our implemen-
tation. The dataset D to be anonymized can be stored on
any storage platform (centralized or distributed) reachable
by Apache Spark with a URL. The Spark cluster includes a
Spark Cluster Manager, which coordinates the cluster, and a
set W of Spark Workers, which perform the tasks assigned
to them by the Cluster Manager. We implemented our
distributed anonymization application in Python to leverage
Pandas framework [10], [11], which can be conveniently
used for managing very large datasets.

https://github.com/mosaicrown/mondrian
https://github.com/mosaicrown/mondrian

In the Spark cluster architecture in Figure 8 the Spark
Driver plays the role of our Coordinator: it is responsible
for calling the Spark Context in the user-written code, im-
plementing the partitioning process. (Note that the Spark
Driver and the Spark Cluster Manager are not necessarily
hosted on the same node of the cluster.) The Spark Driver
is also responsible for translating the code to be executed in
the cluster into jobs, which are further divided into smaller
execution units, called fasks (implementing the distributed
anonymization in our scenario), executed by the workers.

To anonymize a dataset D, first the Spark Driver down-
loads from the storage platform a sample D of D that fits
into its memory. It then locally executes the pre-processing
phase. In particular, the Spark Driver locally partitions
the downloaded sample D running procedure Q_Partition
in Figures [(if quantile-based approach is adopted), or
procedure M_Partition in Figure 5| (if multi-dimensional
approach is adopted), keeping track of the conditions de-
scribing the computed fragments. The Spark Driver then
defines a set of |W| Spark Tasks. Each task corresponds to
the anonymization of a fragment F; and includes the condi-
tions defining F;. Once the Spark Driver has terminated the
pre-processing phase, the Spark Cluster Manager selects the
workers that will be involved in the distributed anonymiza-
tion process. The Spark Driver then sends to each identified
worker w; its anonymization task, enabling w; to download
from the storage platform the tuples in the fragment F;
assigned to it. Each Spark Worker w then retrieves from
the storage platform the fragment of D satisfying the condi-
tions included in the task assigned to it. The Spark Worker
anonymizes the fragment with our distributed Mondrian
(Figure [7] Section [p), computes the amount of information
loss caused by anonymization (Equations]and[d] Section[5),
and stores the results in the storage platform using the
services of the Spark Driver. The Spark Driver combines the
information loss computed by the Spark Workers to obtain
the information loss of the overall dataset.

7.2 Deployment

Aiming at creating a solution that can be easily deployed
in a cloud infrastructure (e.g., AWS or Google Cloud), we
opted for a multi-container application, leveraging Docker
containers, for the deployment of our approach. We de-
ployed the Spark architecture in Figure [§| with: i) a Docker
container for the Spark Driver; ii) a Docker container for
the Spark Cluster Manager; iii) a variable number of Docker
containers for the Spark Workers; and iv) a Docker container
to expose a Spark History Server, for additional information
about the task scheduling and assignment performed by
Spark.

In our implementation, Docker containers are spawned
with Docker Compose. To manage the distribution of the
containers to the nodes (machines) of the Spark cluster, dif-
ferent orchestrator tools (e.g., Kubernetes) can be adopted.
We leveraged Docker Swarm due to its simplicity. Figure [9]
illustrates an example of the Docker Swarm distribution of
Docker containers to the nodes of a Spark cluster. In the
figure, white solid boxes represent the nodes in the Spark
cluster, while blue (gray, in b/w printouts) boxes represent
Docker containers. Note that each node in the Spark cluster

Storage

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Spark Cluster

Docker Swarm Worker

Spark worker 1
Container

Spark worker 2
Container

Docker Swarm
Manager

Spark worker 3
Container

Docker Swarm Worker

Docker Swarm Worker

Spark cluster
ansger (e[| SPoLLvOrer
Container

Spark Driver L1 ,| Sparkworkern
Container Container

Fig. 9: Container deployment in a cloud environment

can spawn more than one Docker container. One of the
nodes in the cluster acts as Docker Swarm Manager, while
the other nodes act as Docker Swarm Workers. The Docker
Swarm Manager coordinates and is in charge of distributing
the workload on the Docker Swarm Workers, which in turn
are used to spawn the Docker containers modeling Spark
Manager, Spark Driver, and Spark Workers. One of the
Docker Swarm Workers is then dedicated to spawn one
container for the Spark Cluster Manager and one container
for the Spark Driver. The other Docker Swarm Workers
spawn the containers modeling Spark Workers.

