© IFIP International Federation for Information Processing 2025. Published by Springer LNCS

Supporting Delegation
in Outsourced ICA Process

Sabrina De Capitani di Vimercatil[0000_0003_0793_3551]7
2[0000—0003—0399—1738]
)

Sara Foresti![0000-0002-1658—-6734] ' GQtofano Paraboschi
Sara Petrilli!, and Pierangela Samarati®[0000—0001-7395—4620]

! Universita degli Studi di Milano, Italy
{sabrina.decapitani,sara.foresti,pierangela.samarati}@unimi.it;
sara.petrilli@studenti.unimi.it
2 Universita degli Studi di Bergamo, Italy
stefano.paraboschi@unibg.it

Abstract. We consider the problem of enforcing corporate governance
control relying on cloud-based services. Extending previous work, we fo-
cus in particular on the support of delegation of the director privileges,
enabling their dynamic and temporary assignment to a vice-director.
Like previous work, our control relies on encrypted tags, which are here
extended addressing the challenges introduced by dynamic delegation
which operates on a time dimension orthogonal to the corporate gov-
ernance control process. Our solution enables delegation while ensuring
a vice-director to eniov the director nrivileges onlvy when delegation is
active and not to operate as director for operations the vice-director has
processed as employee (separation of duties). Our tag construction en-
sures integrity of the dynamic delegation control and protection against
tag tampering.

Keywords: Cloud-based services, outsourcing, internal controls and au-
dit process, delegation, separation of duties

1 Introduction

Cloud-based applications and services represent today a convenient alternative
to on-premises solutions for the management of applications and processes, due
to their scalability, efficiency, and cost benefits. Adoption of cloud-based solu-
tions for sensitive or critical applications requires, however, particular care, to
ensure confidentiality and integrity of the data and process are properly consid-
ered. In this paper, we consider the enforcement of corporate governance control
with cloud-based services and, specifically of the Internal Controls and Audit
(ICA) functions, aimed at verifying the compliance of the operations generated
and elaborated within an organization with internal rules, regulations, and laws.
More concretely, we consider a three-phase ICA process, which is the most com-
mon in companies that have to comply with market regulations, like bank and
financial institutions. In this context, companies are organized in units, which

2 De Capitani di Vimercati, Foresti, Paraboschi, Petrilli, Samarati

Organization

‘Auditors |

Fig. 1: Reference scenario

generate and process operations (e.g., a bank operating through branches and
processing money withdrawal and deposit), and each operation goes through
three phases. Each phase is under the control of a different subject, who is in
charge of verifying different aspects of the operation and produces a report for
the phase. The first (employee) phase is executed by an employee of the unit
where the operation has been processed. The second (director) phase is exe-
cuted by the director of the unit where the operation has been processed. The
third (auditor) and final phase is executed by an independent auditor external
to the company. Operations and reports should be visible only to auditors and to
the employees and director of the unit where the operation has been processed,
and each report can be generated only by a subject with the role (employee, di-
rector, auditor) for the report. Also, a report can be updated only by the subject
who generated it, and only during the corresponding phase.

The approach in [4] for enforcing the ICA process, while relying on cloud-
based services, assumes all subjects to be available for the execution of their
phase. However, since each unit has one director only, absence of the director
prevents execution of the second phase of the ICA process for all the operations
processed at the unit, which remain therefore blocked as a phase cannot start
before the completion of the previous one. While the block in the operativity of
the unit caused by the absence of its director can be easily solved when managing
the ICA process on-premises by simply delegating an employee of the unit (the
vice-director), enforcing delegation in the cloud introduces complications since
the cloud provider is assumed to simply provide services and execute requested
actions while remaining unaware of the ICA process.

In this paper, we build on the approach in [4], extending and revising it to
enable delegation of the director privileges. With reference to Figure 1, the goal
is to support dynamic delegation enabling a vice-director (e.g., vx in the figure)
to take on the director privileges for the operations in their unit. Our solution
leverages tags associated with operations and units to support the execution of

the ICA phases, which corresponds to write actions executed at the server and
regulated by such tags (which enable the enforcement of access regulations). Our
approach supports the intrinsically dynamic nature of delegation without the
need to rewrite the tags of operations and permits the vice-director to operate
on behalf of the director only when delegation is active, independently from
the status of the operation at the time of activation/deactivation of delegation
(e.g., on operations for which the first phase terminated before delegation). Also,
our approach enforces separation of duties, preventing the vice-director from
performing the first and second phase of control on a same operation, thus
guaranteeing the involvement of three different subjects in the ICA process of
each operation (independently from who performed the first phase of control).
Our tag construction ensures integrity of the dynamic delegation control and
protection against tag tampering. The main advantage of our solution is the
direct support of the ICA process, including delegation, while leveraging basic
services of the cloud provider.

The remainder of this paper is organized as follows. Section 2 illustrates the
basic concepts on which our work is based. Section 3 characterizes the aspects
to take into account for supporting dynamic delegation of the director’s role.
Section 4 describes our solution for supporting delegation of the director’s priv-
ileges in the ICA process. Section 5 illustrates the pseudocode of the procedures
implementing our solution. Section 6 discusses related work. Finally, Section 7
concludes the paper. The Appendix shows that our procedures correctly enforce
the write controls on reports and tags.