8 EXPERIMENTAL RESULTS

We performed a set of experiments to evaluate the scal-
ability and applicability of our distributed Mondrian
anonymization approach, compared to the traditional cen-
tralized Mondrian algorithm, considered as the baseline.

8.1

In the following, we describe the settings and dataset used
in our experimental evaluation.

Experimental settings

Server specifications and cloud deployment. Since our
solution does not require any specific cloud environment,
to obtain reproducible results, in our experiments we simu-
lated a cloud environment leveraging Docker Compose. We
run our experiments on a machine equipped with an AMD
Ryzen 3900X CPU (12 physical cores, 24 logical cores), 64
GB RAM and 2 TB SSD, running Ubuntu 20.04 LTS, Apache
Spark 3.0.1, Hadoop 3.2.1, and Pandas 1.1.3. Each worker is
equipped with 2GB of RAM and 1 CPU core. Centralized
Mondrian relies on 1 CPU core, with no limitation on the
use of the RAM. To prove the applicability and scalability
of our solution in a real-world distributed environment, we
deployed it on Amazon Elastic Compute Cloud (t2.medium
instances equipped with 2 cores, 4GB of RAM, and 8GB of
gp3 SSD, running Ubuntu 20.04 LTS, and located in the us-
east-1 region). The results obtained in this real-world cloud

environment confirm the ones obtained in our simulated
environment illustrated in Section

Storage platform. We used Hadoop Distributed File System
(HDFS) as the distributed storage platform for storing the
dataset to be anonymized. We deployed the HDFS cluster
leveraging Docker containers, with one container for the
Hadoop Namenode (responsible for the cluster manage-
ment); and multiple containers for the Hadoop Datanodes
(responsible for storing data and servicing read and write
requests).

Dataset. We considered the Poker Hand dataset [12] and
ACS PUMS USA 2019 dataset [13]. The choice has been
dictated by the need to consider very large datasets, to test
the scalability of our approach. We refer the reader to [1] for
performance and information obtained by our distributed
Mondrian on the well known (but smaller) ACS PUMS USA
2018 dataset [13].

The Poker Hand dataset is composed of 1,000,000 tuples.
Each tuple represents the cards in a hand of Poker. Each
card is described through 2 attributes: the seed (an integer
value in the range {1, ...,4}) and the rank (an integer value
in the range {1, ...,13}). We considered these attributes as
the quasi-identifier. We considered an additional attribute
identifying the entire hand (an integer value in the range
{0,...,9}) as the sensitive attribute.

For the ACS PUMS USA 2019 dataset, we extracted a
sample of 1,500,000 tuples. Each tuple of the dataset rep-
resents an individual respondent with attributes ST, occp,
AGEP, and WAGP, representing respectively the respondent’s
US State of residence, occupational status (expressed with
a numeric code), age, and annual income. We considered
ST, OCCP, AGEP as the quasi-identifier, and WAGP as the sen-
sitive attribute. While OCCP, AGEP, and WAGP are numeric
attributes, ST is categorical. For attribute ST, we consider
a generalization hierarchy 7 (ST) defined according to the
criteria adopted by the US Census Bureau [14], where States
are at the leaf level of the hierarchy and are grouped in
Divisions, which are in turn grouped in Regions. For exam-
ple, States NJ, NY, and PA (leaf level) can be generalized
to MiddleAtlantic (which is their parent in the hierarchy),
which in turn can be generalized to Northeast, which in turn
can be generalized to US (which is the root of the hierarchy).

8.2 Results

To assess the scalability of our approach, we analyzed the
computation time of our distributed Mondrian varying the
number of workers. Also, to assess the quality of the solu-
tion computed by our distributed Mondrian, we analyzed
the information loss varying the size of the sample used for
partitioning the dataset among workers. Both computation
times and information loss values reported in this section
have been obtained as the average over 5 runs. The values
are compared with centralized Mondrian, considered as our
baseline. In the following, we report and comment more in
the details the results obtained over Poker Hand dataset,
where the evolution exhibited by execution time and infor-
mation loss is more visible. We note however that the results
obtained with ACS PUMS USA 2019 dataset have a similar
behavior.