2 ICA Process in the Cloud

In this section, we illustrate the basic concepts of the approach proposed in [4]
for enforcing the ICA process in the cloud. Since our focus is on the manage-
ment of delegation, we limit the concepts to those affected by delegation and
simplify notation to refer to a single unit. The approach leverages symmetric
encryption and a hierarchical organization of keys associated with the different
subjects (and groups thereof) of the ICA process. Each individual subject s (i.e.,
employee e, director d, auditor a), the set E of employees of each unit (with
d¢FE), and the set A of auditors is associated with a key known also to the
provider. Hierarchical key organization enables each individual subject s (and
the provider) to derive the key of the group to which s belongs. Denoting key
assignment with ¢(s) and key derivation with ~~, this is formally expressed as
Ve € E,a € A: ¢(e)w~d(E), p(a)~¢(A). In the following, we will also use k;
to denote the key assigned to a subject s and known to the provider, that is,

#(s) = k.3

3 While in the original model a prime superscript was used to denote encryption keys
shared with the provider (in contrast to the keys known only to subjects and used
for reading and writing reports) and their assignment function, focusing only on the
controls on tags regulating write operations, which are based on keys shared with
the provider, in this paper we simplify notation and omit such superscript.

4 De Capitani di Vimercati, Foresti, Paraboschi, Petrilli, Samarati

id op re rd ra te td ta tp
phase 1: @ ‘ ‘ ‘ ‘ ‘
employee

phase 2:
director
---------- L] L ” [

phase 3:
auditor
[| " <H

Fig. 2: Evolution of the reports and tags for an operation

Regulation of write privileges on reports relies on the use of tags, which
are random values encrypted with keys shared with the service provider. For
each unit, a (precomputed) strip of tags is defined. This strip is attached to
every operation of the unit at generation time, and evolves as the ICA process
for the operation progresses. The strip has four tags: a tag for each report (te
for employee report re, td for director report rd, and ta for auditor report
ra), and a phase tag (tp). The random values encrypted in the tags are all
different (to prevent subjects from operating outside their role) and each report
tag is encrypted with the key of the subjects allowed to write the corresponding
report (kg for te, kg for td, and k4 for ta). The phase tag has three layers of
encryption, each using the key of the subjects authorized to perform one of the
three phases. More precisely, the random value within the phase tag is encrypted
(as an onion) with k4, then kg, then kg. The phase tag evolves as the ICA process
progresses regulating the start and end of each phase. Intuitively, a subject will
be authorized to operate on a report only if proving ability to decrypt both the
report tag and the phase tag. Hence, when the process for an operation starts,
only employees will be able to operate. When the employee phase is completed,
the outer layer of the phase tag is peeled, enabling the second phase in which
only the director would be able to operate. Similarly, when the second phase
completes and the third is enabled, only auditors can operate.

Using dot notation to refer to the different fields of an operation (including
the operation identifier id, the operation content op, reports, and tags), a subject
s will be authorized for a write operation on a report o.rx, with * € {e,d,a},
only if proving ability to decrypt the corresponding report tag o.t* and the
phase tag o.tp. Denoting with W the write actions to be authorized and with A
the function assigning keys to tags (i.e., identifying the keys used for encrypting
tags), write control is formally captured by the following property.

Property 1 (Write control). For each subject s, operation o, and report o.r,
with * € {e,d,a}: write(s,0.x¥) € W iff ¢(s)wA(0.t*) A @(s)~A(o.tp).

Figure 2 summarizes the evolution of reports and tags for an operation. In
the figure, for simplicity, we specify for each tag the subjects who can derive the

corresponding encryption key. Note that when an employee e (auditor a, resp.)
starts the employee phase (auditor phase, resp.), they overwrite the value for
te (ta, resp.) with a new random value encrypted with their own key k. (kq,
resp.). This prevents updates to the report by other employees (auditors, resp.).
In the figure, a bullet denotes this change in the random value of a tag.

3 Delegation in the ICA Process

The execution of the ICA process regulated by tags as above relies on the pres-
ence of all the subjects authorized to perform its three phases. While the first
(employee) phase and last (auditor) phase can be executed by any of the sub-
jects operating in the required role (i.e., any employee or any auditor, resp.), the
second phase can be executed only by the director. If the director is temporarily
unavailable (e.g., for a sick leave) the ICA process would remain blocked for all
operations for which the second phase has not been performed. Our goal is to
extend the ICA process allowing the director to delegate their privileges to a
vice-director, denoted v, also - and otherwise - operating as a regular employee.
While in principle simple, the consideration of delegation introduces several com-
plications.

First, delegation is dynamic and its activation/deactivation operates on a
time dimension orthogonal to the phases of the ICA process. When activated,
delegation should enable the vice-director to perform the second phase also for
operations that have originated, and/or whose first phase was even started or
completed, before the delegation became active. When deactivated, it should
prevent the vice-director from performing the second phase on any operation,
even on those that originated, or whose first phase was executed, when the
delegation was active. This orthogonal and dynamic lifetime of the delegation
requires rethinking the precomputed director tag and phase tag (for its middle
layer), statically attached to the operations at their creation.

Second, with the vice-director operating as a regular employee, but also ac-
quiring director’s privileges when delegated, care must be taken to ensure the
vice-director not to execute the director phase for operations for which the vice-
director executed the first phase. With control delegated to the server simply
expressed as control on tags (the service provider should remain agnostic with
respect to the process itself), the enforcement of this separation of duties should
be embedded in tags themselves, hence again it requires rethinking the pre-
computed tag strip (intuitively, treating differently the operations for which the
vice-director performed the first phase).

Third, again with the vice-director dynamically acquiring privileges to per-
form the second phase, care must be taken with respect to potential vulnera-
bilities of the control, which could be exposed to tampering with the tag strip
enabling passing write controls for operations that should not be granted.

In the next section, we redefine tags to address the three challenges above.

6 De Capitani di Vimercati, Foresti, Paraboschi, Petrilli, Samarati

@ tc
@ td ng td @fm}
- revoke -

Fig. 3: Evolution of the director tag

4 Tag Management for Delegation Enforcement

In the following, we describe our solution for supporting director’s role delega-
tion addressing the aspects discussed in the previous section. In particular, we
illustrate how to support dynamic delegation (Section 4.1), while enforcing sep-
aration of duties (Section 4.2), and ensuring integrity of the tag control process
and of tag evolution (Section 4.3).

4.1 Dynamic Delegation

As noted, delegation is dynamic and its validity span is orthogonal with respect
to the phases of the ICA process. While in the original approach the director
tag was static throughout an operation life time and equal for all operations of
the same unit, with delegation the director tag needs to change dynamically.
This makes the precomputed director tag in the tag strip attached to operations
not suitable in presence of delegation. As a matter of fact, maintaining such
tag, would require rewriting it for the tag strip of all the existing operations
that have not completed the second phase. A further complicating factor is the
management of the middle layer of the phase tag associated with operations,
which cannot be simply rewritten.

The above observations suggest two requirements: first, the need for a direc-
tor tag that can be decrypted by both the director and the vice-director (this
latter only if delegation is active); second, a detachment of the director tag with
respect to operation records. We accommodate them by considering a key, de-
noted kp, which can be derived by both the director and vice-director (i.e.,
kg~kp, and k,~kp). We use key kp (in contrast to kq) for the middle layer
of the phase tag tp, hence enabling its decryption also by the vice-director. We
also define, for each unit u, a single director tag u.td, which applies to all the
operations of the unit. Being detached from operations, this tag can dynamically
changed to activate/deactivate delegation as needed. Like in the original model,
the tag is a random value encrypted with the unit’s director key (i.e., kq). To
activate delegation, the director overwrites the tag using a new random value
and key kp. To deactivate delegation the director overwrites it, again using a
new random value, and key ky. Delegation can be activated and de-activated as
needed. To note that activation/deactivation requires not only changing the key
with which the tag is encrypted, but also using a new random value to avoid
replay attacks. Figure 3 illustrates the change of tag u.td when delegation is ac-
tivated/deactivated, introducing our graphical (double-colored) notation for the

te ta tp te ta tp
L E | 4 @Bl
(a) regular employee (b) vice-director

Fig. 4: Structure of the tags at initialization time for operations generated by
regular employees (a) and by the vice-director (b)

tag accessible also to the vice-director (i.e., encrypted with key kp). Again, the
bullet in the tag denotes the change of the underlying random value. Note that
the director tag can be written only by the director, who is the only subject who
can activate/deactivate delegation. Analogously to write operations on reports,
write actions on u.td are controlled through a tag, denoted u.tc, defined at the
unit level, and encrypted with key kgy.

Write control (Property 1) needs then to be revised to consider the director
tag now associated with the unit (in contrast to the operation). The property is
revised as follows, changing the management of write operations on the director
report with reference to director tag w.td (in contrast to o.td).

Property 2 (Write control with delegation). For each subject s, operation o, and
report o.r* with * € {e,d,a}:

— write(s,0.rx) € W, with * € {e,a}, iff ¢(s)~A(0.tx) A ¢(s)~A(0.tp);

— write(s,0.rd) € W iff ¢(s)~A(u.td) A ¢(s)~A(o.tp).

4.2 Separation of Duties

With the vice-director also (and otherwise) operating as a regular employee care
must be taken to avoid the vice-director to perform both the first (employee)
and second (director) phase for an operation as this would violate separation of
duties. To ensure this, we remove the vice-director from the set F of employees,
treating v as a separate subject. We then consider two different tag strips, one
for operations processed by regular employees (i.e., for which a regular employee
performed the first phase) and the other for operations processed by the vice-
director. The tag strip for operations processed by regular employees is defined
as illustrated above, that is, the employee tag te (and the external layer of the
phase tag tp) is encrypted with key kg and the middle layer of the phase tag is
encrypted with key kp (derivable by both the director and the vice-director, see
Figure 4(a)). The tag strip for operations processed by the vice-director (when
operating as an employee) have the employee tag te (and the external layer of
the phase tag tp) encrypted with key k, and the middle layer of the phase tag
encrypted with key kq (see Figure 4(b)). The exclusion of the vice-director from
the set E of employees (i.e., k,7~kg) ensures that the vice-director cannot use
the regular employee tag strip. The use of k4 for the middle layer of the phase
tag of the vice-director’s strip ensures that the vice-director will not be able to

8 De Capitani di Vimercati, Foresti, Paraboschi, Petrilli, Samarati

id op re rd ra te ta tp

- [[[T[4+,
i S e

phase 2:
director

required -or-
fffffff e P e Tam]
pha§e3: %}
auditor
L [W T efe] |
(a) employee
id op re rd ra te ta tp

phase 1:
employee

phase 2:
director

required
td

phase 3:

auditor

Fig. 5: Evolution of the reports and tags for an operation generated by a regular
employee (a) and by the vice-director (b)

] 7 Tl]

(b) vice-director

execute the second phase for operations that the vice-director processed, and for
which the vice-director executed the first phase. Formally, the generation of the
two tag strips is captured by the following property.

Property 3 (Tag strip generation). The tag strip (te,ta,tp) associated with an
operation o is computed as follows:

— o.te= Enc(o, k1);
— o.ta= Enc(o/,ka);
— o.tp= Enc(Enc(Enc(c”,ka), k2), k1)

where o # o’ # ¢” are random values, k1=Fk, and ko=ky if o0 is generated by v,
or ki=kg and ky=Fkp if o is generated by a regular employee.

Figure 5 illustrates the evolution of the tags for operations processed by a
regular employee and by the vice-director.

OPERATION o id op re rd ra te
status after
phase 1

Q

a__tp
@),

OPERATION B id op re rd ra te ta tp
phase 1:
employee @ \{

phase 2:
director @ ‘{
ta [

[)

(a) tag mixing

re Ttﬁ/m\
status after 7 W 1 w W
phase 1 m ‘\)

OPERATION a

OPERATION B

phase 1:
employee

phase 2:
director

(b) tag mixing - blocked

Fig.6: An example of tag mixing (tp of operation « after phase 1 used for
operation (3)

4.3 Ensuring Tag Integrity

Although the use of two different tag strips guarantees the proper execution
of the ICA process with delegation without violating the separation of duties
principle, the generation of tags must be done with care to avoid possible vul-
nerabilities. In particular, the mixing of tags from different strips (Figure 6) as
well as the phase tag not properly peeled (Figure 7) can cause an unexpected
evolution of the ICA process that the cloud provider cannot detect.