10

Computation time. Figure compares the computation
times of our distributed Mondrian anonymization algorithm
over Poker Hand dataset, using both quantile-based and
multi-dimensional partitioning, with centralized Mondrian
anonymization, varying the number of workers and param-
eters k£ and /. In particular, we considered £ varying in
{5,10,20}, ¢ varying in {2, 3,4}, and a number of workers
between 2 and 12 workers (12 is the largest number of
partitions that quantile-based partitioning can produce due
to the domain of the attributes of the dataset). As expected,
the execution time decreases when the number of workers
grows, with savings with respect to centralized Mondrian
between 28% and 98%, confirming the scalability of our
distributed approach. (We note that similar results were
observed on the ACS PUMS USA 2019 dataset, with savings
between 45% and 98%.) As visible from the figures, the
chosen pre-processing strategy does not significantly affect
computation times. Quantile-based and multi-dimensional
partitioning exhibit the same execution time when using
two workers. Indeed, both approaches would perform the
same partitioning. We also note that, when using quantile-
based partitioning, each additional worker provides a sav-
ing in computation time. On the contrary, when using multi-
dimensional partitioning, computation time saving can be
enjoyed when the number of workers reaches a power of 2
(i-e., it is necessary to have 2¢ workers for saving on compu-
tation time). For instance, there is a marginal saving when
passing from 6 to 7 workers, but there is a considerable
saving from 7 to 8 workers. This is due to the fact that, when
the number of workers is not a power of 2, some workers are
assigned twice the workload as the others (see Section
and therefore represent a bottleneck.

Information loss. Our distributed Mondrian might cause
additional information loss compared to the centralized
Mondrian, since each worker independently operates on
its fragment without coordinating with other workers. We
observe that the information loss caused by distribution can
be impacted by: 1) the number of workers (and hence of
fragments), and 2) the size of the sample used to partition
the dataset. Figure compares the average information
loss (and its variance) obtained in 5 runs of the distributed
(with 5 and 10 workers) Mondrian with the average infor-
mation loss of the centralized Mondrian for computing a
k-anonymous (with k = 5, k = 10, and k = 20) 2-diverse
version of the Poker Hand dataset, assuming different sam-
pling sizes (0.1%, 0.01%, 0.001%). While in the figure we
report only the values obtained with ¢ = 2 for Poker Hand
dataset, we tested also ¢ = 3 and ¢ = 4, also considering
ACS PUMS USA 2019, obtaining similar results. The results
in Figure |11] show that, for all values of k, sampling has
a very limited impact on information loss. The results also
confirm that, for all values of k, also the number of workers
has negligible impact on information loss. More precisely,
multi-dimensional partitioning performs similarly for all
tested numbers of workers, while quantile-based partition-
ing produces higher information loss when the number
of workers grows. The values in Figure (11| for DP reveal
that multi-dimensional partitioning produces equivalence
classes similar to the ones produced by centralized Mon-
drian, while the quantile-based approach produces slightly

70000

11000

11

1800

10000
9000

60000

1600

Centralized
Distributed (Quantile) —#—
Distributed (Multi-Dimensional) —@—

8000
7000

50000

Distributed (Quantile) —#—
Distributed (Multi-Dimensional) —@—

Centralized
Distributed (Quantile) —#—
Distributed (Multi-Dimensional) —@®—

Centralized —— 1400

1200

40000 2 6000 & 1000
g g £
iZ 30000 £ 5000 E 800
4000 600
20000 3000
400
10000 2000
1000 200
o s —B—m n o 0
2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12
Number of workers Number of workers Number of workers
k=5, (=2 k=5, (=3 k=5, (=4
22000 7000 1600
20000
1400 -
6000 i Centralized
b - I - "
18000 Centralized DismbutedC%H:nltZilee? —-— 1200 Distributed (Quantile) —#i—
16000 . Distributed (Quantile) —— 5000 Distributed (Multi-Dimensional) —®— Distributed (Multi-Dimensional) —@—
Distributed (Multi-Dimensional) —@—
14000 1000
319000 | 4000 v
@ i3 Q800
E E £
E 10000 £ 3000 =
8000 600
6000 2000 200 -
4000 1000
2000 [200
0 0 0
2 3 4 5 6 7 8 9 10 1 12 2 3 4 5 6 7 8 9 10 1 12 2 3 4 5 6 7 8 9 10 1 12
Number of workers Number of workers Number of workers
k=10, (=2 k=10, (=3 k=10, (=4
6000 4000 1200
3500 Centralized
5000 Centralized Centralized 1000 ~ Distributed (Quantile) ——
Distributed (Quantile) —— 3000 _ Distributed (Quantile) —— Distributed (Multi-Dimensional) —@—
4000 Distributed (Multi-Dimensional) —@— Distributed (Multi-Dimensional) —@— 800
2500 [
= = =
@ @ 3
£ 3000 g 2000 g 600
- = =
1500
2000 400
1000
1000 200
500
0 ; 0 0
2 3 4 5 6 7 8 9 10 1 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 1 12
Number of workers Number of workers Number of workers
k=20, (=2 k=20, (=3 k=20, {=4