— Tag mizing. Consider two operations, one generated by a regular employee
(a) and another one generated by the vice-director (/3), for which the first
phase has been completed. Switching the phase tag of the two operations
would permit the vice-director, in case delegation is active, to complete the
second phase for operation § for which the vice-director also performed the
first phase (Figure 6(a)). Indeed, the vice-director would be able to decrypt
both td and the (middle layer of the) phase tag, both encrypted with key
kp, thus proving to the provider the authorization to write report rd. To

10 De Capitani di Vimercati, Foresti, Paraboschi, Petrilli, Samarati

id op re rd ra te ta tp
N N N\ N N ‘] O\
revee 0y
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, N N N N N ‘ S0\
ez My
ta 2

(a) no peel

id op re rd ra te ta t

p

N N N\ N N \] NEs N

R
phase 1:
employee @A\/

N N N N N \ NEs \]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
phase 2:
director X

td BN

(b) no peel - blocked

Fig.7: An example of not peeled phase tag

avoid mixing tags of different operations, tags should be tied to operations
including the operation identifier (Figure 6(b), where the operation identifier
is represented with a triangle of different color in the top left corner of the
fields in the operation record).

— No peel. Consider an operation generated by the vice-director and assume
that, at the end of the first phase, the external layer of the phase tag is not
peeled. In case delegation is active, the vice-director would be able to decrypt
both td, encrypted with kp, and tp, encrypted with k,, thus gaining write
access to rd (Figure 7(a)). Note that the vice-director could gain access to
rd for such an operation also before the completion of the first phase, or even
before its start. To avoid situations where the external layer of the phase tag
is used for regulating write access to rd, the layers of tp should include a
reference to the phase they regulate (Figure 7(b)).

To tie tags with operations, we add a unique operation identifier within tags.
To permit the verification of the correspondence between the phase of the ICA
process and the layer of the phase tag, we introduce in each layer a reference to
the corresponding phase. Tag strip generation (Property 3) is revised as follows.

Property 4 (Tag strip generation (revised)). The tag strip (te,ta,tp) associated
with an operation o is computed as follows:

— o.te= Enc(o]|0.id, k1 );

— o.ta= Enc(o'|jo.1d, ka);



11

— o.tp=Enc(Enc(Enc(c”||0.id||a, ka)||0.id||d, k2)||0.1d]||e, k1)
where o # o' # ¢ are random values, k1=k, and ko=Fk, if o0 is generated by v,
or kiy=kp and ka=kp if 0 is generated by a regular employee.

In the following, we use notation [0.t#].id to refer to the operation identifier
in tag o.t*, and [0.tp].ph to refer to the phase reported in the phase tag. Note
that, even including the operation (and phase) identifier, tags are always gen-
erated starting from a random value since otherwise anyone could prove ability
to decrypt tags, being the operation identifier publicly available. The random
values used to generate tag strips are all different, that is, tags of the same or of
different operations are generated from different random values.

Write control (Property 2) is revised as follows to consider operation identi-
fiers within tags and phase reference in the layers of the phase tag.

Property 5 (Write control with delegation (revised)). For each subject s, opera-
tion o processed at unit u, and report o.r* with * € {e,d,a}:
— write(s,0.rx) € W, with * € {e,a}, iff ¢(s)~A(0.t*) A ¢(s)~A(o.tp) A
0.id=[0.t*].id=[o.tp].id A [0.tp].ph=x;
— write(s,0.xd) € W iff ¢(s)~A(u.td) A ¢(s)~A(o.tp) A
0.id=[o.tp].id A [0.tp].ph=d.

Analogously to the write control on reports, also the evolution of tags is
regulated (the evolution of the ICA process requires report and tag updates).
The rules governing tag updates are similar to those regulating report updates. A
subject is authorized to write a report tag t* (with * € {e,a}) if the subject would
also be authorized to write the corresponding report r* (i.e., the first condition
in Property 5 holds also for tags te and ta). Only the director is authorized to
write td. A subject is authorized to write the phase tag tp if the subject can
decrypt the phase tag, as well as the report tag corresponding to the exposed
layer of the phase tag, and the operation identifier matches with the one of the
phase tag and of the provided report tag (e.g., the subject can decrypt tp and
te, [0.tp].ph=e, and o0.id=[o.te].id=[0.tp].id). Note that, checking the ability
of a subject to decrypt a report tag besides the phase tag, prevents subjects
who can decrypt the phase tag to terminate a phase when not responsible for it.
Write control on tags is formally captured by the following property.

Property 6 (Write control on tags). For each subject s, operation o processed at
unit u, and tag o.t* with * € {e,a,p} and tag u.td:
— write(s,0.tx) € W, with * € {e,a}, iff #(s)~A(0.t*) A ¢(s)~A(o.tp) A
0.id=[o.t*].id=[o.tp].id A [0.tp].ph=%;
— write(s,u.td) € W, iff ¢(s)=A(u.tc);
— write(s,0.tp) € W iff ¢(s)~A(0o.tp) A o.id=[o.tp].id A ((¢(s)~A(o.te)
A [o.tp].ph=e A o.id=[o.te]l.id) V (P(s)»A(u.td) A [o.tp].ph=d) V
(¢(s)~A(o.ta) A [o.tp].ph=a A o.id=[o.ta].id)).