Fig. 10: Execution times of centralized Mondrian and distributed Mondrian varying the number of workers, k, and ¢

smaller equivalence classes, especially when the sample
used for partitioning is small. The results also show that, in
some of the tested scenarios, the values for DP are higher in
the centralized scenario. Even if the difference is negligible,
it reveals that, when using sampling for partitioning the
dataset, (a subset of) the equivalence classes are smaller
compared to the equivalence classes obtained without sam-
pling. Smaller equivalence classes, however, do not imply
less generalization, as testified by the values of NCP. Indeed,
quantile-based partitioning, multi-dimensional partitioning,
and the centralized algorithm present similar (small) values
for NCP.

The experiments confirm that our distributed Mondrian
provides high scalability, while causing limited impact on
information loss. When the number of workers is a power
of 2, multi-dimensional and quantile-based partitioning ex-
hibit similar computation time. However, when the number
of workers is not a power of 2, quantile-based partitioning
provides better performance. Both approaches have limited
impact on information loss, with multi-dimensional parti-
tioning having smaller values for NCP and higher values
for DP than quantile-based partitioning (and vice versa).

9 RELATED WORK

The problem of protecting privacy in data publishing has
been widely studied (e.g., [3], [15], [16], [17], [18]). The
solutions proposed in the literature include both syntactic
(e.g., k-anonymity [3] and ¢-diversity [19]) and semantic
techniques (e.g., differential privacy [15] and its varia-
tions [20]]). Traditional algorithms aimed at enforcing k-
anonymity and/or (-diversity (e.g., [7], [21], [22]) operate
in centralized scenarios. The problem of distributing and
parallelizing anonymization has been recently studied, to
the aim of protecting also large datasets (e.g., [23], [24]). The
approach in [23] partitions the dataset and anonymizes the
resulting fragments, leveraging MapReduce [25] paradigm
to parallelize the centralized anonymization solution in [26].
The proposal in [23] takes a different approach in parti-
tioning with respect to ours, since it aims at maintaining
in each fragment the same value distribution as the whole
dataset while we aim at maintaining in each fragment ho-
mogeneous values for the quasi-identifier, so to reduce the
amount of generalization needed to enforce k-anonymity
(and hence the information loss due to generalization). The
distributed anonymization approach in [24] partitions data
so that fragments contain records that are semantically simi-
lar (leveraging Locally Sensitive Hashing, semantic distance

Information Loss (DP) Information Loss (NCP)
| Sampling | Partitioning 5 workers | 10 workers 5 workers | 10 workers
0.1% Quantile 7.14e06 £ 5.13e02 | 7.10e06 + 8.31e03 || 1.83e06 £ 3.18¢02 | 1.97¢06 + 3.99¢02
e Multi-dimensional || 7.22e06 + 1.63e04 | 7.22e06 £ 9.25e03 || 1.80e06 + 2.46e03 | 1.80e06 + 2.15e03
0.01% Quantile 7.14e06 £ 2.78¢04 | 7.10e06 + 9.35¢03 || 1.83e06 + 3.41€03 | 1.96€06 + 1.01e04
W% MMulti-dimensional || 7.17¢06 £ 1.93¢04 | 7.15¢06 £ 1.36¢04 || 1.79¢06 & 4.02¢03 | 1.80¢06 & 7.44¢03
0.001% Quantile 7.14¢06 + 2.78¢04 | 7.13c06 & 1.27¢04 || 1.83¢06 £ 3.41c03 | 1.91e06 + 7.92¢02
’ ? Multi-dimensional || 7.20e06 + 5.02e04 | 7.20e06 £ 5.02e04 || 1.80e06 + 3.82e03 | 1.80e06 + 3.82e03
Centralized 7.23e06 1.50e06
(a) k=5, (=2
Information Loss (DP) Information Loss (NCP)
‘ Sampling ‘ Partitioning 5 workers ‘ 10 workers 5 workers ‘ 10 workers
0.1% Quantile 1.42¢07 £ 7.44e03 | 1.41€07 £ 9.94e03 || 2.20e06 £ 1.38¢03 | 2.34€06 £ 1.14e03
e Multi-dimensional || 1.42e07 4 2.39e04 | 1.43e07 & 1.47e04 || 2.17e06 £ 6.50e02 | 2.17e06 £ 8.62e02
0.01% Quantile 1.42e07 £ 2.16e04 | 1.41€07 &£ 7.92¢03 || 2.20e06 £ 1.67¢03 | 2.34€06 £ 1.10e04
s Multi-dimensional || 1.42e07 4 2.35e04 | 1.42e07 + 1.71e04 || 2.17e06 £ 4.90e03 | 2.17e06 £ 4.29¢03
0.001% Quantile 1.42e07 £ 2.16e€04 | 1.41e07 £ 2.95€04 || 2.20e06 £ 1.67¢03 | 2.24e06 £ 8.00e04
’ ? Multi-dimensional || 1.43e07 4 2.36e04 | 1.47e07 & 2.36e04 || 2.17e06 £ 4.67e03 | 2.17e06 £ 4.51e03
Centralized 1.43e07 1.82e06
(b) k=10, ¢=2
Information Loss (DP) Information Loss (NCP)
| Sampling | Partitioning 5 workers | 10 workers 5 workers | 10 workers
0.1% Quantile 2.88e07 + 2.82e04 | 2.86e07 £ 2.06e04 || 2.50e06 + 3.30e01 | 2.66e06 + 1.55e03
e Multi-dimensional || 2.88e07 + 4.44e04 | 2.88e07 £ 5.77e04 || 2.47e06 + 1.56e03 | 2.46e06 + 4.32e03
0.01% Quantile 2.88e07 + 6.73e04 | 2.85e07 + 4.21e04 || 2.50e06 + 1.32e03 | 2.65e06 + 1.76e04
s Multi-dimensional || 2.88e07 & 5.03e04 | 2.88e07 + 1.86e04 || 2.47e06 £ 5.75e03 | 2.46e06 £ 4.00e03
0.001% Quantile 2.88e07 + 6.73e04 | 2.86e07 £ 2.86e04 || 2.50e06 + 1.32e03 | 2.63e06 + 3.43e03
’ ? Multi-dimensional || 2.88e07 & 7.23e04 | 2.88e07 + 6.83e04 || 2.47e06 £ 8.32e03 | 2.46e06 £ 6.17e03
Centralized 2.88e07 2.07e06
(c) k=20, (=2

Fig. 11: DP and NCP information loss varying the number of workers and &

12

measure, and k-member clustering), but it does not leverage
Mondrian for computing fragments.

Different distributed anonymization approaches rely,
similarly to our proposal, on distributed architectures for
parallelization (e.g., [6], [27], [28]l, [29], [30l, [31]], [32]). The
approach in [6] parallelizes Mondrian considering Apache
Spark, but relies on data exchange among workers to co-
ordinate anonymization of different portions of the original
dataset distributed to workers. Our approach instead aims
at limiting data exchange among workers. The solution
in [27] differs from ours since it uses hierarchical clustering
and k-means to provide ¢-diversity instead of performing
partitioning according to Mondrian strategy. The approach
in [28] considers Apache Spark for parallelizing different
anonymization approaches, but does not discuss the Spark-
based adaptation of Mondrian. The solution in [29] ran-
domly assigns tuples to workers, while our solution specif-
ically studies a strategy for distributing tuples to workers
to minimize information loss. The first approach aimed at
parallelizing Mondrian algorithm has been proposed in [30]
and is based on MapReduce paradigm. This solution differs
from ours since it heavily relies on data exchanges among

workers, while we aim at minimizing the need for workers
to communicate for anonymization purposes so to reduce
the delays and costs inevitably entailed by exchanging
data over a network. A more recent approach relying on
MapReduce for parallelizing Mondrian algorithm has been
proposed in [31]. Besides the use of MapReduce in contrast
to Apache Spark, this solution differs from ours in the
strategy adopted for splitting the dataset among workers.
The approach in [31] operates on the whole dataset (and not
on a sample of the same) and adopts a distributed algorithm
for partitioning, using a tree structure shared among the
workers in the cluster, while we specifically aim at limiting
inter-worker exchanges and coordination to improve perfor-
mance. Also, the proposal in [31] does not use quantiles for
partitioning. The proposal in [32], which enforces Mondrian
using Spark, is complementary to ours as it focuses on
improving performances by optimizing data structures used
by Spark. We instead propose a novel distributed enforce-
ment approach for Mondrian, which ensures scalability with
limited information loss through a careful data partitioning
design.