We conclude this section observing that the tag strip (te,ta,tp) associated
with an operation does not need to be created when the operation is generated,



12 De Capitani di Vimercati, Foresti, Paraboschi, Petrilli, Samarati

Delegation(u,action) /* client-side; perform action on director’s role at unit u * /
: ad:Dec(u.tc, kd) /* decryption of tag regulating write operations over u.td */

. if action==activate then /* activate delegation */

key=kq, new_key=kp

: else /* deactivate delegation */

key=kp; new_key=kq

: 0=Dec(u.td, key)

: randomly generate o’

: new_tag=Enc(o’, new_key)

: Write_TD(u, o, 04, new_tag, new_key)

WritefTD(u, o, 04, new_tag, new,key) /* provider-side; check o and o4 to verify if u.td */

1: if a::Dec(u.td, )\(u.td)) AND /* can be overwritten with new_tag encrypted with new_key */
caq==Dec(u.tc, A(u.tc)) then

2: w.td=new tag

3: A(u.td)=new_key

Fig. 8: Procedures for activating and deactivating delegation

but it can be precomputed in advance as discussed in [4]. The only difference
in our approach compared to [4] is that, since our tags include the operation
identifier, we precompute a set of tag strips for each unit, together with operation
identifiers. When a new operation is generated, it is associated with an identifier
and the appropriate tag strip depending on who has generated the operation (a
regular employee or the vice-director).

5 Management of Delegation and Write Operations

In this section, we describe the pseudocode of the activation and deactivation of
delegation (Section 5.1) and of write operations on reports (Section 5.2).

5.1 Delegation

Figure 8 illustrates the pseudocode implementing the activation and deactiva-
tion of delegation. Procedure Delegation is invoked by the director d of a unit
u and takes as input the unit u of the director and the action (activation or deac-
tivation) that the director wishes to perform. We assume that before executing
the procedure, the director tag has been correctly generated, meaning that the
tag was initially encrypted with key k4. The procedure first decrypts the tag
u.tc governing write operations over w.td (line 1). It then determines the key
(variable key) protecting the director tag and the new key (variable new key)
that will be used for encrypting the director tag (lines 2-5). The value of these
keys depends on the action to be enforced. In case of activation, the tag must
be decrypted with key=ky (i.e., the key associated with the subject executing
the procedure) and re-encrypted with new_key=Fkp (i.e., the key shared with the
vice-director and that the subject calling the procedure should derive starting



13

from their own key); key=kp and new_key=k4, otherwise. The procedure then
decrypts the director tag u.td with key (line 6), generates a new random value
o' (line 7), and encrypts it with new_key (line 8). The procedure finally invokes
Write_TD operating at the provider side (line 9).

Procedure Write_TD takes as input the unit « (i.e., the unit of director d),
values ¢ and o4 obtained from procedure Delegation through the decryption
of tags u.td and u.tc, respectively, the new director tag new_tag computed by
procedure Delegation, and the new key new_key used for encrypting new_tag.
Write_TD verifies whether o and o4 match the decryption of u.tc and u.td, re-
spectively (line 1). If this is the case, the cloud provider concludes that procedure
Delegation has been called by the director of unit u. Procedure Write_TD
can then overwrite the director tag w.td with new tag (line 2). The procedure
also updates the identifier of the encryption key now protecting w.td (line 3).
We note that the checks on o and o4 (line 1) guarantee that only the director of
a unit can activate delegation since the tag regulating write operations on the
director tag (i.e., tag u.tc) is encrypted with a key known to the director only.

5.2 Write Reports and Tags

Figure 9 illustrates the pseudocode implementing the evolution of an ICA phase.
When a subject s needs to perform an ICA phase over an operation, s invokes
procedure ICA_Phase, which takes as input the operation identifier id, the
unit u of the operation, and the phase phase of the ICA process. Depending on
the value of variable phase, the procedure identifies the report r to be gener-
ated/updated, and the corresponding report tag and decrypts it (lines 2-5). The
procedure then decrypts the phase tag tp, obtaining triple (op,id,,p) (line 6).
Note that a subject s can decrypt a tag if and only if the subject can derive the
key used for encrypting the tag. Otherwise, the decryption operation does not
produce a meaningful result.

For the employee and auditor phases, if the operation identifier reported in
the decrypted report tag and phase tag matches the operation identifier o.id,
the procedure generates a new random value o’, computes a new report tag
new_tag concatenating ¢’ with 0.id and encrypting it with the key of the em-
ployee/auditor who started the phase, and writes it in the operation record by
invoking procedure Write_Tag executed at the provider (lines 7-11). Proce-
dure ICA_Phase then checks if the operation identifiers in the phase tag id,
and in the report tag id, correspond to the input id and if the input phase
corresponds to the phase in the phase tag. If this is the case, the considered
tags are those associated with operation o and therefore procedure ICA_Phase
proceeds with the generation/update of the report of interest and writes it in
the operation record by invoking procedure Write_Report executed at the
provider (lines 12-15). Finally, procedure ICA_Phase completes the ICA phase
by invoking procedure Peel Phase_Tag, which operates at the provider and
removes the exposed encryption layer of the phase tag.

Procedure Write_Tag enforces Property 6 and is executed by the provider.
It verifies whether subject s is authorized to write a report tag (i.e., o.te or o ta)



14 De Capitani di Vimercati, Foresti, Paraboschi, Petrilli, Samarati

ICA_PhaSe(’L'd7 u, phase) /* client-side; write report of phase for operation id at unit u */
1: let 0 in O s.t. 0.id=1d
2: case phase of
3: e: r=o.re, (o,,id-)=Dec(o.te,A(0.te)) /* ¢(s)~X(o.te) */
d: r=o0.rd, o,=Dec(u.td,A\(u.td)), idr=1id /* $(s)~A(u.td) */
a: r=o.ra, (or,id,)=Dec(o.ta,\(0.ta)) /* ¢(s)~X(o.ta) */
(op,idp,p)=Dec(0.tp,A(0.tp)) /* ¢(s)~X(o.tp) */
if (p==phase==e OR p==phase==a) AND id,==idp==0.id then /* start ICA phase */
randomly generate o’
newftag:Enc(a'Ho.id,ks) /* with s the invoking subject */
10: new_key=ks
11: Write_Tag(id, o, op, new_tag, new_key, phase)
12:if id,==idp==0.id AND p==phase then /* generate/modify and write the report */
13: r=Decrypt o.r
14: r=Update and encrypt r
15: Write_Report(id, u, o, oy, T, phase)
16: Peel_Phase_Tag(id, u, o, op, phase) /* finalize ICA phase */