The idea of distributing the execution of Mondrian for
anonymizing a large dataset based on partitioning a sample
of the dataset, while limiting data exchange among workers,
has been proposed by us in [I]], [2]. In this paper, we
considerably extend (both theoretically and experimentally)
our prior work in [1], [2] with the definition of, and support
for, novel partitioning strategies, generalization approaches,
and metrics for selecting the most suitable attributes for data
partitioning and for computing information loss.

A related line of work has investigated the anonymiza-
tion of distributed data and/or multiple datasets (e.g., [33],
[34], [35], [36]]). While related, these solutions address a
different problem, characterized by multiple sources of data
(e.g., [33]], [34]), possibly with multiple privacy requirements
(e.g., [35]) and with different owners, each with visibility on
its own portion of data (e.g., [36]).

Other solutions based on data fragmentation for
anonymization use vertical fragmentation of the private
table. Fragmentation operates in such a way to enforce
¢-diversity (e.g., [37]) or to protect sensitive associations
among attributes in the relation schema (e.g., [38]], [39]]).

10 CONCLUSIONS

We presented a scalable approach for distributed
anonymization of very large datasets. Our approach parti-
tions a dataset to be anonymized in fragments which are
then distributed to multiple workers operating in paral-
lel and independently. We proposed different partitioning
strategies operating on a sample of the dataset, and a
distributed version of Mondrian anonymization algorithm
aimed at limiting information exchange among workers.
The experimental results confirm that our approach is scal-
able and does not affect the quality of the computed solution
in terms of information loss caused by anonymization.

ACKNOWLEDGEMENTS

This work was supported in part by the EC under projects
MOSAICrOWN, MARSAL and GLACIATION, by the Ital-
ian Ministry of Research within the PRIN program under
project HOPE, and by JPMorgan Chase & Co under project
“k-anonymity for AR/VR and IoT/5G”.

REFERENCES

[1] S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Oldani,
S. Paraboschi, M. Rossi, and P. Samarati, “Scalable distributed data
anonymization,” in Proc. of IEEE PerCom 2021, Kassel, Germany,
March 2021.

[2] ——, “Artifact: Scalable distributed data anonymization,” in Proc.
of IEEE PerCom 2021, Kassel, Germany, March 2021.

[3] P. Samarati, “Protecting respondents’ identities in microdata re-
lease,” IEEE TKDE, vol. 13, no. 6, pp. 1010-1027, November/De-
cember 2001.

[4] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Sama-
rati, “k-Anonymity,” in Secure Data Management in Decentralized
Systems, T. Yu and S. Jajodia, Eds. Springer-Verlag, 2007.

[5] A.Machanavajjhala, J. Gehrke, and D. Kifer, “¢-diversity: Privacy
beyond k-anonymity,” in Proc. of ICDE 2006, Atlanta, GA, USA,
April 2006.

[6] E Ashkouti, K. Khamforoosh, and A. Sheikhahmadi, “DI-
Mondrian: Distributed improved Mondrian for satisfaction of
the ¢-diversity privacy model using Apache Spark,” Information
Sciences, vol. 546, pp. 1-24, 2021.

(7]

(8]

(9]

[10]
[11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

13

K. LeFevre, D. DeWitt, and R. Ramakrishnan, “Mondrian multidi-
mensional k-anonymity,” in Proc. of ICDE 2006, Atlanta, GA, USA,
April 2006.

R. J. Bayardo and R. Agrawal, “Data privacy through optimal k-
anonymization,” in Proc. of ICDE 2005, Tokoyo, Japan, April 2005.
J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A.-C. Fu, “Utility-based
anonymization for privacy preservation with less information
loss,” ACM SIGKDD Explorations Newsletter, vol. 8, no. 2, pp. 21—
30, 2006.

W. McKinney, “Data structures for statistical computing in
Python,” in Proc. of SciPy 2010, Austin, TX, USA, July 2010.

J. Reback et al., “pandas-dev/pandas: Pandas,” February 2020,
https://doi.org/10.5281/zenodo.3509134.

R. Cattral and F Oppacher, “Poker Hand Data
Set, ucCI machine learning repository,” 2007,

https:/ /archive.ics.uci.edu/ml/datasets /Poker+Hand.