Write_Tag(id, o, op, t, k, phase) /* provider-side; check o, and o, to verify if */

:let 0 in O s.t. 0.id=1d /* tag of phase for operation id can be set to t encrypted with k */
: case phase of

e: t=o.te

a: t=o.ta

. if (or,id)==Dec(t,A(t)) AND (op,id,phase)==Dec(o.tp,A(0.tp)) then

t=t; A\(t)=k

N T e

WritefReport(id, U, Or, Op, T, phCLSC) /* provider-side; check o, and o), to verify if */

1: let 0 in O s.t. 0.id=1d /* report of phase for operation id at unit u can be set to r */

2: case phase of

3: e:r—o.re, t=o.te

4: d: r=o0.rd, t=u.td

5. a: r—o.ra, t=o.ta

6: if ((phase==d AND o,==Dec(t,A(t))) OR (o+,id)==Dec(t,A(t))) AND
(op,id,phase)==Dec(o.tp,\(0.tp)) then r=r

Peel_Phase_Tag(id, U, Or, Op, phase) /* provider-side; check o, and o), to verify if */

1: let 0 in O s.t. 0.id=id /* phase tag at phase of operation id at unit u can be peeled */

2: case phase of

3 e: t=o.te

4 if )\(O.te)::k‘vu then key=Fkq, /* keys of vice-director (v,) and director (kq,,) of unit u */
5: else key=kp, /* key shared between director and vice-director of unit u */

6: d: t=u.td, key=ka

7: a: t=o.ta, key=NULL

8: if ((phase==d AND o,==Dec(t,\(t))) OR (o,id)==Dec(t,A(t))) AND
(op,id,phase)==Dec(o.tp,\(0.tp)) then o.tp=0,; A(o.tp)=key

Fig.9: Execution of a ICA phase



15

by checking whether: 1) the input value o, corresponds to the decryption of the
phase tag (i.e., subject s can derive A(o0.tp)), 2) the input value o, corresponds to
the decryption of the report tag (i.e., subject s can derive A(o.tx)), 3) the input
operation identifier id matches the identifier reported in the report and phase
tags, and 4) the input phase corresponds to the phase reported in the phase tag.
If these checks succeed, the provider can conclude that s is authorized to write
the report tag, and updates it with the value received as input.

Analogously, procedure Write_Report enforces Property 5 and is executed
by the provider. It verifies whether subject s is authorized to write a report (i.e.,
o.re or o.rd or ora) by checking whether: 1) the input value o, corresponds
to the decryption of the phase tag (i.e., subject s can derive A(o.tp)), 2) the
input value o, corresponds to the decryption of the report or director tag (i.e.,
subject s can derive A(o.te) or A(u.td) or A(o.ta)); 3) the (employee or auditor)
report tag and the phase tag are those associated with the operation of interest
(i.e., the input operation identifier ¢d matches with the identifier in the tags),
and 4) the input phase corresponds to the phase reported in the phase tag. If
these checks succeed, the provider can conclude that s is authorized to write the
report, and modifies it according to the input value.

Procedure Peel Phase_Tag takes the same input as procedure
Write_Report and performs the same checks. If the checks succeed,
Peel_Phase_Tag removes the exposed layer of the phase tag.

6 Related Work

The adoption of cloud services for data storage and management provides nu-
merous advantages but also introduces several issues related to, for example, the
reliability of cloud providers and the lack of control of data owners over their
data and processing (e.g., [3, 6,9, 10, 15, 17]). The problem of protecting data and
computations (confidentiality and integrity) when moving to the cloud has been
widely studied. Solutions protecting the confidentiality of outsourced data are
often based on owner-side encryption (e.g., [7]), thus preventing exposure of sen-
sitive information if the cloud provider is compromised. Owner-side encryption,
however, rules out any processing of data. Many efforts have been then dedi-
cated to the design of approaches for supporting computations over encrypted
data (e.g., [5,7,11,13]). With respect to integrity, solutions have been proposed
for verifying not only that data are correctly stored at the cloud provider but
also the integrity of data processing results (e.g., [18]).

A line of research related to our work focuses on the problem of enforcing ac-
cess control on outsourced data. Approaches addressing this problem either rely
on attribute-based encryption (ABE) (e.g., [16, 19]), or combine selective encryp-
tion and key derivation strategies (e.g., [3,12]) to translate read access privileges
into the knowledge of the keys necessary to decrypt data. ABE is a public key
encryption schema that can be combined with ABS (Attribute-Based Signature)
for regulating write actions over resources (e.g., [8, 14]). While effective, solutions
relying on ABE are less efficient than our proposal due to their adoption of asym-



16 De Capitani di Vimercati, Foresti, Paraboschi, Petrilli, Samarati

metric encryption. Our proposal is inspired by approaches leveraging selective
encryption for access control enforcement. Selective encryption uses symmetric
encryption and enforces access control policies by properly regulating the keys
to be used for resource encryption and to be distributed to users. Key derivation
strategies (e.g., [1]) enable users to derive, from the distributed keys, the ones
used for encryption. Selective encryption approaches have also been enhanced to
enforce selective write privileges (e.g., [2]). While similar to our proposal, these
techniques cannot be directly used for enforcing the ICA process, because of the
peculiarities of the considered scenario and of the intrinsically dynamic nature
of authorizations while the process evolves.

The problem of moving the ICA process to the cloud has been first addressed
in [4]. However, this proposal does not consider the potential block in the oper-
ativity of a unit caused by the absence of the director responsible for the second
phase of the ICA process of all operations of the unit. We have then enhanced
this solution to enable the delegation of the director privileges, while preventing
the delegated subject to perform more than one phase of the ICA process.

7 Conclusions

We addressed the problem of enforcing corporate governance internal control
and audit functions while relying on cloud-based services for their execution.
Extending previous work, we considered in particular the support of delegation,
enabling directors to dynamically and temporarily delegate their privileges to
vice-directors. Support of dynamic delegation required rethinking the (prede-
fined and static) encrypted tags attached to operations. Our solution provides
support of delegation while ensuring separation of duties and correctness of
the control against possible misbehavior and tag tampering. Our work leaves
room for extensions, including the support of alternative delegation (e.g., non-
predefined vice-director, enforcement of two-person-rules for acquiring director’s
privileges), and consideration of additional functionalities of governance con-
trol (e.g., preventing subjects to perform employee, director, or audit control on
operations for which they may be in conflict of interest).

Acknowledgements. This work was supported in part by the EC under
projects GLACIATION (101070141) and EdgeAI (101097300), by the Italian
MUR under PRIN project POLAR (2022LA8XBH), and by project SERICS
(PE00000014) under the MUR NRRP funded by the EU - NGEU. Project
EdgeAl is supported by the Chips Joint Undertaking and its members includ-
ing top-up funding by Austria, Belgium, France, Greece, Italy, Latvia, Nether-
lands, and Norway under grant agreement No. 101097300. Views and opinions
expressed are however those of the authors only and do not necessarily reflect
those of the European Union, the Chips Joint Undertaking, or the Italian MUR.
Neither the European Union, nor the granting authority, nor Italian MUR can
be held responsible for them.



17

References

10.

11.

12.

13.

14.

15.

16.

17.

. Atallah, M., Blanton, M., Fazio, N., Frikken, K.: Dynamic and efficient key man-

agement for access hierarchies. ACM TISSEC 12(3), 18:1-18:43 (Jan 2009)

. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S.,

Samarati, P.: Enforcing dynamic write privileges in data outsourcing. COSE 39,
47-63 (Nov 2013)

. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:

Encryption policies for regulating access to outsourced data. ACM TODS 35(2),
12:1-12:46 (Apr 2010)

. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Samarati, P.: Enforcing

corporate governance controls with cloud-based services. IEEE TSC 17(6), 3583~
3596 (Nov-Dec 2024)

. Ding, X., Wang, Z., Zhou, P., Choo, K.K.R., Jin, H.: Efficient and privacy-

preserving multi-party skyline queries over encrypted data. IEEE TIFS 16, 4589—
4604 (Aug 2021)

. Gritzalis, S., Yannacopoulos, A., Lambrinoudakis, C., Hatzopoulos, P., Katsikas,

S.: A probabilistic model for optimal insurance contracts against security risks and
privacy violation in IT outsourcing environments. IJIS 6, 197-211 (Jan 2007)

. Hacigtimig, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted data

in the database-service-provider model. In: Proc. of SIGMOD. Madison, WI, USA
(Jun 2002)

. Huang, Q., Yang, Y., Shen, M.: Secure and efficient data collaboration with hier-

archical attribute-based encryption in cloud computing. Future Generation Com-
puter Systems 72, 239-249 (Jul 2017)

. Jhawar, R., Piuri, V., Samarati, P.: Supporting security requirements for resource

management in cloud computing. In: Proc. of CSE. Paphos, Cyprus (December
2012)

Jhawar, R., Piuri, V., Santambrogio, M.: A comprehensive conceptual system-level
approach to fault tolerance in cloud computing. In: Proc. of SysCon. Vancouver,
BC, Canada (March 2012)

Li, F., Ma, J., Miao, Y., Liu, X., Ning, J., Deng, R.H.: A survey on searchable
symmetric encryption. ACM CSUR 56(5), 119:1 — 119:42 (May 2024)

Miklau, G., Suciu, D.: Controlling access to published data using cryptography.
In: Proc. of VLDB. Berlin, Germany (Sep 2003)

Poh, G., Chin, J., Yau, W., Choo, K.K.R., Mohamad, M.: Searchable symmetric
encryption: Designs and challenges. ACM CSUR 50(3), 40:1-40:37 (2017)

Ruj, S., Stojmenovic, M., Nayak, A.: Privacy preserving access control with au-
thentication for securing data in clouds. In: Proc. of CCGrid. Ottawa, Canada
(May 2012)

Xie, S., Mohammady, M., Wang, H., Wang, L., Vaidya, J., Hong, Y.: A generalized
framework for preserving both privacy and utility in data outsourcing. IEEE TKDE
35(1), 1-15 (Jan 2023)

Xu, S., Ning, J., Huang, X., Li, Y., Xu, G.: Untouchable once revoking: A practical
and secure dynamic EHR sharing system via cloud. IEEE TDSC 19(6), 37593772
(Nov-Dec 2022)

Zahid, M., Shafiq, B., Vaidya, J., Afzal, A., Shamail, S.: Collaborative business
process fault resolution in the services cloud. IEEE TSC 16(1), 162176 (Jan-Feb
2023)



18 De Capitani di Vimercati, Foresti, Paraboschi, Petrilli, Samarati

18. Zhang, B., Dong, B., Wang, W.: Integrity authentication for SQL query evaluation
on outsourced databases: A survey. IEEE TKDE 33(4), 1601-1618 (Apr 2021)

19. Zhang, Y., Deng, R., Xu, S., Sun, J., Li, Q., Zheng, D.: Attribute-based encryption
for cloud computing access control: A survey. ACM CSUR 53(4), 83:1-83:41 (Jul
2021)

Correctness

We first show that Delegation procedure updates the director tag in accordance
with the status of delegation.