S. Ruggles, S. Flood, R. Goeken,]. Grover, E. Meyer,]. Pacas,
and M. Sobek, “IPUMS USA: Version 10.0 [dataset],” Minneapolis,
MN: IPUMS, 2020, https:/ /doi.org/10.18128 /D010.V10.0.
“Census regions and divisions of the united states,”
2020. [Online]. Available: https://www?2.census.gov/geo/pdfs/
maps-data/maps/reference/us_regdiv.pdf

C. Dwork, “Ditferential privacy,” in Proc. of ICALP 2006, Venice,
Italy, July 2006.

J. Vaidya and C. Clifton, “Privacy preserving association rule
mining in vertically partitioned data,” in Proc. of ACM KDD 2002,
Edmonton, Alberta, Canada, July 2002.

J. Domingo-Ferrer and V. Torra, “A critique of k-anonymity and
some of its enhancements,” in Proc. of ARES 2008, Barcelona,
Spain, March 2008.

, “Ordinal, continuous and heterogeneous k-anonymity
through microaggregation,” Data Mining and Knowledge Discovery,
vol. 11, no. 2, pp. 195-212, 2005.

A. Machanavajjhala, D. Kifer,]. Gehrke, and M. Venkitasubrama-
niam, “/-diversity: Privacy beyond k-anonymity,” ACM TKDD,
vol. 1, no. 1, pp. 3:1-3:52, 2007.

C. Dwork and A. Roth, “The algorithmic foundations of differen-
tial privacy,” Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 3-4, pp. 211407, 2014.

K. LeFevre, D. DeWitt, and R. Ramakrishnan, “Incognito: Efficient
full-domain k-anonymity,” in Proc. of SIGMOD 2005, Baltimore,
MA, USA, June 2005.

B. Hore, R. C. Jammalamadaka, and S. Mehrotra, “Flexible
anonymization for privacy preserving data publishing: A sys-
tematic search based approach,” in Proc. of SIAM SDM 2007,
Minneapolis, MN, USA, April 2007.

X. Zhang, L. T. Yang, C. Liu, and J. Chen, “A scalable two-phase
top-down specialization approach for data anonymization using
MapReduce on cloud,” IEEE TPDS, vol. 25, no. 2, pp. 363-373,
2013.

X. Zhang, C. Leckie, W. Dou, J. Chen, R. Kotagiri, and Z. Salcic,
“Scalable local-recoding anonymization using locality sensitive
hashing for big data privacy preservation,” in Proc. of CIKM 2016,
Indianapolis, IN, USA, October 2016.

J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” CACM, vol. 51, no. 1, pp. 107-113, 2008.

B. Fung, K. Wang, and P. Yu, “Top-down specialization for infor-
mation and privacy preservation,” in Proc. of ICDE 2005, March,
Tokyo, Japan 2005.

F. Ashkouti, K. Khamforoosh, A. Sheikhahmadi, and H. Kham-
froush, “DHkmeans-¢-diversity: distributed hierarchical k-means
for satisfaction of the (-diversity privacy model using Apache
Spark,” The Journal of Supercomputing, vol. 78, no. 6, pp. 2616-2650,
2021.

S. Antonatos, S. Braghin, N. Holohan, Y. Gkoufas, and
P. Mac Aonghusa, “Prima: an end-to-end framework for privacy
at scale,” in Proc. of ICDE 2018, Paris, France, April 2018.

U. Sopaoglu and O. Abul, “A top-down k-anonymization im-
plementation for Apache Spark,” in Proc. of IEEE Big Data 2017,
Boston, MA, USA, December 2017.

A. Chakravorty, T. W. Wlodarczyk, and C. Rong, “A scalable k-
anonymization solution for preserving privacy in an aging-in-
place welfare intercloud,” in Proc. of IC2E 2014, Boston, MA, USA,
March 2014.

X. Zhang, L. Qi, W. Dou, Q. He, C. Leckie, R. Kotagiri, and Z. Sal-
cic, “"MRMondrian: Scalable multidimensional anonymisation for
big data privacy preservation,” IEEE TBD, vol. 8, no. 1, pp. 125~
139, 2022.

https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf
https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf

[32] S. U. Bazai, J. Jang-Jaccard, and H. Alavizadeh, “A novel hybrid
approach for multi-dimensional data anonymization for Apache
Spark,” ACM TOPS, vol. 25, no. 1, pp. 5:1-5:25, 2021.