Lemma 1. Procedure Delegation in Figure 8 guarantees that for each unit u,
@(s) ~ A(u.td) iff s=d, or s=v and delegation is active.

Proof. We assume that the director tag is correctly generated and encrypted
when procedure Delegation is called and that the caller of the procedure is
the director d of unit u. We now distinguish two cases, depending on the action
(activate or deactivate) input to the procedure.

— Delegation(u,activate). The procedure first decrypts the control tag u.tc,
obtaining value o4. The director tag is encrypted with k4 that only d can
derive. The procedure can then decrypt the director tag (obtaining value o),
generate a new random value, and re-encrypt the new random value with
kp (new_tag) that both d and v can derive. The verification of whether the
caller of Delegation is authorized to overwrite the director tag with new_tag
(i.e., to activate delegation) is verified by the provider through procedure
Write_TD, which checks whether both o4 and o match with the decryption
of A(u.tc) and A(u.td), respectively. If this is the case, Write_TD activates
delegation by overwriting w.td with new tag and assigning kp to A(u.td).
After the activation of delegation, ¢(s) ~» A(u.td), with se{d,v}.

— Delegation(u,deactivate). The procedure first decrypts the control tag u.tc,
obtaining value o4. The director tag is encrypted with kp that d and v can
derive. The procedure can then decrypt the director tag with kp, generate
a new value, and re-encrypt the new value with k; that only subject d
can derive. Again, the verification of whether the caller of Delegation is
authorized to overwrite the director tag with new tag (i.e., to deactivate
delegation) is verified by the provider through procedure Write_TD. If such
a check succeeds, Write_TD overwrites u.td with new_tag, and assigns kq
to A(u.td). As a consequence, delegation is deactivated and ¢(s) ~ A(u.td),
with s=d. O

We now show that Peel_Phase_Tag procedure correctly decrypts the phase
tag of an operation.

Lemma 2. Procedure Peel_Phase_Tag in Figure 9 guarantees that for each
object o, phase tag o.tp is correctly decrypted.



19

Proof. The procedure takes as input the id of an operation, the unit u where
operation ¢d has been processed, two secret values o, and op,, and the current ICA
phase. Depending on the current phase, the procedure determines the key needed
for decrypting the next layer of the phase tag. The procedure then checks whether
the decryption of o.tp produces a triple that corresponds to (o,,id,phase), and
the input value o, corresponds to the decryption of the director tag (phase=d)
or the input id and o, correspond to the decryption of the report tag (phase=e
or phase=a). If the control succeeds, the procedure assigns o, to o.tp, meaning
that the current layer of the phase tag is correctly removed. O

We are now ready to prove that the procedures in Figure 9 satisfy Property 5.

Theorem 1 (Correct enforcement of write control). Procedure
ICA_Phase guarantees that for each subject s and operation o, Property 5 is
satisfied.

Proof. We assume that before starting the ICA process, the tags associated with
the operations have been correctly generated and processed. We distinguish two
cases: 1) the subject invoking the procedure is an employee or an auditor and
the phase is e or a, and 2) the subject invoking the procedure is the director or
the vice-director and the phase is d.

— Case 1. The procedure decrypts both the report tag corresponding to the in-
put value phase (i.e., te if phase=e or ta if phase=a) obtaining pair (o,,id),
and the phase tag obtaining triple (o,,id,p). If there is a match among the
identifier provided as input and the ones obtained from the decryption of
the report and phase tags and the phase tag exposes the encryption layer
corresponding to the input phase, the procedure calls Write_Report. Pro-
cedure Write_Report checks whether the report and phase tags have been
correctly decrypted (input o, and oy,), the operation identifier (input id)
matches the identifier reported in the tags, and the input phase phase cor-
responds to the phase reported in the phase tag. The check performed by
Write_Report succeeds only if: 1) ¢(s)~A(o.t*) (with t¥=te or t*=ta)
because only in this case o, can correspond to the value that the cloud
provider obtains with the decryption of the report tag; 2) ¢(s)~A(o.tp) be-
cause only in this way o, can correspond to the value that the cloud provider
obtains with the decryption of the phase tag; 3) the input id corresponds
to the identifiers that the cloud provider obtains from the decryption of the
report and phase tags; 4) the input phase corresponds to the phase that the
cloud provider obtains from the decryption of the phase tags. The report is
then written only if Property 5 is satisfied.

— Case 2. For the operation o the employee phase has been already executed
as the requesting input phase is d. Procedure Peel_Phase_Tag has then
removed the external layer (Lemma 2) of the phase tag that now exposes the
layer corresponding to the director phase. The ICA_Phase procedure de-
crypts both the director tag obtaining value o,., and the phase tag obtaining
triple (op,id,p). If the operation identifier (input id) matches the identifier



20

De Capitani di Vimercati, Foresti, Paraboschi, Petrilli, Samarati

reported in the phase tag, and the input phase phase corresponds to the
phase reported in the phase tag, the procedure calls Write_Report that,
as before, checks whether the director and phase tags have been correctly
decrypted (input o, and o,), the operation identifier (input id) matches
the identifier reported in the phase tag, and the input phase phase corre-
sponds to the phase reported in the phase tag. This check succeeds only
if: 1) ¢(s)~A(o.td) meaning that s is the director or, if the delegation is
active (Lemma 1), the vice-director; 2) ¢(s)~A(o.tp) because only in this
way o, can correspond to the value that the cloud provider obtains with
the decryption of the phase tag; 3) id corresponds to the identifiers that the
cloud provider obtains from the decryption of the director and phase tags;
4) phase corresponds to the phase that the cloud provider obtains from the
decryption of the phase tags. The report is then written only if Property 5
is satisfied.