T. Tassa and E. Gudes, “Secure distributed computation of
anonymized views of shared databases,” ACM TODS, vol. 37,
no. 2, pp. 143, 2012.

F. Kohlmayer, F. Prasser, C. Eckert, and K. A. Kuhn, “A flexible
approach to distributed data anonymization,” Journal of Biomedical
Informatics, vol. 50, pp. 62-76, 2014.

X. Ding, Q. Yu, J. Li, J. Liu, and H. Jin, “Distributed anonymization
for multiple data providers in a cloud system,” in Proc. of DASFAA
2013, Wu Han, China, April 2013.

P. Jurczyk and L. Xiong, “Distributed anonymization: Achieving
privacy for both data subjects and data providers,” in Proc. of
DBSec 2009, Montreal, Canada, July 2009.

X. Xiao and Y. Tao, “Anatomy: Simple and effective privacy preser-
vation,” in Proc of VLDB 2006, Seoul, South Korea, September 2006.
S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati, “Fragments and loose associations: Respecting
privacy in data publishing,” PVLDB, vol. 3, no. 1, pp. 1370-1381,
September 2010.

S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga,
S. Paraboschi, and P. Samarati, “Loose associations to increase
utility in data publishing,” JCS, vol. 23, no. 1, pp. 59-88, 2015.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Sabrina De Capitani di Vimercati is a professor at the Universita
degli Studi di Milano, ltaly. Her research interests are in data security
and privacy. She has published more than 210 papers in journals,
conference proceedings, and books. She has been a visiting researcher
at SRI International, CA, USA, and George Mason University, VA, USA.
https://decapitani.di.unimi.it

Dario Facchinetti is a post-doctoral researcher at the Universita degli
Studi di Bergamo, ltaly. His work ranges from the integration of security
features in mobile, database and cloud systems, to policy and privacy
management. He is interested in access control and sandboxing tech-
niques.

Sara Foresti is a professor at the Universita degli Studi di Milano, Italy.
Her research interests are in data security and privacy. She has pub-
lished more than 100 papers in journals, conference proceedings, and
books. She has been a visiting researcher at George Mason University,
VA, USA. She chairs the IFIP WG 11.3 on Data and Application Security
and Privacy.

https://foresti.di.unimi.it

14

Giovanni Livraga is an associate professor at the Universita degli Studi
di Milano, ltaly. His research interests are in the area of data privacy
and security in emerging scenarios. His PhD thesis received the ERCIM
STM WG 2015 award. He has been a visiting researcher at SAP Labs,
France and George Mason University, VA, USA.
https://livraga.di.unimi.it

Gianluca Oldani is currently pursuing the Ph.D. degree with the Uni-
versita degli Studi di Bergamo, ltaly. His research interests include web
security, distributed technologies, and data privacy.

Stefano Paraboschi is a professor at the Universita degli Studi di
Bergamo, ltaly. His research focuses on information security and pri-
vacy, Web technology for data intensive applications, XML, information
systems, and database technology. He has been a visiting researcher
at Stanford University and IBM Almaden, CA, USA, and George Mason
University, VA, USA.

https://cs.unibg.it/parabosc

Matthew Rossi is currently pursuing the Ph.D. degree with the Univer-
sita degli Studi di Bergamo, Italy. From 2019 to 2020, he was a Research
Assistant with the Department of Information Engineering, Universita
degli Studi di Bergamo. His research interest includes the integration
of security features in mobile systems, policy management and privacy
of outsourced data.

Pierangela Samarati is a professor at the Universita degli Studi di
Milano, Italy. Her main research interests are in data protection, security,
and privacy. She has published more than 280 papers in journals, con-
ference proceedings, and books. She has been a visiting researcher at
Stanford University, CA, USA, SRl International, CA, USA, and George
Mason University, VA, USA. She is a Fellow of ACM, IEEE, and IFIP.
https://samarati.di.unimi.it

	Introduction
	Basic concepts
	Distributed anonymization
	Data pre-processing
	Partitioning strategies
	Fragments retrieval
	Attributes for partitioning

	Data anonymization
	Wrap up and information loss assessment
	Implementation
	Architecture
	Deployment

	Experimental results
	Experimental settings
	Results

	Related work
	Conclusions
	References
	Biographies
	Sabrina De Capitani di Vimercati
	Dario Facchinetti
	Sara Foresti
	Giovanni Livraga
	Gianluca Oldani
	Stefano Paraboschi
	Matthew Rossi
	Pierangela Samarati

